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Abstract. At Eurocrypt’19, Attrapadung presented several transfor-
mations that dynamically compose a set of attribute-based encryption
(ABE) schemes for simpler predicates into a new ABE scheme for more
expressive predicates. Due to the powerful unbounded and modular na-
ture of his compositions, many new ABE schemes can be obtained in a
systematic manner. However, his approach heavily relies on q-type as-
sumptions, which are not standard. Devising such powerful compositions
from standard assumptions was left as an important open problem. In
this paper, we present a new framework for constructing ABE schemes
that allow unbounded and dynamic predicate compositions among them,
and show that the adaptive security of these composed ABE will be pre-
served by relying only on the standard matrix Diffie-Hellman (MDDH)
assumption. This thus resolves the open problem posed by Attrapadung.
As for applications, we obtain various ABEs that are the first such in-
stantiations of their kinds from standard assumptions. These include the
following adaptively secure large-universe ABEs for Boolean formulae
under MDDH:
– The first completely unbounded monotone key-policy (KP)/ciphertext-

policy (CP) ABE. Such ABE was recently proposed, but only for the
KP and small-universe flavor (Kowalczyk and Wee, Eurocrypt’19).

– The first completely unbounded non-monotone KP/CP-ABE. Espe-
cially, our ABEs support a new type of non-monotonicity that sub-
sumes previous two types of non-monotonicity, namely, by Ostro-
vsky et al. (CCS’07) and by Okamoto and Takashima (CRYPTO’10).

– The first (non-monotone) KP and CP-ABE with constant-size cipher-
texts and secret keys, respectively.

– The first KP and CP-ABE with constant-size secret keys and cipher-
texts, respectively.

At the core of our framework lies a new partially symmetric design of the
core 1-key 1-ciphertext oracle component called Key Encoding Indistin-
guishability, which exploits the symmetry so as to obtain compositions.

Keywords: Attribute-based encryption, predicate compositions, k-Lin, com-
pletely unbounded ABE, non-monotone ABE, succinct ABE, Boolean formula

1 Introduction

Attribute-based encryption (ABE) is a generalized form of public-key encryption
that allows fine-grained access control over encrypted data [27,38]. In a broader



sense of ABE, each scheme specifies a predicate P : X × Y → {0, 1}, where X

and Y are ciphertext and secret-key attribute universes, respectively. All users
can encrypt a message with an arbitrary attribute x ∈ X. An owner of a master
secret key can generate a secret key for an arbitrary attribute y ∈ Y. A ciphertext
for attribute x is decryptable with a secret key for attribute y if and only if x and
y satisfy the predicate P, i.e., P(x, y) = 1. This is in contrast to the traditional
public-key encryption, in which only one legitimate user can decrypt a ciphertext.

One of central research topics in ABE is to explore what kind of predicates for
which ABE can be realized. This is important in practice since if one attempts
to realize an access control system based on ABE, the underlying predicate
must be able to express all decryption conditions that appear in the system. A
line of works has shown that we can realize ABE for various predicates: ABE
for span programs, (non-)deterministic finite automata, polynomial-sized cir-
cuits, and so on [4, 14, 25, 27, 29, 36, 38, 42]. These works directly construct ABE
schemes for targeting predicates. In contrast, there is also another approach to
construct ABE schemes for more expressive new predicates by transformations
and combinations of known predicates [6, 7, 9, 13]. The state of the art on this
approach is the work by Attrapadung [9], who proposed a framework for dy-
namic predicate compositions and introduced new ABE schemes such as ABE
for key-policy (KP)/ciphertext-policy (CP) augmentation over predicate sets,
nested-policy ABE, and mixed-policy ABE. The salient feature of these ABE
schemes is that they allow unbounded and dynamic predicate compositions, that
is, they do not impose any restriction on the size and structure of composition
policy. This is in contrast to previous works [6, 7, 13], which allow only static
(i.e., a-priori fixed) compositions. He also showed that his framework captures
predicates that are known but whose adaptively secure ABE instance was still
open such as the predicate for completely unbounded non-monotone ABE.

The framework of [9] modularly constructs new predicates with correspond-
ing pair encoding schemes (PES), which are encoding systems that yield concise
expressions of ABE schemes [7]. It is shown in [9] that a nested application
of three transformations of predicates, namely, direct sum, dual transformation,
and KP augmentation over a single predicate (we call it just KP augmentation in
what follows), is sufficiently powerful to obtain expressive predicates, such as the
predicates for KP/CP augmentation over predicate sets, nested-policy ABE, and
completely unbounded non-monotone ABE. He also demonstrates the transfor-
mations of PESs that correspond to the three transformations of the predicates.
Hence, starting from known predicates and corresponding PESs, one can obtain
a new transformed predicate along with its PES. Additionally, all PESs obtained
in his framework can be used to instantiate a secure ABE scheme.

A crucial fact that his framework relies on is that the transformations of PESs
preserve the symbolic property, introduced by Agrawal and Chase [3]. That is, he
proved that all transformed PESs in his framework satisfy the symbolic property
if the starting PESs satisfy the symbolic property. Agrawal and Chase showed
that an ABE scheme induced by a PES with the symbolic property is adaptively
secure under the q-ratio assumption [3]. Thus, we can use known predicates that
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Table 1. Comparison among frameworks that compose multiple predicates over ABE.

Framework Composition type Comp. class Input primitive Assumption

ABS17 [6] Static Boolean formulae Predicate encodings (info.-theoretic) MDDH
Att19 [9] Unbounded, Dynamic SP, BP, DFA Pair encodings with symbolic security q-ratio
This work Unbounded, Dynamic Boolean formulae Pair encodings with info.-theoretic security MDDH

or with Key-Encoding Indistinguishability

Note: SP, BP, DFA stand for span programs, branching programs, deterministic finite automata, respectively.

have a PES with the symbolic property to construct a new expressive predicate
and the corresponding PES, which results in a secure ABE scheme.

One drawback of his framework is the necessity of the q-ratio assumption,
which is one of so-called q-type assumptions. The q-ratio assumption is parame-
trized with two parameters d1 and d2 and becomes stronger as they grow. We
require that the q-ratio assumption holds with respect to sufficiently large d1

and d2 to assure the security of most ABE schemes because these parameters
depend on adversary’s behavior. However, the q-ratio assumption is a new com-
plex assumption and thus not well-understood. Hence, it is desirable if we can
transform PESs and instantiate an ABE scheme from a transformed PES under
well-understood standard assumptions like the matrix Diffie-Hellman assump-
tion (which includes k-Lin as a special case), instead of q-type assumptions. The
realization of such a framework yields many important new ABEs from standard
assumptions but has been left as an open problem by Attrapadung [9].

1.1 Our Contributions

New Framework. We give an affirmative answer to the problem and present
a new framework for transforming predicates and constructing ABE schemes
on prime-order bilinear groups, which relies on only the standard matrix Diffie-
Hellman (MDDH) assumption. Following [9], our framework also composes a new
predicate by combining three essential transformations, namely, the direct sum,
dual transformation, and KP augmentation. Nested applications of these trans-
formations yield various expressive predicates and ABE schemes. Our framework
introduces a new property on PESs that satisfies the two requirements under the
MDDH assumption: the preservation of the property in the transformations and
the induction of the adaptive security of the resulting ABE scheme.

Note that there are two differences between our framework and that by At-
trapadung [9] (we provide a comparison among composition frameworks in Ta-
ble 1). First, our KP augmentation is done with Boolean formulae, whereas that
by Attrapadung is augmentation with span programs, branching programs, and
deterministic finite automata (realizing them from standard assumptions is an
interesting open problem). Second, starting predicates need to have a PES with
a certain information-theoretic property, whereas those in his framework only re-
quire a PES with the symbolic property. Note that the latter may be attainable
by larger classes of predicates (but the symbolic property would require q-type
assumptions). Nevertheless, our framework is still sufficiently powerful to real-
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Table 2. Comparison among unbounded ABE schemes.

References
Large

universe
Adaptive
security

Multi-
use

Static
assumption

Without
RO

Non-
monotonicity

Prime-
order

KP/CP

LW11 [32] X X X X KP
OT12 [35] X X X X X(OT) X KP, CP
RW13 [37] X X X X KP, CP
YAHK14 [44] X X X X(OSW) X KP, CP
Att14 [7] X X X X KP
AY15 [13] X X X X CP
Att16 [8] X X X X X KP, CP
AC17a [3] X X X X X KP, CP
AC17b [2] X X X X KP, CP
CGKW18 [17] X X X X KP, CP
KW19 [30] X X X X X KP
Att19 [9] X X X X X(OSW) X KP, CP
TKN19 [40] X X X X X(OT) X KP, CP

Ours 1 X X X X X X KP, CP
Ours 2 X X X X X X(OSWOT) X KP, CP

Note: KP, CP is for key-policy, ciphertext-policy. RO is for random oracles. We consider three
types of non-monotone ABE: OT-type (Okamoto-Takashima [35]), OSW-type (Ostrovsky-Sahai-
Waters [36]), and a new unified type (OSWOT) (see §6).

ize many ABE schemes of which instantiations under the standard assumptions
have remained open before our work.

New Instantiations. Via our new framework, we obtain the following ABE
instantiations for important specific predicates. We emphasize that all the instan-
tiations are large-universe constructions, which have a super-poly size attribute
domain. Their comparisons to previous schemes are given in Tables 2 to 5.

1. The first adaptively secure completely unbounded KP/CP-ABE for mono-
tone Boolean formulae under MDDH.3 Previously, such an adaptively secure
KP/CP-ABE relies on either q-type assumptions [3,8,9] or the one-use restric-
tion (each attribute is usable at most once in a policy) [17,35]. Note that the
recent unbounded KP-ABE with multi-use by Kowalczyk and Wee [30, §A]
is a small-universe construction, i.e., the attribute domain size is (a priori
unbounded) polynomial.

2. The first adaptively secure completely unbounded KP/CP-ABE for non-
monotone Boolean formulae under MDDH. Furthermore, our ABE schemes
support a new type of non-monotonicity that conflates the two types of ex-
isting non-monotonicity by Ostrovsky, Sahai, and Waters (OSW) [36] and by
Okamoto and Takashima (OT) [34]. In other words, both OSW-non-monotone
ABE and OT-non-monotone ABE can be captured as a special case of our
non-monotone ABE. Previously, an adaptively secure unbounded ABE for

3 To be more precise, we describe some terms. Unbounded ABE [32] refers to schemes
that have no bounds on the sizes of attribute sets (inputs to a Boolean formula) and
policies (Boolean formulae). Multi-use refers to the property that any attribute can
be used arbitrarily many times in one policy. Completely unbounded ABE refers to
unbounded large-universe ABE with multi-use (see e.g., [9]).
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Table 3. Closer comparison among adaptively secure unbounded ABE with multi-use
in the standard model.

References KP/CP
Large
univ.

Static
assump.

Non-
monoton.

|pk| |ct| |sk|

Att14 [7], Att16 [8], AC17a [3] KP X O(1) O(t) O(n)
KW19 [30] KP X O(1) O(t) O(n)
Att19 [9] KP X X(OSW) O(1) O(t) O(n)

Ours 1 KP X X O(1) O(t) O(n)
Ours 2 KP X X X(OSWOT) O(1) O(t) O(n)

AY15 [13], Att16 [8], AC17a [3] CP X O(1) O(n) O(t)
Att19 [9] CP X X(OSW) O(1) O(n) O(t)

Ours 1 CP X X O(1) O(n) O(t)
Ours 2 CP X X X(OSWOT) O(1) O(n) O(t)

Table 4. Comparison among ABE with constant-size ciphertexts (|ct| = O(1)).

References
KP
/CP

Large
univ.

Adapt.
security

Static
assumptn.

Non-
monoton.

Prime-
order

|pk| |sk|

ALP11 [11] KP X X(OSW) X O(T ) O(Tn)
Att14 [7] KP X X O(T ) O(Tn)
CW14 [18] KP X O(T ) O(Tn)
Tak14 [39] KP X X X(OSW) X O(T ) O(Tn)
Att16 [8] KP X X X O(T ) O(Tn)
AC17a [3] KP X X X O(T ) O(Tn)
Att19 [9] KP X X X(OSW) X O(T 2) O(T 3n)

Ours 3 KP X X X X(OSW) X O(T ) O(Tn)

AHY15 [10] CP X X X(OSW) X O((TN)2λ) O((TN)4λ2)
AC16 [1] CP X X O(N(T +M)) O(N2T +NM)
Att19 [9] CP X X X(OSW) X O(N2 +NM) O(t(N3 +N2M))

Ours 5 CP X X X X Õ((M + Tλ)2) Õ((M + Tλ)4)

Table 5. Comparison among ABE with constant-size keys (|sk| = O(1)).

References
KP
/CP

Large
univ.

Adapt.
security

Static
assumptn.

Non-
monoton.

Prime-
order

|pk| |ct|

AY15 [13] CP X X O(T ) O(Tn)
Att16 [8] CP X X X O(T ) O(Tn)
AC17a [3] CP X X X O(T ) O(Tn)
Att19 [9] CP X X X(OSW) X O(T 2) O(T 3n)

Ours 4 CP X X X X(OSW) X O(T ) O(Tn)

AHY15 [10] KP X X X(OSW) X O((TN)2λ) O((TN)4λ2)
Att19 [9] KP X X X(OSW) X O(N2 +NM) O(t(N3 +N2M))

Ours 6 KP X X X X Õ((M + Tλ)2) Õ((M + Tλ)4)

Notes for Table 3 to 5: we denote t = |attribute set|, n is the input length of a Boolean formula,
while T,N are the maximum bound for t, n, respectively (if required). M is the maximum bound
for the size of Boolean formulae (if required). λ is the security parameter, i.e., λ = dlog pe.
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non-monotone formulae is either the OSW-type and based on q-type assump-
tion [9] or the OT-type with the one-use restriction [35].

3. The first adaptively secure KP/CP-ABE with constant-size ciphertexts/secret
keys under MDDH for (OSW-non-)monotone Boolean formulae, respectively.

4. The first (adaptively secure) KP/CP-ABE with constant-size secret keys/
ciphertexts under MDDH for monotone Boolean formulae, respectively.

Note that almost all previous ABE with constant-size ciphertexts or keys
rely on q-type assumptions [1, 3, 7–10, 13], even when considering only selective
security. There are only two exceptions: KP-ABE with constant-size ciphertexts
of [18,39], but these only achieves semi-adaptive security.

Discussions. We clarify that our framework allows us to construct ABEs that
are hard to obtain even if given the recent groundbreaking work by Kowalczyk
and Wee (KW), who solved the multi-use problem in the adaptive setting and
also presented an unbounded KP-ABE scheme with multi-use [30]. Most notably,
we can construct completely unbounded OSW-non-monotone KP/CP-ABEs via
our framework in a systematic manner (our newly defined non-monotone ABE
subsumes OSW-non-monotone ABE). Prior to our work, there are no unbounded
OSW-non-monotone ABE schemes based on static assumptions even with the
one-use restriction (Table 2). This means that the KW technique, which is useful
for the multi-use problem, does not directly help to realize unbounded OSW-
non-monotone ABE.

We next highlight that our ABE for the newly defined non-monotonicity
is practically meaningful, besides providing a theoretical interest. Intuitively, it
allows a ciphertext to be assigned with multiple attribute sets each with a “tag”.
This, in turns, allows flexible blacklisting access controls in dynamic systems
where new attributes can be added on into the system after deployment. We will
describe it in §6 (with more details and formal definitions in the full version). We
remark that, in small universe ABE, we can use monotone ABE as non-monotone
ABE by preparing both positive and negative attributes [36]. However, this is
not the case in large-universe ABE since we cannot attach an exponentially large
number of negative attributes to ciphertexts or secret keys. Hence, for large-
universe ABE, non-monotone variant is essentially more difficult to obtain.

From these, we believe that it is challenging and important to devise a modu-
lar framework that allows us to construct such ABEs from standard assumptions.

1.2 Technical Overview of Our Framework

We first recall the three main basic predicate transformations/compositions sim-
ilarly to [9], namely, the Dual, the KP augmentation, and the Direct sum. For a
predicate P : X× Y→ {0, 1}, we define the first two, Dual[P], KP1[P], as4

Dual[P] (y, x) = P(x, y)

KP1[P]
(
x, Y =

(
(y1, . . . , yn), f

))
= f

(
P(x, y1), . . . ,P(x, yn)

)
.

4 For simplicity, we omit writing their domains here. See formal treatments in §4.
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We remark two things: a composition policy f : {0, 1}n → {0, 1} is a part of
the key attribute Y ; the “1” in KP1 refers to the single predicate P and a single
ciphertext attribute x. Next, for a set of predicates P = {P1, . . . ,Pk}, we define
its direct sum DS[P] as follows. Here i, j specifies predicate Pi,Pj , respectively.

DS[P]
(

(i, x), (j, y)
)

= 1 iff i = j ∧ Pi(x, y) = 1.

It is shown in [9] that the three transforms imply the “full” KP augmentation
over predicate sets, denoted KP[P] (notice the absent of “1”), defined as follows.
For a set X = {(i1, x1), . . . , (it, xt)} and vector Y = ((j1, y1), . . . , (jn, yn), f), let

KP[P]
(
X, Y

)
= f(b1, . . . , bn) where bv = 1 iff ∃iu=jv : Pjv (xu, yv) = 1

It is this full composition that we quantify the static vs dynamic, bounded vs
unbounded features: it is static if f is fixed (and hence so does n), otherwise it
is dynamic over the class of f ; it is unbounded when n is unbounded.

We briefly explain its direct applications. Setting P′ = {E}, where E is the
equality predicate (IBE), we obtain the completely unbounded KP-ABE for
monotone policies, that is, ABE for KP[P′] implies Ours 1 in Table 2. Similarly,
setting P′′ = {E, Ē}, where Ē is the negation of E, basically yields that for
non-monotone policies (see other precise ways to define its variants in the full
version).

As motivated in [9], the seemingly unrelated Dual indeed plays a crucial role
in bootstrapping KP1 to KP (i.e., even when considering bootstrapping over sole
key-policy flavors, and not considering across dual flavors, namely ciphertext-
policy). Intuitively, this is since the full KP “intrinsically” contains a ciphertext-
policy predicate as given by Dual[KP1[P]]

(
X ′ =

(
(x1, . . . , xt), fOR

)
, y
)
, where

X ′ with the OR policy here is another way to express the set X in KP. “Nesting”
KP1 and Dual ◦ KP1 together then yields KP (cf. [9]). Note also that the direct
sum is used to “glue” predicates in P to single predicate; it is not needed for the
case of a singleton P (such as P′ above). Now that KP is reduced to the much
simpler KP1, Dual (and DS), we will deal with these basic transforms.

Background on PES. We now briefly recall PES [7], as refined in [3]. Infor-
mally, a PES for P : X × Y → {0, 1} is represented by a variable α, five vectors
of variables (w, s, ŝ, r, r̂), and two sets of polynomials (called ciphertext and key
encodings, resp.) on these variables (cx(s, ŝ,w),ky(α, r, r̂,w)) that depend on
x ∈ X and y ∈ Y, respectively. We require that s contains a variable s0. Let
N = p1p2 for primes p1, p2, and e : G × H → GT be bilinear groups of order
N . Let gi, hi be generators of the subgroups Gi, Hi of order pi for i ∈ {1, 2},
respectively, and g = g1g2, h = h1h2. Then, an ABE scheme in composite-order
groups based on PES can be described as follows: pk = (gw

1 , e(g1, h)α) and

ctx = (gs
1, g

cx(s,ŝ,w)
1 , e(g1, h)s0αm), sky = (hr

1, h
ky(α,r,r̂,w)
1 h

ky(α,0,r̂,0)
2 ),

where (α,w, s, ŝ, r, r̂)← ZtN (t is the total number of the variables). We require
that each polynomial of cx is a linear combination of monomials siwj and ŝk
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(where si ∈ s, ŝk ∈ ŝ, wj ∈ w). This yields the linearity of cx over s, ŝ, when
fixing w. Analogous properties go for key encodings. As an example, a PES
for IBE [7] has the form cx = s0(w1x + w2), ky = α + r1(w1y + w2), where
w = (w1, w2), s = s0, r = r1 (and no ŝ, r̂). In what follows in this section, we
write cx(s, ŝ,w) and ky(α, r, r̂,w) to implicitly include s and r, respectively.

Our Goal: Three Main Implications. Since the symbolic property works
only with the q-ratio assumption, we need a completely different new notion
on PES that is preserved via the transformations, and that, at the same time,
implies the adaptive security of the induced ABE scheme under standard as-
sumptions. To this end, in this work, we introduce a new central notion called
Key-Encoding Indistinguishability for PES, denoted KE-ind. Our goal is to de-
sign KE-ind in such a way that the following theorems (stated informally below)
hold. The first states the preservation of KE-ind under the transformation. The
second states that KE-ind implies adaptively secure ABE under MDDH.

Informal Theorem 1. For a composition C ∈ {Dual,DS,KP1}, if there exists
a PES for P that satisfies KE-ind, then there exists a PES for C[P] that satisfies
KE-ind under MDDH. (Note that for DS, its input is a predicate set P.)

Informal Theorem 2. If there exists a PES for P that satisfies KE-ind, then
there exists an adaptively secure ABE scheme for P under MDDH.

The third theorem finally tells us how to achieve KE-ind via the existing
information-theoretic notion of PES called perfect master-key hiding (PMH) of
PES as defined in [7]. PMH requires that the following two distributions are
identical with respect to (α,w, s, ŝ, r, r̂)← ZtN :

{cx(s, ŝ,w),ky(α, r, r̂,w)} and {cx(s, ŝ,w),ky(0, r, r̂,w)}. (1)

Informal Theorem 3. If a PES satisfies the PMH property, then the same
PES also satisfies KE-ind under MDDH.

From these theorems, we have the following corollary.

Informal Corollary 1. If there exists a PES for P satisfying the PMH, then
there exists an adaptively secure ABE for the composed predicate C1 ◦ · · · ◦Cn[P]
under MDDH, where Ci ∈ {Dual,DS,KP1}. (For DS inputs are sets. )

We can start from such information-theoretic PESs for basic predicates in
[6, 7], such as IBE, and obtain adaptively secure ABE for composed predicates.

To obtain these theorems, it remains to properly design KE-ind.

Designing Key-Encoding Indistinguishability. For simplicity, we explain
our framework in composite-order bilinear groups in this overview since we can
basically convert ABE constructions in composite-order groups into those in
prime-order groups via the framework by Chen et al. [16, 17, 22]. Note that the
MDDH assumption in prime-order groups corresponds to the subgroup (SG)
assumptions in composite-order groups (see e.g., [17]).

8



Our starting point is to define KE-ind to be exactly the computationally
master-key hiding (CMH) property [7], which is a relaxed notion of PMH (and we
would obtain Theorem 3 above). We say that a PES Γ specified by (α,w, s, ŝ, r, r̂,
cx,ky) for P satisfies CMH if the following advantage of A is negligible:

AdvCMH
A,Γ (λ) =

∣∣∣∣Pr [β = β′
β ← {0, 1}
β′ ← AcO(·),kOβ(·)(g1, g2, h1, h2)

]
− 1

2

∣∣∣∣ ,
where the ciphertext encoding oracle cO takes x ∈ X and outputs g

cx(s,ŝ,w)
2 ,

while the key encoding oracle kOβ takes y ∈ Y and outputs h
ky(βα,r,r̂,w)
2 , where

α,w, s, ŝ, r, r̂ are random. Here A can query each oracle once with R(x, y) = 0.
Attrapadung showed that if we have a PES for P with CMH, then we can obtain
an adaptively secure ABE scheme for P assuming the SG assumption [7] (this
implies Theorem 2). Thus, if we could show that CMH is preserved via the
transformations (this would imply Theorem 1), we would achieve the goal.

Unfortunately, we quickly found out that this approach fails; in particular,
we do not know how to preserve CMH via the KP1 transformation. Assume that
we use the same KP1 transformation as in [9], which transforms a PES Γ for P
to a PES Γ ′ for KP1[P] to be exactly the same as Γ except that

k′Y (α, r′, r̂′,w) = {kyi(σi, ri, r̂i,w)}i∈[n]

and r′ = {ri}i∈[n], r̂′ = {r̂i}i∈[n], where {σi}i∈[n] are secret shares of α with
respect to f . (Here, primed variables are for Γ ′.) Our goal here is to construct a
reduction that breaks CMH of Γ internally using an adversary that breaks CMH
of Γ ′. One hopeful strategy is to limit f to Boolean formulae and consider a series
of hybrids as the KW framework [30]. However, this idea does not work as the

reduction cannot simulate {hkyi (σi,ri,r̂i,w)
2 }i 6=j when randomizing h

kyj (σj ,rj ,r̂j ,w)

2

due to the absence of hw
2 . Including hw

2 in the input of the CMH adversary does
not solve the problem since this makes PMH not imply CMH, and Theorem 3
does not hold in such a definition (observe that in Eq. (1), w is not given out).
Our next observation here is that we will need a property on indistinguishability
of H2 elements where the output of kOβ is simulatable without hw

2 .

First Step: Subgroups vs Entire Groups. Our first idea is to make the
outputs of cO and kOβ use entire groups G,H instead of only subgroups G2, H2,
which can be seen as an extension of the technique by Tomida et al. [40]. A new
candidate property (say, Cand1) for Γ is then defined as follows:

AdvCand1A,Γ (λ) =

∣∣∣∣Pr [β = β′
β ← {0, 1}, w← ZωN
β′ ← AcO(·),kOβ(·)(g1, h1, h2, g

w
1 , h

w
1 )

]
− 1

2

∣∣∣∣ ,
where gcx(s,ŝ,w) ← cO(x) and h

ky(0,r,r̂,w)
1 h

ky(βα,0,r̂,0)
2 ← kOβ(y) where α, s, ŝ, r, r̂

are random. Crucially, now, g2 is not given out to A.
Cand1 implies an adaptive security of the ABE scheme from Γ (and we obtain

Theorem 2). Intuitively, the indistinguishability of the H2 elements in the output
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of kOβ implies the indistinguishability between normal and semi-functional keys,
which then implies the adaptive security of the ABE scheme via the dual system
technique [41]. Next, Cand1 can be shown to be implied by PMH and the SG
assumption (and we obtain Theorem 3) as follows (also recall linearity of ky):

h
ky(0,r,r̂,w)
1 h

ky(0,0,r̂,0)
2 ≈c

SG
− · hky(0,r,r̂,w)

2 ≈s
PMH

− · hky(α,r,r̂,w)
2 ≈c

SG
− · hky(α,0,r̂,0)

2 .

Note that “−” is the same element in H1, and ≈c,≈s are computational and
statistical indistinguishability, respectively. The purpose for making g2 absent
in A’s input is to use the SG assumption that claims hr

1 ≈c hr. In this way, we
can prove that Cand1 is preserved in KP1 for Boolean formulae by extending
the KW framework. Intuitively, the reduction goes through as it can simulate

Ki = h
kyi (0,ri,r̂i,w)
1 h

kyi (σi,0,r̂i,0)
2 without hw

2 (observe that there is no w in the
exponent to h2 in Ki).

However, it turns out that Cand1 is not preserved in Dual. Assume that we
use the same Dual transformation as in [3], which transforms a PES Γ for P to a
PES Γ for Dual[P] as follows: first let the variables for Γ be w′ = (w0,w), s′ =
(snew, r), ŝ′ = r̂, r′ = s, r̂′ = ŝ and define the two encodings for Γ as

c′y(s′, ŝ′,w′) = ky(sneww0, r, r̂,w), k′x(α, r′, r̂′,w′) = (cx(s, ŝ,w), α− s0w0),

where w0, snew are new variables, and snew takes a role of s0 in Γ . To prove the
preservation of Cand1 in Dual, we need to construct a reduction R that breaks
Cand1 of Γ internally using an adversary A against (Cand1 of) Γ . A crucial fact
here is that the roles of G and H are “switched”, that is, R uses its input G and
H as H and G for the input of A, respectively. This is since R needs the reply
of cOR to answer A’s query to kOA (and analogously for kOR to cOA). Now the
problem arises as R does not possess g2, but this very term will be needed to
supply to A’s input as h2 (recall the “switching” of G and H). Also recall that
h2 was necessary to prove Theorem 2 (to simulate semi-functional keys).

Second Step: Parametrized vs Same-at-once. To solve the above prob-
lem, instead of preserving the same property from Γ to Γ , we will establish an
implication over slightly different properties on Γ and Γ . Namely, we use more
subgroups by letting N = p1 · · · pz and parametrize the candidate property as
(z, `)-Cand2, where z, ` ∈ N s.t. z ≥ `. Defining bilinear groups e : G×H → GT

of order N and its subgroups naturally, we then define Adv
(z,`)-Cand2
A,Γ (λ) as∣∣∣∣Pr[β=β′

β ← {0, 1}, w← ZωN
β′←AcO(·),kOβ(·)(g1, h1, g`+1, . . . , gz, h`, . . . , hz, g

w
1 , h

w
1 )

]
−1

2

∣∣∣∣ (2)

where gcx(s,ŝ,w) ← cO(x) and h
ky(0,r,r̂,w)
1 h

ky(βα,0,r̂,0)
` ← kOβ(y). In this way, we

have that g` is absent (generalizing the absence of g2, so as to establish Theorem 3
as in the first step), but now, at the same time, we can also potentially establish
the implication over Dual that (z, `− 1)-Cand2 of Γ implies (z, `)-Cand2 of Γ for
` ≥ 2 in the sense that the reduction R possesses g`, . . . , gz (as per the former
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notion) which can be used to exactly simulate h`, . . . , hz (giving to the adversary
A against the latter notion), where we recall the switching of G and H.

Final Step: Wrapping up (Partial) Symmetries in Two Oracles. In the
above, we generalize the functionality of the subgroups G2, H2 directly to G`, H`

and hence obtain the above design of the oracle kO. However, this design fails
when we try to use the reply of cOR to answer A’s query to kOA (as presumably
required in the reduction). This is since the former is an element of the entire
group, while the latter is in the subgroup with generators h1, h`; however, A

possesses g`+1 and thus can simply distinguish the two. A similar failure occurs
analogously when relating kOR to cOA. To solve this, we need to re-design also
the two oracles carefully (satisfying not only this particular preservation of Dual
that we are discussing but also all the required 3 theorems). To this end, our
solution is to define them in partially (and not fully) symmetrical manner:

g
cx(s,0,w)
1 g

cx((s0,0),0,w)
[2,`] gcx(0,ŝ,0) ← cO(x),

h
ky(0,r,0,w)
1 h

ky(βα,0,0,0)
` hky(0,0,r̂,0) ← kOβ(y),

and also additionally give out T = (g[1,`], . . . , g[1,z], h[1,`+1], . . . , h[1,z]) (as inputs
to A in Eq. (2)), where we denote g[a,b] = ga · · · gb for a ≤ b. Intuitively, the

forms of cOR and kOA are now somewhat symmetric, except the difference lying
in the subgroups with indexes 2, . . . , ` − 1, and we observe that the adversary
does not possess an element from these subgroups so as to distinguish the two;
therefore, we can use the former to simulate the latter, under the SG assumption.
The additional input T is essential for the other oracle simulation (from kOR to
cOA). Crucially, giving out individual generators such as g2, . . . , g` would destroy
the “absence” requirement (essential for Theorem 3); while, on the other hand,
giving out the elements like g[1,i] do work.

This completes our design rational of (z, `)-KE-ind (in the composite-order-
groups flavor). Note that ` is incremented by 1 after applying one Dual conver-
sion. Starting from (z, 1)-KE-ind, we have that z− 1 is the maximum number of
Dual applications. Thus, by choosing z depending on the number of dual appli-
cations to obtain a target predicate P, we can instantiate a secure ABE scheme
for P. Also note that (z, `)-KE-ind will require s to consist of only s0 so that it is
implied by PMH. We call it single-variable PMH. Note that PESs with single-
variable PMH are still more general encodings than predicate encodings [6, 43].

All in all, our conceptually new insight is the partially symmetric design of the
core 1-key 1-ciphertext component (our KE-ind) so as to incorporate Dual (crucial
in bootstrapping KP1 to KP). This differs to other similar core components in
the literature, notably, the “1-ABE” in [30]. We discuss more in the full version.

1.3 Technical Comparisons to Previous Unbounded ABE and More

Our framework allows us to modularly construct unbounded ABE schemes.
Thus, one may wonder how our framework compares to previous unbounded
ABE schemes from static assumptions [17,30,32,35]. Basically, these ABE schemes
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Table 6. Comparison with unbounded KP-ABE from Dk-MDDH by KW19 [30].

References Security loss |pk| |ct| |sk|

KW19 [30] O(Uqsk)2
O(B) (5k2 + k)|G1| ((3k + 1)t+ 2k + 1)|G1| ((5k + 2)n+ (2k + 1)m)|G2|

+k|GT| +|GT|
Ours 1 O(qsk)2

O(B) (4k2 + 8k)|G1| ((2k + 4)t+ k + 2)|G1| (3k + 6)n|G2|
+k|GT| +|GT|

Note: U is the attribute domain size, qsk is the maximum number of secret key queries, B is the
maximum depth of formulae, t = |attribute set|, m and n are the number of gates and the input
length of a formula, respectively.

rely on so-called “nested dual system technique”, in which entropy in secret keys
is increased via entropy propagation between a secret key and ciphertext. All
these works uses the IBE predicate as a source of entropy.

Intuitively, when instantiating our framework to completely unbounded mono-
tone ABE, such an entropy propagation can be viewed as being decomposed into
modular parts, namely, the PMH (of a PES for IBE), the KP1 transform, and
the Dual transform (recall that we apply KP1 and Dual ◦KP1 to IBE in a nested
manner to achieve such an ABE instance [9]). This predicate transformations im-
plicitly trace a similar hybrid sequence to that by Lewko and Waters (LW) [32],
borrowing the power of the KW framework (the piecewise guessing framework)
to do it in the adaptive setting. An important fact here is that our framework
uses the KW framework in a “nested” manner. Intuitively, this is the reason why
our ABE schemes can be constructed as large-universe constructions similarly to
the LW unbounded scheme. On the other hand, the KW unbounded scheme [30]
is obtained by directly applying the KW framework (not in a nested manner)
to the unbounded small-universe ABE scheme in [17]. This, in turn, inherently
poses a linear cost of the universe size U in the security loss (and hence U cannot
be super-polynomially large) for the KW scheme (see Table 6).

Another advantage of our framework over the KW scheme is that we do
not use the subgroup DDH assumption [17], which requires a k-dimensional
semi-functional space for the k-Lin assumption. In contrast, 1-dimensional semi-
functional spaces suffice for our framework. This yields asymptotically smaller
ciphertexts and keys than the KW scheme (asymptotic in k, see Table 6).

Full Version of This paper. Due to limited spaces, we defer details such as
omitted proofs, details on instantiations, and discussions regarding more recent
related works (such as [4, 5, 23,24,33]) to the full version of this paper [12].

2 Preliminaries

Notation. For a natural number m,n ∈ N, [m] denotes a set {1, . . . ,m}, [m]+

denotes a set {0, . . . ,m}, and [m,n] denotes a set {m, . . . , n}. For a set S, s← S
denotes that s is uniformly chosen from S. We treat vectors as column vectors
unless specified otherwise. For a generator gi of a cyclic group Gi of order p and
a ∈ Zp, [a]i denotes gai . Furthermore, for a matrix A = (aj,`)j,` over Zp, [A]i de-
notes a matrix over Gi whose (j, `)-th entry is g

aj,`
i . For vectors x = (x1, . . . , xn)
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and y = (y1, . . . , yn) ∈ Znp , let e([x]1, [y]2) = e(g1, g2)〈x,y〉 be a function that
computes the inner product on the exponent by

∏
i∈[n] e([xi]1, [yi]2). A function

f : N → R is called negligible if f(λ) = λ−ω(1) and denotes f(λ) ≤ negl(λ). For
families of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we denote X ≈c Y
(resp. X ≈s Y ) as computational indistinguishability (resp. statistical indistin-
guishability). For an interactive game G, 〈A,G〉 denotes the output of A in G.

Matrix notation. Throughout the paper, we use the following matrix notation.
For a regular matrix M ∈ GLk+ζ(Zp), we define M, mi, M∗, and m∗i as follows.
M and mi denote a matrix and a vector consist of the first k columns and the
(k + i)-th column of M, respectively. Similarly, M∗ and m∗i denote a matrix

and vector consist of the first k columns and the (k + i)-th column of (M
>

)−1,
respectively. We have the relations, M>m∗i = 0 and m>i m∗i = 1 for i ∈ [ζ]. We
also uses the following notations:

span(M,m1, . . . ,mn) = {v | ∃u ∈ Zk+n
p ,v = (M||m1|| . . . ||mn)u},

Ker(M,m1, . . . ,mn) = {v | (M||m1|| . . . ||mn)>v = 0}.

2.1 Basic Definitions and Tools

Boolean Formula and NC1. A monotone Boolean formula can be represented
by a Boolean circuit of which all gates have fan-in 2 and fan-out 1. More pre-
cisely, we specify a monotone Boolean formula by a tuple f = (n,w,m,G)
where n,w,m ∈ N represents the number of input wires, the number of all
wires (including the input wires), and the number of gates, respectively, while
G : [m]→ {AND, OR} × [w]3 is a function that specifies the gate type, the two
incoming wires, and the outgoing wire of each gate. To specify G, we first let
all the wires and gates to be numbered. The wire numbers range from 1 to w;
while those of gates range from 1 to m. For each gate i ∈ [m], the information
G(i) = (T, a, b, c) tells us that T is the type of the gate i, while a and b specify
its incoming wires, and c specifies its outgoing wire. By convention, we always
number the wires so that a < b < c. The computation of Boolean formula f on
an input in {0, 1}n is defined naturally; we often abuse the notation and treat f
as a function f : {0, 1}n → {0, 1}.

A non-monotone Boolean formula additionally contains NOT gates, which
have fan-in 1 and fan-out 1. It is well-known that, via De Morgan’s law, we can
express any non-monotone Boolean formula by one in which all the NOT gates
are placed on the input wires (and the number of gates of the latter formula is
two times of that of the former). Hence, we can specify a non-monotone Boolean
formula as a tuple f = (n,w,m,G,Σ), where Σ : [n] → {Positive,Negative}
naturally specifies if the input wire i ∈ [n] is a negative one or not.

Standard complexity theory tells us that circuit complexity class NC1 and
Boolean formulae are equivalent. It is known also that NC1 is equivalent to the
class captured by log-depth Boolean formulae (see e.g., [30]). Thus, the circuit
complexity class captured by Boolean formulae is equivalent to the class captured
by log-depth Boolean formulae.
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Definition 1 (Linear Secret Sharing Scheme). A linear secret sharing scheme
(LSSS) for a function class F consists of two algorithms Share and Rec.

Share(f,h): It takes a function f ∈ F where f : {0, 1}n → {0, 1} and a vector
h ∈ Zγp . Then, outputs shares h1, . . . ,hn ∈ Zγp .

Rec(f, x, {hi}xi=1): It takes f : {0, 1}n → {0, 1}, a bit string x = (x1, . . . , xn) ∈
{0, 1}n and shares {hi}xi=1. Then, outputs a vector h′ or ⊥.

In particular, Rec computes a linear function on shares to reconstruct a secret;
h =

∑
xi=1 aihi where each ai is determined by f . A LSSS has two properties.

Correctness: For any f ∈ F , x ∈ {0, 1}n such that f(x) = 1,

Pr[Rec(f, x, {hi}xi=1) = h | h1, . . . ,hn ← Share(f,h)] = 1.

Security: For any f ∈ F , x ∈ {0, 1}n such that f(x) = 0, and h1, . . . ,hn ←
Share(f,h), shares {hi}xi=1 have no information about h.

Definition 2 (Bilinear Groups). A description of bilinear groups G=(p,G1,
G2, GT, g1, g2, e) consist of a prime p, cyclic groups G1, G2, GT of order p, gener-
ators g1 and g2 of G1 and G2 respectively, and a bilinear map e : G1×G2 → GT,
which has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha1 , hb2) = e(h1, h2)ab.
– (Non-degeneracy): For generators g1, g2; gT = e(g1, g2) is a generator of GT.

A bilinear group generator GBG(1λ) takes a security parameter 1λ and outputs
a description of bilinear groups G with a Ω(λ)-bit prime p.

Definition 3 (Dj,k-MDDH Assumption [21]). For j > k, let Dj,k be a
matrix distribution over matrices in Zj×kp , which outputs a full-rank matrix with
overwhelming probability. Denote Dk+1,k = Dk. We can assume that, wlog, the
first k rows of a matrix chosen from Dj,k form an invertible matrix. We consider
the following distribution: G ← GBG(1λ), A ← Dj,k, v ← Zkp, t0 = Av, t1 ←
Zjp, Pi,β = (G, [A]i, [tβ ]i). We say that the Dj,k-MDDH assumption holds with
respect to GBG if, for any PPT adversary A,

Adv
Dj ,k -MDDH
A (λ) = max

i∈{1,2}
|Pr[1← A(Pi,0)]− Pr[1← A(Pi,1)]| ≤ negl(λ).

Uniform distribution Let Uj,k be a uniform distribution over Zj×kp . Then, the
following hold with tight reductions: Dk-MDDH⇒ Uk-MDDH⇒ Uj,k-MDDH.

Random self-reducibility We can obtain arbitrarily many instances of the
Dk-MDDH problem without additional security loss. For any n ∈ N, we de-
fine the following distribution: G ← GBG(1λ), A ← Dk, V ← Zk×np , T0 =

AV, T1 ← Z(k+1)×n
p , Pi,β = (G, [A]i, [Tβ ]i). The n-fold Dk-MDDH assump-

tion is similarly defined to the Dk-MDDH assumption. Then, n-fold Dk-MDDH
is tightly reduced to Dk-MDDH. That is, Dk-MDDH⇒ n-Dk-MDDH.
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2.2 Attribute-Based Encryption

Predicate Family. Let P = {Pκ : Xκ×Yκ → {0, 1} |κ ∈ K} be a predicate fam-
ily where Xκ and Yκ denote “ciphertext attribute” and “key attribute” spaces.
The index κ denotes a list of some parameters such as bounds on some quantities
(hence K depends on that predicate). We often omit κ if the context is clear.

Definition 4 (Attribute-Based Encryption). An attribute-based encryp-
tion (ABE) scheme for a predicate family P consists of four algorithms:

Setup(1λ, κ): It takes a security parameter 1λ, and an index κ as inputs, and
outputs a public key pk and a master secret key msk.

Enc(pk, x,M): It takes pk, an attribute x ∈ X and a message M ∈M as inputs,
and outputs a ciphertext ctx. (Note that we let M be specified in pk.)

KeyGen(pk,msk, y): It takes pk,msk, and an attribute y ∈ Y as inputs, and
outputs a secret key sky.

Dec(pk, ctx, sky): It takes pk, ctx and sky as inputs, and outputs a message M ′

or a symbol ⊥.

Correctness/Security. The standard correctness is specified by the property
if P(x, y) = 1 then ctx can be decrypted by sky. The standard security notion is
called adaptive security. We refer these to the full version.

3 Pair Encoding Schemes

A pair encoding scheme (PES), introduced by Attrapadung [7], is an encoding
system used in a general framework to construct ABE. Structures of a ciphertext
and secret keys of an ABE scheme can be concisely captured by polynomials,
and its decryption procedure can be represented by matrices. A PES is defined
as a set of algorithms that output these polynomials or matrices. Intuitively, the
polynomials specify the structures of exponent of group elements in a ciphertext
and secret key, and the matrices specify coefficients used in the decryption.

3.1 Pair Encoding Scheme Definition

Definition 5 (Pair Encoding Schemes). Let Pκ : Xκ × Yκ → {0, 1} be a
predicate family, indexed by κ = (N, par), where par specifies some parameters.
A PES for Pκ is given by four deterministic polynomial-time algorithms:

– Param(par)→ ω. When given par as input, Param outputs ω ∈ N that specifies
the number of common variables, which we denote by w = (w1, . . . , wω).

– EncCt(x,N) → (n1, n2, c(s, ŝ,w)). On input N ∈ N, x ∈ X(N,par), EncCt
outputs a vector of polynomial c = (c1, . . . , cn3

) in non-lone variables s =
(s0, s1, . . . , sn1) and lone variables ŝ = (ŝ1, . . . , ŝn2) as follows, where θi,z, θi,t,j ∈
ZN :

c(s, ŝ,w) = {
∑
z∈[n2]

θi,z ŝz +
∑

t∈[n1]+,j∈[ω]

θi,t,jwjst}i∈[n3].
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– EncKey(y,N) → (m1,m2,k(r, r̂,w)). On input N ∈ N and y ∈ Y(N,par),
EncKey outputs a vector of polynomial k = (k1, . . . , km3

) in non-lone vari-
ables r = (r1, . . . , rm1) and lone variables r̂ = (α, r̂1, . . . , r̂m2) as follows,
where φi, φi,u, φi,v,j ∈ ZN :

k(r, r̂,w) = {φiα+
∑

u∈[m2]

φi,ur̂u +
∑

v∈[m1],j∈[ω]

φi,v,jwjrv}i∈[m3].

– Pair(x, y,N) → (E,E). On input N , and both x, and y, Pair outputs two
matrices E,E of sizes (n1 + 1)×m3 and n3 ×m1, respectively.

Correctness A PES is said to be correct if for every κ = (N, par), x ∈ Xκ and
y ∈ Yκ such that Pκ(x, y) = 1, then sEk>+cEr> = αs0 holds symbolically. The
left-hand side is indeed a linear combination of stkp and cqrv, for t ∈ [n1]+, p ∈
[m3], q ∈ [n3], v ∈ [m1]. Hence, an equivalent way to describe Pair and correctness
together at once is to show such a linear combination that evaluates to αs0.

Terminology We denote (r̂1, . . . , r̂m2
) by r̂−α. Following [3], a variable is called

lone as it is not multiplied with any wj (otherwise called non-lone). Furthermore,
since α, s0 are treated distinguishably in defining correctness, we also often call
them the special lone and non-lone variable, respectively. Throughout the paper,
we fix N in index κ as prime p, which is an order of bilinear groups used to
construct an ABE scheme. For notational conciseness, we consider that κ only
specifies par, and p is hard-coded in EncCt, EncKey, and Pair.

Evaluating PES with Vectors/Matrices We can evaluate ciphertext en-
coding c(s, ŝ,w) with the following substitution from scalar variables to vec-
tors/matrices as follows. Let d ∈ N. Each st is substituted by a vector st ∈ ZdN .
Each ŝz is substituted by a vector ŝz ∈ ZdN . Each wj is substituted by a matrix

Wj ∈ Zd×dN . Let S = (s0, . . . , sn1) ∈ Zd×(n1+1)
N , Ŝ = (ŝ1, . . . , ŝn2) ∈ Zd×n2

N , and
W = (W1, . . . ,Wω), we then define

c(S, Ŝ,W) = {
∑
z∈[n2]

θi,z ŝz +
∑

t∈[n1]+,j∈[ω]

θi,t,jW
>
j st}i∈[n3],

k(R, R̂,W) = {φih +
∑

u∈[m2]

φi,ur̂u +
∑

v∈[m1],j∈[ω]

φi,v,jWjrv}i∈[m3].

3.2 Security Properties of PESs

Definition 6 (Perfect Master-Key Hiding (PMH) [7]). Let Γ = (Param,
EncCt,EncKey,Pair) be a PES for a predicate faimily Pκ : Xκ × Yκ → {0, 1}.
We say that Γ satisfies perfect master-key hiding (PMH) if the following holds.
Let ω ← Param(par), (n1, n2, c(s, ŝ,w))← EncCt(x), and (m1,m2,k(r, r̂,w))←
EncKey(y). Then, for all κ and (x, y) ∈ Xκ × Yκ such that Pκ(x, y) = 0, the
two distributions are identical, where the probability is taken over s ← Zn1+1

p ,
ŝ← Zn2

p , r← Zm1
p , α← Zp, r̂−α ← Zm2

p , and w← Zωp .

{s, r, c(s, ŝ,w),k(r, (0, r̂−α),w)} and {s, r, c(s, ŝ,w),k(r, (α, r̂−α),w)}.
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G
(ζ,`)-KE-ind
β

ω ← Param(par), G← GBG(1λ)

A,B← Z(k+ζ)×(k+ζ)
p , W = (W1, . . . ,Wω)← (Z(k+ζ)×(k+ζ)

p )ω

P = (G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ], {[W>
i A]η, [WiB]3−η}i∈[ω])

β′ ← AOX(·),OY(·,·)(P )

OX(·)
Input: x ∈ Xκ
(n1, n2, c(s, ŝ,w))← EncCt(x)

c0 ← span(A,a1, . . . ,a`), s1, . . . , sn1 ← Zkp, ŝ1, . . . , ŝn2 ← Zk+ζ
p

S = (c0,As1, . . . ,Asn1), Ŝ = (ŝ1, . . . , ŝn2)

Output: ([S]η, [c(S, Ŝ,W)]η)

OY(·, ·)
Input: y ∈ Yκ and h ∈ Zk+ζ

p

(m1,m2,k(r, r̂,w))← EncKey(y), µ← Zp, r1, . . . , rm1 ← Zkp, r̂1, . . . , r̂m2 ← Zk+ζ
p

R = (Br1, . . . ,Brm1), R̂ = (h + βµa∗` , r̂1, . . . , r̂m2)

Output: ([R]3−η, [k(R, R̂,W)]3−η)

Fig 1. (ζ, `)-KE-ind game.

Definition 7 (Single-Variable PMH). We say that Γ satisfies single-variable
PMH if Γ is PMH and n1 = 0 for all x ∈ Xκ, where (n1, n2, c(s, ŝ,w)) ←
EncCt(x). In other words, EncCt uses only s0 for non-lone variable.

Note that Ambrona et al. showed that all predicate encodings [43] can be
seen as a PES with single-variable PMH [6].

We next introduce the (ζ, `)-key-encoding indistinguishability ((ζ, `)-KE-ind),
which is a central security property in our framework, where we consider several
transformations of PESs. The crucial feature on (ζ, `)-KE-ind is two-fold: it is
preserved after transformations, and it leads to the adaptive security of the
resulting ABE scheme.

Definition 8 ((ζ, `)-KE-ind). Let Γ = (Param,EncCt,EncKey,Pair) be a PES
for a predicate family Pκ : Xκ × Yκ → {0, 1}. Let ζ, ` ∈ N such that ` ≤ ζ.
We say that Γ satisfies (ζ, `)-KE-ind if the following holds. Consider a game

G
(ζ,`)-KE-ind
β defined in Fig 1, in which an adversary A can adaptively query OX

and OY with x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 0, respectively. A is
allowed to query each oracle at most once. Then, for all η ∈ {1, 2}, we have

G
(ζ,`)-KE-ind
0 ≈c G(ζ,`)-KE-ind

1 .

Note that we can omit the terms that correspond to g[1,i], h[1,i] of the composite-
order variant in the introduction by giving a∗i ,b

∗
i as Zp elements to A.

The following theorem says that all PESs with single-variable PMH satisfy
(ζ, `)-KE-ind for all ζ, ` ∈ N. We defer its proof to the full version.

Theorem 4 ((ζ, `)-KE-ind of PES with Single-Variable PMH). Let Γ be
a PES with single-variable PMH. Then, for all constants ζ, ` ∈ N, Γ satisfies

17



(ζ, `)-KE-ind under the Dk -MDDH assumption. More precisely, for all PPT ad-
versaries A, there exists a PPT adversary B such that

Adv
(ζ,`)-KE-ind
A,Γ (λ) ≤ 2AdvDk -MDDH

B (λ) + 2−Ω(λ).

4 Predicate Transformations

In this section, we present several transformations for predicates, which enable us
to construct a more expressive predicate from simple predicates. As shown later
in §6, these transformations are sufficiently powerful to construct ABE schemes
whose constructions from standard assumptions are still unknown. Concretely,
we introduce four transformations called the direct sum, dual transformation,
KP augmentation, and CP augmentation. Because the CP augmentation is ob-
tained from the dual transformation and KP augmentation, the former three
transformations are sufficient for our framework. We also present the correspond-
ing transformations of PESs for each predicate transformation and prove that
these PES transformations preserve the (ζ, `)-KE-ind property. Starting from
PESs with the single-variable PMH, which already satisfy (ζ, `)-KE-ind, we can
obtain a PES for a expressive predicate that satisfies (ζ ′, ζ ′)-KE-ind for some
constant ζ ′. Finally, we show that we can use the PES with (ζ ′, ζ ′)-KE-ind to
construct an adaptively secure ABE scheme in §5.

4.1 Direct Sum of Predicate Families

Definition 9 (Direct Sum [9]). Let P
(i)
κi : X

(i)
κi × Y

(i)
κi → {0, 1} be a predicate

family. Let κ = (κ1, . . . , κd). A predicate family for the direct sum of a predicate

family set Pκ = (P
(1)
κ1 , . . . ,P

(d)
κd ), denoted by DS[Pκ] : X̄κ×Ȳκ → {0, 1}, is defined

as follows: let X̄κ =
⋃
i∈[d]({i} × X

(i)
κi ), Ȳκ =

⋃
i∈[d]({i} × Y

(i)
κi ), and define

DS[Pκ]((ix, x), (iy, y))⇔ (ix = iy) ∧ (P(iy)
κiy

(x, y) = 1).

We sometimes use another notation, P
(1)
κ1 � · · · � P

(d)
κd , to denotes DS[Pκ].

PES for DS[Pκ]. Let Γi = (Parami,EncCti,EncKeyi,Pairi) be a PES for P
(i)
κi .

We construct a PES for DS[Pκ], denoted by DS-Trans(Γ) = (Param′,EncCt′,
EncKey′,Pair′), where Γ = (Γ1, . . . , Γd).

– Param′(par)→ ω′: Run ωi ← Parami(par) and output
∑
i∈[d] ωi. This specifies

common variables w′ = (w(1), . . . ,w(d)), where w(i) = (w
(i)
1 , . . . , w

(i)
ωi ).

– EncCt′((ix, x))→ (n′1, n
′
2, c
′(s′, ŝ′,w′)):

• Output (n1, n2, c(s, ŝ,w(ix)))← EncCtix(x).

• Define n′1 = n1, n′2 = n2, s′ = s, and ŝ′ = ŝ.

– EncKey′((iy, y))→ (m′1,m
′
2,k
′(r′, r̂′,w′)):

18



G
(ζ,`)-KE-ind
β

ωi ← Parami(par), G← GBG(1λ)

A,B← Z(k+ζ)×(k+ζ)
p , Wi = (Wi,1, . . . ,Wi,ωi)← (Z(k+ζ)×(k+ζ)

p )ωi

P = (G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ], {[W>
i,jA]η, [Wi,jB]3−η}i∈[d],j∈[ωi])

β′ ← AOX̄(·),OȲ(·,·)(P )

OX̄(·)
Input: (ix, x) ∈ X̄κ

(n1, n2, c(s, ŝ,w(ix)))← EncCtix(x)

c0 ← span(A,a1, . . . ,a`), s1, . . . , sn1 ← Zkp, ŝ1, . . . , ŝn2 ← Zk+ζ
p

S = (c0,As1, . . . ,Asn1), Ŝ = (ŝ1, . . . , ŝn2)

Output: ([S]η, [c(S, Ŝ,Wix)]η)

OȲ(·, ·)
Input: (iy, y) ∈ Ȳκ and h ∈ Zk+ζ

p

(m1,m2,k(r, r̂,w(iy)))← EncKeyiy (y)

µ← Zp, r1, . . . , rm1 ← Zkp, r̂1, . . . , r̂m2 ← Zk+ζ
p

R = (Br1, . . . ,Brm1), R̂ = (h + βµa∗` , r̂1, . . . , r̂m2)

Output: ([R]3−η, [k(R, R̂,Wiy )]3−η)

Fig 2. (ζ, `)-KE-ind game for DS-Trans(Γ).

• Output (m1,m2,k(r, r̂,w(iy)))← EncKeyiy (y).

• Define m′1 = m1, m′2 = m2, r′ = r, and r̂′ = r̂.

– Pair′((ix, x), (iy, y))→ (E′,E
′
) and correctness:

• Output (E,E)← Pairiy (x, y).

• Correctness of Pair′ directly follows from that of Pairiy .

Theorem 5 ((ζ, `)-KE-ind of DS-Trans(Γ)). If Γi satisfies (ζ, `)-KE-ind for all
i ∈ [d], then DS-Trans(Γ) satisfies (ζ, `)-KE-ind. More precisely, for all PPT
adversaries A, there exist PPT adversary B such that

Adv
(ζ,`)-KE-ind
A,DS-Trans(Γ)(λ) ≤ dmax

i∈[d]
Adv

(ζ,`)-KE-ind
B,Γi

(λ).

Proof. For β ∈ {0, 1}, we can describe the (ζ, `)-KE-ind game G
(ζ,`)-KE-ind
β for

DS-Trans(Γ) as shown in Fig 2. To prove the theorem, we consider an adver-
sary B, which samples t ← [d] and interacts with OX(t) and OY(t) of the (ζ, `)-
KE-ind game for Γt. B internally runs an adversary A against (ζ, `)-KE-ind of
DS-Trans(Γ) and interacts with it as follows:

1. Let ωi ← Parami(par). B is given (G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ],

{[W>
t,jA]η, [Wt,jB]3−η}j∈[ωt]). It then samples Wi = (Wi,1, . . . ,Wi,ωi) ←

(Z(k+ζ)×(k+ζ)
p )ωi for i ∈ [d]\t.

2. B gives to A the following elements: G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ],

together with {[W>
i,jA]η, [Wi,jB]3−η}i∈[d],j∈[ωi]

3. For A’s query to OX̄ on (ix, x), B replies as follows:
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– If ix = t, B queries its own oracle OX(t) on x and gives the reply, which is

([S]η, [c(S, Ŝ,Wt)]η), to A.

– If ix 6= t, B computes c(s, ŝ,w(ix)),S, and Ŝ as show below, and gives

([S]η, [c(S, Ŝ,Wix)]η) to A:

(n1, n2, c(s, ŝ,w(ix)))← EncCtix(x), c0 ← Ker(a∗`+1, . . . ,a
∗
ζ),

s1, . . . , sn1 ← Zkp, ŝ1, . . . , ŝn2 ← Zk+ζ
p

S = (c0,As1, . . . ,Asn1
), Ŝ = (ŝ1, . . . , ŝn2

).

Note that span(A,a1, . . . ,a`) = Ker(a∗`+1, . . . ,a
∗
ζ).

4. For A’s query to OȲ on (iy, y), B replies as follows:
– If iy = t, B queries its own oracle OY(t) on y and gives the reply, which is

([R]3−η, [k(R, R̂,Wt)]3−η), to A. Note that the first element of R̂ is h (if
β = 0) or h + µa∗` (if β = 1).

– If iy 6= t, B aborts the interaction with A and outputs a random bit β′

5. B outputs A’s output as it is.

In the above experiment, B correctly simulates OX̄. Since B aborts the experi-
ment if iy 6= t, we focus on the case of iy = t, which occurs with probability 1/d.
Note that since ix = t⇒ P(t)(x, y) = 0 from the game condition for DS-Trans(Γ),
B follow the game condition for Γt. If β = 0 in the KE-ind game for Γt, A’s view

corresponds to that in G
(ζ,`)-KE-ind
0 , and it corresponds to G

(ζ,`)-KE-ind
1 otherwise.

Thus, we have Pr[iy = t] ·Adv(ζ,`)-KE-ind
A,DS-Trans(Γ)(λ)+Pr[iy 6= t] ·0 ≤ Adv

(ζ,`)-KE-ind
B,Γt

(λ) ≤
maxi∈[d] Adv

(ζ,`)-KE-ind
B,Γi

(λ). This concludes the proof.

4.2 Dual Predicates

Recall that the dual of Pκ : Xκ × Yκ → {0, 1} is Dual[Pκ] : X̄κ × Ȳκ → {0, 1}
where X̄κ = Yκ and Ȳκ = Xκ, and Dual[Pκ](x, y) = Pκ(y, x).

PES for Dual[Pκ]. Let Γ = (Param,EncCt,EncKey,Pair) be a PES for Pκ. We
construct a PES for Dual[Pκ], denoted by Dual-Trans(Γ ) as follows.

– Param′(par) → ω′: Run ω ← Param(par) and output ω + 1. This specifies
common variables w′ = (w0, w1, . . . , wω), where w0 is a new common variable.

– EncCt′(x)→ (n′1, n
′
2, c
′(s′, ŝ′,w′)):

• Run (m1,m2,k(r, r̂,w)) ← EncKey(x). Let snew be a new special non-
lone variable. Polynomials c′(s′, ŝ′,w′) are defined the same as k(r, r̂,w)
except that α is replaced with sneww0.

• Define n′1 = m1, n′2 = m2, s′ = (snew, r), and ŝ′ = r̂−α.
– EncKey′(y)→ (m′1,m

′
2,k
′(r′, r̂′,w)):

• Run (n1, n2, c(s, ŝ,w)) ← EncCt(y). Let αnew be a new special lone vari-
able. Polynomials k′(r′, r̂′,w′) are defined the same as c(s, ŝ,w) except
that a polynomial αnew−s0w0 is added as the first element of k′(r′, r̂′,w′).
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G ∈
{
G

(ζ,`)-KE-ind
0 , H1 , H2 ,G

(ζ,`)-KE-ind
1

}
G
ω ← Param(par), G← GBG(1λ)

A,B← Z(k+ζ)×(k+ζ)
p , W = (W>

0 ,W
>
1 , . . . ,W

>
ω )← (Z(k+ζ)×(k+ζ)

p )ω+1

P = (G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ], {[W>
i A]η, [WiB]3−η}i∈[ω]+)

β′ ← AOX̄(·),OȲ(·,·)(P )

OX̄(·)
Input: x ∈ X̄κ
(m1,m2,k(r, r̂,w))← EncKey(x)

c0 ← span(A,a1, . . . ,a`), s1, . . . , sm1 ← Zkp, ŝ1, . . . , ŝm2 ← Zk+ζ
p

S = (As1, . . . ,Asm1), Ŝ = (W>
0 c0, ŝ1, . . . , ŝm2)

Output: ([c0]η, [S]η, [k(S, Ŝ,W)]η)

OȲ(·, ·)
Input: y ∈ Ȳκ and h ∈ Zk+ζ

p

(n1, n2, c(s, ŝ,w))← EncCt(y), µ← Zp, r0, r1, . . . , rn1 ← Zkp, r̂1, . . . , r̂n2 ← Zk+ζ
p

d0 = Br0, d0 ← span(B,b1, . . . ,b`−1)

R = (d0,Br1, . . . ,Brn1), R̂ = (r̂1, . . . , r̂n2)

Output: ([h + µa∗` −W0d0]3−η, [R]3−η, [c(R, R̂,W)]3−η)

Fig 3. (ζ, `)-KE-ind game for Dual-Trans(Γ ).

• Define m′1 = n1 + 1, m′2 = n2, r′ = s, and r̂′ = (αnew, ŝ).

– Pair′(x, y)→ (E′,E
′
) and correctness:

• Run (E,E)← Pair(y, x). Define E′ =
(

1

E
>

)
and E

′
= E>.

• For correctness, we have

s′E′k′> + c′E
′
r′> =(snew, r)

(
1

E
>

)
(αnew − s0w0, c)> + k|α 7→sneww0E

>s>

=snewαnew − snews0w0 + snews0w0 = snewαnew.

Theorem 6 ((ζ, `)-KE-ind of Dual-Trans(Γ )). Let 2 ≤ ` ≤ ζ. If Γ satisfies
(ζ, `−1)-KE-ind, then Dual-Trans(Γ ) satisfies (ζ, `)-KE-ind under the Dk -MDDH
assumption. More precisely, for all PPT adversaries A, there exist PPT adver-
saries B1 and B2 such that

Adv
(ζ,`)-KE-ind
A,Dual-Trans(Γ )(λ) ≤ Adv

(ζ,`−1)-KE-ind
B1,Γ

(λ) + 2AdvDk -MDDH
B2

(λ) + 2−Ω(λ).

Proof. For β ∈ {0, 1}, we can describe the (ζ, `)-KE-ind game G
(ζ,`)-KE-ind
β for

Dual-Trans(Γ ) as shown in Fig 3. To show this theorem, we consider two in-
termediate hybrids H1 and H2, which are also described in Fig 3. That is, H1

(resp. H2) is defined the same as G
(ζ,`)-KE-ind
0 (resp. G

(ζ,`)-KE-ind
1 ) except that d0,

the first elements of R generated in OȲ, is set as d0 ← span(B,b1, . . . ,b`−1)

instead of Br0 where r0 ← Zkp. From Lemma 1,2,3 below, we have G
(ζ,`)-KE-ind
0 ≈c

H1 ≈c H2 ≈c G(ζ,`)-KE-ind
1 . This concludes the proof.
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Lemma 1. For all PPT adversaries A, there exists a PPT adversary B such

that |Pr[〈A,G(ζ,`)-KE-ind
0 〉 = 1]− Pr[〈A,H1〉 = 1]| ≤ AdvDk -MDDH

B (λ).

Proof. We describe the reduction algorithm B. B is given an instance of Uk+`−1,k

problem, (G, [M]3−η, [tβ ]3−η) where t0 = Mu and t1 = v, where u ← Zkp and

v← Zk+`−1
p . Then, B chooses X← GLk+ζ(Zp) and sets

B = X

(
M̂
M I`−1

Iζ−`+1

)
, (B

>
)−1 = (X>)−1

(
(M̂
>

)−1 −(M̂
>

)−1M>

I`−1

Iζ−`+1

)
,

where M̂ is the matrix consisting of the first k rows of M, and M is that
consisting of the last `− 1 rows of M. Then, B can compute

[B]3−η =

[
X

(
M
O

)]
3−η

, (b∗`+1|| . . . ||b
∗
ζ) = (X>)−1

(
O

Iζ−`

)
.

B generates A and W by itself and computes the input P for A from them.
When A queries OX̄, B replies honestly as shown in Fig 3. When A queries OȲ,
B replies honestly except that it sets

[d0]3−η =

[
X

(
tβ
0

)]
3−η

, [R]3−η = [(d0,Br1, . . . ,Brm1
)]3−η.

Now since we can write tβ =
(

M̂
M

)
u1 + β

(
O

I`−1

)
u2, where u1 ← Zkp and u2 ←

Z`−1
p , we have that d0 is uniformly distributed in span(B) if β = 0, and in

span(B,b1, . . . ,b`−1) otherwise. Thus, the view of A corresponds to G
(ζ,`)-KE-ind
0

if β = 0, and H1 otherwise. This concludes the proof.

Lemma 2. For all PPT adversaries A, there exists a PPT adversary B such

that |Pr[〈A,H1〉 = 1]− Pr[〈A,H2〉 = 1]| ≤ Adv
(ζ,`−1)-KE-ind
B,Γ (λ) + 2−Ω(λ).

Proof. We show that the outputs of OȲ in H1 and H2 are computationally in-
distinguishable if the PES Γ for Pκ satisfies (ζ, ` − 1)-KE-ind. We construct a
PPT adversary B against (ζ, ` − 1)-KE-ind of Γ that internally runs a PPT
distinguisher A between H1 and H2. B behaves as follows.

1. B is given an input of (ζ, `−1)-KE-ind game for Γ , (G, [M]3−η, [N]η, {m∗i }i∈[`−1,ζ],

{n∗i }i∈[`,ζ], {[V>i M]3−η, [ViN]η}i∈[ω]). B implicitly defines that A = N, B =

M, and Wi = V>i for i ∈ [ω].

2. B samples W0 ← Z(k+ζ)×(k+ζ)
p and gives P = (G, [A]η, [B]3−η, {a∗i }i∈[`,ζ],

{b∗i }i∈[`+1,ζ], {[W>
i A]η, [WiB]3−η}i∈[ω]+) to A.

3. For A’s query to OX̄ on x, B samples c0 ← Ker(a∗`+1, . . . ,a
∗
ζ) and queries its

own oracle OY on (x,W>
0 c0) to obtain ([T]η, [k(T, T̂,V)]η), where

T = (Nt0,Nt1, . . . ,Ntm1
) = (At0,At1, . . . ,Atm1

),

T̂ = (W>
0 c0 + βµ̂m∗`−1, t̂1, . . . , t̂m2

) = (W>
0 c0 + βµ̂b∗`−1, t̂1, . . . , t̂m2

),

V = (V1, . . . ,Vω) = (W>
1 , . . . ,W

>
ω ).
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Note that µ̂ is a random value in Zp chosen by OY. B implicitly defines that

si = ti for i ∈ [m1]+, ŝi = t̂i for i ∈ [m2], S = T, Ŝ = T̂, and W =

V. B replies ([c0]η, [S]η, [k(S, Ŝ,W)]η) to A. Note that span(A,a1, . . . ,a`) =
Ker(a∗`+1, . . . ,a

∗
ζ).

4. For A’s query to OȲ with y and h, B queries its own oracle OX on y to obtain

([U]3−η, [c(U, Û,V)]3−η), where

U = (o0,Mu1, . . . ,Mun1
) = (o0,Bu1, . . . ,Bun1

), Û = (û1, . . . , ûn2
).

Note that o0 is randomly distributed in span(M,m1, . . . ,m`−1), which equals
to span(B,b1, . . . ,b`−1). B implicitly defines that ri = ui for i ∈ [n1],

r̂i = ûi for i ∈ [n2], R = U, R̂ = Û, and d0 = o0. B replies ([h −
W0d0]3−η, [R]3−η, [c(R, R̂,W)]3−η) to A.

5. B outputs A’s output as it is.

At a glance, this simulation seems that the distribution of the reply from OX̄ is
changed. However, entire views of A correspond to H1 and H2. To see this, we

redefine W0 as W0 = W̃0 − βµ̂

a∗
>
` c0

a∗`b
∗>
`−1 where W̃0 ← Z(k+ζ)×(k+ζ)

p . Clearly,

this does not change the distribution of W0. This affects A’s view as follows:

P : W>
0 A = W̃>

0 A, W0B = W̃0B.

OX̄ : W>
0 c0 + βµ̂b∗`−1 = W̃>

0 c0.

OȲ : h−W0d0 = h− W̃0d0 +
βµ̂b∗

>

`−1d0

a∗
>
` c0

a∗` = h− W̃0d0 + βµa∗` .

Because µ̂ is randomly distributed in Zp, we can set µ =
µ̂b∗
>
`−1d0

a∗
>
` c0

if b∗
>

`−1d0 6= 0

and a∗
>

` c0 6= 0. Since c0 and d0 are randomly distributed in span(A,a1, . . . ,a`)
and span(B,b1, . . . ,b`−1), respectively, this is the case with an overwhelming
probability. Thus, A’s view corresponds to H1 if β = 0 in the (ζ, `)-KE-ind game
of Γ , and it corresponds to H2 otherwise. This concludes the proof.

Lemma 3. For all PPT adversaries A, there exists a PPT adversary B such

that |Pr[〈A,H2〉 = 1]− Pr[〈A,G(ζ,`)-KE-ind
1 〉 = 1]| ≤ AdvDk -MDDH

B (λ).

The proof of Lemma 3 is similar to Lemma 1, and hence we omit it here.

4.3 Key-Policy Augmentation

Definition 10 (Key-Policy Augmentation). A predicate family for key-
policy Boolean formula augmentation over a single predicate family Pκ : Xκ ×
Yκ → {0, 1}, denoted by KBF1[Pκ] : X̄κ × Ȳκ → {0, 1}, where X̄κ = Xκ and
Ȳκ =

⋃
i∈N(Yiκ × Fi), where Fi consists of all monotone Boolean formulae with

input length i, is defined as follows. For x ∈ X̄κ and y = ((y1, . . . , yn), f) ∈ Ȳκ
where f : {0, 1}n → {0, 1}, we define

KBF1[Pκ](x, y) = f
(
Pκ(x, y1), . . . ,Pκ(x, yn)

)
.
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Sharep(f, α,u)

Input: A monotone Boolean formula f = (n,w,m,G) with τ AND gates, a variable
α, and τ variables u = (u1, . . . , uτ ).

1. Set a variable σout = α on the output wire.
2. Let φ : [m] → [τ ] be a function such that φ(i) = |{j | j ≤ i ∧ G1(j) = AND}|,

where G1(j) denotes the first element of G(j). For each AND gate g with incoming
wires a, b and an outgoing wire c where a polynomial σc is set on c, set new
polynomials σa = σc − uφ(g) and σb = uφ(g) on a and b, respectively.

3. For each OR gate g with incoming wires a, b and an outgoing wire c where a
vector σc is set on c, set new polynomials σa = σc, σb = σc on a, b, respectively.

4. Output polynomials σ1, . . . , σn, which are set on the input wires 1, . . . , n.

Fig 4. Linear secret sharing scheme for Boolean formulae on polynomials.

We use KBF1OR[Pκ] (resp. KBF1AND[Pκ]) to denote a predicate family that
is the same as KBF1[Pκ] except that Fi in Ȳκ consists of monotone Boolean
formulae whose all gates are OR (resp. AND) gates. The “1” in KBF1 refers to the
property that the augmentation is over one predicate family. An augmentation
over a set of predicate families follows analogously to [9], and we defer to §6 (and
more details in the full version). In dynamic compositions, f can be chosen freely
(as opposed to static ones, where f is fixed). Unbounded compositions mean n
is unbounded.

PES for KBF1[Pκ]. Let Γ = (Param,EncCt,EncKey,Pair) be a PES for Pκ. We
construct a PES for KBF1[Pκ], denoted by KBF1-Trans(Γ ) as follows. Let Sharep
be the linear secret sharing algorithm on polynomials defined in Fig 4.

– Param′(par) = Param(par) and EncCt′(x) = EncCt(x)

– EncKey′((y1, . . . , yn), f)→ (m′1,m
′
2,k
′(r′, r̂′,w)):

• For i ∈ [n], run EncKey(yi) to obtain n sets of polynomials k(1), . . . ,k(n),
where k(i) = k(r(i), r̂(i),w).

• Let τ be a number of AND gates in f . Let αnew be a new special lone
variable and u = (u1, . . . , uτ ) be new lone variables. Let σ1, . . . , σn be
polynomials that are an output of Sharep(f, αnew,u). A new set of poly-
nomials k′(i) is defined the same as k(i) except that the variable α(i) in
each polynomial is replaced with σi.

• Define m′1 = nm1, m′2 = τ + nm2, and k′(r′, r̂′,w) = (k′(1), . . . ,k′(n)).

Note that r′ = (r(1), . . . , r(n)) and r̂′ = (αnew,u, r̂
(1)

−α(1) , . . . , r̂
(n)

−α(n)).

– Pair′(x, y)→ (E′,E
′
) and correctness:

• Let polynomials σ1, . . . , σn be an output of Sharep(f, αnew,u). It is not
hard to see that, for all b = (b1, . . . , bn) ∈ {0, 1}n such that f(b) = 1,
there exists a set S ⊆ {i | bi = 1} such that

∑
i∈S σi = αnew. Thus,

if x and y = ((y1, . . . , yn), f) satisfy KBF1[Pκ](x, y) = 1, there exists
S ⊆ {i | Pκ(x, yi) = 1} such that

∑
i∈S σi = αnew.

• For i ∈ S, run Pair(x, yi)→ (E(i),E
(i)

), satisfying sE(i)k(i)>+cE
(i)

r(i)> =
σis0. Then, we can obtain

∑
i∈S σis0 = αnews0 by the linear combination.
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Theorem 7 ((ζ, `)-KE-ind of KBF1-Trans(Γ )). Let B be the maximum depth of
f chosen by A in the (ζ, `)-KE-ind game for KBF1-Trans(Γ ). If Γ satisfies (ζ, `)-
KE-ind, then KBF1-Trans(Γ ) satisfies (ζ, `)-KE-ind as long as B = O(log λ).
That is, for all PPT adversaries A, there exists a PPT adversary B such that

Adv
(ζ,`)-KE-ind
A,KBF1-Trans(Γ )(λ) ≤ 29B+1Adv

(ζ,`)-KE-ind
B,Γ (λ).

We prove Theorem 7 by extending the techniques regarding pebbling arguments
that Kowalczyk-Wee [30] have introduced in proving adaptive security of their
ABE schemes for formulae with multi-use. We defer the proof to the full version.

Ciphertext-Policy Augmentation. Analogously to [9], for a predicate family
P, we define its CP augmentation predicate—denoted as CBF1[P]—as the dual of
KBF1[P′] where P′ is the dual of P. Therefore, we can use the dual conversion—
applying two times–sandwiching KBF1-Trans, to obtain a PES conversion for
CBF1[P]. See the full version for more details.

4.4 Conforming PES for ABE

We can apply our transformations, namely, direct sum, dual, and key-policy aug-
mentation, to a predicate family set Pκ multiple times to obtain a new predicate
family Pκ. When we apply a PES to construct an ABE scheme, (ζ ′, ζ ′)-KE-ind for
some constant ζ ′ implies the adaptive security of the resulting ABE scheme. The

following theorem says that if we have predicate families Pκ = (P
(1)
κ1 , . . . ,P

(d)
κd )

that satisfy (ζ, `)-KE-ind for all constants `, ζ ∈ N, we can construct an ABE
scheme for a predicate family Pκ obtained by applying the above transforma-
tions to Pκ arbitrarily many times.

To state the theorem formally, we define a composed predicate set fc(Pκ)

for a predicate family set Pκ = (P
(1)
κ1 , . . . ,P

(d)
κd ). Let P̄κ be a predicate family

set that consists of all predicate families obtained by applying one of trans-

formations, (DS,Dual,KBF1), to Pκ. That is, P̄κ = (DS[Pκ], {Dual[P(i)
κi ]}i∈[d],

{KBF1[P
(i)
κi ]}i∈[d]) (we do not consider DS for a subset of Pκ, because it can be

embedded into DS[Pκ]). Let f be a deterministic procedure defined as f(Pκ) =
Pκ ∪ P̄κ. Denote f ◦ . . . ◦ f(Pκ) where f appears c times by fc(Pκ). Then, we
have the following theorem.

Theorem 8. For all constant c and predicate family sets Pκ = (P
(1)
κ1 , . . . ,P

(d)
κd ),

each of whose elements has a corresponding PES with (ζ, `)-KE-ind for all con-
stants ζ, ` ∈ N, there exists a constant ζ ′ such that Pκ ∈ fc(Pκ) has a PES that
satisfies (ζ ′, ζ ′)-KE-ind under the Dk -MDDH assumption.

Proof. Let Γ = (Γ1, . . . , Γd) be PESs for (P
(1)
κ1 , . . . ,P

(d)
κd ), respectively. We can

construct a PES Γ for P by applying PES transformations in Sections 4.1 to 4.3
to Γ multiple times. Let δ be the maximum number of Dual-Trans that is applied
to each single PES Γi to obtain Γ . For instance, δ in the following PES is
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2 because the first Γ2 is transformed by Dual-Trans twice, and the others are
transformed by Dual-Trans less that twice.

KBF1-Trans (DS-Trans (Dual-Trans (DS-Trans (Γ1,Dual-Trans (Γ2))) , Γ2, Γ3)) .

Then, it is not hard to see that we can construct Γ with (ζ ′, ζ ′)-KE-ind for
ζ ′ = δ + 1. This directly follows from Theorems 5 to 7.

Corollary 2. Let Pκ = (P
(1)
κ1 , . . . ,P

(d)
κd ) be predicate families that have a PES

with single-variable PMH. Then, we have a PES for Pκ ∈ fc(Pκ) with (ζ ′, ζ ′)-
KE-ind for a constant ζ ′ under the Dk -MDDH assumption, where ζ ′ − 1 is the

maximum number of Dual applied to each single predicate P
(i)
κi to obtain Pκ.

This corollary directly follows from Theorems 4 and 8.

5 ABE from PES

In this section, we present our ABE scheme. We can construct an ABE scheme
for any predicate family Pκ and a corresponding PES obtained in our framework
if the PES satisfies (ζ, ζ)-KE-ind for some constant ζ ∈ N.

Construction. Let Γ = (Param,EncCt,EncKey,Pair) be a PES with (ζ, ζ)-
KE-ind for a predicate family Pκ : Xκ × Yκ → {0, 1}. Then, we can construct an
ABE scheme for predicate Pκ as follows.

Setup(1λ, κ): Parse par from κ. It outputs pk and msk as follows.

ω ← Param(par), G← GBG(1λ), A,B← Z(k+ζ)×(k+ζ)
p , h← Zk+ζ

p ,

W = (W1, . . . ,Wω)← (Z(k+ζ)×(k+ζ)
p )ω,

pk=(G, [A]1, [W
>
1 A]1, . . . , [W

>
ωA]1, [A

>h]T), msk=(B,h,W1, . . . ,Wω).

Enc(pk, x,M): It takes pk, x ∈ Xκ, and M ∈ GT as inputs, and outputs ctx by
computing as follows.

(n1, n2, c(s, ŝ,w))← EncCt(x), s0, s1, . . . , sn1
← Zkp, ŝ1, . . . , ŝn2

← Zk+ζ
p

S = (As0,As1, . . . ,Asn1
), Ŝ = (ŝ1, . . . , ŝn2

)

ctx = (ct1, ct2, ct3) = ([S]1, [c(S, Ŝ,W)]1, [s
>
0 A>h]TM).

KeyGen(pk,msk, y): It takes pk, msk, and y ∈ Yκ as inputs, and outputs sky by
computing as follows.

(m1,m2,k(r, r̂,w))← EncKey(y), r1, . . . , rm1
← Zkp, r̂1, . . . , r̂m2

← Zk+ζ
p

R = (Br1, . . . ,Brm1
), R̂ = (h, r̂1, . . . , r̂m2

)

sky = (sk1, sk2) = ([R]2, [k(R, R̂,W)]2).
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Dec(pk, ctx, sky): It takes pk, ctx = (ct1, ct2, ct3), and sky = (sk1, sk2) such that
Pκ(x, y) = 1. Let (E,E)← Pair(x, y). It outputs M ′ = ct3/Ω where

Ω =
∏

i∈[n1+1]
j∈[m3]

e(ct1,i, sk2,j)
ei,j ·

∏
i∈[n3]
j∈[m1]

e(ct2,i, sk1,j)
ēi,j , (3)

and where cti,j and ski,j refer to the j-th element of cti and ski, respectively,
and ei,j and ēi,j refer to the (i, j)-th element of E and E, respectively.

Correctness. In defining ctx, sky, we effectively map variables of PES to vec-

tors/matrice as si 7→ s>i A>, ŝj 7→ ŝ>j , rv 7→ Brv, r̂u 7→ r̂u, α 7→ h, and
wn 7→Wn. Therefore, intuitively, the correctness of PES, which we recall that
it is the relation:

∑
i∈[n1+1],j∈[m3] ei,jsi−1kj +

∑
i∈[n3],j∈[m1] ēi,jcirj = αs0, will

preserve to exactly the relation Ω = [s>0 A>h]T, where Ω is defined in Eq. (3).

Theorem 9. Suppose Γ satisfies (ζ, ζ)-KE-ind.Then, our ABE scheme is adap-
tively secure under the Dk -MDDH assumption. Let qsk be the maximum number
of A’s queries to KeyGen. For any PPT adversary A, there exist PPT adversaries
B1 and B2 such that

AdvABEA (λ) ≤ AdvDk -MDDH
B1

(λ) + qskAdv
(ζ,ζ)-KE-ind
B2,Γ

(λ).

Proof. The proof follows the dual system methodology [41]. We consider a series
of hybrids H1 and H2,j for j ∈ [qsk]. To define each hybrid, we introduce a
so-called semi-functional (SF) ciphertext and secret key, which are generated
differently from normal ones. Specifically, an SF-ciphertext is generated as

(n1, n2, c(s, ŝ,w))← EncCt(x), s1, . . . , sn1
← Zkp, c0 , ŝ1, . . . , ŝn2 ← Zk+ζ

p ,

S = ( c0 ,As1, . . . ,Asn1), Ŝ = (ŝ1, . . . , ŝn2),

ctx = (ct1, ct2, ct3) = ([S]1, [c(S, Ŝ,W)]1, [ c>0 h]TM).

An SF-secret key is generated as

(m1,m2,k(r, r̂,w))← EncKey(y), r1, . . . , rm1 ← Zkp, r̂1, . . . , r̂m2 ← Zk+ζ
p ,

µ← Zp , R = (Br1, . . . ,Brm1
), R̂ = (h + µa∗ζ , r̂1, . . . , r̂m2

),

sky = (sk1, sk2) = ([R]2, [k(R, R̂,W)]2).

(4)

In the hybrids, the distribution of secret keys and the challenge ciphertext are
modified as follows:

H1: Same as the original game G except that the challenge ciphertext is SF.
H2,j(j ∈ [qsk]): Same as H1 except that the first j secret keys given to A are SF.

We prove (in the full version) that G ≈c H1 ≈c H2,1 ≈c, . . . ,≈c H2,qsk and
A’s advantage in H2,qsk is statistically close to 0. From these and the fact

AdvABEA (λ) = |Pr[〈A,G〉 = β]− 1/2|, we have that Theorem 9 holds.
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6 Extensions, Instantiations, and Applications

We obtain many applications in an analogous manner to the applications in [9].

Extended Framework. On the framework level, we obtain key-policy aug-
mentation over a set of predicate families, denoted KBF, which is more powerful
than the augmentation over a single predicate family (KBF1), as done in §4.3.
This follows exactly the same modular approach as in [9]. That is, in our con-
text, we can show that KBF is implied by KBF1 together with the direct sum and
CBF1OR. We defer the details to the full version. Moreover, more applications
such as nested-policy ABE can also be obtained analogously to [9].

New Instantiations. On the instantiation level, we have showed the result
overview in the introduction. Here, we briefly describe how to obtain such in-
stantiations. The full details are deferred to the full version.

– Completely unbounded ABE for monotone Boolean formulae. Analogously to
[9], we have that this predicate (in the key-policy flavor) is exactly KBF1[PIBBE],
where PIBBE is the predicate for ID-based broadcast encryption. IBBE can then
be augmented from IBE, of which we know a PMH-secure PES from e.g., [7].
The CP flavor is obtained by the dual conversion.

– Completely unbounded ABE for non-monotone Boolean formulae (the OSW
type). This is also analogous to [9], where we consider two-mode IBBE (TIBBE),
which can be then obtained by IBE and its negated predicate.

– Non-monotone KP-ABE with constant-size ciphertexts. A monotone variant
is obtained by simply using the PMH-secure PES for IBBE with constant-size
ciphertext encodings. Such a PES can be extracted from the PES for doubly
spatial predicate in [7]. Since our KBF1-Trans preserves ciphertext encoding
sizes, the converted scheme also obtains constant-size ciphertext encodings.
For the non-monotone case, such a PES for TIBBE can be obtained by the
disjunction of IBBE and negated IBBE (NIBBE). The latter can be viewed
as a special case of negated doubly spatial predicate in [7], of which PES with
constant-size encodings was reported. We directly construct a new TIBBE,
which is two times efficient than the generic one from the disjunction (see the
full version).

– CP-ABE with constant-size ciphertexts. First note that we consider schemes
with some bound on the size of policies (Boolean formulae), which the same
requirement as CP-ABE with constant-size ciphertexts of [1,9,10]. We obtain
this by two steps. First we show that, when considering small-universe, KP-
ABE implies CP-ABE (for Boolean formulae, with the bounded condition).
We use the depth-universal circuit [19] in this conversion. Second we show that
CP-ABE with small universe implies CP-ABE with large universe (again for
Boolean formulae, with the bounded condition). To the best of our knowledge,
these conversions were not known and can be of an independent interest,
as they are applied to ABE in general (not necessarily to PES). Note that
we cannot do that as Attrapadung et al. [10] did, who considered similar
implications in the case of more powerful span programs.
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– ABE with constant-size keys. CP/KP-ABE with constant-size keys is obtained
by the dual of KP/CP-ABE with constant-size ciphertexts, respectively.

New Applications. As a new application, we provide a new unified pred-
icate related to non-monotone ABE. Previously, there are two types of non-
monotone ABE: the OSW type (Ostrovsky, Sahai, and Waters [36]) and the OT
type (Okamoto and Takashima [35]). In the OSW type, a sub-predicate P (y,X)
amounts to check if an attribute is not in a set, e.g., if y 6∈ X, while the OT type,
a label tag is also attached, but a sub-predicate P ′((tag, y), (tag, x)) only checks
the inequality on the same tag, e.g., if tag = tag ∧ y 6= x. Intuitively, the OSW
type has a disadvantage in that the non-membership test takes the complement
over the whole universe and this may be too much for some applications, where
we would like to consider multiple sub-universe and confine the complement
to only in the related sub-universe. On the other hand, the OT type confines
the non-membership to those with the same tag, but the non-membership test
is enabled only with the set of single element, e.g., {x}. We unify both types
to overcome both disadvantages; that is, a sub-predicate P ′((tag, y), (tag, X))
would check if tag = tag ∧ y 6∈ X. We remark that when considering large-
universe monotone ABE, there is no benefit to consider multiple spaces, since
Zp is already exponentially large, and we can just treat a hashed value H(tag, y)
as an attribute in Zp. In non-monotone ABE, we have to check the equality
(of tags) and the non-membership at once, and the approach by hashing does
not work. We motivate more on the unified non-monotone ABE, and provide
definitions and constructions in the full version.
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CREST Grant Number JPMJCR19F6, and by JSPS KAKENHI Kiban-A Grant
Number 19H01109.
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