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Abstract. We present succinct and adaptively secure attribute-based
encryption (ABE) schemes for arithmetic branching programs, based on
k-Lin in pairing groups. Our key-policy ABE scheme have ciphertexts
of constant size, independent of the length of the attributes, and our
ciphertext-policy ABE scheme have secret keys of constant size. Our
schemes improve upon the recent succinct ABE schemes in [Tomida and
Attrapadung, ePrint ’20], which only handles Boolean formulae. All other
prior succinct ABE schemes either achieve only selective security or rely
on q-type assumptions.

Our schemes are obtained through a general and modular approach
that combines a public-key inner product functional encryption satis-
fying a new security notion called gradual simulation security and an
information-theoretic randomized encoding scheme called arithmetic key
garbling scheme.

1 Introduction

Attribute-based encryption (ABE) [21] is an advanced form of public-key en-
cryption for enforcing fine-grained access control. In the key-policy version, an
authority generates a pair of master public and secret keys mpk,msk. Given
mpk, everyone can encrypt a message m with an attribute x to get a cipher-
text ctx(m). Using the master secret key msk, the authority can issue a secret
key sky tied to a policy y. Decrypting a ciphertext ctx(m) using sky recovers
the encrypted message m if the attribute x satisfies the policy y. Otherwise, no
information about m is revealed. The security requirement of ABE mandates
collusion resistance—no information of m should be revealed, even when mul-
tiple secret keys are issued, as long as none of them individually decrypts the
ciphertext (i.e., the attribute satisfies none of the associated policies).

Over the past decade, a plethora of ABE schemes have been proposed for
different expressive classes of policies, achieving different trade-offs between ef-
ficiency, security, and assumptions. Meanwhile, ABE has found numerous cryp-
tographic and security applications. A primary desirata of ABE schemes is effi-
ciency, in particular, having fast encryption algorithms and small ciphertexts. It
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turns out that the size of ABE ciphertexts can be independent of the length of
the attribute x, and dependent only on the length of the message m and secu-
rity parameter—we say such ciphertexts are succinct or have constant size (in
attribute length). Proposed first in [11] as a goal, succinct ciphertexts are pos-
sible because ABE does not require hiding the attribute x, and the decryption
algorithm can take x as input in the clear. Consequently, ciphertexts only need
to contain enough information of x to enforce the integrity of computation on
x, which does not necessitate encoding the entire x.

Succinct ABE are highly desirable. For practical applications of ABE where
long attributes are involved for sophisticated access control, succinct ciphertexts
are much more preferable. From a theoretical point of view, succinct cipher-
texts have (asymptotically) optimal size, as dependency on the message length
and security parameter is inevitable. From a technical point of view, succinct
ABE provides interesting mechanism for enforcing the integrity of computation
without encoding the input. So far, several succinct ABE schemes have been
proposed [5–7,22,23,27,28], but almost all schemes either rely on non-standard
assumption or provide only weak security, as summarized in Tables 1 and 2.

Our Results. In this work, we first construct a succinct key-policy ABE (KP-
ABE) simultaneously satisfying the following properties.

(1) Expressiveness. Support policies expressed as arithmetic branching programs
(ABPs).

(2) Security. Satisfy adaptive security, as opposed to selective or semi-adaptive
security.

(3) Assumption. Based on the standard assumptions as opposed to, e.g., q-type
assumptions. Specifically, our scheme relies on the matrix decisional Diffie–
Hellman (MDDH) assumption over pairing groups.

(4) Efficiency. Has succinct ciphertext.

Concretely, each ciphertext consists of 5 group elements when assuming
SXDH, and 2k + 3 elements for MDDHk (implied by k-Lin). Decryption
involves the same number of pairing operations. Additionally, our scheme
can work with the more efficient asymmetric prime-order pairing groups.

Next, we construct ciphertext-policy ABE (CP-ABE) with the same proper-
ties. Here, the secret keys are tied to attributes and ciphertexts to policies, and
succinctness refers to having constant-size secret keys. Our scheme has keys con-
sisting of 7 group elements based on SXDH and 3k + 4 based on MDDHk.

Besides succinctness (4), achieving the strong notion of adaptive security (2)
based on standard assumptions (3) is also highly desirable from both a practical
and a theoretical point of view. Prior to this work, only the recent construction
of (KP and CP) ABE schemes by Tomida and Attrapadung [23] simultaneously
achieves (2)–(4), and their scheme handles policies expressed as Boolean for-
mulae. Our construction expands the class of policies to arithmetic branching
programs, which is a more expressive model of computation. Our succinct ABE
is also the first scheme natively supporting arithmetic computation over large
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Table 1: KP-ABE schemes with succinct ciphertext.

reference policy assumption adaptive |mpk| |sk| |ct| Dec

ALP [7] MSP q-type 2n+ 1 m(n+ 1) 3 3
YAHK [27] MSP q-type n+ 2 m(n+ 1) 2 2
Tak [22] MSP 2-Lin X 18(2n+ 1) 6m(n+ 1) 17 17
Att [5] MSP q-type X 6n+ 42 3m(n+ 3) + 9 18 18

ZGT+ [28] MSP k-Lin X 2k2(n+ 1) 2km(n+ 1) 4k 4k
TA [23] NC1 MDDHk X X k(k + 1)(n+ 3) (k + 1)m(n+ 2) 2k + 2 2k + 2

Section 5 ABP MDDHk X X k(k + 2)(n+ 2) (k + 1)m(n+ 2)
+m

2k + 3 2k + 3

MSP: monotone span programs. NC1: Boolean formulae. ABP: arithmetic branching programs.
n = attribute length, m = policy size, p = group order.
|mpk|, |sk|, |ct| counts non-generator elements in source groups.
Dec counts the number of pairing operations in decryption.
Schemes based on k-Lin can be based on MDDHk at the cost of a few more elements in mpk.
ABE for arithmetic span programs can be obtained by reduction to MSP [6].

Table 2: CP-ABE schemes with succinct secret key.

reference policy assumption adaptive |mpk| |sk| |ct| Dec

Att [5] MSP q-type X 6n+ 54 24 3m(n+ 3) + 15 24
AHY [6] ASP q-type X O(n log p) O(1) O(mn log p) O(1)
TA [23] NC1 MDDHk X X O(k2n) O(k) O(kmn) O(k)

ours [18] ABP MDDHk X X k(k + 1)(n+ 4)
+ k

3k + 4 (k + 1)m(n+ 2)
+m+ k + 1

3k + 4

fields,1 whereas all prior succinct ABE schemes (even ones relying on q-type
assumptions and/or achieving only selective security) only work natively with
Boolean computation. Lastly, we note that even when relaxing the efficiency
requirement from having succinct ciphertext to compact ciphertext, whose size
grows linearly with the length of the attribute, only a few schemes [13,15,17] si-
multaneously achieve (2)–(4), and the most expressive class of policies supported
is also ABP, due to [17].

Our Techniques. The recent work of [17] presented a general framework for
constructing compact adaptively secure ABE from MDDH. In this work, we im-
prove their general framework to achieve succinctness. The framework of [17]
yields linear-size ciphertexts because it crucially relies on function-hiding inner-
product functional encryption (IPFE) [10,19]. IPFE allows issuing secret keys
and ciphertexts tied to vectors v,u respectively, and decryption reveals their in-
ner product 〈u,v〉. The function-hiding property guarantees that nothing about
u,v beyond the inner product is revealed, which entails that ciphertexts and
secret keys must have size linear in the length of the vectors.

Towards succinctness, our key idea is relaxing function-hiding to a new and
weaker guarantee, called gradual simulation security, where only the vectors en-
crypted in the ciphertexts are hidden. Such IPFE can have succinct (constant-
size) secret keys and can be public-key. We use new ideas to modify the frame-

1 One can always convert an arithmetic computation into a Boolean one, which we
consider non-native.
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work of [17] to work with the weaker gradual simulation security and obtain suc-
cinct ciphertexts. Furthermore, we extend the framework to construct ciphertext-
policy ABE, which is not handled in [17]. In summary, our techniques give a
general and modular approach for constructing succinct and adaptively secure
(KP and CP) ABE from MDDH.

Organization. In Section 1.1, we give an overview of how we construct our ABE
schemes using inner-product functional encryption (IPFE) schemes with gradual
simulation security and dual system encryption. We discuss related works in
Section 1.2. After introducing the preliminaries in Section 2, we define gradual
simulation security of IPFE and construct such an IPFE scheme in Section 3.
In Section 4, we define 1-ABE and construct CP-1-ABE for ABP with succinct
keys from gradually simulation-secure IPFE with succinct keys. In Section 5, we
show how to construct KP-ABE with succinct ciphertexts using our CP-1-ABE
and dual system encryption. Due to the lack of space, we refer the reader to the
full version [18] for our construction of CP-ABE with succinct keys similarly to
our KP-ABE construction.

1.1 Technical Overview

In this section, we give an overview of our construction of succinct ABE schemes,
following the roadmap shown in Figure 1.

gradually simulation-secure
IPFE

piecewise secure
AKGS

CP-1-ABE
dual system
encryption

KP-ABE

trivial

KP-1-ABE
dual system
encryption

CP-ABE

Figure 1: The roadmap of our constructions.

1-ABE. The core of many ABE schemes is a 1-key 1-ciphertext secure secret-key
ABE, or 1-ABE for short. Our construction improves the recent 1-ABE scheme
for ABP by Lin and Luo (LL) [17], which achieves adaptive security but not
succinctness.

Suppose we want decryption to recover the message µ ∈ Zp if (and only
if) f(x) 6= 0 for policy function f : Znp → Zp and attribute x ∈ Znp . This is
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equivalent to computing µf(x) upon decryption. The basic idea of the LL 1-
ABE is that when a key (tied to f, µ)2 and a ciphertext (tied to x) are put

together, one can compute a randomized encoding of µf(x), denoted by µ̂f(x),
which reveals µf(x) and hence µ if f(x) 6= 0. Since in ABE, we do not try to
hide f or x, the randomized encoding only needs to hide µ beyond the output
µf(x), referred to as the partially hiding property, first introduced by [14]. Due
to the weak security guarantee, partially hiding randomized encoding can have
extremely simple structure. In particular, LL defined a refined version of such
randomized encoding, called arithmetic key garbling scheme (AKGS), with the
following properties:

Linear Encoding. The encoding is in the form of

µ̂f(x) =
(
L1(x), . . . , Lm(x)

)
,

where Lj ’s are affine functions of x and the coefficients of Lj ’s are linear in
the message µ and the garbling randomness. Lj ’s are called label functions and
`j = Lj(x) are called labels.

Linear Evaluation. There is a procedure Eval that can compute µf(x) from f,x
and the labels:

Eval(f,x, `1, . . . , `m) = µf(x).

Importantly, Eval is linear in the labels.3

The basic security of AKGS is simulation security. There needs to be an
efficient simulator Sim that can perfectly simulate the labels given f,x, µf(x):

Sim(f,x, µf(x))→ (`1, . . . , `m) ≡
(
L1(x), . . . , Lm(x)

)
.

Since the label functions are affine in x thus linear in (1,x), the labels `j = Lj(x)
can be securely computed using a function-hiding IPFE. In IPFE, keys isk(v)
and ciphertexts ict(u) are generated for vectors v,u, and decryption yields their
inner product 〈u,v〉 but nothing else. More precisely, function-hiding says two
sets of keys and ciphertexts encoding different vectors are indistinguishable as
long as they yield identical inner products:(
{iskj(vj)}, {icti(ui)}

)
≈
(
{iskj(v′j)}, {icti(u′i)}

)
if 〈ui,vj〉 = 〈u′i,v′j〉 for all i, j.

That is, all vectors no matter encoded in keys or ciphertexts are protected. More-
over, function-hiding should hold even when these vectors are chosen adaptively
by the adversary, depending on previously observed keys and ciphertexts.

In the LL 1-ABE scheme, an ABE key consists of many IPFE keys encod-
ing the coefficients of the label functions (also denoted by Lj), and an ABE

2 The reason why we put the message µ in the key will become clear later in the
overview.

3 In contrast, linear evaluation is impossible for fully hiding randomized encoding that
hides x and f .
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ciphertext is an IPFE ciphertext encrypting (1,x), as illustrated below in Real
Algorithms. When they are put together, IPFE decryption recovers exactly the
labels `j = Lj(x) = 〈Lj , (1,x)〉, from which we can recover µf(x) using the
evaluation procedure. A technicality is that known IPFE are built from pairing
groups, and decryption only reveals µf(x) in the exponent of the target group.
Nevertheless, one can recover µf(x) also in the exponent, thanks to the linearity
of AKGS evaluation.

Intuitively, the LL scheme is secure since IPFE only reveals the labels, and
AKGS security guarantees only µf(x) is revealed, given the labels. It is simple
to formalize this idea in the selective setting, where x is chosen before querying
the key for f . By the function-hiding property, it is indistinguishable to hardwire
the labels in the IPFE keys as follows.

Real Algorithms Hybrid{
ctx: ict ( 1,x )

skf,µ: {iskj( Lj )}j∈[m]

}
≈
{

ctx: ict ( 1 , x )
skf,µ: {iskj( Lj(x) , 0 )}j∈[m]

}
After labels Lj(x) are hardwired and label functions removed, AKGS security
guarantees that the labels only reveal µf(x), and µ is hidden if f(x) = 0. Observe
that for selective security, we only need hiding in the keys and not the ciphertext.

The above proof fails for adaptive security, in particular in the case where
the secret key is queried before the ciphertext (we will focus on this harder case
below). At key generation time, x is unknown and consequently the labels Lj(x)
are unknown. We also do not want to hardwire all the labels in the ciphertext
as that would make the ciphertext as large as the policy. LL solves this problem
by relying on a stronger security notion of AKGS called piecewise security :

– The marginal distribution of `2, . . . , `m is uniformly random, and `1 can be
reversely computed from these other labels `2, . . . , `m and f,x, by finding
the unique `1 satisfying the constraint of evaluation correctness.4

– The other labels are marginally random even given the coefficients of all
subsequent label functions, i.e.,(

Lj(x), Lj+1, . . . , Lm
)
≡
(
z, Lj+1, . . . , Lm

)
for z $← Zp, for all j > 1.

The first property implies a specific simulation strategy: Simply sample `2, . . . , `m
as random, then solve for `1 from the correctness constraint. This strategy is par-
ticularly suitable for the adaptive setting, as only the simulation of `1 depends
on the input x. Thus, a conceivable simulation strategy for 1-ABE is to hardwire
`2, . . . , `m in the secret key and `1 in the ciphertext. This would not hurt the
compactness of the ciphertext.

4 The original definition only requires `1 to be reversely sampleable. In [17], it is
shown that the two are equivalent for piecewise security, and we stick to the simpler
definition in this overview. In the full definition, `1 also depends on the computation
result. For the purpose of this overview, the result is always µf(x) = 0 as the
adversary is restricted to non-decrypting queries.
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Proving the indistinguishability of the real and the simulated worlds takes
two steps. In the first step, the first label `1 = L1(x) is hardwired into the IPFE
ciphertext ict, and then changed to be reversely computed from the other labels
and f,x, which is possible since by the time we generate ict, we know both f
and x. In the second step, each iskj for j > 1 is, one by one, switched from
encoding the label function to encoding a random label. To do so, the jth label
`j = Lj(x) is first hardwired into ict, after which it is switched to random relying
on piecewise security, and lastly moved back to iskj . Observe that the proof uses
two extra slots in the vectors (one for `1, the other for each `j temporarily) and
relies on hiding in both the keys and the ciphertext.

Lightweight Alternative to Function-Hiding. In a function-hiding IPFE,
keys and ciphertexts must be of size at least linear in the vector dimension. This
means the resulting ABE scheme can never be succinct. Our first observation
is that function-hiding IPFE is an overkill. Since in ABE, x is not required to
be hidden, it is quite wasteful to protect it inside an IPFE ciphertext. Indeed,
selective security of the LL scheme does not rely on hiding in the ciphertext.

Our idea to achieve succinctness is to use a non-function-hiding IPFE scheme
instead, e.g., public-key IPFE. Usually the vector in the key is included verbatim
as part of the key, and the “essence” of the key (excluding the vector itself) could
be significantly shorter than the vector. Indeed, many known public-key IPFE
schemes [1,3] have succinct keys.

Since the coefficients of the label functions (which contains information about
µ and the garbling randomness) must be hidden for the 1-ABE to be secure,
and x is public, we should encrypt the coefficients of the label functions in IPFE
ciphertexts and use an IPFE key for (1,x) to compute the garbling. Since the
message µ is together with f and the generation of IPFE ciphertexts is public-
key, the 1-ABE scheme is more like a public-key ciphertext-policy ABE than a
secret-key ABE, except we only consider security given a single key for some
attribute x. Therefore, we redefine 1-ABE as 1-key secure public-key CP-ABE,5

and the idea is to construct it from a public key IPFE and AKGS as follows:

skx: isk ( 1,x )
ctf,µ: {ictj( Lj )}j∈[m]

}
IPFE−−−→
Dec

{〈Lj , (1,x)〉 = Lj(x) = `j}j∈[m]
AKGS−−−−→
Eval

µf(x).

Our CP-1-ABE is x-selectively secure if the underlying IPFE is indistinguishability-
secure, similar to the selective security of LL scheme.

However, it is not immediate that we can prove adaptive security of this new
scheme. The LL adaptive security proof requires hardwiring `1 and one of `j ’s
with x, which is now encoded in the secret key without hiding property. Taking
a step back, hardwiring a label is really about removing its label function and
only using the label, which is the inner product yielded by IPFE decryption.
Our idea is to use simulation security to achieve this goal. A simulator for a

5 This definition has the advantage of automatically being multi-ciphertext secure (if
secure at all) over the secret-key definition. It is also more convenient to use in
reductions for full ABE.
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public-key IPFE can simulate the master public key, the secret keys, and one
(or a few) ciphertext, using only the inner products, and the simulator can do
so adaptively. Let us take simulating one ciphertext as an example.

Real Simulation
mpk

{iskj( vj )}j≤J∗
ict ( u )
{iskj( vj )}j>J∗

 ≈


m̃pk

{ĩskj( vj | ∅ )}j≤J∗
ĩct ( ∅ | {〈u,vj〉}j≤J∗ )

{ĩskj( vj | 〈u,vj〉 )}j>J∗

 (?)

J∗ is the number of keys issued before ciphertext generation. On the left are the
honestly generated master public key, secret keys, and ciphertext. On the right
is their simulation. The vertical bar separates what the real algorithms use and
what the simulator (additionally) use. Since public-key IPFE completely reveals
the key vectors,6 they are always provided to the simulator. As for the other
values:

– Before ciphertext simulation, there is no additional information supplied.
– When the ciphertext is simulated, the vector u is not provided, but its inner

products with already simulated keys are provided to the simulator.7

– After ciphertext simulation, when simulating a key for vj , the inner product
〈u,vj〉 is provided with vj .

Observe that the values after the vertical bar are exactly those computable
using the functionality of IPFE at that time, so in simulation, anything about
the encrypted vector not yet computable by the functionality of IPFE, simply
does not exist (information-theoretically) at all. In the setting of our CP-1-ABE,
we will simulate an IPFE ciphertext to remove its corresponding label function
and only retain the label. Looking from the perspective of hardwiring, when we
issue skx = isk(1,x) after we have created the ciphertext ctf,µ (in which ictj
has been simulated), the inner product `j is supplied to the simulator when we
simulate isk, after the simulation of ictj . This means the label `j is hardwired
into isk.

Let us exemplify the proof of adaptive security in the more difficult case
where skx is queried after ctf,µ. First, we simulate ict1 so that the first label is
hardwired into isk.

Real Algorithms `1 Hardwired ctf,µ: ict1( L1 )
{ictj( Lj )}j>1

skx: isk ( 1,x )

 ≈

 ctf,µ: ĩct1( ∅ | ∅ )
{ictj( Lj )}j>1

skx: ĩsk ( 1,x | `1 = L1(x) )


6 Anyone can encrypt the standard basis vectors using mpk, and use decryption algo-

rithm to obtain each component of the vector in a secret key.
7 Though the number J∗ of inner products with already simulated keys is unbounded,

since the vectors {vj}j≤J∗ in the keys are public, these inner products are determined
by those with any maximal subset of linearly independent vj ’s, the number of which
will not exceed the dimension. As such, the simulated ciphertext can still be compact.
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(We omitted the master public key for brevity.) Note that ictj ’s for j > 1 do not
use ciphertext simulation but are created using the master public key (honest or
simulated). Once `1 is hardwired, we can instead solve for it from the correctness
equation.

The second step is to switch ictj(Lj) to ictj(`j ,0) for `j
$← Zp one by one, i.e.,

to simulate `j as random. To do so, we first simulate ictj (hardwiring `j = Lj(x)
into isk), then switch `j to random (via piecewise security), and lastly revert ictj
back to encryption (not simulated), but encrypting (`j ,0) instead.

Before/After Simulating `j `1, `j Hardwired
ctf,µ: ĩct1 ( ∅ | ∅ )

{ictj′( `j′ ,0 )}1<j′<j
ictj ( Lj / (`j ,0) )
{ictj′( Lj′ )}j′>j

skx: ĩsk ( 1,x | `1 )


⇀⇀↽↽


ctf,µ: ĩct1 ( ∅ | ∅ )

{ictj′( `j′ ,0 )}1<j′<j
ĩctj ( ∅ | ∅ )
{ictj′( Lj′ )}j′>j

skx: ĩsk ( 1,x | `1, `j )


`2, . . . , `j−1, `j

$← Zp, solve for `1 `j = Lj(x) or `j
$← Zp

During the proof, there are at most two simulated ciphertexts at any time, so
it appears that we can just use a simulation-secure IPFE capable of simulating
at most two ciphertexts. This is not the case. The tricky part is that the usual
definition of simulation security in (?) only requires the real world to be indis-
tinguishable from simulation. However, in the step of simulating `j as random,
we need to switch ictj to simulation when ĩct1 is already simulated (and sym-

metrically, reverting ĩctj back to encryption while keeping ĩct1 simulated). It is
unclear whether this transition is indistinguishable just via simulation security,
because the definition says nothing about the indistinguishability of simulating
one more ciphertext when there is already one simulated ciphertext, i.e.,

(m̃pk, ĩct1, ict2, {ĩskj}j) ≈ (m̃pk, ĩct1, ĩct2, {ĩskj}j) ?

Note that when we want to simulate `j , the computation of `1 has complicated
dependency on x,8 and we cannot hope to get around the issue by first reverting
ĩct1 back to normal encryption then simultaneously simulating ict1, ictj , because
we do not know what to encrypt in ict1.

Gradually Simulation-Secure IPFE. To solve the problem above, we define
a stronger notion of simulation security, called gradual simulation security. It
bridges the gap by capturing the idea that it is indistinguishable to simulate more
ciphertexts even when some ciphertexts (and all the keys) are already simulated,
as long as the total number of simulated ciphertexts does not exceed a preselected
threshold. We show that the IPFE scheme in [3] can be adapted for gradual
simulation security. The length of secret keys grows linearly in the maximum
number of simulated ciphertexts, but not in the vector dimension. Plugging it
into our CP-1-ABE construction, we obtain a CP-1-ABE with succinct keys.

8 In fact, the computation is as complex as the computation of f(x).
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We remark that another way to get around the issue of simulation security
is to notice that there are at most two ciphertexts simulated at any time and
one of them is ict1. Therefore, we can simply prepare two instances of IPFE
(with independently generated master public and secret keys), one dedicated to
ict1 and the other to ictj ’s (for j > 1). During the proof, the instance for ict1
is always simulated, and the other instance is switched between simulation and
normal. The downside of this method is that using two instances doubles 1-ABE
key size. In contrast, the solution using gradually simulation-secure IPFE only
needs one more Zp element in CP-1-ABE key.

Comparison with Previous Techniques. Previous works constructing succinct ABE
only natively support Boolean computations, whereas our method natively sup-
ports arithmetic computations. In [5–7,22,27], succinct ABE schemes are con-
structed from a special succinct ABE for set-membership policies (keys are tied
to a set S and ciphertexts are tied to an element x; decryption succeeds if x ∈ S).
Based on ABE for set-membership policies, one can obtain ABE for monotone
span programs, or policies admitting linear secret sharing schemes. Those in-
gredients (the special ABE, MSP, LSS) are inherently only native to Boolean
computations. Among them, the work of [6] constructs succinct ABE for arith-
metic span programs by reduction to MSP at the cost of a Θ(log p) blow-up in
key sizes.

In [23,28], succinct ABE schemes are implicitly based on IPFE with succinct
keys. The IPFE is only used to compute linear secret sharing schemes, and is
used in a non-black-box way. In contrast, our 1-ABE can be constructed from
any IPFE in a modular and black-box fashion, and we use it for arithmetic
branching programs.

Dual System Encryption for Full ABE. To lift our CP-1-ABE to full KP-
ABE, we need to flip the position of attributes and policies. Our idea is to use
CP-1-ABE as a key encapsulation mechanism. More specifically, a KP-ABE key
for policy f is a CP-1-ABE ciphertext cpct(f, µ), where µ is the message in CP-
1-ABE and encapsulated key in KP-ABE. A KP-ABE ciphertext for attribute
x and message m consists of a CP-1-ABE key cpsk(x) and the masked message
µ + m. If decryption is authorized, CP-1-ABE decryption will give us µ, which
can be used to unmask the message. Observe that the security of KP-ABE aligns
with the security of CP-1-ABE, namely, in the KP-ABE security game:

– We only need to handle one ciphertext, for which we rely on 1-key security
of CP-1-ABE.

– We need to handle multiple keys, which corresponds to multi-ciphertext
security of CP-1-ABE. Since our CP-1-ABE is public-key, it indeed satisfies
multi-ciphertext security given only one key.

However, we need to resolve the issue that encryption of KP-ABE is now secret-
key, since we need to know both the master secret key of CP-1-ABE and µ (part
of the master secret key of KP-ABE) to generate KP-ABE ciphertext.

10



We observe that our CP-1-ABE is linear, i.e., the spaces of cpmsk, cpsk, cpct,
messages are vector spaces over Zp, and9

k1cpsk(cpmsk1,x) + k2cpsk(cpmsk2,x) = cpsk(k1cpmsk1 + k2cpmsk2,x),

k1cpct(cpmsk1, f, µ1) + k2cpct(cpmsk1, f, µ2)
= cpct(k1cpmsk1 + k2cpmsk2, f, k1µ1 + k2µ2).

Here, cpsk(cpmsk,x) and cpct(cpmsk, f, µ) represent that they are generated in
the CP-1-ABE instance whose master secret key is cpmsk. We instantiate our
CP-1-ABE with an IPFE such that the keys are linear in the master secret key
and the ciphertexts are linear in both the master secret key and the encrypted
vector. CP-1-ABE master secret key and keys are IPFE master secret key and
keys, so cpsk’s are linear in cpmsk. CP-1-ABE ciphertexts are IPFE ciphertexts
for the label functions of AKGS, and AKGS is linear with respect to the message
µ, so cpct’s are linear in msk, µ.

Let G be an additive prime-order group generated by P and write [[a]] = aP .
Concretely, cpmsk and cpsk’s will be Zp elements. Now if we encode cpmsk in G,
by linearity we can compute cpsk in G, and we denote this fact by

[[cpsk(cpmsk,x)]] = cpsk([[cpmsk]],x).

Assume for the moment that this can also be done for cpct’s and decryption still
works.10 Given the linearity, we can employ dual system encryption [24] to make
the scheme public-key. In prime-order groups, the classic dual system encryption
can be regarded as hash proof systems based on MDDHk [9,12].11

Take MDDH1 (DDH assumption) for example. KP-ABE prepares two in-
stances of CP-1-ABE and two messages, and publishes the projection of them
along a randomly sampled vector (b1, b2) in the exponent:

kpmpk = [[b1, b2, b1cpmsk1 + b2cpmsk2, b1µ1 + b2µ2]] for b1, b2
$← Zp,

kpmsk = (cpmpk1, cpmpk2, cpmsk1, cpmsk2, µ1, µ2).

Encryption is now public-key. A KP-ABE ciphertext simply uses a random CP-
1-ABE master secret key in the projected space (a.k.a. normal space in dual
system encryption) and use the projected µ to mask the message. A KP-ABE
key consists of two CP-1-ABE ciphertexts, one in each instance encrypting the
corresponding encapsulated key.

kpct(x,m) =
(
s[[b1, b2]], cpsk(s[[b1cpmsk1 + b2cpmsk2]],x),m+ s[[b1µ1 + b2µ2]]

)
for s $← Zp,

kpsk(f) =
(
cpct(cpmsk1, f, µ1), cpct(cpmsk2, f, µ2)

)
.

9 The randomness in key generation/encryption should also take part in the linear
homomorphism, but we omit it in this overview for brevity.

10 In our case, cpct’s are already group-encoded, and this is where pairing comes in.
11 A few examples are [3,13,15,26]. Wee [25] also notices that certain usage of dual

system encryption in composite-order groups is reminiscent of hash proof systems.
There are other ways to use dual system encryption that are not captured by hash
proof systems.
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To decrypt, we first use linearity to combine the two CP-1-ABE ciphertexts into

cpct([[sb1cpmsk1 + sb2cpmsk2]], f, [[sb1µ1 + sb2µ2]])

= [[sb1]]cpct(cpmsk1, f, µ1) + [[sb2]]cpct(cpmsk2, f, µ2).

The master secret key of the combined cpct matches that of the cpsk in the KP-
ABE ciphertext, and CP-1-ABE decryption will recover [[sb1µ1 + sb2µ2]], using
which we can unmask to obtain the message m.

To argue security, we first replace [[sb1, sb2]] used in the challenge ciphertext
by [[a1, a2]] for random a1, a2

$← Zp (using DDH), which is not co-linear with
(b1, b2) with overwhelming probability. Ciphertexts in this form are said to be
semi-functional in dual system encryption.

By the linearity, we can look at the ABE scheme from a new basis, namely
(b1, b2), (a1, a2). We denote the CP-1-ABE components and µ’s in this basis with
prime, e.g., cpmsk′1 = b1cpmsk1 + b2cpmsk2 and cpmsk′2 = a1cpmsk1 + a2cpmsk2.
The KP-ABE master public key reveals cpmsk′1 but not cpmsk′2. A KP-ABE
secret key for policy f is essentially cpct(cpmsk′1, f, µ

′
1) and cpct(cpmsk′2, f, µ

′
2).

The challenge ciphertext has cpsk(cpmsk′2,x), and the message is masked by
µ′2. By CP-1-ABE security, µ′2 (in cpct’s) should be hidden, which means the
message in the challenge ciphertext is hidden by µ′2.

The proof completes by replacing µ′2 in all the KP-ABE keys by random.
ABE keys in this form are said to be semi-functional in dual system encryption.

Lastly, to base the scheme on MDDHk, we use k+ 1 instances of CP-1-ABE,
publish a k-dimensional projection (normal space), and reserve the unpublished
dimension for the security proof (semi-functional space).

CP-ABE from KP-1-ABE. By symmetry, we can apply the transformation
to obtain CP-ABE from KP-1-ABE. Moreover, our KP-ABE trivially serves as
a KP-1-ABE. Therefore, the scheme is (ignoring group encoding)

cpmpk = (d1, d2, d1kpmsk1 + d2kpmsk2, d1ν1 + d2ν2) for d1, d2
$← Zp,

cpmsk = (kpmpk1, kpmpk2, kpmsk1, kpmsk2, ν1, ν2),

cpsk =
(
kpct(kpmsk1,x, ν1), kpct(kpmsk2,x, ν2)

)
,

cpct =
(
td1, td2, kpsk(t(d1msk1 + d2msk2), f),m+ t(d1ν1 + d2ν2)

)
for t $← Zp.

Again, KP-1-ABE is used to encapsulate keys ν1, ν2, whose projection masks the
message in CP-ABE. Dual system encryption or hash proof system is used to
obtain public-key encryption by publishing a random projection of KP-1-ABE
master secret keys (in this case, along (d1, d2)).

One final observation is that only µ1, µ2 in KP-(1-)ABE need to be duplicated
and projected, yielding only a small overhead in CP-ABE compared to KP-ABE.
We leave the details to the full version [18].

We note that once we obtain KP-ABE from CP-1-ABE, going to CP-ABE
using the same method is natural and simple.
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1.2 Related Works

Succinct ABE. We compare our scheme with previous KP-ABE schemes with
constant-size ciphertexts in Table 1 and CP-ABE schemes with constant-size
secret keys in Table 2.

Compact ABE. Previous schemes achieving compactness (linear-size keys and
ciphertexts, also known as “unbounded multi-use of attributes”) and adap-
tive security based on standard assumptions are [15,23] for Boolean formulae,
[13] for Boolean branching programs, and [17] for arithmetic branching programs.
Among them, only [23] achieves succinctness.

ABE with Succinct f-Part. From pairing, we know several ABE schemes with
succinct x-part (ciphertexts in KP-ABE and keys in CP-ABE) and compact f -
part (linear in the size of f), including ones in this work. One can also investigate
succinctness in f -part (keys in KP-ABE and ciphertexts in CP-ABE). So far,
the only schemes with succinct f -part are KP-ABE for polynomial-sized circuits
based on LWE [8] and CP-ABE schemes for NC1 based on LWE and pairing [4],
in which the size of f -part depends on the depth but not the size of the circuit.
Yet these schemes have compact but non-succinct x-part.

Unbounded ABE. Our succinct ABE schemes have master public key of size
linear in the attribute length. In general, one can further improve the size of
master keys to be a constant, which requires the scheme to be able to handle
attributes of any polynomial length. Such schemes are called unbounded ABE.
So far, there are unbounded and compact ABE schemes (e.g., [15] for NC1). It
remains an interesting open problem to construct unbounded succinct schemes.

In summary, to the best of our knowledge, our schemes achieve one of the
currently best trade-offs in terms of master key/secret key/ciphertext sizes.

2 Preliminaries

For two matrices A,B, their tensor product is denoted by A ⊗ B. An affine
function f : Znp → Zp over prime field Zp is conveniently associated with its

coefficient vector f ∈ Zn+1
p (the same letter in boldface) such that f(x) = f T

(
1
x

)
.

2.1 Arithmetic Branching Programs and Arithmetic Key Garbling

In this paper, we consider the class of decryption policies defined by arithmetic
branching programs [20].

Definition 1 (ABP). An arithmetic branching program (ABP) f = (V,E,
s, t, p, n, w) consists of a directed acyclic graph (V,E), two distinguished vertices
s, t ∈ V , a prime field order p, an arity n, and a weight function w : E × Znp → Zp
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that is affine in the second input. It computes the function f : Znp → Zp (written
as the same letter) defined by

f(x) =
∑

s-t path
e1···ei

i∏
j=1

w(ej ,x).

Its size (denoted by |f |) is |V |. It induces two zero-test predicates:

f 6=0(x) =

{
0, if f(x) = 0;

1, if f(x) 6= 0;
f=0(x) = ¬f6=0(x).

Denote by ABP (resp. ABPnp ) the class of all ABPs (resp. of field order p and
arity n), and by ztABPnp the set of zero-test predicates induced by ABPs in ABPnp .

We rely on an arithmetic key garbling scheme for ABP.

Definition 2 (AKGS). Let F = {f} be a class of functions f : Znp → Zp.
An arithmetic key garbling scheme (AKGS) for F consists of two efficient algo-
rithms:

– Garble(f, α, β; r) takes a function f : Znp → Zp ∈ F and two secrets α, β ∈ Zp
as input, and uses uniform randomness r ∈ Zm′p . It outputs coefficient vectors
L1, . . . ,Lm ∈ Zn+1

p of m affine functions L1, . . . , Lm : Znp → Zp (called label
functions). The vectors Lj are linear in (α, β, r). The amount of randomness
m′ and the number m of label functions are solely determined by f , and m
is called the garbling size of f .

– Eval(f,x, `1, . . . , `m) takes as input a function f : Znp → Zp ∈ F , an input
x ∈ Znp , and m labels `1, . . . , `m ∈ Zp. It outputs γ ∈ Zp that is linear in
`1, . . . , `m.

The scheme is required to be correct, i.e., for all f : Znp → Zp ∈ F , α, β ∈ Zp,
x ∈ Znp , it holds that

Pr

[
(L1, . . . ,Lm) $← Garble(f, α, β)

∀j ∈ [m], `j ← Lj(x)
: Eval(f,x, `1, . . . , `m) = αf(x) + β

]
= 1.

We rely on the strong notion of piecewise security recently introduced in [17].

Definition 3 (piecewise security). Let (Garble,Eval) be an AKGS for some func-
tion class F . The scheme is piecewise secure if it satisfies the following two
properties:

– The first label is reversely sampleable given the input, the output, and the
other labels. That is, there is an efficient algorithm RevSamp such that for all
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f : Znp → Zp ∈ F , α, β ∈ Zp,x ∈ Znp , the following distributions are identical:{
(L1, . . . ,Lm) $← Garble(f, α, β)

`1 ← L1(x)
: (`1,L2, . . . ,Lm)

}

≡


(L1, . . . ,Lm) $← Garble(f, α, β)

`j ← Lj(x) for j ∈ [m], j > 1

`1 ← RevSamp
(
f,x, αf(x) + β, `2, . . . , `m

) : (`1,L2, . . . ,Lm)

.
– The other labels are marginally random even given all the subsequent label

functions. That is, for all f : Znp → Zp ∈ F , α, β ∈ Zp,x ∈ Znp , suppose the
garbling size of f is m, then for all j ∈ [m], j > 1, the following distributions
are identical:{

(L1, . . . ,Lm) $← Garble(f, α, β)

`j ← Lj(x)
: (`j ,Lj+1, . . . ,Lm)

}

≡

{
(L1, . . . ,Lm) $← Garble(f, α, β)

`j
$← Zp

: (`j ,Lj+1, . . . ,Lm)

}
.

A piecewise secure AKGS is known for ABPs:

Lemma 4 ([14,17]). There exists a piecewise secure AKGS for ABP, for which
the garbling size of an ABP is the same as its size.

Throughout the paper, we will use a vectorized version of the garbling algorithm.
Let α,β ∈ Zkp, then Garble(f,α,β) is executed component-wise with indepen-
dent randomness and the output are concatenated:

for t ∈ [k]: (L
(t)
1 , . . . ,L(t)

m ) $← Garble(f,α[t],β[t]);

for j ∈ [m]: Lj =


L
(1)
j
...

L
(k)
j

 =

k∑
t=1

ej ⊗ L
(t)
j ;

output (L1, . . . ,Lm).

Here, ej ∈ Zkp are the standard basis vectors and Lj ’s are column vectors of
length k(n+ 1). In the vectorized version, the randomness is a matrix and each
row of the matrix is used for one invocation of the non-vectorized garbling. This
notation is compatible with tensor products:

Lemma 5 (mixing and stitching). Suppose f : Znp → Zp.

Let α,β ∈ Zkp,R ∈ Zk×m′p , c ∈ Zkp, and define

(L1, . . . ,Lm)← Garble(f,α,β; R), (L′1, . . . ,L
′
m)← Garble(f, cTα, cTβ; cTR),

then LT

j(c⊗ In+1) = (L′j)
T for all j ∈ [m].
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Now let α, β ∈ Zp, r ∈ Zm′p ,d ∈ Zkp, and define

(L′1, . . . ,L
′
j)← Garble(f, α, β; r), (L1, . . . ,Lj)← Garble(f, αd, βd; drT),

then d⊗ L′j = Lj for all j ∈ [m].

2.2 Attribute-Based Encryption

In the definition below, we explicitly take the description of policy/attribute out
of the secret key/ciphertext so that we can characterize succinctness.

Definition 6 (ABE). Let M = {Mλ}λ∈N be a sequence of message sets and
P = {Pλ}λ∈N a sequence of predicate families with Pλ =

{
P : XP × YP → {0, 1}

}
.

An attribute-based encryption (ABE) scheme for message space M and predi-
cate space P consists of four efficient algorithms:

– Setup(1λ, P ) takes as input the security parameter 1λ and a predicate P ∈ Pλ,
and outputs a pair of master public/secret keys (mpk,msk).

– KeyGen(msk, y) takes as input a policy y ∈ YP and outputs a secret key sk.
– Enc(mpk, x, g) takes as input an attribute x ∈ XP and a message g ∈ Mλ,

and outputs a ciphertext ct.
– Dec(sk, y, ct, x) takes as input a secret key, the policy of the key, a ciphertext,

and the attribute of the ciphertext, and is supposed to recover the message if
P (x, y) = 1.

The scheme is required to be correct, i.e., for all λ ∈ N, g ∈Mλ, P ∈ Pλ, x ∈ XP ,
y ∈ YP such that P (x, y) = 1,

Pr

(mpk,msk) $← Setup(1λ, P )

sk $← KeyGen(msk, y)

ct $← Enc(mpk, x, g)

: Dec(sk, y, ct, x) = g

 = 1.

Definition 7 (ABE for ABP). Let p = p(λ) be a sequence of prime numbers.
A key-policy ABE (KP-ABE) for ABP over Zp(λ) is defined for the following
predicate family:

P = {Pλ}, Pλ =
{
Pλ,n : Znp(λ) × ztABPnp(λ) → {0, 1}

}
, Pλ,n(x, y) = y(x).

In a ciphertext-policy ABE (CP-ABE) for ABP over Zp(λ), the predicates are

Pλ,n : ztABPnp(λ) × Znp(λ) → {0, 1}, (y,x) 7→ y(x).

Definition 8 (succinct ABE). An ABE scheme has succinct ciphertext if the
length of ct is a fixed polynomial in security parameter λ (independent of the
length of x, y and the choice of P ). Similarly, the scheme has succinct secret key
if the length of sk is a fixed polynomial in λ.

16



The above definition does not rule out trivially succinct schemes, e.g., one only
supporting x, y of length at most λ. In this work, we construct KP-ABE for ABP
with succinct ciphertexts and CP-ABE for ABP with succinct secret keys. These
constructions are non-trivial because Setup can be run with any predicate Pλ,n
for attribute length n, the scheme works with policies of arbitrary size, and the
ciphertexts in KP-ABE and the secret keys in CP-ABE have fixed size poly(λ),
independent of n.

Security. We consider the standard IND-CPA security of ABE.

Definition 9 (IND-CPA of ABE [16]). Adopt the notations in Definition 6. The
scheme is IND-CPA secure if Exp0CPA ≈ Exp1CPA, where ExpbCPA with adversary
A proceeds as follows:

– Setup. LaunchA(1λ) and receive from it a predicate P ∈ Pλ. Run (mpk,msk)
$← Setup(1λ, P ) and send mpk to A.

– Query I. Repeat the following for arbitrarily many rounds determined by A:
In each round, A submits a policy yq ∈ YP for a secret key. Upon this query,
run skq

$← KeyGen(msk, y) and send skq to A.
– Challenge. The adversary submits the challenge attribute x∗ ∈ XP and

two messages g0, g1 ∈Mλ. Run ct $← Enc(mpk, x, gb) and return ct to A.
– Query II. Same as Query I.
– Guess. The adversary outputs a bit b′. The outcome of the experiment is b′

if P (x∗, yq) = 0 for all yq queried in Query I/II. Otherwise, the outcome is
set to 0.

2.3 Pairing Groups and Matrix Diffie–Hellman Assumption

Throughout the paper, we use a sequence of pairing groups

G = {(Gλ,1, Gλ,2, Gλ,T, gλ,1, gλ,2, eλ)}λ∈N,

where Gλ,1, Gλ,2, Gλ,T are groups of prime order p = p(λ), and Gλ,1 (resp. Gλ,2)
is generated by gλ,1 (resp. gλ,2). The maps eλ : Gλ,1 ×Gλ,2 → Gλ,T are

– bilinear: eλ
(
gaλ,1, g

b
λ,2

)
=
(
eλ(gλ,1, gλ,2)

)ab
for all a, b ∈ Zp(λ); and

– non-degenerate: gλ,T
def
== eλ(gλ,1, gλ,2) generates Gλ,T.

The group operations as well as the pairing eλ must be efficiently computable.
When we talk about one group without thinking about pairing, the subscripts

1, 2,T are dropped.

Bracket Notation. Fix a security parameter, for i = 1, 2,T, we write [[A]]i for
gAλ,i, where the exponentiation is element-wise. When bracket notation is used,
group operations are written additively and pairing is written multiplicatively, so
that [[A]]i+[[B]]i = [[A + B]]i and [[A]]1[[B]]2 = [[A]]2[[B]]1 = [[AB]]T. Furthermore,
numbers can always operate with group elements, e.g., A[[B]]1 = [[AB]]1.

Matrix Diffie–Hellman Assumption. In this paper, we rely on the MDDH
assumptions.
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Definition 10 (MDDH [12]). Let G = {(Gλ, gλ)}λ∈N be a sequence of groups of
prime order p = p(λ) with their generators, and ` = `(λ), q = q(λ) polynomials.
The MDDHq

k,` assumption holds in G if

{[[A,STA]]}λ∈N ≈ {[[A,CT]]}λ∈N for A $← Zk×`(λ)p(λ) ,S $← Zk×q(λ)p(λ) ,C $← Z`(λ)×q(λ)p(λ) .

By default, ` = k + 1 and q = 1. It is known [12] that k-Lin implies MDDHk,
which further implies MDDHq

k,` for any polynomial `, q.

3 IPFE with Gradual Simulation Security

In this work, we consider IPFE schemes based on MDDH-hard groups (poten-
tially without pairing), where the ciphertext encodes the encrypted vector in
the exponent of the group, and decryption computes the inner product in the
exponent. In our definition below, we directly define such group-based IPFE.
The definition can be easily modified for IPFE that are not group-based.

Definition 11 (IPFE). Let G = {(Gλ, gλ)}λ∈N be a sequence of groups of prime
order p = p(λ) with their generators. A G-encoded public-key inner-product
functional encryption (IPFE) scheme consists of four efficient algorithms:

– Setup(1λ, 1n, 1T ) takes as input the security parameter 1λ, the dimension 1n

of the vectors, and an additional parameter 1T (see Definition 12). It outputs
a pair of master public/secret keys (mpk,msk).

– KeyGen(msk,v) takes the master secret key and a vector as input, and outputs
a secret key sk.

– Enc(mpk, [[u]]) takes the master public key and a vector (encoded in G) as
input, and outputs a ciphertext ct.

– Dec(sk,v, ct) takes a secret key, the vector in the secret key, and a ciphertext
as input, and is supposed to compute the inner product in the exponent.

The scheme is required to be correct, meaning that for all λ, n, T ∈ N,u,v ∈ Znp(λ),
it holds that

Pr

(mpk,msk) $← Setup(1λ, 1n, 1T )

sk $← KeyGen(msk,v)

ct $← Enc(msk, [[u]])

: Dec(sk,v, ct) = [[uTv]]

 = 1.

The scheme is succinct if the length of sk is independent of n and only depends
on λ, T .

Setup algorithm in the above definition takes an additional input 1T specifying
the desired level of simulation security, which we define next.

Gradual Simulation Security. When building the 1-ABE scheme, we rely
on the notion of gradual simulation security, which is stronger than the usual
simulation security (see [2]). Roughly speaking, on top of the requirement that
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simulation should be indistinguishable from the real scheme, the notion stipu-
lates that even when some ciphertexts are already simulated, whether another
ciphertext is honest or simulated should be indistinguishable. The parameter T
specifies the maximum number of ciphertexts that can be simulated.

To navigate around the many indices involved in the definition, it is the
easiest to keep in mind that i (hence I, I∗, It) always counts the ciphertexts, and
that j (hence J, J∗, Jt) always counts the keys.

Definition 12 (gradual simulation security). Adopt the notations in Defini-
tion 11. A simulator consists of three efficient algorithms:

– SimSetup(1λ, 1n, 1T ) takes the same input as Setup, and outputs a simulated
master public key mpk and an internal state st.12

– SimKeyGen(st,v, z1, . . . , zI) takes as input the internal state st, a vector v,
and a list z1, . . . , zI of inner products in Zp(λ) (which are the intended inner
products between this simulated key and all previously simulated ciphertexts).
It outputs a simulated secret key sk and a new state st′.

– SimEnc(st, z1, . . . , zJ) takes as input the internal state st and a list z1, . . . , zJ
of inner products in Zp(λ) (which are the intended inner products between this
simulated ciphertext and all previously simulated keys). It outputs a simulated
ciphertext ct and a new state st′.

The simulator gradually T -simulates the scheme if it satisfies both key simula-
tion security and T -ciphertext simulation security defined below.

An IPFE scheme is gradually T -simulation-secure if it can be gradually T -
simulated by some simulator. The scheme is gradually simulation-secure if there
exists a simulator such that the simulator gradually T -simulates the scheme for
all T = poly(λ).

Key Simulation Security. Roughly speaking, this captures the idea that it is in-
distinguishable to interact with the real authority (who generates and distributes
mpk and sk’s) versus the simulator issuing simulated mpk and sk’s (without sim-
ulating any ciphertext). We require Expreal ≈ Expsim, which proceed as follows
when run with an adversary A:

– Setup. Launch A(1λ) and receive from it (1n, 1T ). Run

in Expreal: (mpk,msk) $← Setup(1λ, 1n, 1T )

in Expsim: (mpk, st) $← SimSetup(1λ, 1n, 1T )

and send mpk to A.
– Challenge. Repeat the following for arbitrarily many rounds determined

by A: In each round, A submits a vector vj . Upon this challenge, run

in Expreal: skj
$← KeyGen(msk,vj)

in Expsim: (skj , st
′) $← SimKeyGen(st,vj) st← st′

12 It is understood that the state is maintained by one instance of simulator, and except
in definitions, its creation, persistence, and update are suppressed when there is no
danger of ambiguity.
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and send skj to A.
– Guess. The adversary outputs a bit b′, the outcome of the experiment.

We emphasize that there is no ciphertext challenge in the experiments. The
adversary can generate ciphertexts on its own using mpk.

T -Ciphertext Simulation Security. Roughly speaking, this captures the idea that
when interacting with the simulator, it is indistinguishable whether any subset
of ciphertexts are normally generated or simulated, as long as at most T ci-
phertexts are simulated. In the experiments below, we denote by zi,j ∈ Zp the
decryption outcome (inner product) between the jth simulated secret key (or-
dered temporally among all queried secret keys) and the ith simulated ciphertext
(ordered temporally among all queried ciphertexts, excluding the challenge ci-
phertext). We also let It, Jt be the number of simulated ciphertexts (excluding
the challenge ciphertext) and secret keys at any time t. ExpbT -GS (b ∈ {0, 1})
with adversary A proceeds as follows:

– Setup. Launch A(1λ) and receive from it (1n, 1T ). Run

(mpk, st) $← SimSetup(1λ, 1n, 1T )

and send mpk to A.
– Query I. Repeat the following for arbitrarily many rounds determined by A:

In each round, A has 2 options.
• Key Simulation Query : A can submit a vector vj with a list z≤It,j of in-

ner products for a secret key skj . The list z≤It,j consists of z1,j , . . . , zIt,j ,
all the decryption outcomes between skj and the simulated ciphertexts
queried up to this point. Upon this query, run

(skj , st
′) $← SimKeyGen(st,vj , z1,j , . . . , zIt,j) st← st′

and send skj to A.
• Ciphertext Simulation Query :A can submit a list zi,≤Jt of inner products

for a simulated ciphertext cti. The list zi,≤Jt consists of zi,1, . . . , zi,Jt ,
all the decryption outcomes between cti and the simulated secret keys
queried up to this point. Upon this query, run

(cti, st
′) $← SimEnc(st, zi,1, . . . , zi,Jt) st← st′

and send cti to A.
– Challenge. The adversary submits a vector u∗. Upon the challenge, let the

total number of secret key queries in Query I be J∗ and the total number of
ciphertext queries in Query I be I∗, run

b = 0: ct∗ $← Enc(mpk, [[u∗]])

b = 1: ct∗ $← SimEnc
(
st, (u∗)Tv1, . . . , (u

∗)TvJ∗
)

st← st′

and send ct∗ to A.
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– Query II. Same as Query I, except that in Exp1T -GS, for each secret key
query vj , we put (u∗)Tvj immediately after zI∗,j in the argument list of
SimKeyGen so that the simulator gets the correct list of inner products:

b = 0: (skj , st
′) $← SimKeyGen(st,vj , z1,j , . . . , zI∗,j , zI∗+1,j , . . . , zIt,j);

b = 1: (skj , st
′) $← SimKeyGen(st,vj , z1,j , . . . , zI∗,j , (u

∗)Tvj , zI∗+1,j , . . . , zIt,j);

st← st′ (in either case).

– Guess. The adversary outputs a bit b′. The outcome of the experiment is b′

if both constraints are satisfied:
• the total number of ciphertext simulation queries in Query I/II is less

than T ;
• the equation {uT

ivj = zi,j ∀i, j} (about ui’s) has a solution.
Otherwise, the outcome is set to 0.

Remarks. In Exp1T -GS, the challenge ciphertext ct∗ is generated in the same way
as the other simulated ciphertexts, and in Query II the inner products between
skj and ct∗ are appropriately positioned. From the simulator’s perspective, there
is no indication which ciphertext is the challenge ciphertext. This definition
ensures that the simulator cannot behave differently depending on whether a
particular ciphertext is the challenge or not, and simplifies the application of
gradual simulation security in our construction of ABE.

Note that the simulator receives inner products zi,j in the clear and the

adversary submits challenge u∗ in ExpbT -GS in the clear, though the input to
encryption and the output of decryption are group-encoded. This is necessary
as otherwise, the simulator must solve discrete logarithm in G.

We note that when T = 1, gradual simulation security becomes the standard
notion of simulation security. On the other hand, simulation security does not
imply gradual simulation security. So this definition is a strict generalization of
simulation security.

3.1 Construction of Gradually Simulation-Secure IPFE

The IPFE scheme in [3] has been proven simulation-secure [2]. We show that it
can be adapted for gradual simulation security. The scheme has succinct keys,
whose length grows linearly in T and polynomially in λ, and is independent of
n, which eventually translates into the succinctness of our ABE scheme.

Construction 13 ([3]). The construction is described for a fixed value of λ,
and λ is suppressed for brevity. Let G be a group (with generator g) of prime
order p such that MDDHk holds in G. Our G-encoded IPFE works as follows:

– Setup(1n, 1T ) takes as input the dimension n and the maximum number

T of simulated ciphertexts. It samples A $← Zk×(k+T )
p ,W $← Z(k+T )×n

p and
outputs mpk = [[A,AW]],msk = W.

– KeyGen(msk,v) outputs sk = Wv.
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– Enc(mpk, [[u]]) samples s $← Zkp and outputs ct = (sT[[A]], sT[[AW]] + [[uT]]).
– Dec(sk,v, ct) parses ct as ([[cT]], [[tT]]) and outputs −[[cT]]sk + [[tT]]v.

The correctness is readily verified by

−[[cT]]sk + [[tT]]v = [[−(sTA)(Wv) + (sTAW + uT)v]] = [[uTv]].

The scheme is succinct as sk consists of k+ T elements in Zp, independent of n.

Theorem 14. Suppose in Construction 13, the MDDHk assumption holds in G,
then the constructed scheme is gradually simulation-secure, and the T in the
security definition is the T as input of Setup.

The simulator for our scheme is built modularly upon that for the one-time pad
IPFE scheme, which we sketch below. We refer the readers to the full version
for a more detailed exposition.

One-Time Pad IPFE. OTP-IPFE is a secret-key IPFE:

– Setup(p, 1n) samples the master secret key msk = w $← Znp .
– KeyGen(msk,v) outputs the secret key sk = wTv for v ∈ Znp .
– Enc(msk,u) outputs the ciphertext ct = (w + u)T.
– Dec(sk,v, ct) outputs −sk + ctv as the inner product.

Correctness is readily verified by −sk + ctv = −wTv + (w + u)Tv = uTv.
The scheme satisfies perfect simulation security for one ciphertext (defined

similarly to the usual simulation security). The simulator works as follows:

– SimSetup(p, 1n) samples the internal state as st = (w̃,⊥) with w̃ $← Znp .
(Here, ⊥ means that the ciphertext has not been simulated.)

– SimKeyGen(st,vj) simulates a pre-challenge key for vj as skj = w̃Tvj and
updates the state to st′ = (st,vj).

– SimEnc(st, z1, . . . , zJ∗) simulates the challenge ciphertext as a uniformly ran-
dom solution ct∗ of

−w̃Tvj + ct∗vj = zj ∀j ∈ [J∗],

and updates the state to st′ = (⊥, ct∗) so that it knows the ciphertext has
been simulated. (Here, J∗ is the number of keys queried before ciphertext
simulation, and zj is the intended inner product between the ciphertext and
the jth key.)

– SimKeyGen(st,vj , zj) simulates a post-challenge key for vj as skj = ct∗vj−zj
and does not update the state.

Dual System Encryption and Simulator. Construction 13 can be seen as
dual system encryption applied to OTP-IPFE. There are k + T instances of

OTP-IPFE with the master secret keys being W ∈ Z(k+T )×n
p . We publish k

projections of them (the normal space) in the master public key (i.e., AW with

A ∈ Zk×(k+T )
p ), and reserve T instances (the semi-functional space) for the

simulator.
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To simulate, we first switch the ciphertext into the semi-functional form,
which means it uses an OTP-IPFE instance independent of the master public
key. Then, we employ a change of variable to explicitly separate out the instance
(also known as using the parameter hiding property). Lastly, the simulation can
be delegated to OTP-IPFE simulator.

Let us take T = 1 for example. The first step is

ct∗ = ([[sTA]], [[sTAW + uT]])
MDDHk≈ ([[cT]], [[cTW + uT]]) for c $← Zk+1

p .

The second step is to perform a change of variable W = W̃ + a⊥wT, where
W,w are random and a⊥ is the vector such that Aa⊥ = 0 and cTa⊥ = 1 (which
uniquely exists with overwhelming probability). With this change of variable,
the keys and the challenge ciphertext become

mpk = ([[A]], [[AW̃]]),

skj = W̃vj + a⊥ wTvj ,

ct∗ = ([[cT]], [[cTW̃ + (w + u)T ]]).

The terms highlighted in the boxes are exactly the keys and ciphertexts of OTP-
IPFE with master secret key w, and the last step is to use OTP-IPFE simulator
to simulate these terms.

For general T , we simply prepare uniformly random c1, . . . , cT for each sim-

ulated ciphertext, and set W = W̃ + a⊥1 wT
1 + · · · + a⊥TwT

T , where a⊥1 , . . . ,a
⊥
T

are the solution to Aa⊥i = 0, cT
ia
⊥
i = 1, and cT

ia
⊥
i′ = 0 for all i 6= i′, so that

the T instances for simulation do not “interfere” with each other. The keys and
ciphertexts after replacing OTP-IPFE by simulation are

mpk = ([[A]], [[AW̃]]),

skj = W̃vj + a⊥1 SimKeyGen(st1,vj , z1,j) + · · ·+ a⊥T SimKeyGen(stT ,vj , zT,j),

ct∗i = ([[cT

i ]], [[c
T

iW̃ + SimEnc(sti, zi,1, . . . , zi,Jt)]]),

which is how our simulator for Construction 13 works. Here, st1, . . . , stT track T
independent instances of OTP-IPFE simulator. We refer the reader to the full
version for the security proof.

4 Ciphertext-Policy 1-ABE for ABP

In this section, we construct the core component of our adaptively secure ABE,
called 1-ABE, from any gradually 2-simulation-secure IPFE. A 1-ABE has the
same syntax as an ABE, except that

– The message space is Zp for some p and decryption only needs to recover
the message encoded in (another) group.
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– In the security definition, the adversary is allowed to query at most one
secret key.

– In the security definition, the adversary only chooses the attribute but not
the message. The message is 0 in one experiment (Exp01-ABE), and is uniformly
random in the other experiment (Exp11-ABE).13

The relaxation of decryption correctness and the change of messages in the
security definition are because 1-ABE will be used to encapsulate keys for full
ABE. In full ABE, the group-encoded decryption result of 1-ABE is used to
mask the message, and we argue security by replacing the encapsulated key by
random.

ABE constructions in some previous works such as [15,17] go through an in-
termediate step of building a secret-key 1-ABE that is 1-key 1-ciphertext secure.
In the secret-key setting, keys and ciphertexts are symmetric, and consequently
there is no distinction between ciphertext-policy and key-policy 1-ABE. In con-
trast, our 1-ABE is public-key and 1-key secure. This asymmetry separates CP-
1-ABE and KP-1-ABE. We remark that 1-ABE in [15,17] can be easily modified
to fit our definition as CP-1-ABE. We will see that our definition is easier to use
in reductions for full ABE.

Construction 15 (CP-1-ABE). The construction is described for a fixed value
of λ, and λ is suppressed for brevity. Let G be a group (with generator g) of prime
order p, (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a G-encoded IPFE, and
(Garble,Eval) be an AKGS for ABP. We construct a 1-ABE for predicate space

P = {Pn |n ∈ N}, Pn(y,x) = y(x) for y ∈ ztABPnp ,x ∈ Znp .

The scheme works as follows:

– Setup(1n) takes as input the attribute length (i.e., Pn is represented by 1n)
and outputs (mpk,msk) $← IPFE.Setup(1n+1).

– KeyGen(msk,x) outputs sk $← IPFE.KeyGen
(
msk, (1,x)

)
.

Note: If the underlying IPFE has succinct secret keys, so does this scheme.
For instance, when instantiated with Construction 13 with T = 2 under
DDH, each secret key consists of just three group elements.

– Enc(mpk, y, µ) garbles y with µ and encrypts the label functions in IPFE
ciphertexts as follows:

if y = f 6=0: α← µ, β ← 0;

if y = f=0: α $← Zp, β ← µ;

(L1, . . . ,Lm) $← Garble(f, α, β),

for j ∈ [m]: ictj
$← IPFE.Enc(mpk, [[Lj ]]).

The algorithm outputs ct = (ict1, . . . , ictm).

13 The adversary also does not receive the potential random message.
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– Dec(sk,x, ct, y) takes as input a secret key sk for x and a ciphertext ct for y.
If y(x) = 0, the algorithm outputs ⊥ and stops. Otherwise, it computes

for j ∈ [m]: [[`j ]]← IPFE.Dec(sk, ictj)

[[µ′]]←

{
1

f(x)Eval(f,x, [[`1, . . . , `m]]), if y = f 6=0;

Eval(f,x, [[`1, . . . , `m]]), if y = f=0;

and outputs [[µ′]] as the message.

Note: We show that the scheme is correct. By the correctness of IPFE, we
have

`j = LT

j

(
1
x

)
= Lj(x),

where Lj’s are the label functions defined by Garble. Since Eval is linear in
the labels, it can be performed in the exponent. By the correctness of AKGS,

if y = f6=0, f(x) 6= 0: µ′ = 1
f(x) (αf(x) + β) = 1

f(x) (µf(x) + 0) = µ;

if y = f=0, f(x) = 0: µ′ = αf(x) + β = α · 0 + µ = µ.

Theorem 16. Suppose in Construction 15, the IPFE is gradually 2-simulation-
secure and the AKGS is piecewise secure, then the constructed 1-ABE is secure.

We refer the reader to the full version for the proof.

5 Key-Policy ABE for ABP

In this section, we apply the classic dual system encryption to obtain full KP-
ABE from CP-1-ABE instantiated with the IPFE in Section 3.1.

Construction 17 (KP-ABE). The construction is described for a fixed value
of λ, and λ is suppressed for brevity. Let G1, G2, GT be pairing groups of prime
order p for which MDDHk holds in G1, G2, and let (Garble,Eval) be an AKGS
for ABP. We construct an ABE for message space GT and predicate space

P = {Pn |n ∈ N}, Pn(x, y) = y(x) for x ∈ Znp , y ∈ ztABPnp .

The scheme works as follows:

– Setup(1n) takes as input the attribute length (i.e., Pn is represented by 1n).
It samples and sets

A $← Zk×(k+2)
p ,B $← Zk×(k+1)

p , W $← Z(k+2)×(k+1)(n+1)
p ,µ $← Zk+1

p ,

xpk = ([[BT]]1, [[W(BT ⊗ In+1)]]1), fpk = ([[A]]2, [[AW]]2),

mpk = ([[µTBT]]T, xpk), msk = (fpk,µ).
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Note: We explain the connection with CP-1-ABE and dual system encryption
(as demonstrated in Section 1.1). The matrix W = (W1 · · · Wk+1) consists
of k + 1 master secret keys of CP-1-ABE concatenated by columns, each of
shape (k + 2)× (n+ 1). Its projection along a vector b = (b1, . . . , bk+1)T is

b1W1 + · · ·+ bk+1Wk+1 = W1 · b1In+1 + · · ·+ Wk+1 · bk+1In+1

= (W1 · · · Wk+1)

 b1In+1

...
bk+1In+1

 = W(b⊗ In+1).

The matrix B = (bT

1 · · · bT

k)T consists of all the projection vectors, and
W(BT ⊗ In+1) is the projections of W along B concatenated by columns.

– KeyGen(msk, y) garbles y with µ as follows:

if y = f 6=0: α← µ, β ← 0;

if y = f=0: α $← Zk+1
p , β ← µ;

(L1, . . . ,Lm) $← Garble(f,α,β).

It samples sj
$← Zkp for j ∈ [m] and sets

skj,1 = sT

j [[A]]2, skj,2 = sT

j [[AW]]2 + [[LT

j ]]2.

The algorithm outputs sk = (sk1,1, sk1,2, . . . , skm,1, skm,2).

Note: Generating a key in KP-ABE means encrypting µ in each CP-1-ABE
instance, which boils down to generating IPFE ciphertexts, as shown above.

– Enc(mpk,x, g) samples r $← Zkp and sets

ct1 = [[BT]]1r, ct2 = [[W(BT ⊗ In+1)]]1

(
r⊗

(
1
x

))
, ct3 = [[µTBT]]Tr + g.

The algorithms outputs ct = (ct1, ct2, ct3).

Note: We remark that r (resp. BTr) is the coefficients of random linear
combination w.r.t. the projections (resp. the CP-1-ABE instances). Here,
ct2 corresponds to a CP-1-ABE key w.r.t. randomly combined master secret
key W(BTr⊗ In+1), which is an IPFE secret key for

(
1
x

)
, i.e.,

ct2 =

[[
W(BTr⊗ In+1)

(
1
x

)]]
1

.

The ciphertext consists of 2k + 3 elements in G1 and one element in GT,
hence is succinct.

– Dec(sk, y, ct,x) first checks whether y(x) = 1. If not, it outputs ⊥ and ter-
minates. Otherwise, it parses sk, ct as defined in KeyGen,Enc, computes

for j ∈ [m]: [[`j ]]T = −skj,1ct2 + skj,2

(
ct1 ⊗

(
1
x

))
;

[[µ′]]T ←

{
1

f(x)Eval(f,x, [[`1, . . . , `m]]T), if y = f6=0;

Eval(f,x, [[`1, . . . , `m]]T), if y = f=0;
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and outputs ct3 − [[µ′]]T as the recovered message.

Note: We show that the scheme is correct. By definition (also cf. Construc-
tion 13),

`j = −sT

jAW(BT ⊗ In+1)

(
r⊗

(
1
x

))
+ (sT

jAW + LT

j)

(
BTr⊗

(
1
x

))
= LT

j

(
BTr⊗

(
1
x

))
= LT

j (BTr⊗ In+1)

(
1
x

)
.

By Lemma 5, if we define (L′1, . . . ,L
′
m) ← Garble(f, rTBα, rTBβ; rTBR),

where R is the randomness used to generate Lj’s, then

`j = LT

j (BTr⊗ In+1)

(
1
x

)
= (L′j)

T

(
1
x

)
= L′j(x).

By the correctness of AKGS, we have

Eval(f,x, `1, . . . , `m) = rTBαf(x) + rTBβ.

In the two cases where decryption should succeed,

if y = f6=0, f(x) 6= 0: µ′ = 1
f(x) (r

TBµf(x) + rTB0) = rTBµ;

if y = f=0, f(x) = 0: µ′ = rTBαf(x) + rTBµ = rTBµ.

Therefore, in both cases, we have ct3− [[µ′]]T = [[µTBTr]]T +g− [[rTBµ]]T = g.

Minimizing Pairing Operations. The number of pairing operations in the
decryption algorithm appears to depend on the garbling size of the policy and
the attribute length. It can be reduced to 2k+ 3 as follows.14 Since Eval is linear
in the labels, the decryption algorithm can first find γ1, . . . , γm ∈ Zp such that

Eval(f,x, `1, . . . , `m) =

m∑
j=1

γj`j .

The computation of [[µ′]]T can be rewritten as

[[µ′]]T =

m∑
j=1

γj [[`j ]]T =

m∑
j=1

γj

(
−skj,1ct2 + skj,2

(
ct1 ⊗

(
1
x

)))

= −

 m∑
j=1

γjskj,1

 ct2 +

 m∑
j=1

γjskj,2

(Ik+1 ⊗
(

1
x

))
ct1.

14 Syntactically, we use the pairing groups in black box, and there are only 2k + 3
elements in G1 in a ciphertext and no element in G1 in a secret key, so the operations
can always be regrouped to use at most 2k+3 pairing operations. The content below
provides the concrete regrouping method.
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Note that ct1, ct2 consist of k+ 1, k+ 2 group elements and only these elements
(in G1) take part in pairing. Therefore, the formula above only uses 2k+3 pairing
operations.

There are further optimizations possible, such as appropriately choosing
which group of the two source groups to use for the secret key to reduce the
cost of exponentiation in decryption. Next, we proceed to the security of our
scheme.

Theorem 18. Suppose in Construction 17, MDDHk holds in both G1 and G2,
and the AKGS is piecewise secure, then the constructed scheme is IND-CPA
secure.

We refer the reader to the full version for the proof.
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