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Abstract. We construct the most efficient two-round adaptively secure
bit-OT in the Common Random String (CRS) model. The scheme is
UC secure under the Decisional Diffie-Hellman (DDH) assumption. It
incurs O(1) exponentiations and sends O(1) group elements, whereas
the state of the art requires O(κ2) exponentiations and communicates
poly(κ) bits, where κ is the computational security parameter. Along
the way, we obtain several other efficient UC-secure OT protocols under
DDH :

– The most efficient yet two-round adaptive string-OT protocol assum-
ing global programmable random oracle. Furthermore, the protocol
can be made non-interactive in the simultaneous message setting,
assuming random inputs for the sender.

– The first two-round string-OT with amortized constant exponentia-
tions and communication overhead which is secure in the global ob-
servable random oracle model.

– The first two-round receiver equivocal string-OT in the CRS model
that incurs constant computation and communication overhead.

We also obtain the first non-interactive adaptive string UC-commitment
in the CRS model which incurs a sublinear communication overhead in
the security parameter. Specifically, we commit to polylog(κ) bits while
communicating O(κ) bits. Moreover, it is additively homomorphic.
We can also extend our results to the single CRS model where multiple
sessions share the same CRS. As a corollary, we obtain a two-round
adaptively secure MPC protocol in this model.

1 Introduction

Oblivious Transfer (OT), introduced in [41, 23], is one of the main pillars of
secure distributed computation. Indeed, OT is a crucial building block for many
MPC protocols, e.g. [42, 28, 33, 27, 4, 5]. As a result, significant amount of re-
search has been dedicated to constructing OT protocols that are efficient enough
and secure enough to be of practical use.
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Table 1. Comparing our actively-secure UC-OT protocols with state-of-the-art DDH-
based 2-round actively-secure UC-OT protocols.

Setting Protocols Setup Security
Sender-input

Exponentiations
Communication

size (bits) (bits)

1
[36]

GPRO
Adaptive κ 6 4log |G| + 2κ

[6] Adaptive κ 11 6κ
πaOT-GPRO (Fig. 4)1 Adaptive κ 5 2log |G|+2κ

2
[10]

GORO Static
κ O(κ) O(κ2)

πsOT-GORO (Fig. 6)2 κ 5 2log |G|+2κ

3
[40]3 CReS

Static
log |G| 11 6log |G|

πsOT-CRS(Fig. 8) CRS log |G| 8 5log |G|

4
[25] CRS

Receiver
log |G| poly(κ) poly(κ)

[5]3 CReS
Equivocal

log |G| O(κ) O(κ2)
πreOT-CRS(Fig. 7) CRS log |G| 9 5log |G|

5
[5]3 CReS

Adaptive
1 Ω(κ2) + 2 · NCEE = O(κ2) poly(κ)

πaOT-CRS (Fig. 10)4 CRS 1 11 + 2 NCEE = O(1) 6 log |G| + 2 NCEC = O(κ)

Note: The computational security parameter is κ and G denotes a group where DDH holds with log |G| = O(κ).
NCEE and NCEC denotes the exponentation and communication cost of an augmented NCE on a bit respectively.
It can be instantiated using the DDH-based scheme of [16] where NCEC = O(κ) and NCEE = O(1). 1 πaOT-GPRO

requires a one-time communication of 2 group elements and κ bits and computation of 4 exponentiations. 2

πsOT-GORO requires a one-time communication of 2 group elements and κ bits and computation of 2 NIZKPoKs
and 5 exponentiations. 3Can be instantiated from QR and LWE too. 4 πaOT-CRS has a one-time communication
cost of log |G| and one exponentiation.

Designing good OT protocols is a multi-dimensional challenge: One obvious
dimension is the complexity, in terms of computational and communication over-
head, as well as the number of rounds. Another dimension is the level of security
guaranteed. Here the standard measure is Universally Composable (UC) security
[8], in order to enable seamless modular composition into larger MPC protocols.
Yet another dimension is the setup used. Commonplace models include the com-
mon random string model (CRS), the common reference string (CReS) model
and the random oracle (RO) model. (Recall that UC-secure OT does not exist
in the plain model [9], thus it is essential to use some sort of setup.) Yet another
dimension is the computational hardness assumptions used.

A final dimension, which is the focus of this work, is whether security is
guaranteed for adaptive corruption of one or both of the participants, or alter-
natively only for the static case where one of the parties is corrupted, and the
corruption takes place before the computation starts. Indeed, most of the recent
works towards efficient OT concentrates on the static case, e.g. [40, 10, 36, 22].

We concentrate on the case of two-round, adaptively UC-secure OT. We only
consider the case of malicious adversaries. It is easy to see that two rounds is
the minimum possible, even for static OT. Furthermore, two-round OT enables
two-round MPC [3, 27, 4, 5] which is again round-optimal. More importantly,
the efficiency of the two-round MPC protocol crucially depends on the efficiency
of the underlying two-round UC-OT protocol. Still, there is a dearth of efficient
two-round adaptively UC-secure OT protocols which can tolerate malicious cor-
ruptions.

1.1 Our Contributions

We present a number of two-round UC-secure OT protocols. Our protocols are
all based on the plain DDH assumption and work with any group where DDH is



hard. While the protocols are quite different and in particular work in very dif-
ferent settings, they all use the same underlying methodology, which we sketch
in Section 1.2. But first we summarize our results and compare it with the rel-
evant state-of-the-art protocols. We organize the presentation and comparison
based on the setup assumptions - the global random oracle (GRO) model, and
the common reference and random string models. A stronger notion of RO is
the GRO model where the same instance of RO is shared globally among dif-
ferent sessions. We have results in the global observable random oracle (GORO)
model and the global programmable random oracle (GPRO) model. Our results
are further subdivided into cases based on static and adaptive corruptions. A
detailed comparison can be found in Table 1. We assume that the number of
bits required to represent a group element (for which DDH holds) is O(κ). For
example, the DDH assumption holds in the elliptic curve groups and a group
element can be represented with O(κ) bits.

Global Random Oracle Model. Our protocols are proven to be secure in
the well established GRO [7, 10] model. Our results in the GRO model are as
follows:

– Efficient Adaptive OT in Programmable GRO model. The work of
“Simplest OT” [18] presented a 3-round OT in the programmable RO (PRO)
model, which was later shown as not UC-statically secure [34, 6]. Inspired by
their protocol, we design a 2-round adaptively secure OT πaOT-GPRO in the GPRO
model. Our protocol requires roughly 5 exponentiations and communicates 2
group elements and 2κ bits when the sender’s input messages are κ bits long
and the computational security parameter is κ.

State-of-the-art. The work of [6] presents an adaptively secure OT assuming
DDH. They require 11 exponentiations and 5κ bits of communication. The work
of [36] obtains a two-round OT based on DDH using 6 exponentiations. They
obtained static security assuming PRO. We observe that it can be proven to be
adaptively secure under the same assumptions. They also provide an optimized
variant requiring 4 exponentiations under the non-standard assumption of Inter-
active DDH, which is not known to be reducible to standard DDH. The work of
[29] presented a 8 round adaptive OT protocol from semi-honest UC adaptive-OT
and observable GRO (i.e. GORO) model in the tamper-proof hardware model.
We do not compare with them due to difference in the underlying setup as-
sumptions. A detailed comparison with other protocols is shown as Setting 1 in
Table 1.

– One-round random OT in the GPRO + short single CRS model.
Our GPRO-based protocol can be further improved to obtain a one-round ran-
dom OT (where the sender’s messages are randomly chosen) πaROT-GPRO in the
simultaneous message (where the parties can send messages in parallel) setting
assuming a single short CRS of two group elements. By single CRS, we refer
to the setting of [11] where the same CRS is shared among all sessions and the
simulator knows the trapdoor of the CRS. In our protocols, each random OT
requires communicating 2 group elements and computing roughly 5 exponentia-



tions. This is particularly useful to compute the base OT in OT extension [32, 39]
non-interactively during the offline phase.

State-of-the-art. In comparison, the work of [36] can obtain a one-round ran-
dom OT in the simultaneous message setting from non-interactive Key Agree-
ment protocols. Assuming DDH, they can instantiate their protocol using 6
exponentiations.3 The work of [14] presented an OT with selective failure from
CDH assumption and proven its security for O(κ) OTs together. The work by
Doerner et al. [21] presented an OT with selective failure based on observable
RO (ORO) and used it to obtain OT extension while computing roughly 3 expo-
nentiations per base-OT and 1 NIZKpok. However, their OT requires 5 rounds
of interaction and communication of 4 group elements and 3κ bit strings, yield-
ing a 6 round OT extension. On the other hand, our protocol would give a 3
round OT extension with communication of 2 group elements per base-OT and
it should outperform theirs in the WAN setting where interaction dominates the
computation time.

– Static OT in the Observable GRO model. We replace the GPRO by a
non-programmable GORO, with an extra one-time cost of 2 NIZKPoKs for Dis-
crete Log and 5 exponentiations, which can be reused across multiple executions.
One-time cost is a cost that is incurred only once per session/subsession even
if multiple OT protocols are run in that session/subsession between the pair of
parties. The remaining per-OT cost of this protocol is 5 exponentiations, except
that now the protocol is only statically secure.

State-of-the-art. In comparison, the only two-round OT protocol from GORO
is known from [10]. The authors generate a statically-secure one-sided simulat-
able OT under DDH assumption. It is used to obtain a UC-secure 2PC protocol
using garbled circuits [3]. The 2PC can be instantiated as an UC-secure OT pro-
tocol. Each such OT would cost O(κ) exponentiations, which cannot be amor-
tized for large number of OTs. A detailed comparison can be found in Setting 2
of Table. 1.

Common Random String Model. Next we present our results in the CRS
model. We would like to note that the state-of-the-art protocols are in a stronger
model, i.e. the common reference string model and yet we work in the common
random string model and still outperform them. Our results and detailed com-
parison follows:

– Static OT in the CRS model. We replace the GRO with a non pro-
grammable CRS. This gives us an efficient two-round static OT πsOT-CRS which
requires 8 exponentiations and communication of 5 group elements.

State-of-the-art. In contrast, The state-of-the-art is obtained by [40] in the
common reference string model from DDH, Quadratic Residuosity (QR) and

3 They have an optimized variant (in Appendix D.2 of their paper) from Interactive
DDH requiring 4 exponentiations based on a non-standard assumption, not known
to be reducible to standard DDH assumption.



Learning with Errors (LWE). Their DDH based instantiation required 11 ex-
ponentiations and communicated 6 group elements, while other instantiations
required more. Following this, [17] presented constructions in the single common
reference string model (of [11]), which is a weaker setup assumption. They have
a 2 round construction from Decision Linear Assumption which requires 20 ex-
ponentiations and they have a 4 round construction from DDH and Decisional
Composite Residuosity Assumption. The recent work of [22] presents a theoret-
ical construction based on CDH and Learning with Parity. Detailed comparison
can be found in Setting 3 of Table. 1.

– Receiver equivocal OT in the CRS model. Next, we add security against
adaptive corruption of receiver at the cost of one extra exponentiation. This
yields a receiver equivocal OT πreOT-CRS which requires 9 exponentiations and
communication of 5 group elements. Such an OT can find useful applications in
efficient adaptively-secure zero knowledge [24] schemes.

State-of-the-art. Previous receiver equivocal OT protocol of [25] required some-
where equivocal encryption leading to a practically infeasible solution. On the
other hand, [5] required O(κ) instances of static string-OTs and non-blackbox
usage of non-interactive equivocal commitment to construct a receiver equivocal
OT. A detailed comparison can be found in Setting 4 of Table. 1.

– Adaptive OT in the CRS model. Finally, we add sender equivocation
in our receiver equivocal OT to obtain a semi-adaptive OT (which is secure
against static corruption of one party and adaptive corruption of another party)
πsaOT-CRS in two rounds. Then, we apply the transformation of [5] to obtain our
adaptively-secure bit OT πaOT-CRS in two rounds. Their transformation upgrades
a semi-adaptively secure OT to an adaptively secure OT in the augmented NCE
model. Our final protocol πaOT-CRS computes 11 exponentiations and communi-
cates 7 group elements. In addition, it encrypts 2 bits using augmented NCE.
Upon instantiating the NCE scheme using the DDH-based protocol of [16], we
obtain the first two round adaptively secure bit-OT which has constant commu-
nication and computation overhead.

State-of-the-art. In this setting, few works [26, 12, 26] achieve adaptive se-
curity based on general two-round MPC protocol using indistinguishability ob-
fuscation. The only round optimal adaptively-secure protocol under standard
computational assumption is due to [5] from DDH, LWE, and QR. They ob-
tain a semi-adaptive bit-OT by garbling a non-interactive equivocal commit-
ment scheme using equivocal garbling techniques of [13]. The construction also
requires O(κ2) invocations to a static string OT with oblivious sampleability
property. Then, they provide a generic transformation to obtain an adaptively
secure bit OT from a semi-adaptively secure bit-OT in the augmented NCE
model. On efficiency measures, the work of [5] constructs the equivocal garbled
circuit by communicating poly(κ) bits and their semi-adaptive bit OT requires
O(κ2) exponentiations, thus yielding a feasibility result. In contrast, our proto-
col is concretely efficient. We have compared with their protocol in Setting 5 of
Table. 1.



Table 2. Comparing our protocol with state-of-the-art Adaptively Secure (without
erasures) UC commitment schemes where the commitment size is O(κ) bits

Protocols
Message No. of rounds

Setup Assumptions
bit length Commit Decommit

[9] 1 1 1 CReS DDH + UOWHF
[11] 1 1 1 CReS TDP
[1] 1 1 1 CReS SXDH
[2] 1 1 1 CReS DDH

[20] κ 3 1 CReS DCR
[19] κ 3 1 CReS DCR + SRSA

Our DDH-based
polylog(κ) 1 1 CRS DDH

protocol (Fig. 12)

Notations:
UOWHF - Universal One-Way Hash Functions
TDP - Trapdoor Permutations, SXDH - Symmetric External Diffie–Hellman,
DCR - Decisional Composite Residuosity, SRSA - Strong RSA

– Non-interactive adaptive commitment. As an independent result, we
demonstrate that the first message of any two-round receiver equivocal OT
behaves as an adaptively-secure commitment. By applying this result to our
receiver equivocal OT πreOT-CRS, we obtain the first non-interactive adaptive
string commitment scheme with sublinear communication in κ. More specifi-
cally, we commit polylog(κ) bits using 4 exponentiations and communicating 2
group elements. Interestingly, our scheme is additively homomorphic.

State-of-the-art. On the other hand, the previous non-interactive adaptively-
secure commitment schemes [9, 11, 1, 2] in the common reference string model
were bit commitments requiring O(1) exponentiations and O(κ) bits communi-
cation to commit a bit. There are string commitments [20, 19] but they require
3 rounds of interaction for commitment. The work of [30] presented a theoret-
ical construction from the minimal assumption of public key encryption with
oblivious ciphertext generation. It has an interactive commitment phase and
communicates O(κ2) bits to commit to a single bit. Table. 2 provides a qualita-
tive comparison of our protocol with other schemes.

Single Common Random String model Currently, our results in this sub-
section are in the local CRS model. We can extend it to the single common
random string, i.e. sCRS model of [11], where all parties share the same sCRS
for their subsessions. A subsession is computed between a pair of parties with
unique roles (party A is the sender of an OT subsession and Party B is the
receiver). The local CRS is generated from sCRS by the parties during the pro-
tocol. There can be multiple instances of the same protocol within a subsession
with the same local CRS between same parties with their roles preserved, i.e. A
will be the sender and B will be the receiver. The simulator knows the hidden
trapdoors for sCRS. This benefit comes at a cost of keeping the sCRS length to
4κ + 2 group elements. The length is independent of the number of parties or
the number of instances of the protocol being run. However, we assume that the



subsession ids are chosen statically by the environment Z before seeing sCRS.
Using our adaptive OT and commitment protocol in the sCRS model, we obtain
a two-round adaptively secure MPC protocol in the sCRS model. Similar result
was observed in the work of [5].

1.2 Key Insights

Our OT protocols are in the dual-mode [40, 35] paradigm. In this paradigm,
the protocol can be either in extractable mode or equivocal mode based on the
mode of the setup assumption. In the extractable mode, the input of a corrupt
receiver can be extracted by a simulator(playing the role of sender) using a
trapdoor; whereas in the equivocal mode the simulator(playing the role of honest
receiver) can use the trapdoor to compute randomness that would equivocate
the receiver’s message to both bit values b ∈ {0, 1}. This would enable the
simulator to extract a corrupt sender’s input messages corresponding to both
bit values. Previous protocols ensured that the real world protocol was always in
the extractable mode by programming the setup distribution [40, 35]. However,
this required programming the setup based on which party is statically corrupt
and this was incompatible with adaptive security.

The novelty of our paper lies in programming the mode of the protocol, during
the protocol execution, without explicitly programming the setup. We achieve
this by relying on the Computational Diffie-Hellman(CDH) and DDH assump-
tion. The protocols either start off with a common random string - (g, h, T1) or
generate one by invoking the GRO on a random string. The receiver is required
to generate T2 and execute the OT protocol using (g, h, T1, T2) as the setup tu-
ple. The protocol ensures that if the tuple is non-DDH then the protocol is in
extractable mode, else it is in equivocal mode. The CDH assumption guarantees
that the tuple is a non-DDH tuple and hence the real world protocol is in ex-
tractable mode. Meanwhile, the simulator can compute T2 = htd s.t. the tuple
is in equivocal mode by using the trapdoor td = logg T1. The simulated tuple
is indistinguishable from real tuple due to DDH assumption. This trick follows
by carefully tweaking the DDH based instantiation of the PWV framework such
that it satisfies an additional property, i.e. the CRS for the protocol will be in
extractable mode (a.k.a messy mode according to PVW) and it can be set to
equivocal mode (a.k.a decryption mode according to PVW) by the simulator,
given a trapdoor. This enables simulation in the adaptive setting as the simu-
lator can conveniently program the CRS based on which party gets corrupted.
Extending our techniques to hold under additional assumptions is an intriguing
open question, especially LWE and QR since PVW can be instantiated from
them. See Section 3 for a more detailed overview.

Paper Organization. In the next section, we introduce some notations and im-
portant concepts used in this paper. In Section 3, we present the key intuitions
behind our protocols. This is followed by our results in the global random ora-
cle model in Section 4. Then, we replace the random oracle assumption with a
CRS setup to obtain a receiver equivocal OT in Sec. 5. Our optimized static-
OT is present in the same section. In Section 6 we add sender equivocation in



our receiver equivocal OT to obtain adaptively-secure OT in the CRS model.
We present our independent result on adaptively-secure commitment scheme in
Section 7. Finally, we conclude by replacing our local CRS with a single CRS in
Section 8. In the same section we provide our two round adaptive MPC protocol
in the single CRS model.

2 Preliminaries

Notations. We denote by a ← D a uniform sampling of an element a from a
distribution D. The set of elements {1, . . . , n} is represented by [n]. We denote
polylog(a) and poly(b) as polynomials in log a and b respectively. We denote a
probabilistic polynomial time algorithm as PPT. We denote the computational
security parameter by κ. Let Zq denote the field of order q, where q = p−1

2
and p are primes. Let G be the multiplicative group corresponding to Z∗p with
generator g, where DDH assumption holds. We denote the set of natural numbers
as N. When a party S gets corrupted we denote it by S∗. Our protocols have the
following naming convention π〈sec〉〈prot〉-〈setup〉 where 〈sec〉 refers to the security
model and it can be either s (static), re (receiver equivocal) or a (adaptive).
〈prot〉 refers to the protocol which is either OT or ROT or COM based on OT
or random OT or commitment protocol respectively. Similarly, 〈setup〉 refers to
the setup assumption where it can be either PRO (PRO model) or ORO (ORO
model) or CRS (CRS). Our security proofs are in the Universal Composability
(UC) framework of [8]. We refer to the original paper for details.

Global Random Oracle Model. We present the global random oracle func-
tionality from [7] in Fig. 1. It allows a simulator to observe illegitimate queries
that are made by the adversary from outside the session by invoking the Ob-
serve command. It also enables the simulator to program (using the Program
command) the random oracle on unqueried input points. Meanwhile, an adver-
sary can also program (using the Program command) the random oracle on a
point but an honest party can check whether that point has been programmed
or not by invoking the IsProgrammed command. In the ideal world, a simu-
lator can successfully program the RO since it can always return the result of
IsProgrammed command as 0 when the adversary invokes it to verify whether
a point has been programmed or not. More details can be found in Section 8
of [7]. In our OT protocols we require multiple instances of the GRO due dif-
ferent distributions on the domain and range of the GRO. We denote them as
FGRO1, FGRO2 and so on. We assume FGROi is indexed by a parameter i ∈ N, in
addition to sid. We avoid writing i as part of the parameters to avoid notation
overloading.

Common Random String Model. In this assumption, the parties of a session
sid have access to a string randomly sampled from a distribution. A CRS is local
to the session sid and should not be used for protocols outside the session. In
the security proof, the simulator would have access to the trapdoors of the CRS
which would enable him to simulate the ideal world adversary. In the MPC
literature, the acronym CRS can also refer to common reference string which
is a stronger assumption than common random string. In this paper, we always



Fig. 1. The ideal functionality FGRO for Global Random Oracle

FGRO

FGRO is parameterized by a domain D and range R and it proceeds as follows,
running on security parameter κ:

– FGRO maintains a list L (which is initially empty) of pairs of values (ŝid, m̂, ĥ),
s.t. m̂ ∈ D, ĥ ∈ R and ŝid is a session id.

– Upon receiving a value (Query,m, sid′) (where m ∈ D) from a party P, from
session with session id sid, perform the following: If there is a pair (sid′,m, ĥ),
for some ĥ ∈ R, in the list L, set h := ĥ. If there is no such pair, sample
h ←R R and store the pair (sid′,m, h) in L. If sid 6= sid′, then add (sid′,m, h)
to the illegitimate query set Qsid. Once h is set, reply to the activating machine
with (HashConfirm, h).

– Upon receiving a value (Observe, sid) from the adversary: If Qsid does not exist
then set Qsid = ⊥. Output Qsid to the adversary.

– Upon receiving a value (Program,m, h′, sid) from the adversary, if there exists
an entry (sid,m, h) and h 6= h′ then ignore this input. Else, set L = L∪(sid,m, h)
and prog = prog ∪m and return (ProgramConfirm) to adversary.

– Upon receiving a value (IsProgrammed,m, sid′) from a party (P, sid), if sid 6=
sid′ then ignore the input. Else, set b = 1 if m ∈ prog. Otherwise set b = 0.
Return (IsProgrammedResult, b) to the calling entity.

use CRS for common random string unless explicitly mentioned. We also use the
single CRS model [11] where a single CRS - sCRS is shared among all sessions
and the simulator knows the trapdoor of the sCRS.

Oblivious Transfer. In a 1-out-of-2 OT, we have a sender (S) holding two
inputs a0, a1 ∈ {0, 1}n and a receiver (R) holding a choice bit b. The correctness
of OT means that R will obtain ab as the outcome of the protocol. At the same
time, S should learn nothing about b, and R should learn nothing about the other
input of S, namely ab̄. The ideal OT functionality FOT is shown in Figure 2. We
also consider the multi-session variant FmOT (Figure 13) where multiple parties
can run pairwise OT protocols, while sharing the same setup resources. This
captures our OT protocols in the single CRS model.

Adversarial Model. We initially consider security against static corruptions by a
malicious adversary. Later, we need different levels of adaptive security and we
enlist them as follows:

- Static corruption: The adversary corrupts the parties at the beginning of the
protocol.

- Receiver equivocal corruption: The adversary corrupts sender statically and he
corrupts the receiver adaptively.

- Sender equivocal corruption: The adversary corrupts receiver statically and he
corrupts the sender adaptively.



Fig. 2. The ideal functionality FOT for Oblivious Transfer

FOT

FOT interacts with a sender S and a receiver R as follows:

– On input (Choose, rec, sid, b) from R where b ∈ {0, 1}; if no message of the form
(rec, sid, b) has been recorded in the memory, store (rec, sid, b) and send (rec, sid)
to S.

– On input (Transfer, sen, sid, (a0, a1)) from S with a0, a1 ∈ {0, 1}n, if no mes-
sage of the form (sen, sid, (a0, a1)) is recorded and a message of the form
(rec, sid, b) is stored, send (sent, sid, ab) to R and (sent, sid) to S. Ignore future
messages with the same sid.

Fig. 3. The ideal functionality FCOM for Commitment Scheme

FCOM

FCOM interacts with committer C and verifier V as follows:

– On receiving input ((Commit,V),C, sid,m) from C, if (sid,C,V,m′) has been
recorded, ignore the input. Else record the tuple (sid,C,V,m) and send
(Receipt, sid,C,V) to V.

– On receiving input (Decommit,C, sid) from C, if there is a record of the form
(sid,C,V,m′) return (Decommit, sid,C,V,m′) to V. Otherwise, ignore the in-
put.

- Semi-adaptive corruption: The adversary corrupts one party statically and the
other party adaptively.

- Adaptive corruption: The adversary corrupts both parties adaptively. This
scenario covers the previous corruption cases.

Commitment. A commitment scheme allows a committing party C to compute
a commitment c to a message m, using randomness r, towards a party V in the
Commit phase. Later in the Decommit phase, C can open c to m by sending the
decommitment to V. The commitment should hide m from a corrupt V∗. Binding
ensures that a corrupt C∗ cannot open c to a different message m′ 6= m. In
addition, UC-secure commitments require a simulator (for honest V) to extract
the message committed by C∗. Also, it enables a simulator (for honest C) to
commit to 0 and later open it to any valid message by using the trapdoor. The
ideal commitment functionality FCOM is shown in Figure 3. We also consider
the multi-session [11] variant FmCOM (Figure 14) where multiple parties can run
pairwise commitment schemes protocols, while sharing the same setup resources.
This captures our commitment scheme in the single CRS model.

Non-Committing Encryption. A non-committing encryption consists of three
algorithms NCE = (Gen;Enc;Dec). It is a public key encryption scheme which al-
lows a simulator to encrypt a plaintext in the presence of an adaptive adversary.
Given a trapdoor, the simulator (on behalf of the honest party) can produce some
dummy ciphertext c without the knowledge of any plaintext m. Later when the



honest party gets corrupted and the simulator produces matching randomness
(or decryption key) s.t. c decrypts to m. More formally, it is defined as follows.

Definition 1. (Non-Committing Encryption). A non-committing (bit) en-
cryption scheme (NCE) consists of a tuple (NCE.Gen,NCE.Enc,NCE.Dec,NCE.S)
where (NCE.Gen,NCE.Enc,NCE.Dec) is an IND-CPA public key encryption scheme
and NCE.S is the simulation satisfying the following property: for b ∈ {0, 1} the
following distributions are computationally indistinguishable:

{(pk, c, rG, rE) : (pk, sk)← NCE.Gen(1κ; rG), c = NCE.Enc(pk, b; rE)}κ,b ≈

{(pk, c, rbG, rbE) : (pk, c, r0
G, r

0
E , r

1
G, r

1
E)← NCE.S(1κ)}κ,b.

Definition 2. (Augmented Non-Committing Encryption). An augmented
NCE scheme consists of a tuple of algorithms (NCE.Gen,NCE.Enc,NCE.Dec,NCE.S,
NCE.GenObl,NCE.GenInv) where (NCE.Gen,NCE.Enc,NCE.Dec,NCE.S) is an NCE
and:

- Oblivious Sampling: NCE.GenObl(1
κ) obliviously generates a public key pk (with-

out knowing the associated secret key sk.
- Inverse Key Sampling: NCE.GenInv(pk) explains the randomness for the key

pk satisfying the following property.
Obliviousness: The following distributions are indistinguishable:

{(pk, r) : pk← NCE.GenObl(1
κ; r)}κ ≈

{(pk, r′) : (pk, sk)← NCE.Gen(1κ); r′ ← NCE.GenInv(pk)}κ .

Definition 3. (Computational Diffie-Hellman Assumption). We say that
the CDH assumption holds in a group G if for any PPT adversary A,

Pr[A(g, h, T ) = Z] = neg(κ).

holds, where h, T ← G, and T = gt, Z = ht.

Definition 4. (Decisional Diffie-Hellman Assumption). We say that the
DDH assumption holds in a group G if for any PPT adversary A,

|Pr[A(g, h, T, Y ) = 1]− Pr[A(g, h, T, Z) = 1]| = neg(κ).

holds, where h, T, Y ← G and T = gt, Z = ht.

3 Technical Overview

In this section, we will provide a high-level overview of our main constructions.
Full technical details can be found in later sections.



3.1 Adaptively Secure OT in the Global Programmable RO Model

The “Simplest OT protocol” [18] is a three-round OT protocol in the pro-
grammable RO model. S sends the first message as T = gr, using some secret
randomness r ← Zq. R uses the sender’s message to compute the second mes-
sage as B = gαT b based on his input bit b using some secret receiver randomness
α← Zq. Upon receiving B, the sender reuses the secret randomness r to compute
the OT third message as follows:

c0 = FGRO (Br)⊕m0

c1 = FGRO

((
B

T

)r)
⊕m1

(1)

The receiver decrypts mb = cb ⊕ FGRO(sid, Tα). A corrupt R∗ cannot obtain
both messages as it requires computing T r (as it involves querying Br and
(BT )r) to the RO. Such a computation is hard by CDH assumption as T = gr is
randomly sampled by S and kept secret from R. On the other hand, a corrupted
S∗ cannot guess b as b is perfectly hidden in B (since α and α − r are valid
receiver randomness for bits 0 and 1). This also disrupts a corrupt receiver’s
input extraction by the simulator as b is not binded to B. The only way to
extract the input of R∗ is when he invokes FGRO on Bα to decrypt mb. However,
such a weak extraction process is insufficient for UC-secure protocols (GC-based
protocols) where this OT protocol might be used and it has been pointed out by
the work of [34, 6]. To tackle this issue, the protocol should bind the receiver’s
input bit b to the receiver’s message. Here our goals are: 1) fix this protocol to be
fully UC-secure; 2) reduce the round complexity of the protocol to two rounds.

Our solution We reduce the round complexity by generating T as an OT
parameter using a GRO. The receiver generates T by invoking the GRO on a
randomly sampled seed. He constructs B = gαT b based on bit b. The sender
samples a random r from Zq and encrypt his message as in Equation 1. The
sender also sends z = gr so that the receiver can decrypt mb = cb⊕FGRO(sid, zα).
Security follows from the the security of Simplest OT. And sender’s messages are
hidden due to CDH assumption. However, the receiver’s bit cannot be extracted
from the receiver’s message as it is perfectly hidden.

Now we will add a mechanism such that the receiver’s bit can be extracted
from the receiver’s message. Intuitively, the protocol is modified in such a way
that the receiver runs two instances (using two different OT parameters) of the
modified Simplest OT using the same randomness α. The sender encrypts his
message by combining these two instances. Finally, the receiver uses α to decrypt
mb. Security ensures that a corrupt receiver cannot decrypt m0 or m1 if the two
instances are not computed using α. And a simulator can extract the corrupt
receiver’s input bit from the two instances if they are correctly constructed. This
ensures input extraction of a corrupt receiver, thus giving us a round optimal
UC-secure OT with high concrete efficiency.

More formally, the receiver R generates (h, T1, T2) as receiver OT parameters
using the GRO. He constructs two instances as B = gαT b1 and H = hαT b2 using



the same randomness α. He sends seed and (B,H) to the sender S. Next, S
samples r, s from Zq and computes the sender OT parameter z = grhs. The
sender combines the two OT instance by computing the ciphertexts:

c0 = FGRO (sid, BrHs)⊕m0, and c1 = FGRO

(
sid,

(
B

T1

)r
·
(
H

T2

)s)
⊕m1.

The receiver computes mb = cb ⊕ FGRO(sid, zα). This new scheme supports
extraction of a corrupt receiver’s input bit if the simulator knows x s.t. h = gx.
The simulator extracts b = 0 if H = Bx, else if H

T2
= ( BT1

)x then he sets
b = 1. Otherwise, the receiver message is malformed and b is set as ⊥. Ex-
traction always succeeds unless (g, h, T1, T2) forms a DDH tuple. In such a case
(g, h, T1, T2) = (g, gx, gt, gxt) and both extraction cases will satisfy. However,
such an event occurs with negligible probability since (h, T1, T2) is generated us-
ing a random oracle. Sender’s messages are hidden from a corrupt receiver due
to CDH assumption. Simulation against a corrupt sender proceeds by program-
ming the GRO s.t (g, h, T1, T2) is a DDH tuple. The simulator (playing the role
of honest R) sets B = gα and H = hα as receiver message. Upon obtaining the
second OT message from the corrupt sender, the simulator extracts m0 and m1

by using randomness α and α− t respectively. The corrupt sender cannot distin-
guish between the real and ideal world OT parameters due to DDH assumption.
Also, B and H perfectly hides b in the ideal world.

Our protocol is more efficient than the state-of-the-art two-round UC-secure
OT [40, 36]. Furthermore, if we are interested in random OTs, then S needs to
communicate only the OT parameter z for all the OTs. This would yield a non-
interactive random OT at the cost of 5 exponentiations and 2 group elements (i.e.
R communicates (B,H) for each random OT). The same protocol is adaptively
secure in the programmable random oracle model, and can be modified to use
an global observable RO but only provide static security. See Section 4 for full
details.

3.2 Receiver Equivocal Oblivious Transfer in the CRS model

Our next goal is to obtain efficient UC-secure OT with only a common random
string setup. We replace the GRO by partially setting the receiver OT parameters
as the CRS, consisting of three random group elements (g, h, T1). The receiver
is required to generate T2 as part of the protocol and use it to compute B and
H following the previous protocol (Section 3.1). T2 will be reused for multiple
OT instances in the same session. It is guaranteed that a corrupt receiver will
compute T2 s.t. the tuple is non-DDH due to the CDH assumption. In such a
case, the simulator for a corrupt receiver can extract b from B and H given
x, where h = gx. On the other hand, the simulator (playing role of honest
receiver) for a corrupt sender can compute T2 s.t. (g, h, T1, T2) is a DDH tuple,
given the trapdoor t s.t. T1 = gt. It would allow him to extract corrupt sender’s
input messages from (c0, c1) and equivocate (B,H) = (gα, hα) to open to bit b
by opening the receiver’s randomness as α − bt. This provides security against
adaptive corruption of receiver. The sender’s algorithm is similar to the one in



Sec. 3.1 where the ciphertexts are formed as follows:

c0 = BrHs ·m0, and c1 =

(
B

T1

)r
·
(
H

T2

)s
·m1

However, the sender’s randomness (r, s) has to be unique for each OT instance,
else the sender’s OT messages - (c0, c1), will leak about the sender’s input mes-
sages - (m0,m1). Thus, we obtain a two-round OT protocol which is secure
against static corruption of the sender and adaptive corruption of the receiver
in the common random string model. Our protocol requires 9 exponentiations
and communication of 6 group elements, where one group element (i.e. T2) can
be reused; reducing the communication overhead to 5 group elements. We can
further optimize our computation cost to 8 exponentiations if we sacrifice re-
ceiver equivocal property and instead settle for static security. In contrast, the
only other two-round protocol [40] in this model requires 11 exponentiations and
communication of 6 group elements in the common reference string model. Note
that the protocol here is receiver-equivocal, which will be made fully adaptive
in the following subsection.

3.3 Adaptively Secure Oblivious Transfer in the CRS model

Finally, we would like to add sender equivocation to the above protocol. It re-
quires a simulator to simulate the OT second message without the knowledge of
sender’s input. Upon post-execution corruption of sender, the simulator should
provide the randomness s.t. the OT second message corresponds to sender’s orig-
inal input (m0,m1). In our current protocol, the second OT message is computed
based on B and H using the randomness r and s. The simulator (playing the role
of an honest sender) sets cb̄ randomly and opening it to mb̄ requires the knowl-
edge of receiver’s randomness - α. Also, such an equivocation would be possible
only if the tuple - CRS and T2, is a non-DDH tuple as z and pb̄ = cb̄

mb̄
are two

separate equations in r and s. When the tuple is a DDH one (which is required
for receiver equivocation when the receiver is corrupted post-execution) then we

can write pb̄ = zα+(−1)bt. It is not possible to provide r and s s.t. a random cb̄
opens to pb̄ ·mb̄, where pb̄ gets fixed by α and z, and mb̄ is chosen by the adap-
tive adversary in post-execution corruption. Thus, it seems receiver and sender
equivocation will not be possible simultaneously if we follow this approach.

We address this challenge by modifying the sender protocol. We construct
a semi-adaptive OT protocol by slightly tweaking our receiver equivocal OT
protocol. Then we apply the transformation of [5] which uplifts a semi-adaptive
OT into to an adaptively secure OT using augmented NCE. A semi-adaptive
OT is one which is secure against static corruption of one party and adaptive
corruption of another party. Our semi-adaptive OT construction is described as
follows. The sender encrypts only bit messages mi ∈ {0, 1} in ciphertext (zi, ci),
for i ∈ {0, 1}, using independent randomness (ri, si). If mi = 1 then sender



encrypts it using the sender protocol as follows :

zi = grihsi

ci =

(
B

T ii

)ri (H
T i2

)si
·mi =

(
B

T ii

)ri (H
T i2

)si
· 1 =

(
B

T ii

)ri (H
T i2

)si
If mi = 0, then sender samples zi and ci as random group elements. Upon
receiving (z0, c0, z1, c1), the receiver computes y = cb ·z−αb . If y = 1, then receiver
outputs mb = 1, else he outputs mb = 0. In this new construction, mb̄ remains
hidden in cb̄ from the corrupt receiver due to DDH assumption. Moreover, it
solves our previous problem of equivocating sender’s OT message - cb̄. Here, the
simulator (playing the role of honest sender) can always compute (zb̄, cb̄) s.t. they
encrypt mb̄ = 1 using randomness (rb̄, sb̄). Later, when sender gets corrupted
post-execution, the simulator can claim (zb̄, cb̄) was randomly sampled if mb̄ = 0,
else provide the randomness as (rb̄, sb̄) if mb̄ = 1. Adversary cannot decrypt mb̄

from cb̄ since T
rb̄
1 makes cb̄ pseudorandom due to DDH assumption.

Thus, our new protocol is secure against semi-adaptive corruptions of par-
ties. Next, we use the transformation of [5] to make it adaptively secure using
augmented NCE. The receiver generates an NCE key pair (pkb, sk) corresponding
to his input bit b. He samples another NCE public key pkb̄ obliviously for bit b̄.
He sends these two public keys to the sender. The sender additively secret shares
his inputs :

m0 = x0 ⊕ y0,m1 = x1 ⊕ y1.

He runs the semi-adaptive OT protocol with inputs (x0, x1) and encrypts y0 and
y1 using pk0 and pk1 respectively.

e0 = NCE.Enc(pk0, y0), e1 = NCE.Enc(pk1, y1).

The sender sends the semi-adaptive OT messages and (e0, e1) to the receiver. The
honest receiver obtains xb from the OT and yb. A corrupt receiver can obtain yb̄
in addition, if he sampled (pkb̄, skb̄) using the NCE.Gen algorithm. Our final pro-
tocol is secure against adaptive corruption of both parties. Consider the setting
where both parties are honest initially and the simulator has to construct their
view. The adaptive simulator runs the semi-adaptive simulator for the underly-
ing semi-adaptive OT with static corruption of sender and adaptive corruption
of receiver. The honest sender algorithm is run with inputs (x0, x1), sampled
as random bits. Suppose the sender gets corrupted first in post-execution then
e0 and e1 can be equivocated s.t. y0 = x0 ⊕ m0 and y1 = x1 ⊕ m1. Indistin-
guishability proceeds due to the NCE property. Next, when the receiver gets
corrupted the simulator obtains b. He uses the adaptive simulator for receiver in
the semi-adaptive OT. The simulator also uses the inverse samplability property
of the NCE to claim that pkb was generated honestly and pkb̄ obliviously. If the
receiver gets corrupted first, then the receiver’s simulation doesn’t change. For
the sender side, the simulator sets yb = xb ⊕mb. Later, when sender gets cor-
rupted and simulator obtains mb̄ the simulator equivocates eb̄ s.t. yb̄ = xb̄ ⊕ nb̄.
Indistinguishability proceeds since the adversary does not posses the secret key



skb̄ as pkb̄ was supposed to be obliviously sampled. As a result, the simulator
successfully equivocates eb̄. More details of our protocol can be found in Sec. 6.

3.4 Non-Interactive Commitment with Adaptive Security

As an independent result, we prove that the first (i.e. receiver’s) message of
any two-round 1-out-of-M receiver equivocal OT can be considered as an UC-
secure non-interactive commitment to receiver’s input. It can also withstand
adaptive corruption of the parties involved in the commitment scheme. The
committer C commits to his message b ∈ M (where M is the message space
for the commitment) as c by invoking the receiver algorithm on choice b with
randomness α. Decommitment follows by providing the randomness α for the
receiver’s OT message.

We can show that the commitment scheme satisfies the properties of an UC
commitment- binding, hiding, extractable and equivocal, by relying on the se-
curity of the underlying receiver equivocal OT protocol. Binding of the commit-
ment follows from sender security as a corrupt receiver cannot produce different
randomness α′ s.t. c can be used to decrypt mb̄ (where mi is S’s ith message
for i ∈ M) where b̄ ∈ M and b̄ 6= b. Hiding of b is ensured from the OT se-
curity guarantees for an honest receiver against a corrupt sender. A corrupter
committer’s input b is extracted by running the extraction algorithm of the OT
simulator for a corrupt receiver. Finally, the commitment can be opened cor-
rectly by running the simulator (who is playing the role of honest OT receiver)
and its equivocation algorithm (when receiver gets corrupted adaptively in post-
execution). The commitment scheme is also secure against adaptive corruption
as the simulator (for the honest committer in the commitment scheme) can al-
ways produce randomness α′, which is consistent with message b, by running the
adaptive simulator for the OT.

When we compile our πreOT-CRS protocol with this result, we obtain a non-
interactive commitment c = (B,H) = (gαTm1 , hαTm2 ) for polylog(κ) bit messages
using four exponentiations and communication of two group elements. We can
only commit to polylog(κ)-bit messages or messages from poly(κ)-sized message
space M since our PPT simulator runs in O(|M|) time to extract a corrupt
receiver’s input by matching the following condition for each i ∈M:

if
H

T i2

?
=

(
B

T i1

)x
output i.

Our detailed transformation from a receiver equivocal OT to an adaptive com-
mitment can be found in Sec. 7.

4 Oblivious Transfer in the Global Random Oracle Model

In Section 4.1, we first show an efficient 2-round OT in the Global programmable
RO model secure against adaptive adversaries. Then, we present a set of opti-
mizations that can bring the efficiency at par with the Simplest OT by Chou
and Orlandi [18] while requiring only one simultaneous round. In Section 4.2, we
will show how to adapt our protocol to work in the global observable RO model
but with only static security.



Fig. 4. Adaptively Secure Oblivious Transfer in the Global Programmable Random
Oracle Model

πaOT-GPRO

– Public Inputs: Group G, field Zq and generator g of group G.
– Private Inputs: S has two κ-bit inputs (m0,m1) ∈ {0, 1}κ and R has a choice

bit b.
– Functionalities: Global Random Oracles FGRO1 : {0, 1}κ → G3 and FGRO2 :

G→ {0, 1}κ.

Choose:

– R samples seed← {0, 1}κ and computes (h, T1, T2)← FGRO1(sid, seed).
– R samples α← Zq and sets B = gαT b1 and H = hαT b2 .
– Receiver Parameters: R sends seed as OT parameters.
– R sends (B,H) to S.

Transfer:

– S invokes FGRO1 on (IsProgrammed, seed, sid) and aborts if it returns 1.
– S computes (h, T1, T2)← FGRO1(sid, seed).
– S samples r, s← Zq and computes z = grhs.

– S computes c0 = FGRO2 (sid, BrHs)⊕m0 and c1 = FGRO2

(
sid, ( B

T1
)r( H

T2
)s
)
⊕m1.

– Sender Parameters: S sends z to R as OT parameters.
– S sends (c0, c1) to R.

Local Computation by R:

– R computes mb = cb ⊕FGRO2(sid, z
α).

4.1 Adaptively Secure OT in the Global Programmable RO Model

As we have discussed in details the main intuition behind our protocol in Sec-
tion 3.1, we will proceed to the full description. Our protocol πaOT-GPRO in the
PRO model is presented in Fig. 4. Security of our protocol has been summarized
in Thm. 1 and the full proof can be found in [15].

Theorem 1. Assuming the Decisional Diffie-Hellman holds in group G, then
πaOT-GPRO UC-securely implements FOT functionality in presence of adaptive
adversaries in the global programmable random oracle model.

Practical optimizations. The above OT protocol requires computing 9 ex-
ponentiations and communication of 3 group elements and 3 strings of length κ
for one OT. However, the sender can reuse r, s for multiple instances of the OT
protocol. Let Bi and Hi be the receiver’s message for the i-th OT instance. The
sender will compute his OT message by reusing T r1 , T

s
2 and z. He can compute

ci,0 = FGRO2 (sid, i, BrHs)⊕mi,0 and ci,1 = FGRO2

(
sid, i,

(
B
T1

)r (
H
T2

)s)
⊕mi,1.

This reduces the overhead to 5 exponentiations and communication of 2 group
elements and 2κ bit strings in the amortized setting. Our second observation is
that many practical use of OT depends on OT extension [31] which in turn needs
a base OT protocol on random messages, namely random OT. In the random OT



Fig. 5. Fully Optimized Random Oblivious Transfer with One Simultaneous Round

πaROT-GPRO

– Public Inputs: Group G, field Zq, generator g of group G and global CRS =
(g, h).

– Functionalities: Random Oracles FGRO1 : {0, 1}κ → G3 and FGRO2 : G →
{0, 1}κ.

Receiver’s Simultaneous Message:

– R samples seed← {0, 1}κ and computes (T1, T2)← FGRO1(sid, seed).
– R samples b← {0, 1} and α← Zq
– R sets B = gαT b1 and H = hαT b2 .
– Receiver Parameters: R sends seed as OT parameters.
– R sends (B,H) to S.

Sender’s Simultaneous Message:

– S samples r, s← Zq and computes z = grhs.
– Sender Parameters: S sends z to R as OT parameters.

Local Computation by R:

– R computes pb = FGRO2(sid, z
α) and outputs (b, pb).

Local Computation by S:

– S outputs p0 = FGRO2 (sid, BrHs) and p1 = FGRO2

(
sid,

(
B
T1

)r (
H
T2

)s)
.

variant of our OT protocol, the sender’s messages will be random pads (p0, p1)

where p0 = FGRO2 (sid, BrHs) and p1 = FGRO2

(
sid,
(
B
T1

)r (
H
T2

)s)
.

The receiver obtains pb = FGRO2(sid, z
α) as output. In such a case, the re-

ceiver needs to send (B,H) for each OT and the sender only needs to send
z = grhs, which can be reused for multiple OT instances. One can observe that
the sender’s and receiver’s messages are independent of each other and depends
only on (g, h). Thus, we can consider a setup consisting of a global CRS = (g, h)
and a global programmable RO. The receiver computes (B,H) and sends it to
the sender. Simultaneously, the sender can compute z and send it over to the
receiver; thus resulting in a non-interactive random OT which requires 5 ex-
ponentiations and communication of 2 group elements per OT. This protocol
is also secure against mauling attacks by a rushing adversary, who can either
corrupt the sender or the receiver. A corrupt receiver can break security only
if (g, h, T1, T2) is a DDH tuple where (g, h, T1) is the CRS; which occurs with
negligible probability due to CDH assumption. Security against a corrupt sender
is ensured by programming the GRO s.t. the tuple is a DDH tuple. In such a
case R’s message, i.e. (B,H), perfectly hides R’s input. Indistinguishability of
the tuple follows from DDH.

Our protocol πaROT-GPRO is presented in Fig. 5. To compute n OTs, we only
need 4 + 5n exponentiations and communication of 2n + 1 group elements and
one κ-bit string. In contrast, the state-of-the-art OT extension protocol (from
PRO based OT) of [36] requires 6n exponentiations and requires sending 4n



Fig. 6. Statically Secure Oblivious Transfer in the Observable Random Oracle Model

πsOT-GORO

– Functionalities : Random oracles FGRO1 : {0, 1}κ → G2, FGRO2 : G→ {0, 1}κ.
– Public Inputs : Group G, field Zq and generator g of group G.
– Private Inputs : S has κ-bit inputs (m0,m1) and R has input choice bit b.

Choose:

– R samples x ← Zq and computes h = gx. He also computes an NIZKPoK
πR = (∃x : h = gx). He samples seed ← {0, 1}κ and sets (T1, T2) =
FGRO1(sid, sid, seed).

– R samples α← Zq and computes B = gαT b1 and H = hαT b2 .
– Receiver Parameters: R sends (h, πR, seed) as OT parameters to S.
– R sends (B,H) to S.

Transfer:

– S verifies πR using h and computes (T1, T2)← FGRO1(sid, seed).
– S samples r, s ← Zq and computes z = grhs. He also computes an NIZKPoK

πS = (∃r, s : w = grhs).
– S computes c0 = FGRO2(sid, B

rHs)⊕m0 and c1 = FGRO2(sid, (
B
T1

)r( H
T2

)s)⊕m1.
– Sender Parameters: S sends (z, πS) as OT parameters to R.
– S sends (c0, c1) to R.

Local Computation by R :

– R verifies πS using z.
– R computes mb = cb ⊕FGRO2(sid, z

α).

group elements. The protocol of [21] requires lesser computation but they need
5 rounds of interaction for their OT. Thus, our protocol will outperform them
in WAN setting where interaction is expensive.

4.2 Statically Secure OT in the Global Observable RO Model

The work of [37] has shown a separation between programmable RO and non-
programmable RO. Therefore, we show how to change our protocol to work
with an observable GRO. Our protocol is statically secure and has the same
computation and communication overhead as the GPRO-based protocol, except
now the parties need to compute one NIZKPoK each. We present the GORO-
based OT protocol πsOT-GORO in Fig. 6.

The only difference from the PRO-based scheme lies in the generation of
the CRS and the OT parameters. The (T1, T2) is generated by invoking FGRO1

on seed. The other group element h is generated by R and he also produces an
NIZKPoK of x s.t. h = gx. We perform this because the simulator for a corrupt
receiver needs the knowledge of x to extract the receiver’s input, which would
not be possible if all three elements were generated using the ORO. However, this
limits the possibility of extracting a corrupt sender’s input by programming the
RO to return a DDH tuple. So, the sender is required to produce an NIZKPoK
of r and s. This allows the simulator for a corrupt sender to extract r and s; thus
extracting the input messages of the corrupt sender. The rest of the proof follows



from the static security proof of our PRO-based scheme Security is summarized
in Thm. 2 and the full proof can be found in [15].

Theorem 2. Assuming the Decisional Diffie-Hellman holds in group G, then
πsOT-GORO UC-securely implements FOT functionality in presence of static ad-
versaries in the observable random oracle model.

We would like to point out that NIZK is known to be impossible in the ORO
model [38]. However, we only need a relaxed NIZK and allow programming the
RO in the security reduction while the simulator is restricted only to the observ-
ability feature. Such a relaxation is also utilized to circumvent the impossibility
of NIZKs in ORO domain in prior related work [21].

Our protocol needs 5 exponentiations and communication of 2 group ele-
ments and two κ-bit strings. In addition, we require a one-time computation
of 2 NIZKPoKs and 5 exponentiations and one-time communication of 2 group
elements and κ bits. The only other 2 round GORO-based OT protocol is a
feasibility result by [10].

5 Receiver Adaptively Secure OT in the CRS Model

In this section, we replace our use of GRO in πaOT-GPRO by a common random
string (CRS). Such a relaxation in the setup assumption results in degradation
of the security and efficiency of the protocol. We lose security against adaptive
corruption of sender, resulting in a receiver-equivocal OT which is secure against
adaptive corruption of receiver. The computation overhead also increases to 9
exponentiations and 5 group elements as the sender’s randomness cannot be
reused for multiple instances of the OT protocol as it will leak the individual
sender messages from the OT messages. The intuition of our protocol has been
discussed in Section 3.2 and Fig. 7 gives a detailed description of our protocol.
The CRS consists of 3 group elements CRS = (g, h, T1) and it requires to satisfy
two properties for the security to hold.

Properties of CRS The CRS for the subprotocols should satisfy the following
two properties:

– Property 1: Given (g, h, T1) it should be computationally infeasible to obtain
a T2 s.t. (g, h, T1, T2) is a DDH tuple. This is ensured in our protocol since an
adversary computing such a T2 (i.e. the tuple is DDH) can be used to break
the CDH assumption in a blackbox manner by invoking it in a OT session.
The CDH adversary will set the CRS s.t. (h, T1) is the CDH challenge and
it will return T2 as the CDH response.

– Property 2: Given a simulated tuple (g, h, T1, T2), where T2 = ht and T1 = gt,
it should be indistinguishable from a random tuple. An adversary who can
distinguish the tuples can be used to break the DDH assumption. The DDH
adversary forwards the DDH challenge tuple as the tuple to this adversary
and forwards the answer of this adversary as the DDH answer. In addition,
or simulation purposes we provide the simulator with the trapdoors- (x, t)
for the CRS = (g, h, T1) s.t. h = gx and T1 = gt.



Fig. 7. Oblivious Transfer Secure against Adaptive Receiver Corruption

πreOT-CRS

– Public Inputs: Group G with a generator g, field Zq, and CRS = (g, h, T1).
– Private Inputs: S has inputs (m0,m1) where m0,m1 ∈ G; R has input choice

bit b.

Choose:

– R samples T2 ← G.
– R samples α← Zq and sets B = gαT b1 and H = hαT b2 .
– R sends T2 and (B,H) to S.

Transfer:

– S samples r, s← Zq and computes z = grhs.
– S computes c0 = BrHs ·m0 and c1 = ( B

T1
)r( H

T2
)s ·m1.

– S sends z and (c0, c1) to R.

Local Computation by R:

– R computes mb = cb.z
−α.

We require the first property for arguing security against a statically cor-
rupt receiver. Given the CRS the corrupt receiver should not be able to set
it in the equivocal mode. It will be in the extractable mode to ensure extrac-
tion of receiver’s input. On the other hand, if the receiver is honest, then the
simulated receiver can set the CRS in the equivocal by using Property 2. This
allows extracting both messages of the sender and simulate the honest receiver’s
view during post-execution corruption. Security of our protocol is summarized
in Theorem 3 and the full proof can be found in [15].

Theorem 3. Assuming the Decisional Diffie-Hellman holds in group G, then
πreOT-CRS UC-securely implements FOT functionality in presence of a statically
corrupted sender and an adaptively corrupted receiver in the common random
string model.

5.1 Efficient Static OT

We can further optimize our protocol πreOT-CRS for static corruption by removing
T2 from the protocol and henceforth renaming T1 to T . In πreOT-CRS, the element
T2 was required solely for the purpose of equivocating receiver’s view. Our mod-
ified protocol πsOT-CRS is presented in Fig. 8. This gives us a two-round static
OT in the common random string model which computes 8 exponentiations and
communicates 5 group elements. This outperforms the state-of-the-art [40] pro-
tocol which requires 11 exponentiations and communication of 6 group elements
to obtain a two-round static OT in the common reference string model.

6 Adaptively Secure Oblivious Transfer in the CRS
Model

Our protocol πreOT-CRS presented in the previous section is only secure against
adaptive corruption of receiver. In this section, we make it secure against full



Fig. 8. Static Oblivious Transfer in the CRS model

πsOT-CRS

– Public Inputs: Group G, field Zq and generator g of group G, CRS = (g, h, T ).
– Private Inputs: S has κ-bit inputs (m0,m1) and R has input choice bit b.

Choose:

– R samples α← Zq and sets B = gαT b and H = hα.
– R sends (B,H) to S.

Transfer:

– S samples r, s← Zq and computes z = grhs.
– S computes c0 = BrHs ·m0 and c1 = (B

T
)rHs ·m1.

– S sends z and (c0, c1) to R.

Local Computation by R:

– R computes mb = cb.z
−α.

adaptive corruption. In the overview section we constructed a semi-adaptive
protocol first and then applied the [5] transformation using an augmented NCE
to obtain our final protocol. See Sec. 3.3 for a high-level introduction. We first
present our semi-adaptive OT protocol in Figure 9 and then we present our
complete protocol in Figure 10.

6.1 Semi-adaptively secure OT

We first present our semi-adaptive OT πsaOT-CRS protocol in Figure 9. Security
of our protocol is summarized in Theorem 4 and the full proof can be found in
[15].

Theorem 4. Assuming the Decisional Diffie-Hellman holds in group G, then
πsaOT-CRS UC-securely implements FOT functionality in presence of semi-adaptively
corrupted malicious parties in the common random string model.

6.2 Obtaining Full Adaptive Security

Next, we apply the transformation of [5] to obtain our adaptively secure OT
protocol πaOT-CRS from our semi-adaptively secure OT protocol πsaOT-CRS in the
augmented NCE model. For completeness we have presented the [5] transforma-
tion in Fig. 10 and it is summarized in Theorem 5.

Theorem 5. [5] Assuming πsaOT-CRS is a two-round semi-adaptively secure OT
protocol and NCE is an augmented non-committing encryption scheme then pro-
tocol πaOT-CRS UC-securely implements FOT functionality in presence of adap-
tively corrupted malicious parties in the common random string model.

Assuming DDH, πsaOT-CRS (Fig. 9) is a semi-adaptively secure OT from 4.
Upon instantiating the NCE by the DDH-based augmented NCE scheme of [16]
we obtain an adaptively secure bit-OT scheme from DDH. Thus, we can solely
construct our adaptively secure OT from DDH.



Fig. 9. Semi-Adaptively Secure Oblivious Transfer

πsaOT-CRS

– Public Inputs : Group G, field Zq and generator g of group G, CRS = (g, h, T1).
– Private Inputs : S has bit inputs (m0,m1) and R has input choice bit b.

Choose:

– R samples T2 ← G.
– R samples α← Zq and sets B = gαT b1 and H = hαT b2 .
– R sends T2 and (B,H) to S.

Transfer:

– If m0 = 1, S samples r0, s0 ← Zq and computes z0 = gr0hs0 and c0 = Br0Hs0 .
Else, he samples c0, z0 ← G

– If m1 = 1, S samples r1, s1 ← Zq and computes z1 = gr1hs1 and c1 =
( B
T1

)r1( H
T2

)s1 . Else, he samples c1, z1 ← G.
– S sends (z0, c0) and (z1, c1) to R.

Local Computation by R :

– R computes yb = NCE.Dec(sk, eb).
– R sets xb = 1 if cb = zαb else he sets xb = 0.
– R outputs mb = yb ⊕ xb.

Fig. 10. Adaptively Secure Oblivious Transfer from Semi-adaptively secure OT proto-
col using augmented NCE by [5]

πaOT-CRS

– Primitives : Semi-adaptive OT πsaOT-CRS = (R1, S,R2), Augmented
Non Committing Encryption NCE = (NCE.Gen,NCE.Enc,NCE.Dec,
NCE.GenObl,NCE.GenInv).

– Public Inputs : CRS of πsaOT-CRS.
– Private Inputs : S has bit inputs (m0,m1) and R has input choice bit b.

Choose:

– R invokes (OTR, stR)← πsaOT-CRS.R1(CRS, b).
– R generates {pkb, sk} ← NCE.Gen(1κ) and pkb̄ ← NCE.Gen(1κ).
– R sends (OTR, pk0, pk1) to S.

Transfer:

– S randomly samples y0, y1 ← {0, 1} and computes x0 = y0 ⊕ m0 and x1 =
y1 ⊕m1.

– S invokes (OTS, stS)← πsaOT-CRS.S(CRS, (x0, x1),OTR) and sends OTS to R.
– S sends e0 = NCE.Enc(pk, y0) and e1 = NCE.Enc(pk, y1) to R.

Local Computation by R :

– R decrypts yb = NCE.Dec(sk, eb) and computes xb =
πsaOT-CRS.R2(CRS, stR, b,OTS).

– R outputs mb = yb ⊕ xb.



Fig. 11. Adaptively secure non-interactive commitment from πreOT-CRS = (OT1,OT2)

πaCOM-CRS

– Private Inputs: C has private input b ∈M.
– Public Inputs: Both parties have a common random string CRSOT in πreOT-CRS.

Commit Phase: C samples some randomness α, computes c = OT1(b;α), and
sends c as commitment to V.
Decommit Phase: C sends (b, α) as the decommitment.

Verification Phase: Upon receiving c and (b, α), V checks if c
?
= OT1(b;α).

Theorem 6. Assuming DDH assumption holds, our protocol πaOT-CRS (Fig. 10)
UC-securely implements FOT functionality in presence of adaptively corrupted
malicious parties in the common random string model.

Efficiency. Our final protocol requires 11 exponentiations and communication
of 7 group elements. One of the group element, i.e. T2 can be reused. In addi-
tion, it requires communicating 2 augmented NCE public keys and computing
augmented NCE encryptions of 2 bits. We can instantiate our NCE scheme us-
ing the DDH-based protocol of [16] which computes O(1) exponentiations and
communicates O(κ) bits for encrypting each bit. This yields the first two round
adaptively secure bit-OT which has constant communication and computation
overhead.

In contrast, the only other two round adaptive OT protocol of [5] uses
communication-intensive tools like equivocal garbled circuits communicating
poly(κ) bits. They also incur a computation overhead of O(κ2) exponentiations.

7 Adaptively Secure Non-Interactive Commitment in the
CRS Model

In this section, we present a transformation from any two-round receiver equivo-
cal OT to a non-interactive adaptive commitment scheme. The high-level descrip-
tion can be found in Section 3.4. Let πreOT-CRS = (OT1,OT2) denote a two-round
receiver equivocal OT, where both OT1 and OT2 are PPT algorithms: OT1 out-
puts the receiver’s OT message c and internal state st. Then our commitment
to message b ∈ M with randomness α will be c where {c, st} = OT1(b;α). The
decommitment for c will be (b, α). The verifier V runs OT1 algorithm on (b, α)
to check the validity of the decommitment. Our protocol is presented in Fig.
11 and the security is summarized in Thm. 7. The proof of the theorem can be
found in [15].

Theorem 7. Assuming that πreOT-CRS = (OT1,OT2) is a secure receiver equiv-
ocal OT, in the CRS model, then our protocol πaCOM-CRS (Fig. 11) UC-securely
implements FCOM functionality against adaptive adversaries in the CRS model.

7.1 Concrete Instantiation and Efficiency

We apply our DDH-based receiver equivocal OT in Fig. 7 to the above compiler
and get a concretely efficient adaptive commitment as shown in Fig. 12. It re-



Fig. 12. Adaptively secure non-interactive commitment in the CRS model

πCOM-DDH

– Private Inputs: C has private input b ∈M.
– Public Inputs: Both parties have a CRS = (g, h, T1) where g, h, T1 ∈ G.

Commit Phase: C samples T2 ← G. He sends T2 as the commitment scheme
parameter. C samples α ← Zq and computes B = gαT b1 and H = hαT b2 . He sends
c = (B,H) as commitment to V.
Decommit Phase: C sends (b, α) as the decommitment.
Verification Phase: Upon receiving {T2, (c, α, b)}, V interprets c = (B,H) and

verifies B
?
= gαT b1 and H

?
= hαT b2 . R aborts if verification fails; otherwise R accepts

the decommitment.

quires four exponentiations and communicating two group elements for commit-
ting to a polylog(κ) bit message in the common random string model. Decommit-
ment incurs similar computation overhead and communicating the message and a
field element. This gives us the first adaptive string commitment with a constant
number of exponentiations andO(κ) communication. The current state of the art
non-interactive protocols with adaptive security [9, 11, 1, 2] are all bit commit-
ments. Moreover, our protocol also supports additive homomorphism which can
be verified as Commit(m1;α1)+Commit(m2;α2) = Commit(m1+m2;α1+α2).

8 Results in the Single CRS Model

In this section, we replace the per-session local CRS with a single “master” ran-
dom string sCRS that can be reused by multiple pairs of parties for multiple
sessions. Specifically, the parties will use the master random string sCRS to gen-
erate a per-session CRS− (g, h, T1) and will then use the protocol from the pre-
vious section with that CRS. We present our multi-session OT and multi-session
commitment functionalities FmOT and FCOM in Fig. 13 and 14 respectively. For
simplicity, we will describe FmOT and the same holds true for FmCOM. The par-
ties participate in one session, with id sid, which implements FmOT. One of the
parties intializes the session by invoking Initialization with the list L of all the
subsession ids. Then each subsession consists of multiple instances of FOT be-
tween a specific pair of parties with unique roles. This is ensured by considering
a counter j alongwith subsession id ssid in the functionality.

While implementing the functionalities, each subsession is associated with a
unique `-bit identifier, which we call the sub-session id ssid. The ssid may contain
the identities of the two parties, as well as additional information that makes
the session unique. Each participant will locally compute the session-specific
reference string from the master reference string and the ssid. We assume that
the ssid strings are generated by the environment Z before seeing the sCRS
by invoking the Initialization phase with a list L of subsession ids through a
party. The master random string sCRS will contain (g, h) and 2` random group



Fig. 13. The ideal functionality FmOT for multi-session Oblivious Transfer

FmOT

FmOT interacts with a sender S, having party id (ssid, sen) and a receiver R, having
party id (ssid, rec, in a session with id sid as follows:

– On input (Initialization, sid, L) from a party, where L is the list of subsession
ids; store s = sid and L, and send (Initialized, sid) to the party. Ignore future
initialization messages with same sid.

– On input (Choose, (sid, ssid, j, rec), b) from R, where b ∈ {0, 1}, j > 0; abort if
sid 6= s or ssid /∈ L, if no message of the form (ssid, j, rec, b) has been recorded
in the memory, store (ssid, j, rec, b) and send (ssid, j, rec) to S.

– On input (Transfer, (sid, ssid, j, sen), (a0, a1)) from S with a0, a1 ∈ {0, 1}n, j >
0, abort if sid 6= s or ssid /∈ L, if no message of the form (ssid, j, sen, (a0, a1))
is recorded and a message of the form (ssid, j, rec, b) is stored, send
(sent, ssid, j, sen, ab) to R and (sent, ssid, j, rec) to S. Ignore future messages with
the ids - (ssid, j, sen) and (ssid, j, rec).

Fig. 14. The ideal functionality FCOM for multi-session Commitment Scheme

FmCOM

FCOM interacts with committer C, having party id (ssid,C), and verifier V, having
party id (ssid,V) in a session with id sid as follows:

– On input (Initialization, sid, L) from a party, where L is the list of subsession
ids; store s = sid and L, and send (Initialized, sid) to the party. Ignore future
initialization messages with same sid.

– On receiving input ((Commit,V), (sid, ssid, j,C),m) from C for j > 0, abort if
sid 6= s or ssid /∈ L, if (ssid, j,C,V,m′) has been recorded, ignore the input. Else
record the tuple (ssid, j,C,V,m) and send (Receipt, ssid, j,C,V) to V.

– On receiving input (Decommit, (sid, ssid, j,C)) for j > 0 from C, abort if
sid 6= s or ssid /∈ L, if there is a record of the form (ssid, j,C,V,m) return
(Decommit, ssid, j,C,V,m) to V. Otherwise, ignore the input.

elements- (ui,0, ui,1) for i ∈ [`]:

sCRS =

[
(g, h), {ui,0, ui,1}i∈[`]

]

The random string CRSssid for some ssid will consist of (g, h, T1), where ssidi
denotes the ith bit of ssid and T1 is constructed as follows:

T1 = Πi∈[`]ui,ssidi .

Once the CRSssid for the session is computed, the parties run protocol πaOT-CRS

from Sections 6 (for OT), or protocol πCOM-DDH from Section 7 (for Commit-
ment), using CRSssid as the reference string for the session. For security reasons,



we need ` = 2κ as the security degrades by a factor |L|
2

2` . In [15] we demonstrate
that CRSssid satisfies the two properties (Section 5) that are required for arguing
security of each OT/commitment in the subsessions.

On Statically chosen list L of ssids. We require that the subsession ids be chosen
by the environment Z before seeing sCRS. This has been ensured since Z has to
invoke the Initialization phase (in Fig. 13 and 14) with a list L of subsession
ids through a party. This allows us to construct an adversary for CDH (or DDH)
from an adversary who breaks the security of property 1 (or 2) of CRSssid. The
reduction works by modifying the sCRS and planting an instance of CDH/DDH
in one of the subsessions based on the coresponding ssid. Instead, if we allowed Z
to adaptively choose the subsession ids after accessing sCRS, then the reduction
fails. It would require guessing the subsession id since the adversary chooses the
subsession id adaptively. There are 2` possible subsession ids, where |ssid| = ` =
O(κ). Thus, the reduction succeeds only with negligible probability. We leave
it as an interesting open question to obtain such protocols where we allow the
environment to adaptively choose the subsession ids after seeing sCRS.

8.1 Adaptively Secure OT in the sCRS model

We obtain a two round adaptively secure OT protocol in sCRS model where in
each subsession ssid the parties run πaOT-CRS using CRSssid. Our OT protocol
and its security proof can be found in [15].

Theorem 8. Assuming that πaOT-CRS implements FOT in the local CRS model,
then there exists an OT protocol that UC-securely implements FmOT functionality
(Fig. 13) against adaptive adversaries in the sCRS model.

8.2 Adaptively Secure Non-interactive Commitment in the sCRS
model

We obtain a non-interactive adaptively secure commitment scheme in sCRS
model. In each subsession ssid the parties run πCOM-DDH with CRSssid. The com-
mitment scheme and its security proof can be found in [15].

Theorem 9. Assuming πCOM-DDH implements FCOM in local CRS model, then
there exists a non-interactive commitment protocol that UC-securely implements
FmCOM functionality (Fig. 14) against adaptive adversaries in sCRS model.

8.3 Adaptively Secure MPC in the sCRS model

We discuss our two round adaptively-secure MPC protocol π in the sCRS model.

Theorem 10. Let π′ be a two round adaptively secure MPC protocol in the
(FOT,FCOM) model. Then π is a two round adaptively secure MPC protocol in
the sCRS model.

Proof. By applying Thm. 8 and Thm. 9 we obtain an OT and commitment pro-
tocol that implements FmOT and FmCOM functionality in sCRS model. Multiple
sessions of FOT is simulated given access to a session of FmOT. Each session of
FOT with session id s is simulated as a subsession with id s in FmOT. Similarly,



each session of FCOM with session id s′ is simulated as a subsession with id s′ in
FmCOM. ut

Two round adaptively secure MPC protocol π′ in the (FOT,FCOM) model
can be obtained from [5]. They compiled a N -party malicious constant-round
adaptively secure MPC protocol π′′ into a 2 round N -party malicious constant-
round adaptively secure MPC protocol π′, in the presence of FOT. The work
of [13] obtained π′′ in the FCOM and FZK by applying the adaptive malicious
transformation of [11] on the semi-honest constant round MPC protocol obtained
from equivocal garbled circuits. Finally, FZK is implemented by [9] in the presence
of adaptive corruptions in the FCOM-model.
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