
CCA Updatable Encryption Against Malicious
Re-Encryption Attacks

Long Chen, Yanan Li, and Qiang Tang

New Jersey Institute of Technology, Newark NJ 07102, USA
{longchen,ly252,qiang}@njit.edu

Abstract. Updatable encryption (UE) is an attractive primitive, which
allows the secret key of the outsourced encrypted data to be updated
to a fresh one periodically. Several elegant works exist studying various
security properties. We notice several major issues in existing security
models of (ciphertext dependent) updatable encryption, in particular,
integrity and CCA security. The adversary in the models is only allowed
to request the server to re-encrypt honestly generated ciphertext, while
in practice, an attacker could try to inject arbitrary ciphertexts into the
server as she wishes. Those malformed ciphertext could be updated and
leveraged by the adversary and cause serious security issues.

In this paper, we fill the gap and strengthen the security definitions
in multiple aspects: most importantly our integrity and CCA security
models remove the restriction in previous models and achieve standard
notions of integrity and CCA security in the setting of updatable en-
cryption. Along the way, we refine the security model to capture post-
compromise security and enhance the re-encryption indistinguishability
to the CCA style. Guided by the new models, we provide a novel con-
struction ReCrypt+, which satisfies our strengthened security defini-
tions. The technical building block of homomorphic hash from a group
may be of independent interests. We also study the relations among se-
curity notions; and a bit surprisingly, the folklore result in authenticated
encryption that IND-CPA plus ciphertext integrity imply IND-CCA se-
curity does not hold for ciphertext dependent updatable encryption.

1 Introduction

Increasingly number of companies, government bodies and personal users choose
to store their data on the cloud instead of their local devices. As a public infras-
tructure, frequent data breaches from the cloud were reported. One potential
mitigation is to let the user to upload encrypted data and keep the decryption
key locally. However, even if these data are protected by encryption mechanisms,
there are still risks that the users’ decryption keys get compromised, especially
after the key has been in use for a while. It is widely acknowledged (and imple-
mented in industry) that a wiser strategy is to let the user periodically refresh
the secret key which is used to protect the data (and update the corresponding
ciphertext in the cloud). For instance, the Payment Card Industry Data Security

2 L.Chen et al.

Standard (PCI DSS) [6,13] requires that the credit card data must be stored in
encrypted form and mandates key rotation, i.e., encrypted data is regularly re-
freshed from an old to a newly generated key. The similar strategy has also been
adopted by many cloud storage providers, such as Google and Amazon [10].

Though we have many standardized encryption tools to use, facilitating key
rotation requires care. A naive solution is to let the client download all encrypted
data, decrypt, choose a new key, encrypt the data, and upload the new ciphertext
to the cloud server. This is obviously too inefficient (e.g., large communication
for big data) to be useful. To efficiently and securely execute the key rotation,
Boneh et al. [4] proposed a new primitive called updatable encryption (UE) for
efficiently updating ciphertexts with a new key. In such a scheme, a client only
needs to retrieve a very short piece (called header) of information, and generates
a short update token that allows the server to re-encrypt the data himself from
existing ciphertext, while preserving the security of the encryption. Everspaugh
et al [10] gave a systematic study of UE, especially on the key rotation on au-
thenticated encryption, which is the standard practice for encryption. The seem-
ingly paradoxical feature of modifying ciphertext while maintaining integrity is
both necessary and conceptually intriguing; more importantly, integrity is as
indispensable as confidentiality in secure storage. Very recently, Boneh et al [3]
proposed strengthening on confidentiality and improved the efficiency of [10].

Security of updatable encryption in a nutshell. The security models of
updatable encryption mimic those of authenticated encryption (AE) to capture
both the confidentiality and integrity of the massage. But a critical difference
is that UE wishes to capture the survivability of the system after the server is
briefly breached or the client is temporarily hacked. To characterize these at-
tack scenarios, the adversary in the UE model is allowed to view the secret keys
in the previous epochs and the current version of the continuously updating
ciphertext. And also, other related information generated during the key rota-
tions, such as the update tokens, headers, will also be leaked to the adversary.
The only restriction is to rule out the trivial impossibility that the secret key
and the ciphertext are both obtained by the attacker simultaneously. Since ad-
versary’s strategy could be very diverse, clearly defining the boundary so that
the strategies leading to trivial break of the system are disallowed is complex.

In the pioneer work [10], Everspaugh et al. defined an IND-CPA analogous
security called UP-IND and a ciphertext integrity (CTXT) analogous security
called UP-INT-CTXT. CCA security was not considered at all in [10,3], as in
a standard AE scheme, it is well-known that IND-CPA and CTXT imply IND-
CCA security. However, given that those security models are fairly complex, we
first ask a question whether such implication still holds in the general ciphertext
dependent updatable encryption. 1).

1 A very recent work [5] demonstrates this relationship still holds for UE in the ci-
phertext independent setting, which is a special case for updatable encryption that
headers are not needed for update, Both settings have pros and cons [3], which we
will discuss in detail in the section of related works. In this paper, we focus on the
general ciphertext dependent UE, as [4,10,3].

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 3

The security after the server being compromised. A more serious issue
is related to those existing definitions themselves. Compared to the models for
AE schemes, the UE models should fully consider the content security when
the server is occasionally compromised. As noticed by [14], the previous in-
tegrity model UP-INT-CTXT is only against restricted attackers: the attacker
is not allowed to ask the server to re-encrypt a maliciously formed ciphertexts
that is of her choice. Instead, she can only query the re-encryption oracle with
honestly generated ciphertext that was received from the challenger via related
oracles (e.g., (re)encryption oracle). Clearly, an adversary could try to inject all
kinds of ciphertext into the server and eventually got updated and mixed into
the user-supplied ciphertext. Indeed, as Klooß, et al. concluded, both the confi-
dentiality and integrity protections in [10] “are only guaranteed against passive
adversaries”.

Indeed, existing constructions of updatable encryption will become insecure if
we allow the malicious re-encryption queries. In the full version [9], we provide
a concrete example to show an active “attack” on the integrity of the KSS
scheme proposed by Everspauph et al. [10]. It follows that the constructions are
vulnerable against active adversaries who try to inject malformed ciphertext,
which immediately violates the integrity; and what’s worse, such capability could
be leveraged to break confidentiality. The situation is the same in [3].

Having noticed the problem, some partial progresses have been made in the
ciphertext independent setting [14].2 In their first construction, they also have
the same restriction in both ciphertext integrity and CCA security. In their sec-
ond construction, they remove the restriction partially, that achieved plaintext
integrity and RCCA security (Replayable CCA [7]). It is widely believed that
PTXT does not provide a strong enough integrity guarantee for secure storage
[20], as the adversary may still be able to generate a ciphertext that was mauled
from a target ciphertext. While RCCA has another restriction that a cipher-
text generated by re-randomizing a challenge ciphertext is not allowed to query
decryption oracle, thus clearly not CCA.

The security after the key being compromised. Besides characterizing
the server breach scenario, how to precisely define the security when the breach
occurs on the client side also needs to be crystal clear. The main motivation of
updatable encryption is to enable the outsourced storage to “regain” security
even the client got temporarily hacked, so long as the system later executes the
update process (updating both secret key and ciphertext). However, it has been
pointed out in [18] that the security model of [10] is ambiguous regarding whether
the adversary is allowed to see a certain version of the challenge ciphertext, which
is updated from a ciphertext that was encrypted under a leaked key.

If we look at the example for the model of UP-IND [10] in more detail: the
keys are all generated once and there are no clearly defined epochs. Suppose the
challenge ciphertext c∗1 is first encrypted under k1. When the adversary queries

2 As mentioned above and we will discuss further in related work, the security of
ciphertext dependent UE are even more involved due to the extra headers and flexible
generation of update tokens.

4 L.Chen et al.

c∗1’s update under k3 after the adversary queries k2, the challenger will directly
re-encrypt the challenge ciphertext c∗1 under k1 to a ciphertext c∗3 under k3.
During this procedure, the challenge ciphertext has never been updated to some
version under the key k2. More generally, in the model of [10], for all the versions
of exposed challenge ciphertext, their previous version were always encrypted
under a safe key which has never been exposed. (This is the same in [3]).

But in reality, the server updates sequentially, all ciphertext have been up-
dated from a previous version whose key may be leaked (that’s why it is related
to post-compromise security). It is possible that the updated ciphertext contains
some private information accessible to the key of the prior ciphertext version.
Also, the adversary likely pretends as the client to query the header she wants,
even including that of challenge ciphertext encrypted under breached keys.

For those reasons, a model that aims to precisely capture post-compromise
security was proposed in [18] for the ciphertext independent setting, in which
the client generates one update token for all ciphertext. However, it is unclear
whether we can adapt straightforwardly the security from ciphertext indepen-
dent setting to the more general ciphertext dependent setting. In the former,
there was no headers involved, and one update token will be used to update all
ciphertext; while in the latter, a more careful treatment is needed to deal with
those headers and ciphertext specific update tokens.

1.1 Our Contributions

In this paper, we give a systematic study of standard ciphertext integrity and
security notions against CCA attacks, in the general setting of ciphertext depen-
dent updatable encryption (CDUE). We summarize our results with comparison
with previous work in Table. 1.

Scheme
Update
Manner

Conf. Integrity
ReEnc
IND

BLMR [4] CD CPA No CPA

KSS [10] CD CPA CTXT− ⊥
ReCrypt [10] CD CPA CTXT− CPA

Nested
UAE[3]

CD CPA CTXT− CPA

KH-PRF
UAE [3]

CD CPA CTXT− CPA

RISE [18] CI CPA No CPA

E&M [14] CI CCA− CTXT− CPA

NYUE [14] CI RCCA PTXT CPA

SHINE [5] CI CCA− CTXT− CCA−

ReCrypt+ CD CCA CTXT CCA

Table 1. Comparison of properties of existing UE schemes. CD/CI means ciphertext
dependent/independent respectively; CCA− and CTXT− means the models that dis-
allow malicious re-encryption queries.

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 5

Security models and relations. We provide a new model combination strength-
ened UP-IND-CCA (sUP-IND-CCA) and strengthened UP-INT-CTXT (sUP-
INT-CTXT) to characterize both the confidentiality and the integrity of CDUE.
Comparing the combination of UP-IND and UP-INT suggested in [10,3], our
model strengthens the security in following aspects.

– We capture the active adversary who can query the re-encryption oracle with
maliciously generated ciphertexts in confidentiality and ciphertext integrity
models (CPA, CCA and CTXT). To demonstrate the practical security im-
provement in our models, we also show an “attack” on the KSS scheme [10]
when facing malicious re-encryption in the full version [9].

– We use the notion of epoch from [18] in both the confidentiality and integrity
models, to capture the post-compromise security. As noted before, we need
to carefully deal with the headers, and flexibly generated update tokens in
ciphertext dependent setting. We added two more oracles to give a more fine-
grained characterization. ONext(·) is used to force the challenger to update,
and OHeader (i) is used to respond with the header of challenge ciphertext in
epoch i (updated from previous epoches). In the full version [9], we provide
a variation of KSS scheme from [10] which fails to achieve post-compromise
security, but was proven secure in the existing model.

– Interestingly, after clearly defining the CPA, CCA and CTXT securities,
we show that in contrast with the conventional wisdom in AE, IND-CPA
security + CTXT security do not imply IND-CCA security in the setting of
ciphertext dependent UE. Note that the CCA attack on our counter example
holds with or without malicious re-encryption. That means we have to study
both IND-CCA security and CTXT security in ciphertext dependent UE.

– As a byproduct, we also consider CCA style of re-encryption indistinguisha-
bility, which is to capture update unlinkability. We defer details regarding
this part to the full version [9].

Construction. With the strengthened security models at hand, we set force
to construct a (ciphertext dependent) updatable encryption named ReCrypt+,
which can be proven secure under our sUP-IND-CCA, sUP-INT-CTXT and
sUP-REENC-CCA models. Our starting point is the Recrypt scheme in [10],
which already has the basic confidentiality and integrity. The existing attacks
reminded us several main challenges: first we need to ensure that the update
procedure is as “independent” as possible so that post-compromise security can
be achieved; next major challenge is how to mute the malicious re-encryption
attacks. Intuitively, the validity of ciphertexts must be checked before updating.
Here is the dilemma: the server does not have the secret key, thus have to rely
on the assistance of the client to do the checking. But the client only sees the
short header during the key rotation.

Let us walk through the subtleties and our ideas. ReCrypt follows the
standard Key Encapsulation Mechanism (KEM) + Data Encapsulation Mech-
anism (DEM) with secret sharing. Specifically, its header is a KEM Kem(k, x)
for the DEM key share x under the master key k, and the body is with the

6 L.Chen et al.

form (y,Dem(x⊕ y,m)) for the DEM key share y and the DEM of the message
m. During the key rotation, the header (i.e. Kem(k, x)) will be sent back to
the client. We can instantiate the KEM via an authenticated encryption. Hence
the validity of the header part can be directly verified by the client who holds
the master key. However, the main challenge remains as validity check of the
ciphertext body still has to be carried out on the server side.

A naive attempt. A naive suggestion is to hash all the ciphertext body can include
the digest into the header plaintext. The client will use the AE to check whether
the header is intact, and include the digest in the update token, so that the
server can check the body. This has two major problems: first, it immediately
kills the possibility for efficient update; moreover, such a method may not be
sure: when the server notices the invalidity of the ciphertext after receiving the
decrypted digest from the client, the update token has already been sent out.
The server may stop re-encryption, but the adversary who obtains the update
token may already be able to infer useful information.

Enable validity checking. To facilitate efficient update and checking, we would
need a “hash” that satisfies the following: (1) it compresses the ciphertext body,
otherwise the header would be too long; (2) it is “binding”, so that the server can
check the digest and ciphertext body; (3) it is partially hiding: as the secret key of
previous epoch might be leaked, combining with part of the ciphertext may lead
to the exposure of some master key; (4) it satisfies certain key homomorphism
so that efficient update could be facilitated. Using a commitment scheme will
not be compressing; while using a collision resistant hash may not be hiding.
We proceeds in two steps: the key share y needs to be protected, thus it will be
committed to cy using a homomorphic commitment scheme; while the payload
carrying the actual encrypted data will be compressed into a short digest h with
a homomorphic collision resistant hash. cy||h will be the derived digest.

Avoid dangerous update token. Regarding the second problem, either the server
or the client should be able to detect the invalidity of ciphertext before the update
token has been generated! To facilitate such verifiability, we put cy||h as the
associated data to encrypt them together with the key share in the header using
authenticated encryption with associated data. We emphasize that encrypting
the digest using AE directly (without putting them in plain as well) will be
problematic, as now the server cannot check first, adversary may inject a header
which is not bound to the ciphertext body, e.g, taking from a previous ciphertext.
Now the client cannot detect and will generate the update token.

Homomorphically hash from a group. One more subtlety remains, as the above
verification ideas have not considered how to be compatible with the re-encryption.
Specifically, ReCrypt updates the DEM part via the key homomorphic pseudo-
random functions (KH-PHF) [4]. When the DEM part is updated by adding new
KH-PRF values, we wish that the hash value of the DEM part, which is included
in the header, can be updated by the client conveniently according to those KH-
PRF values. Therefore, we design a new homomorphic collision resistant hash
function, whose domain needs to match the range of the KH-PRF which is some
particular groups instead of binary strings. Specifically, we construct such homo-

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 7

morphic hash functions from the asymmetric bilinear maps e : G1 × G2 → GT .
The KH-PRF could be constructed over G1, where the DDH problem is hard.

1.2 Related works

Two flavors of updatable encryption. As we briefly mentioned above, in
many of the updatable encryption schemes, during the key rotation, the client
would first retrieve a small piece of the ciphertext (called header), and then
generates a update token. Such kind of UE is called ciphertext dependent UE
[4,10,3], (CDUE in short). On the other hand, one may insist that the client
directly generates the update token. Such a UE scheme is called ciphertext in-
dependent UE [18,14,5] (CIUE in short).

Though ciphertext independent UE saves one round of communication, the
header is normally extremely short in ciphertext dependent UE. More impor-
tantly, since in a ciphertext dependent UE, the client can generate update token
based on each ciphertext header, this gives a fine-grained control over updat-
ing procedure and security: the client could choose to update only part of the
ciphertext, and leakage of some token does not influence other ciphertext.

As discussed in detail in previous work [3], there are both pros and cons for
these two flavors of UE, and the different updating paradigms yield different
security definitions, applications and construction strategies. In this article, we
focus on ciphertext dependent schemes, and fill the gap exists in integrity and
CCA security. We also refer to the full version [9] for more detailed comparisons.

Other related works. The first updatable encryption scheme (BLMR) is
proposed by Boneh et al. [4]. However, only the confidentiality is considered
in this work, and the other security notions have not been formalized. Later,
Everspauph et al.[10] provided a systematic study of updatable encryption in
the ciphertext dependent setting, as we discussed, they did not allow malicious
re-encryption in integrity and CPA notions, which are the main objective of
this paper. Very recently, Boneh et.al [3] revisit the results of Everspauph et al.
about CDUE. Their security notion is similar to [10], and they did not consider
the post-compromise security and the malicious update resistance. Moreover,
Nested UAE can only proceed the key rotation with bounded number of times.

Lehmann and Tackmann [18] point out the models UP-IND and UP-REENC
in [10] are hard to capture the post compromise security. So they provide the
models (IND-ENC and IND-UPD) and the construction (RISE) with the post-
compromise security. Recently, Klooß et al. [14] add the integrity considerations
to [18], and provide two constructions (E&M without malicious update resis-
tance and NYUE with only plaintext integrity and the weaker RCCA security).

Boy et.al [5] first formally prove that for CIUE without malicious update, the
folklore relationship in authenticated encryption that the combination of CPA
and CTXT security yields CCA security still holds. However, the relationship
for CDUE remains open.

8 L.Chen et al.

2 Preliminary

Here we describe several primitives that will be used in our construction.

Authenticated-encryption with associated-data Authenticated encryption
with associated-data (AEAD) is a variant of authenticated encryption (AE) that
allows a recipient to check the integrity of both the encrypted and unencrypted
information in a message. AEAD binds associated data (AD) to the ciphertext
and to the context where it is supposed to appear so that attempts to “cut-
and-paste” a valid ciphertext into a different context are detected and rejected.
Specifically, an AEAD scheme consists of following three algorithms:

– KeyGen(1λ) takes the security parameter λ as input, and outputs the secret
key k.

– Enc(k,m, ad) takes the secret key k, a message m and the associated data
ad as inputs, and outputs the ciphertext c.

– Dec(k, c, ad): take the secret key k, a ciphertext c and the associate data ad
as inputs, and outputs the decrypted message m or the symbol ⊥ to denote
the decryption failure.

For the detailed security definition, we refer to the full version [9].

Commitment A commitment scheme Com = {Init,Com,Open} consists of
three following algorithms: Init is used to generate the public parameter; Com
outputs a commitment value com from a message m, while Open will check
whether the commitment com is bound to the message m. A commitment scheme
should satisfy both the hiding and binding properties. The hiding property re-
quires the distributions of the commitment values for different messages can
not be distinguished by the adversary, while the binding property requires the
commitment value can not be opened to two different messages.

Some commitment schemes, such as the Pederson commitment [22], also sat-
isfy the homomorphic property, which are called the homomorphic commitment.
Specifically, the message space, the randomness opening space and the commit-
ment values are all defined over additives group G1, G2 and G3 respect to the
operations ⊕, � and ⊗. The commitment scheme satisfies Com(m1, open1) ⊗
Com(m2, open2) = Com(m1 ⊕m2, open1 � open2).

Key-homomorphic pusedorandom function The notion of key-homomorphic
PRFs was proposed by Boneh et al. [4], and used in the UE constructions [10,18].
Specifically, a key-homomorphic PRF F : K × X → Y is a secure psedorandom
function which satisfy the following property: for every k1, k2 ∈ K, and every
x ∈ X : F(k1, x)⊗F(k2, x) = F((k1⊕k2), x) where ⊗ and ⊕ are group operations
respect to K and Y. One example construction is to define as y = H(x)x where
H(·) is a random oracle from a bit string to a group element.

3 Formalization

In this section, we formalize the syntax of the ciphertext dependent updatable
encryption scheme following [10].

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 9

Intuitively, the data flow of the outsource storage from CDUE can be seen in
Fig. 1. With loss of generality, we divide the whole storage period into multiple
time epochs. At the beginning of the storage, the client generates a secret key
k0 for the epoch 0, encrypts his file m with the key k0, and outsources the initial

ciphertext C0 =
(
C̃0, C̄0

)
to the server. Here C̃0 is the header and C̄0 is the

body. After a specific epoch e, the serve will send back the header C̃e. The client
will generate a new key ke+1, compute a token ∆e,C̃e

and send it back to the
server. The server will update the old ciphertext Ce to the new one Ce+1 with
the token ∆e,C̃e

. Formally, we have the following definition.

Definition 1 (Updatable Encryption). The ciphertext dependent updatable
encryption (CDUE) consists of the following six algorithms

CDUE = (Setup,KeyGen,Encrypt,Decrypt,ReKeyGen,Recrypt).

– Setup(1λ) is a randomized algorithm run by the client. It takes the security
parameter λ as input and outputs the public parameter pp which will be shared
with the server. Later all algorithms take pp as input implicitly.

– KeyGen(e) is a randomized algorithm run by the client. It takes the epoch
index e as input and outputs a secret key ke for the epoch e.

– Encrypt(ke,m) is a randomized algorithm run by the client. It takes the secret
key ke and the message m as inputs, and outputs the ciphertext Ce = (C̃e, C̄e)
which consists of two parts, i.e., the header C̃e and the body C̄e.

– Decrypt(ke, Ce) is a deterministic algorithm run by the client. It takes the
secret key ke and the ciphertext Ce as inputs, and outputs the message m or
the symbol ⊥.

– ReKeyGen (ke, ke+1, C̃e) is a randomized algorithm run by the client. It takes
the header C̃e, the old secret key ke of the last epoch and the new secret key
ke+1 of the current epoch as inputs, and generates a re-encrypt token ∆e,C̃

or outputs the symbol ⊥.
– Recrypt(∆e,C̃e

, Ce) is a deterministic algorithm run by the server. It takes

the re-encrypt token ∆e,C̃e
and the ciphertext Ce = (C̃e, C̄e) as inputs, and

outputs a new ciphertext Ce+1 =
(
C̃e+1, C̄e+1

)
under the secret key ke+1 or

the symbol ⊥.

Note that the above formalization is tailored to our ciphertext integrity def-
inition. Particularly, here we require the algorithm Recrypt to be deterministic.
It is because, if the server is allowed to randomly re-encrypt the ciphertext given
the token and the header, a malicious server may run this procedure more than
one time, and get multiple (maybe exponentially large number of) versions of
the updated ciphertext. Consequently, this makes the challenger to track the
trivially obtained ciphertext in the CTXT game extremely difficult. Moreover,
such a restriction of the syntax has little impact on the construction, since the
algorithm Recrypt is deterministic for almost all existing CDUE schemes [10,3].

Besides, the syntax of the CIUE scheme can be viewed as a special case of the
ciphertext dependent scheme in Definition 1 when choosing a dummy header,

10 L.Chen et al.

although its security definition may be different. In this case, the server has no
need to send the header back, and the update token is generated from the old
and new keys directly.

Fig. 1. The data flow between client and cloud during the key update of the ciphertext

Ce =
(
C̃e, C̄e

)
for the epoch e. The client receives a small ciphertext header C̃e, and

runs ReKeyGen to produce a compact update token ∆e,C̃e
. The server uses this token

to re-encrypt the ciphertext Ce to Ce+1.

Correctness.We define the correctness of CDUE if the ciphertext can still be
correctly decrypted after arbitrary times of key update. Specifically, we have the
following formal defintion.

Definition 2 (Correctness). For an updatable encryption scheme CDUE,
each epoch key ki is generated by CDUE.KeyGen(i) for epoches from 0 to e. For a
message m and any integer i such that 0 ≤ i ≤ e, let ci ← CDUE.Encrypt(ki,m)
and recursively define for i < j ≤ e,

∆j−1,C̃j−1
← ReKeyGen

(
kj−1, kj , C̃j−1

)
,

Cj ← Recrypt
(
∆j−1,C̃j−1

, Cj−1

)
.

Then CDUE is correct if Pr[CDUE.Decrypt(ke, Ce) = m] = 1 for any message
m, any integer e and any integer i such that 0 ≤ i ≤ e.

Compactness. We say that a CDUE scheme is compact if the size of total commu-
nications between client and server during update is independent of the length of
the plaintext. In practice, the compactness guarantees that the communication
cost for the key update procedure is efficient.

4 Strengthened Security Models

In this section, we systematically study the security definitions of the CDUE.
As we explained in the introduction, the previous model combination UP-IND
+ UP-INT [10,3] needs to be strengthened in multiple aspects.

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 11

Malicious re-encryption attack. All previous CDUE definitions [10,3] did not
consider malicious re-encryption threats, particularly for integrity, i.e. the ad-
versary may query maliciously generated ciphertexts to the re-encryption oracle.
However, a real-world adversary who can temporarily compromise the server may
inject arbitrary ciphertexts in data storage. These injected ciphertexts may be
automatically updated by the server, even if they may not be decrypted success-
fully. Such possibilities can be leveraged by the adversary to attack the integrity
or the confidentiality. In the full version [9], we show that an adversary of the
KSS scheme [10] can fabricate a valid ciphertext by querying re-encryption ora-
cle with an ill-formed ciphertext. The intuition of the attack is that the adversary
may generate a valid ciphertext C1 for epoch 1 by corrupting key k1. But instead
of querying the re-encryption oracle with C1 directly, the adversary may query
with a invalid ciphertext C ′1 = f(C1) which is a modification of C ′1 via certain
operation f . After getting an updated ciphertext C ′2 (which is still invalid), the
adversary can recover a valid ciphertext C2 from C ′2 though an inverse opera-
tion f−1. More importantly, since C2 is not directly generated via querying the
re-encryption oracle or the encryption oracle, and the epoch key k2 has not been
corrupted, C2 will be considered as a legitimate forgery in the CTXT game!

Post-compromise security. The security model in [10,3], as discussed in [18], is
hard to capture the post compromise security. More precisely, the UP-IND model
is ambiguous that whether the adversary is allowed to view certain version of
the challenge ciphertext updated from a key corrupt epoch. We gave exemplary
explanations in the introduction. and we will give a concrete example in [9] to
show a scheme proved secure under UP-IND model, but can be attacked by a real
world adversary. As pointed by Lehmann and Tackmann in [18], this ambiguity
is caused by the missing of the epoch notion in UP-IND. The integrity model
UP-INT has a similar problem. Of course, the definition is more involved as we
also need to consider the leaked headers, and flexible generation of tokens.

Chosen ciphertext attack. The chosen ciphertext attack is a real threat to a UE
system. One the one hand, a malicious server may choose an arbitrary ciphertext
to answer the retrieve query of the client, and learn the information about the
decryption result later on from side channels (e.g. the server may easily learn
whether the decryption is successful according the response of the client.); on the
other hand, temporary breaches of the client’s device may happen occasionally.
Although the secret key may not be easy to steal due to the limit of time, the
adversary may use the compromised device as an decryption oracle. Nevertheless,
the previous models for CDUE in [10,3] have not considered the chosen ciphertext
attack. One may hope that UP-IND plus UP-INT can imply a CCA style security
analogous to the AE setting, but such a relation have never been proved for UE.
We will show soon that it turns out to be false!

In the following, we formally define our strengthened security models for
CDUE: for confidentiality, we provide the sUP-IND-CCA model; for integrity,
we provide the sUP-INT-CTXT model; for re-encryption indistinguishability, we

12 L.Chen et al.

provide the sUP-REENC-CCA model in the full version [9]. Moreover, we also
provide the sUP-IND-CPA model without the decryption oracle for complete-
ness, and show a counter example where a CDUE scheme is sUP-IND-CPA and
sUP-INT-CTXT but not sUP-IND-CCA secure. That inspires us that the corre-
sponding model relation is different with the case for authenticated encryption.

4.1 Confidentiality

Now we start from the confidentiality, and describe models strengthened UP-
IND-CPA and strengthened UP-IND-CCA (sUP-IND-CPA and sUP-IND-CCA
for short) which mimic the standard CPA and CCA model of AE. In these
models, the key is evolving with the epochs. Beside the challenge ciphertext
and the encryption/decryption oracle, the adversary is additionally allowed to
obtain keys of some epochs. This captures that the client’s keys are leaked.
Also the adversary has the ability to get some previous versions of the challenge
ciphertexts and update tokens. This captures that previous storage in the server
may not be securely erased in time. To exclude the trivial impossibility, we
disallow the adversary to learn a version of the challenge ciphertext and corrupt
the key within the same epoch. However, the adversary is always allowed to
see the header of any updated version of the original challenge ciphertext, even
getting its body is forbidden. This is because the adversary may pretend the
client in front of the server and ask the header3.

Note that our models sUP-IND-CPA and sUP-IND-CCA have fully consid-
ered that the cases that the adversary may compromise the server during some
epoch and read its memory or tamper some ciphertexts. So we allow the adver-
sary to query the re-encryption oracle with maliciously generated ciphertexts.
However, the key update procedure should follow the instructions of the UE
scheme, i.e., the server will recover at the end of the epoch and honestly execute
the key rotation instructions. The assumption is inevitable for UE, since no UE
scheme can achieve the basic security if a fully malicious server refuses to exe-
cute the update operation. In practice, a benign server can quickly detect the
invasion by the intrusion detection systems (IDSs), recover from the breach in
time before the next key rotation with a high probability.

Experiment structure. We first describe the structure of the confidentiality
game in Fig.2, and explain in detail how the oracles are defined right after Defi-
nition 3. As mentioned above, we also introduce the epoch notion to denote the
time sequence following [18]. We index every epoch in the experiments according
to its order from 0, and record the index of the current epoch with variable e.
Note that in our game the challenge ciphertexts are automatically updated when
moving to the next epoch. This enables us to provide to the adversary some up-
dated versions of the challenge ciphertext which are indeed updated from an
epoch in which the key is corrupted, as well as the header of the version of the

3 In the real world, the communication between a client and a server is typically
via TLS without the user authentication [16], since the client does not have a PKI
certificate. Therefore pretending the client in front of the server is not difficult.

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 13

challenge ciphertext in the key corrupted epoch, thus our model easily captures
the post-compromise security (which was ambiguous in existing models).

sUP-IND-ATK ExpAsUP-IND-ATK(λ)

1 : pp←$Setup(λ), Initialize e,K, IC,KC,TO,CE
2 : k0 ← KeyGen(pp), K(0)← k0

3 : (m0,m1, state)←$AO1

4 : Procced only if |m0| = |m1|
5 : b←$ {0, 1}, C∗ ← Encrypt(ke,mb), Set CE(e)← C∗

6 : b′ ←$AO2(state)

7 : for i = 1 to e

8 : if KC(i) = true ∧ IC(i) = true then return ⊥
9 : return (b′ == b)

Fig. 2. The sUP-IND-ATK experiment, where ATK could be CPA or CCA. When ATK
is CPA, O1:=(OEnc, ONext, OKeyCorrupt, OReEnc, OToken) and O2:= (OEnc, ONext, OKeyCorrupt,
OReEnc, OToken, OHeader, OChallengeCT). When ATK is CCA, O1 additionally includes ODec

and O2 additionally includes ODec.

Definition 3 (sUP-IND-CPA(CCA)). Define the sUP-IND-CPA(CCA) ex-
periment as Fig.2 where ATK is CPA(CCA). An updatable encryption scheme is
called sUP-IND-CPA(CCA) secure if for any P.P.T adversary A the advantage

Adv
sUP-IND-CPA(CCA)
A :=

∣∣∣∣Pr[ExpAAdaptive UE-CPA(λ)⇒ 1]− 1

2

∣∣∣∣
is negligible for the security parameter λ.

As explained before, our sUP-IND-CPA(CCA) strengthen previous confi-
dentiality model in aspects of the malicious update resistance and the post-
compromise security. Also. the sUP-IND-CCA strengthens the security against
chosen ciphertext attack. To more clearly elaborate this claim, next we will de-
scribe the behaviour of the challenger during the game in detail. Especially, we
will show how the challenge to maintain his internal states and answer each
queries of the adversary.

The internal state of the challenger. During the games, with respect to the
adversary’s behaviour and the key evolution, the challenger will maintain and
update the following tables to keep track of the overall state, which will be used
to rule out the trivial impossibility. The rows of each table are indexed by the
epoch indices.

Special cares are needed for those tables related to challenge ciphertexts. To
explain, we call the ciphertexts that are updated from the challenge ciphertext

14 L.Chen et al.

challenge-equal ciphertexts. There is at least one challenge-equal ciphertext for
every epoch since the challenge epoch. And the adversary can choose to view the
challenge-equal ciphertext in any key-uncorrupted epoch and the header of the
challenge-equal ciphertext in any key-corrupted epoch (via concrete oracles de-
fined below). Note that our model does not limit to repeat querying the OReEnc

oracle with the challenge ciphertext and the challenge-equal ciphertext. Since
the ReKeyGen algorithm (hence the ciphertext update procedure) could be ran-
domize, the adversary can acquire multiple the challenge-equal ciphertexts of
the same epoch.

As previous models [10,3], we also consider static key corruption, which
means that the adversary is required to commit whether he will corrupt the
key of the current epoch in advance before the challenger generating this epoch
key, computing the tokens and updating all the ciphertexts to this epoch.

– Table K is used to record the secret key of every epoch, each entry is the
secret key ki of epoch i. All entries of K are initialized as ⊥.

– Table KC is used to keep track of the adversary’s commitments about the
key corruption. Each entry is one Boolean value b ∈ {true, false}. When an
epoch i begins, the static adversary needs to set KC(i) as true or false, which
denotes her commitment about whether the secret key of that epoch i can
be corrupted in the game.

– Table CE is used to record all the challenge-equal ciphertexts during the
experiment. Specifically, each entry CE(i) contains all the challenge-equal
ciphertexts of the corresponding epoch. All the ciphertexts are updated to
the current epoch automatically with key update. All entries will be initially
set as ⊥ during the experiment.

– Table TO is used to keep track of the event that a token related to challenge-
equal ciphertext is corrupted. Specifically, the i-th entry is one Boolean value
b ∈ {true, false}. Here TO(i+ 1) = true denotes that the following event has
happened during the game: a valid token updating any one challenge-equal
ciphertext from epoch i to epoch i + 1 has been queried by the adversary.
All entries will be initially set as false during the experiment.

– Table IC is used to keep track of the event of the adversary’s corruption of the
challenge-equal ciphertexts. Specifically, each entry i contains one Boolean
value b ∈ {true, false}. Here IC(i) = true means the following event has
happened during the game: there are certain challenge-equal ciphertext in
the epoch i has been learned by adversary via different oracles (to be defined
below) directly or indirectly. Note that there may be multiple challenge-equal
ciphertexts for one epoch due the randomized key update procedure. Here
we make IC(i) = true if anyone of the challenge-equal ciphertexts for epoch
i is leaked to the adversary. All entries will be set false when the game starts.

Oracles of the adversary. We now formally define the queries that adversary
is allowed to ask. Note that the epoch variable e will automatically increase dur-
ing the game, and the key and the challenge-equal ciphertexts are automatically
updated accordingly. This procedure is triggered by the oracle ONext. Hence the

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 15

challenge-equal ciphertexts will be updated to the key-corrupted epochs, and
the adversary can see their headers but not bodies. This feature helps us to go
beyond the restriction of the models in [10], and capture post compromise se-
curity. Also note that we allow the adversary to query OReEnc with maliciously
generated ciphertexts, and OReEnc may return ⊥ if the ReKeyGen and Recrypt
algorithms include a invalid ciphertext detection mechanism. Similarly, OToken

may reply ⊥ when queried with an invalid header.

– Turn to next epoch oracle ONext(b): This oracle is to used to inform the
challenger to evolve to the next epoch e+ 1, and update all challenge-equal
ciphertexts in table CE(e) to the epoch e + 1. Specifically, the input of the
oracle ONext is a bit b which denotes whether the epoch key ke+1 will be
corrupted later on, the challenger will record KC(e+ 1) = b in the key cor-
ruption table. Moreover, the challenger runs KeyGen(pp) to produce a new
key ke+1 for the new epoch e + 1 and sets K(e + 1) = k in the key record
table. For each challenge-equal ciphertext Ce = (c̃e, c̄e) ∈ CE(e) (if the
challenge-equal ciphertext table CE(e) is not empty), run the token genera-
tion algorithm ∆e,e+1,c̃←$ReKeyGen(ke, ke+1, c̃e) and the update algorithm
C ′ ← Recrypt(∆e,e+1,c̃e , Ce) for each ciphertext and import all the updated
ciphertexts to the row CE(e). Finally, the challenger updates the current
epoch variable e by adding one as e← e+ 1.

– Encrypt oracle OEnc(m): This oracle is used to ask the challenger to encrypt
a message m under the current epoch key. The challenger will run C ←
Encrypt(ke,m) and return the ciphertext C to the adversary.

– Decrypt oracle ODec(C): This oracle is to ask the challenger to decrypt ci-
phertext C under the current epoch key. When queried with a ciphertext
C, the challenger will check the table CE to identify whether C could be a
challenge-equal ciphertext. If C /∈ CE(i) for i from 0 to e, the challenger will
run the algorithm m← Decrypt(ke, C) to decrypt C with current key ke and
return m to the adversary; otherwise, return ⊥. This is to avoid the trivial
attack that the adversary may query ODec on a challenge-equal ciphertext.

– Key corrupt oracle OKeyCorrupt(i): This oracle is used to corrupt the keys for
previous epochs. Note that in our static model the adversary is only allowed
to corrupt the key that he has committed before. When queried the epoch
index i, the challenger checks the key corruption commit table KC(i) at
first. If KC(i) = true, the challenger returns the secret key ki of the epoch i.
Otherwise, he returns ⊥.

– Token corrupt oracle OToken(i, c̃): The adversary is allowed to query this
oracle to obtain update tokens. When queried with an epoch index i and
the corresponding ciphertext header c̃, the challenger will run the token
generation algorithm ∆i,i+1,c̃←$ReKeyGen(ki, ki+1, c̃), and return the token
∆i,i+1,c̃ to the adversary. If ∆i,i+1,c̃ 6= ⊥ and the header c̃ has even ap-
peared in CE(i), the challenger will update the token corruption table TO,
the challenge-equal ciphertext table CE and the challenge-equal ciphertext
corruption table IC accordingly.

16 L.Chen et al.

• The challenger sets TO(i+1) as true to mark the event that some update
token of certain challenge-equal ciphertexts for epoch i has been leaked
to the adversary.

• The challenger automatically updates all the challenge-equal ciphertexts
with header same to c̃ in CE(i) from epoch i to the current epoch e.
Particularly, the challenger iteratively runs ReKeyGen and Recrypt algo-
rithm to update these ciphertexts by epoch, while archiving all generated
challenge-equal ciphertexts along the way to the corresponding rows of
CE.

• Update the table IC to mark the epochs in which the adversary may see
challenge-equal ciphertexts as follows: for each ` from i to e, if IC(`) ∧
TO(`+1) = true, then set IC(`+1) set as true. Moreover, for most existing
CDUE schemes [10,3], given the updated ciphertext in the second epoch,
the corresponding token from the first epoch to the second epoch, and
the header of ciphertext in the first epoch, it is not difficult to recover the
complete ciphertext in the second epoch. This property is called the bi-
directional update by Everspauph et al., which also should be taken into
consideration for the game winning condition. Hence for any ` decreasing
from i+1 to 0, if IC(`)∧TO(`) = true, we let the challenger set IC(`−1)
as true.

– Challenge-equal ciphertexts’ header oracle OHeader (i): This oracle is used to
acquire the header of the challenge-equal ciphertext in the key corrupted
epoch i. When queried with the epoch index i, the challenger will return all
the headers of the challenge-equal ciphertexts in CE.

– Challenge-equal ciphertexts oracle OChallengeCT(i): This oracle is used to ac-
quire the existing challenge-equal ciphertexts in the epoch i. When queried
with the epoch index i, the challenger will return all the challenge-equal
ciphertexts in the row CE(i) and update the challenge-equal ciphertext cor-
ruption table IC to mark the leakage of challenge-equal ciphertexts as fol-
lowing:

• Set IC(i) as true to mark the leakage of challenge-equal ciphertexts in
epoch i.

• For any ` from i + 1 to e, if IC(` − 1) = true ∧ TO(`) = true, then set
IC(`) as true to mark the leakage of the challenge-equal ciphertexts that
may be updated by the adversary herself via leaked tokens.

• For any ` from i to 1, if IC(`)∧TO(`) = true, then set IC(`−1) as true to
mark the leakage of former challenge-equal ciphertexts that may be re-
covered by the adversary herself via leaked tokens and the bi-directional
update property.4

– Re-encryption oracle OReEnc(i, C): This oracle is used to update any cipher-
texts of the epoch i to the current epoch. As considering the adversary may

4 For simplicity, we assume that if the adversary can acquire one of the challenge-
equal ciphertext in the epoch e, she can automatically get all other challenge-equal
ciphertexts in the same epoch.

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 17

query the oracle OReEnc with maliciously generated ciphertexts, the oracle
OReEnc is allowed to return ⊥ according to the scheme specification, which
is different with the previous works [10,18,14]. Specifically, when OReEnc is
queried with a ciphertext C and an epoch index i, the challenger defines
Ci = (c̃i, c̄i) as C = (c̃, c̄), and iteratively runs token generation algo-
rithm ∆ki,ki+1,c̃l ←$ReKeyGen(kl, kl+1, c̃l) and the re-encryption algorithm
Cl+1 ← Recrypt(∆ki,ki+1,c̃l , Cl) for all integers l ∈ [i, e). If all Recrypt pro-
cedures are carried out successfully, the challenger will return the generated
Ce to the adversary. Moreover, if the queried ciphertext C ∈ CE (i.e., it is
the challenge-equal ciphertext), the challenger will update the tables IC and
CE accordingly:
• For all l ∈ [i, e), the challenger archives the newly generated challenge-

equal ciphertext Cl in CE(l).

• The challenger sets IC(e) as true to mark the leakage of the challenge-
equal ciphertext in epoch e.

• Additionally, the challenger may have to go backward and update the
entry IC(l) for the epochs before e. This is because given the challenge-
equal ciphertext of the epoch e, the adversary may recover the former
challenge-equal ciphertext via the leaked tokens and the bi-directional
update property. Specifically, for l start decreasing from e, the challenger
sets IC(l − 1) = true until he finds IC(l) ∧ TO(l) = false.

sUP-IND-CPA v.s. UP-IND. Note that even our sUP-IND-CPA security is stronger
than UP-IND [10] in following aspects. Firstly, sUP-IND-CPA can characterize
the post-compromise security which is ignored in UP-IND. Although the con-
structions in [10,3] is post-compromise secure, there do exist constructions (see in
the full version [9]) which are UP-IND secure but without the post-compromise
security. Secondly, unlike sUP-IND-CPA, UP-IND does not allow the adversary
to query the re-encryption oracle with malformed ciphertexts with the same
header as the challenge ciphertext. Therefore, the KSS scheme in [10] is proved
secure under UP-IND, but can be attacked by maliciously re-encrypting a forged
ciphertext with the same header of the challenge ciphertext to a key corrupted
epoch. In this way, the adversary can somehow compute the challenge-equal ci-
phertext that he is not supposed to see in a key corrupted epoch. The detailed
attack is shown in the full version [9].

Bi-directional update. Given the previous update token and the former cipher-
text header, we assume that one can reversely downgrade a ciphertext to a
previous epoch. This property is naturally satisfied by the two constructions
KSS and ReCrypt in [10]. Therefore, for fully capturing the challenge-equal
ciphertext corruption to avoid trivial win, the challenger needs to update the
challenge-equal ciphertext corruption table IC forward and backward whenever a
challenge-equal ciphertext or token is corrupted. This backward inference should
have appeared in the model of [10], but due to the inherent limitation of their
model, the challenge-equal ciphertext that the adversary can see is always di-
rectly updated from a key-uncorrupted epoch. So this negligence has not been
fully reflected in their paper.

18 L.Chen et al.

4.2 Integrity

Then we describe our model sUP-INT-CTXT for CDUE. Like our sUP-IND-
CCA model, our integrity model strengthens the UP-INT model in [10] in the
sense that allowing the adversary to query the ReEnc oracle with maliciously
generated ciphertexts and introducing the epoch notion to capture the post-
compromise security. Similar to our confidential models, the challenger needs to
maintain table K to record generated secret keys, and table KC to keep track of
the adversary’s key corruption commitment. Besides, the challenger also needs
to maintain the following trivially obtained ciphertexts table T especially for the
sUP-INT-CTXT model.

– Table T is used to keep track of ciphertexts that the adversary can trivially
obtain. These ciphertexts are acquired by adversary from three sources: 1)
directly response from the OEnc oracle, 2) response from the OReEnc oracle,
and 3) derived by the adversary herself from querying ciphertexts and update
tokens. Specifically, its rows are indexed by the epoch index and ciphertext
header pairs (i, c̃), and entries are the header’s associated ciphertext body
c̄. To make the definition more general, we allow T(i, c̃) to include multiple
ciphertext bodies c̄ associated to the same header. All entries will be set ⊥
when the game start.

Specifically, we define the sUP-INT-CTXT experiment as Fig. 3. Similar to
[14], we only accept forgeries that the adversary makes in the current and final
epoch eend, but not in the past. This matches the concept of UE where the secret
keys and update tokens of old epochs will (ideally) be deleted, and thus a forgery
for an old key is meaningless anyway. The experiment requests the adversary,
after engaging with the oracles OEnc’, ODec, OToken’, ONext, OKeyCorrupt and OReEnc’,
to generate a new legal ciphertext C∗ for the current epoch. The adversary wins
if the two requirements hold simultaneously. One is the new ciphertext C∗ can
be successfully decrypted by the current epoch key ke. The other is that C∗

is not a trivial win, i.e. the ciphertext C∗ is not in the trivially obtained table
ciphertext table T and the current epoch key ke has not been corrupted.

During the sUP-INT-CTXT experiment, the challenger’s behaviours to re-
sponse the oracles ODec, ONext and OKeyCorrupt are similar to the sUP-IND-CCA
experiment. However, there are three different oracles OEnc’, OToken’ and OReEnc’

in sUP-INT-CTXT that require the challenger to update the table T accordingly.

– Encryption oracle OEnc’(m): This oracle is used to query the encryption of
the message m under the current epoch key ke. Specifically, the challenger
will return Enc(ke,m) to the adversary. Also he will parse the ciphertext
Enc(ke,m) = (c̃, c̄) and update the table T as T(e, c̃)← c̄.

– Re-encryption oracle OReEnc’(i, C): This oracle is used to update any cipher-
texts of the epoch i to the current epoch like OReEnc in sUP-IND-CCA. When
the oracle OReEnc’ is queried with an epoch index i and a ciphertext C, if the
challenger can successfully update C to C ′ = (ĉ′, c̄′) of the current epoch e,
he will return C ′ to the adversary. Additionally, c̄′ will be added to T(e, ĉ′).

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 19

– Token corrupt oracle OToken’(i, c̄): When the oracle OToken’ is queried with an
epoch index i and a ciphertext header c̃ during the sUP-INT-CTXT experi-
ment, the challenger will return ⊥ if KC(i) = true, otherwise the challenger
will run the token generation algorithm ∆i,i+1,c̃←$ReKeyGen(ki, ki+1, c̃) and
return the token ∆i,i+1,c̃ to adversary A. If ∆i,i+1,c̃ is not ⊥, the challenger
will updates the trivially obtained ciphertext T accordingly: for all cipher-
text bodies c̄ ∈ T(i, c̃), the challenger will automatically generate the cor-
responding ciphertext C ′ ← Recrypt(∆ki,ki+1,c̃, (c̃, c̄)) for next epoch, parse
C ′ = (c̃′, c̄′) and record them in the row T(i, c̃′).

Definition 4 (sUP-INT-CTXT). Define the sUP-INT-CTXT experiment as
Fig. 3. An updatable encryption scheme is called sUP-INT-CTXT secure if for
any P.P.T. adversary A the following advantage

AdvsUP-INT-CTXT
A := Pr[ExpAsUP-INT-CTXT(λ)⇒ 1]

is negligible in the security parameter λ.

ExpAsUP-INT-CTXT(λ)

1 : pp←$Setup(λ)

2 : Initialize e,K,T,KC
3 : k0 ← KeyGen(pp); K(0)← k0

4 : C∗ = (c̃∗, c̄∗)←$AOEnc’,ONext,OKeyCorrupt,OReEnc’,OToken’

5 : if (Decrypt(ke, C
∗) 6= ⊥) ∧ (c̄∗ /∈ T(e, c̃∗)) ∧ (KC(e) 6= true)

6 : return 1

7 : else return 0

Fig. 3. The sUP-INT-CTXT experiment.

Note that any token corruption is disallowed from a key corrupted epoch
to a key uncorrupted epoch in the sUP-INT-CTXT model, as well as in the
existing models [10,3] for ciphertext integrity. Since in a key corrupted epoch,
the adversary can generate any ciphertext, and the challenger does not know
which ciphertexts the header used to query the OToken oracle is corresponding
to. Thus, such attack should be restricted in the ciphertext integrity game. We
also know that in the message confidentiality models, sUP-IND-CPA and sUP-
IND-CCA, the adversary is allowed to query any token except for the challenge-
equal ciphertext from the key corrupted epoch to the key uncorrupted epoch in
which the challenge-equal ciphertext is corrupted. Such a difference also cause
that the combination of sUP-IND-CPA security and sUP-INT-CTXT security is
not sufficient to imply the sUP-IND-CCA security, which we will discuss in the
next subsection.

20 L.Chen et al.

4.3 sUP-IND-CPA + sUP-INT-CTXT ; sUP-IND-CCA

It is widely known that for the authenticated encryption, the IND-CPA security
plus the INT-CTXT security imply the IND-CCA security [1]. This implication
still holds for CIUE[5]. However, the case for CDUE is different. More interest-
ingly, we find this particularity is inherent for general CDUE, since even under
weaker security models, this implication does not work either, including under
a weaken version of our models without malicious update and under existing
models in [10,3] which do not capture post-compromise security or malicious
update security. In the following, we will show a special CDUE scheme which is
sUP-IND-CPA and sUP-INT-CTXT secure but not sUP-IND-CCA secure. Our
counter example is inspired by our own construction ReCrypt+, but we believe
it can be generalized to a large class of CDUE schemes.

This counterintuitive gap comes from the fact that querying OToken from a
key-corrupted epoch to a key-uncorrupted epoch is forbidden during the sUP-
INT-CTXT game, but the adversary in the sUP-IND-CCA game has the ability
to acquire that kind of tokens for non-challenge-equal ciphertexts. Such token
queries in sUP-INT-CTXT are forbidden, since in a key corrupted epoch the
header used to query the OToken oracle is unknown to the challenger. Thus an
sUP-IND-CCA adversary can leverage such tokens and the decryption oracle to
launch attacks.

Intuitively, if an updating token contains secret information which can be
leveraged by the adversary who knows the previous epoch key, the adversary
may be able to modify the challenge-equal ciphertext and use the result to query
the decryption oracle to get more information about the challenge ciphertext.
More precisely, we add the ciphertext header of the new scheme with a redundant
MAC, and make the encryption of the MAC key contained in the token. If the
adversary corrupt the key of the former epoch and query a token for a non-
challenge-equal ciphertext from that epoch, she can learn the MAC key and
modify the MAC in the next epoch challenge-equal ciphertext. After that, she
may query the modified challenge-equal ciphertext to the decryption oracle. Note
that this attack even does not leverage the malicious re-encryption ability!

Suppose the CDUE is the CDUE scheme which is both sUP-IND-CPA and
sUP-INT-CTXT secure. Moreover, CDUE has a special property: the update
token ∆i,c̃i must explicitly contain the header c̃i+1 of the new ciphertext in
epoch i+ 1. Such a property is satisfied by most CDUE schemes, say KSS and
ReCrypt in [10] and our ReCrypt+in Section 5.

Let SKE = (KeyGen,Enc,Dec) be an IND-CPA secure symmetric key en-
cryption. Let MAC = (KeyGen,Tag,Verify) be a deterministic MAC scheme
which is unforgerable under chosen message attack (e.g. hash-based MACs).
Note that the deterministic property guarantees that there is only one valid
MAC for each message under one secret key. Then we construct the scheme
CDUE′ as follows:

– CDUE′.Setup(1λ): Generate the public parameter pp via CDUE.Setup.

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 21

– CDUE′.KeyGen(pp): Use CDUE.KeyGen to generate an epoch key ke of
CDUE and use MAC.KeyGen to generate a MAC key mke. The new epoch
key k′e of CDUE′ is (ke,mke).

– CDUE′.Encrypt(k′e,m): Parse the secret key k′e = (ke,mke). Given the
plaintext m, firstly use CDUE.Enc to encrypt m under the secret key ke
and generate the ciphertext Ce = (c̃e, c̄e). Secondly, concatenate the header
c̃e with one bit 1 and compute a MAC τe = MAC.Tag(mke, c̃e‖1). Finally,
output the ciphertext C ′e = (c̃′e, c̄e) where the new header c̃′e = (c̃e, τe).

– CDUE′.Decrypt(k′e, C
′
e): Parse C ′e = (c̃′e, c̄e) where c̃′e = (c̃e, τe). Verify

whether MAC.Verify(mke, τe, c̃e‖1) = 1 or MAC.Verify(mke, τe, c̃e‖0) = 1.
If one of above two cases is true, use the CDUE.Decrypt to decrypt the
ciphertext Ce = (c̃e, c̄e) and return the decryption result.

– CDUE′.ReKeyGen(k′e, k
′
e+1, c̃

′
e): Parse c̃′e = (c̃e, τe), k

′
e = (ke,mke) and

k′e+1 = (ke+1,mke+1). Firstly, verify whether MAC.Verify(τe, c̃e‖1) = 1. If
it is true, invoke CDUE.ReKeyGen(ke, ke+1, c̃e) to generate the token ∆e,c̃e .
Note that according to our assumption about CDUE, ∆e,c̃e has the form
(c̃e+1, δe,c̃e) where c̃e+1 is the new header and δe,c̃e denotes the other infor-
mation. Secondly, compute the new MAC τe+1 = MAC.Tag(mke+1, c̃e+1‖1)
and the new header c̃′e+1 = (c̃e+1, τe+1). Finally, encrypt mke+1 under
the key ke as SKE.Encke(mke+1), and output the update token ∆′e,c̃′e =(
c̃′e+1, δe,c̃e ,SKE.Encke(mke+1)

)
for CDUE′.

– CDUE′.ReEncrypt(∆′e,c̃′e , C
′
e): First parse the token ∆′e,c̃′e = (c̃′e+1, δe,c̃e ,

SKE.Encke(mke+1)) and the ciphertext C ′e = (c̃′e, c̄e) = ((c̃e, τe), c̄e). Then
derive the CDUE token ∆e,c̃e = (c̃e+1, δe,c̃e) from ∆′e,c̃′e , and Ce = (c̃e, c̄e)

from C ′e. Invoke CDUE.ReEncrypt(∆e,c̃e , Ce) to get Ce+1 = (c̃e+1, c̄e+1).
Finally output C ′e+1 = (c̃′e+1, c̄e+1) by replacing c̃e+1 with the new header
c̃′e+1 in the token ∆′e,c̃′e .

In the following two lemmas, we show that the above CDUE′ is sUP-IND-
CPA and sUP-INT-CTXT secure when MAC is deterministic (like HMAC [15]).
The sUP-IND-CPA is obvious since the augmented MAC will not leak any in-
formation about the plaintext. Since the CTXT model disallows the adversary
to see the token from a key-corrupted epoch to a key-uncorrupted epoch, the
MAC key will never be leaked. The sUP-INT-CTXT comes from the MAC’s
unforgerability. We put the formal proof in the full version [9].

Lemma 1. If CDUE is sUP-IND-CPA secure and MAC is deterministic (i.e.
there is only one valid MAC for each message under one secret key), CDUE′ is
sUP-IND-CPA secure.

Lemma 2. If CDUE is sUP-INT-CTXT secure, SKE is IND-CPA secure and
MAC is multi-user CMA unforgerable, then CDUE′ is sUP-INT-CTXT secure.

The CCA attack. We provide a CCA attack as follows. The adversary commits
to corrupt the key of the epoch e, but will not corrupt the key of the epoch e+1.
Then the adversary queries a token of non-challenge ciphertext header c̃e,0, and

22 L.Chen et al.

she will get a token ∆′e,c̃′e,0
=
(
c̃′e+1,0, δe,c̃e,0 ,SKE.Encke(mke+1)

)
. Since the key

k′e = (ke,mke) has been corrupted by the adversary, she can recover mke+1

for SKE.Encke(mke+1) easily. Then the adversary acquires the challenge-equal
ciphertext C ′e+1,1 = ((c̃e+1,1, τe+1,1), c̄e+1,1) in the epoch e + 1, where τe+1,1 =
MACmke+1

(c̃e+1,1‖1). Since the adversary knows mke+1, she can modify C ′e+1,1

into a new ciphertext C ′e+1,2 = ((c̃e+1,1, τ
′
e+1), c̄e+1,,1) by shifting the attached

bit in the MAC message and acquiring τ ′e+1 = MACmke+1(c̃e+1,1‖0). According
to the design of our decryption algorithm, τ ′e+1 still can pass the verification even
the attached bit is 0 but not 1. So C ′e+1,2 is still a valid ciphertext of the epoch
e+ 1, and it will not be recognized as a challenge-equal ciphertext by the sUP-
IND-CCA challenger. The adversary can query ODec with C ′e+1,2 in the epoch
e+ 1, and learn the challenge bit. Therefore, we have the following theorem.

Theorem 1. For CDUE, the security combination of sUP-IND-CPA and sUP-
INT-CTXT cannot imply sUP-IND-CCA security.

The gap is inherent. One may be curious about whether the counter-intuitive
gap is caused by the malicious update resistance or the post-compromise secu-
rity. However, we find that the gap between the CPA+CTXT and CCA is in-
herent for general CDUE. To note that, firstly we show the implication does not
hold for a weaker collection of our models (we define UP-IND-CPA, UP-INT-
CTXT and UP-IND-CCA in Appendix XXX following the former paradigm
but adding a restriction to the re-encryption oracle), which only capture the
post-compromise security but not malicious update security. Then we have the
following Theorem 2. The intuition comes from that the CCA attack on our
artificially designed CDUE′ scheme does not need to query malicious cipher-
texts on the re-encryption oracle. Moreover, the security gap holds even for the
weakest models5 in [10,3] without the post-compromise security or the malicious
update resistance. Indeed, it is not hard to see that the above CDUE′ is also
UP-IND and UP-INT secure, while the CCA attack can still apply.

Theorem 2. For a ciphertext dependent UE, the security combination of UP-
IND-CPA and UP-INT-CTXT do not imply UP-IND-CCA security.

5 UE Construction with Strengthened Integrity

Next we describe our new CDUAE construction ReCrypt+. Comparing with
previous CDUAE constructions [10,3], our scheme not only naturally inher-
its their advantage that the plaintext space could be a bit string with arbi-
trary length, but also has the strengthened security to resist the malicious re-
encryption attack. During the security analysis, we prove our scheme secure
under sUP-IND-CCA and sUP-INT-CTXT as above mentioned. So our scheme
has a strengthened security in aspects of the post-compromise security, the ma-
licious re-encryption resistance and the chosen ciphertexts attack resistance.

5 The similar CCA model can be trivially obtained by adding an additional decryption
oracle for ciphertexts decryption except for the challenge-equal ciphertexts.

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 23

5.1 Construction framework

Our construction ReCrypt+ follows the paradigm of the ReCrypt scheme
proposed by Everspauph et al. The original ReCrypt in [10] not only follows
the KEM + DEM with the secret sharing structure, but also involves the key-
homomophic PRF to achieve the re-encryption indistinguishability. However,
as pointed by in the introduction, ReCrypt in [10] suffers the malicious re-
encryption attack.

The key to resist the malicious re-encryption attack is to verify the validity of
the ciphertext before re-encryption. Therefore our scheme not only involves the
AEAD to enable the client to verify the header of the ciphertext, but also uses the
collision-resistant homomorphic hash function and homomorphic commitment
to help the server to check the consistency of the body with the header. These
measures guarantee that the adversary always learns nothing when querying
the ReEnc oracle with a forged ciphertexts. In the meantime, the homomorphic
properties of the hash function and the commitment scheme make that the
update operations to apply smoothly. The detailed construction is as follows,
and also shown in Figure 4.

Let HomHash.Setup and HomHash.Eval be the algorithms of a homomor-
phic collision-resistant hash function with the following syntax.

Definition 5. A homomorphic hash function Hhom is a linear function that
maps vectors of starting group elements v = (v1, . . . , vn) ∈ GnHS into one target
group element u ∈ GHT which is defined by the following two algorithms:

– HomHash.Setup(1λ) : On input the security parameter λ, output an evalu-
ation key hk;

– HomHash.Eval(hk, v): On input the evaluation key hk and a vector of start-
ing group elements v = (v1, . . . , vn) ∈ GnHS, output one target group element
u ∈ GHT .

Fixed the evaluation key hk, we can write as Hhom(v) = HomHash.Eval(hk, v) =
u. Specifically, it should satisfies the following properties:

– Collision resistance: the probability for any P.P.T adversary to generate the
two vectors v and v′ in GnHS which satisfy Hhom(v) = Hhom(v′) is negligible.

– Homomorphism: we have Hhom(v) + Hhom(v′) = Hhom(v + v′).

Let F : KPRF × MPRF → GPRF be the key homomorphic PRF as de-
scribed in Subsection 2, whose codomain is a cyclic group GPRF ⊆ GHS and
key space KPRF is also an additive group. Let HCOM.Init, HCOM.Com and
HCOM.Open be the algorithms for the homomorphic commitment scheme de-
scribed in Subsection 2, whose message space, opening randomness space and
commitment value are MCOM , OCOM and CCOM , respectively. Specifically, we
require that the message space MCOM contains the PRF key space KPRF . Let
the AEAD.KeyGen, AEAD.Enc and AEAD.Dec be the algorithms for AEAD
as described in Subsection 2, whose key space, message space and ciphertext
space are KAEAD, MAEAD and CAEAD.

24 L.Chen et al.

Setup(λ)

1 : hk←$HomHash.Setup(λ), hcom.pp←$HCOM.Init(λ)

2 : return (hk, hcom.pp)

KeyGen(λ)

1 : k←$AEAD.KeyGen(1λ), return k

Encrypt(k,m)

1 : Map m→ (m1,m2, . . . ,mn) ∈ GnPRF , z←$KPRF
2 : di ← mi + F(z, i), d = (d1, d2, . . . , dn) ∈ GnPRF , h← HomHash.Eval(hk, d)

3 : y←$KPRF , hcom← HCOM.com(y;hopen), x = z − y
4 : ct←$AEAD.Enc(k, x, (h, hcom))

5 : c̃ = (ct, h, hcom)// Ciphertext header

6 : c̄ = (y, hopen, d)// Ciphertext body

7 : return C = (c̃, c̄)

Decrypt(k, C)

1 : Parse C = ((ct, h, hcom), (y, hopen, d))

2 : if h == HomHash.Eval(hk, d) ∧HCom.Open(hcom, y, hopen) == 1 then

// Check the body is consistent with the header.

3 : x? ← AEAD.Dec(k, c̃1, (h, hcom))

4 : for 1 ≤ i ≤ n do m?
i ← di − F(x? − y, di) return m? = m?

1, . . . ,m
?
n

5 : return ⊥

ReKeygen(k, k′, c̃)

1 : Parse c̃ = (ct, h, hcom),m′ ← AEAD.Dec(k, ct, (h, hcom))

2 : if m′ 6= ⊥ then// Check the returned header is valid.

3 : ∆z←$KPRF , ∆di ← F(∆z, i), ∆d = ∆d1,∆d2, . . . ,∆dn

4 : h′ ← h+ HomHash.Eval(hk,∆d), ∆y←$ {0, 1}∗

5 : hcom′ ← hcom+ HCom.Com(∆y, hopen∆), x′ = x+∆z −∆y,
6 : ct′ ←$AEAD.Enc(k′, x′, (h′, hcom′)), c̃′ = (ct′, h′, hcom′)

7 : return ∆ = (c̃′,∆y, hopen∆,∆z)

8 : else return ⊥

ReEncrypt(C,∆)

1 : Parse C = ((ct, h, hcom), (y, hopen, d)) ,∆ =
(
c̃′, (∆y, hopen∆,∆z)

)
2 : if HCOM.Open(hcom, y, r) == 1 ∧ h == HomHash.Eval(hk, d) then

// Check the body is consistent with the header.

3 : y′ = y +∆y, r′ = r +∆r, Parse d = (d1, d2, . . . , dn)

4 : d′i ← di + F(∆z, i), d′ = (d′1, d
′
2, . . . , d

′
n)

5 : hopen′ = hopen+ hopen∆, y′ = y +∆y, c̄′ = (y′, hopen′, d′)

6 : return C′ = (c̃′, c̄′)

7 : return ⊥

Fig. 4. Construction for ReCrypt+

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 25

– ReCrypt+.Setup(λ): Run the HomHash.Setup algorithm to generate the
parameter hk for the homomorphic collision-resistant hash function. Also run
the HCOM.Init to generate the parameter hcom.pp for the homomorphic
commitment. The public parameter ReCrypt+.pp=(hk, hcom.pp) will be
taken as the implicit input of the following algorithm.

– ReCrypt+.KeyGen(λ): Run the AEAD.KeyGen(λ) to generate the key of
AEAD k ∈ KAEAD.

– ReCrypt+.Encrypt(k,m): The algorithm proceeds as follows.

1. Map the message m into n group elements m1,m2, . . . ,mn ∈ GnPRF .
2. Use the key-homomorphic PRF to encrypt each block mi. Specifically,

sample a PRF key z ∈ KPRF and then mask each message mi as di =
mi + F(z, i) ∈ GPRF .

3. Let d = (d1, d2, . . . , dn) ∈ GnPRF . Since d ∈ GnPRF ⊆ GnHS , one can com-
pute the homomorphic hash function on d and derive HomHash.Eval(hk, d)
= h ∈ G.

4. Randomly choose two shares x, y ∈ KPRF of z such that x+ y = z.
5. Use the homomorphic commitment scheme to commit the share y, and

generate the commitment HCom.Com(y, hopen) = hcom ∈ CCOM ,
where hopen ∈ OCOM is the corresponding opening randomness.

6. Use the AEAD to encrypt the key share x ∈ KPRF ⊆ {0, 1}λ with
the auxiliary data the HCRH value h ∈ GHT ⊆ {0, 1}λ and the ho-
momorphic commitment hcom ∈ CCOM ⊆ {0, 1}λ. Get the ciphertext
ct ∈ CAEAD.

7. The header of the UE ciphertext is c̃ = (ct, h, hcom) ∈ CAEAD ×GHT ×
CCOM , and the body of the UE ciphertext c̄ = (y, hopen, d) ∈ KPRF ×
OCOM ×GnPRF .

– ReCrypt+.Decrypt(k,C): Given k ∈ KPRF and the ciphertext C = (c̃, c̄),
the UE decryption algorithm first parses the ciphertext C as the header
c̃ = (ct, h, hcom) ∈ CAEAD×GHT ×CCOM and the body c̄ = (y, hopen, d) ∈
KPRF ×OCOM ×GnPRF , and proceeds as follows:

1. Verify HomHash.Eval(hk, d)
?
= h ∈ GHT for d ∈ GnPRF ⊆ GnHS ,

2. Verify whether hcom ∈ CCOM is a valid commitment of y ∈ KPRF ⊆
MCOM , so one invokes the homomorphic commitment opening algorithm
HCom.Open(hcom, y, hopen) and check the results whether equals to 1.

3. Decrypt the AEAD ciphertext ct with the current epoch key k and the
auxiliary data h and hcom.

4. If above verification passes and the AEAD decryption algorithm success-
fully outputs x ∈ KPRF , the UE decryption algorithm will recover all
mi ∈ GPRF by computing mi = di − F(x− y, i), otherwise it returns ⊥.

– ReCrypt+.ReKeyGen (k, c̃): The algorithm parses the header c̃ = (ct, h, hcom) ∈
CAEAD ×GHT × CCOM , and proceeds as follows:

1. Use the currency secret key k ∈ KAEAD to decrypt ct with the auxiliary
data (h, hcom). If the AEAD decryption successfully return x ∈ KPRF ,
execute following steps, otherwise return ⊥.

2. Choose a random ∆z ∈ KPRF , and compute ∆di = F(∆z, i) ∈ GPRF .

26 L.Chen et al.

3. Let ∆d = (∆d1, . . . ,∆dn) ∈ GnPRF ⊆ GnHS . Compute the new hash value
h′ = h+ HomHash.Eval(hk,∆d) ∈ GHT .

4. Generate a new group element ∆y ∈ KPRF and its homomorphic com-
mitment HCom.com(∆y, hopen∆) = hcom∆ ∈ GCOM . So the new com-
mitment is hcom′ = hcom+ hcom∆.

5. Compute x′ = x + ∆z −∆y ∈ KPRF . Encrypt x′ with the new master
key k′ and auxiliary data (h′, hcom′), and get the AEAD ciphertext
ct′ = AEAD.Enc(k′, x′, (h′, hcom′)).

6. Let the new header c̃′ = (ct′, h′, hcom′) ∈ CAEAD × GHT × CCOM .
Return the update token ∆ = (c̃′, ∆y, hopen∆, ∆z).

– ReCrypt+.ReEncrypt(C,∆): The algorithm will first parse the ciphertext
header c̃ = (ct, (h, hcom)), the ciphertext body c̄ = (y, hopen, d) and the
update token ∆ = (c̃′, ∆y, hopen∆, ∆z), then proceeds as follows.
1. Verify whether HomHash.Eval(hk, d) = h ∈ GHT for d ∈ GnHS ,
2. Verify whether hcom ∈ GCOM is a valid commitment of y ∈ KPRF , i.e.,

invoke the opening algorithm HCom.Open(hcom, y, hopen) and check
the result whether equals to 1.

3. If above verification can be passed, compute d′ = (d′1, d
′
2, . . . , d

′
n) ∈

GPRF ⊆ Rn where d′i = di + F(∆z, i) ∈ GPRF .
4. Compute the new commitment opening hopen′ = hopen+ hopen∆.
5. Compute y′ = y +∆y.
6. Generate new ciphertext C ′ = (c̃′, c̄)′ by taking c̃′ from the token ∆ as

the new header and setting c̄′ = (y′, hopen′, d′) ∈ KPRF×OCOM×GnPRF .

5.2 Homomorphic hash functions from DDH groups

To make the following ReCrypt+framework works, we should construct a ho-
momorphic embedding from the range of the key homomorphic PRF into the
domain of the collision-resistant hash function (i.e, GPRF → GHS). Note that
trivial dictionary maps do not work here, since we should make those homomor-
phic properties still hold. To handle this issue, we will involve a critical primitive
named the homomorphic hash function from DDH groups. Previous homomor-
phic hash function schemes only allow the messages to be exponents [8,17,11] or
short ring elements [19]. In contrast, we hope the message can be chosen from
a group where the decisional Diffie-Hellman (DDH) problem is hard, since the
domain of the hash function will be the range of the key-homomorphic PRF.

If there is not requirement for the message group G, a homomorphic hash
scheme is not hard to obtain. Chaum et al. have shown a homomorphic collision-
resistant hash function can be constructed from an exponential homomorphic
hash scheme [8,17]. In their construction, G′ is a finite cyclic group of order p.
The public key hk contain h1, . . . , hn as generators of G′. Let G = Zp be a group
of exponents for G′. For any positive integer n, HHom : Gn → G′ is defined as
Hhom(v1, . . . , vn) =

∏n
j=1 h

vj
j . The homomorphic property is easily verified, and

collision resistance is implied by the discrete logarithm assumption in G′.
However, in our construction ReCrypt+, the DDH problem is required to

be hard over G, since G will be the range of the key-homomorphic pseudoran-
dom function. The above exponential homomorphic hash construction does not

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 27

trivially satisfy this requirement, since the operation over G = Zp is the addition
but not the multiplication. To find the relation between a random element and
a generator is easy in G.

Our homomorphic hash function from DDH groups is based on a bilin-
ear map over elliptic curves where the external Diffie-Hellman (XDH) assump-
tion is hard. Specifically, the homomorphic function works on a bilinear group
(p,G1,G2,GT , e) where p is a k-bit prime, G1,G2,GT are cyclic groups of order
p and e : G1×G2 ← GT is a non-degenerate bilinear map. The XDH assumption
states that the Decisional Diffie Hellman (DDH) assumption is hard in the group
G1 (not necessarily hard in G2). The XDH is believed to be true in asymmetric
pairings generated using special MNT curves [2,21].

So the message are chosen from the group Gn1 , the algorithms of the homo-
morphic hash function are defined as follows.

– HomHash.Setup(G, n): Randomly pick g←$G2\{1} and elements x1, . . . , xn
←$Zp. Define h1 = gx1 , . . . , hn = gxn . Output hk = (h1, . . . , hn) ∈ Gn2 .

– HomHash.Eval (hk,v): Given a key hk = (h1, . . . , hn) ∈ Gn2 and a vector
v = (v1, . . . , vn) ∈ Gn1 , output

∏n
j=1 e(vj , hj) ∈ GT .

For a fixed hk, Hhom : Gn1 → GT is defined as Hhom(v) = HomHash.Eval(hk,v).
The homomorphism can be easily verified. Suppose Hhom(v) =

∏n
j=1 e(vj , hj)

and Hhom(v′) =
∏n
j=1 e(v

′
j , hj), and we have

Hhom(v) · Hhom(v′) =

n∏
j=1

e(vj , hj) ·
n∏
j=1

e(v′j , hj) =

n∏
j=1

e(vjv
′
j , hj).

The collision resistance is based on the double pairing assumption whose hard-
ness is shown by Groth in [12]. The double pairing problem is given random ele-
ments gr, gt ∈ G2 to find a non-trivial couple (r, t) ∈ G2

1 such that e(r, gr)e(t, gt) =
1. The proof could be found in the full version [9].

Lemma 3 (Collision resistance). The double pairing assumption holds for
the bilinear group (p,G1,G2,GT , e). The homomorphic hash function Hhom de-
fined as above is collision resistant.

5.3 Instantiation

To make the above framework works, we should construct a homomorphic em-
bedding from the range of the key homomorphic PRF into the domain of the
collision-resistant hash function (i.e, GPRF → GHS), as well as a homomorphism
from the key space of KPRF to the commitment message space MCOM .

ReCrypt+can be instantiated over a bilinear group (p,G1,G2,GT , e) over
elliptic curves where the external Diffie-Hellman (XDH) assumption and the
double pairing assumption are hard. To handle the homomorphic embedding
from GPRF to GHS , we adopt the DDH based key-homomorphic PRF described
in Subsection 2 over GPRF = G1 and KPRF = Zp, and the homomorphic hash
function described in Subsection 5.2 over (p,G1,G2,GT , e).

28 L.Chen et al.

To handle the homomorphism from KPRF to MCOM , we adopt the Pedersen
commitment over the group G1. The commitment scheme is specified with two
random public group generators g and h in G1. The opening randomness hopen
is randomly chosen from Zp and the commitment message m is also from Zp.
The commitment is Com(m,hopen) = hhopengm ∈ G1. Since the PRF key space
KPRF and the commitment message MCOM are both Z∗p, the homomorphism is
naturally inherent.

5.4 Security Analysis

Now we show that our construction ReCrypt+ is secure under the models sUP-
IND-CCA, sUP-INT-CTXT and sUP-REENC-CCA. Due to page limitation, we
will provide detailed proofs in the full version [9].

sUP-IND-CCA. We are now ready to state the sUP-IND-CCA security of
our ReCrypt+ scheme. Our security proof is similar to the ReCrypt except
that 1) sUP-IND-CCA has ODec, 2) and allow to query malicious generated
ciphertext to OReEnc and malicious header to OToken. Besides, 3) we put the
commitment of the secret share of DEM key in the head. So the intuition of the
security proof comes from: First of all, the authenticity of AEAD, the binding
property of the commitment and the collision-resistance of the hash function
guarantee that all ciphertexts that could be successful decrypted or reencrypted
is honestly generated. Secondly, the authenticity of AEAD guarantee that all
token is generated from honest generated ciphertext headers. Thirdly, the hiding
property of the commitment can hide the secret share of DEM key y. Formally,
we have the following theorem and give the formal proof in [9].

Theorem 3 (sUP-IND-CCA Security of ReCrypt+). Let ReCrypt+ be
an updatable encryption scheme as defined in Section 5.1. ReCrypt+is sUP-
IND-CCA secure if AEAD is MU-RoR-AE secure (Section 2), the homomorphic
commitment HCOM is statistic hiding and computation binding, and the key
homomorphic PRF is pseudorandom.

sUP-INT-CTXT. We first provide the analysis result for sUP-INT-CTXT.
Intuitively, we first assume that ReCrypt+ is not sUP-INT-CTXT secure, and
then construct contradictions with the existing conditions to prove the lemma.
As a ciphertext contains a ciphertext header and a ciphertext body, a successful
forgery can forge the ciphertext header or the ciphertext body. we make a re-
duction from the ciphertext header forgery to the break of ciphertext integrity
of AEAD scheme, and make reductions from the ciphertext body forgery to the
break of binding of commitment scheme HCom or the break of collision resis-
tance of homomorphic hash function HomHash. Formally, we have the following
theorem and give the formal proof in [9].

CCA Updatable Encryption Against Malicious Re-Encryption Attacks 29

Theorem 4 (sUP-INT-CTXT Security of ReCrypt+). Let ReCrypt+ be
an updatable encryption scheme as defined in Section 5.1. ReCrypt+is sUP-
INT-CTXT secure, if AEAD scheme is CTXT scheme, HCom scheme has
computational binding property, and HomHash scheme is collision resistant.

sUP-REENC-CCA. To demonstrate that our ReCrypt+ scheme is sUP-
REENC-CCA secure, we introduce a property called perfect re-encryption pro-
posed in [14]. Perfect re-encryption assures that for any ciphertext of updatable
encryption, decrypt-then-encrypt has the same distribution with re-encryption.
We give a formal definition of perfect re-encryption for UE setting defined in
the full version [9]. We notice that ReCrypt+naturally satisfy the perfect re-
encryption property. As pointed by [14], the perfect re-encryption property plus
the sUP-IND-CCA security imply the sUP-REENC-CCA security. So we have
the following theorem whose formal proof is in [9].

Theorem 5 (sUP-REENC-CCA Security). Since ReCrypt+ as defined in
Section 5.1 has the perfect re-encryption property and satisfy the sUP-IND-CCA
security, ReCrypt+is sUP-REENC-CCA secure.

Acknowledgement

We thank anonymous reviewers from ASIACRYPT 20 for valuable comments.
Qiang and Ya-Nan are supported in part by NSF grant CNS #1801492. Qiang
is also supported in part by a Google Faculty Award.

References

1. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. Journal of Cryp-
tology, 21(4):469–491, 2008.

2. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Annual
international cryptology conference, pages 41–55. Springer, 2004.

3. Dan Boneh, Saba Eskandarian, Sam Kim, and Maurice Shih. Improving speed
and security in updatable encryption schemes. Cryptology ePrint Archive, Report
2020/222, 2020. https://eprint.iacr.org/2020/222.

4. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan.
Key homomorphic prfs and their applications. In Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, pages 410–428, 2013.

5. Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Yao Jiang. Fast and se-
cure updatable encryption. In CRYPTO (1), volume 12170 of Lecture Notes in
Computer Science, pages 464–493. Springer, 2020.

6. Martin Bradley and Alexander Dent. Payment card industry data security stan-
dard.

7. Ran Canetti, Hugo Krawczyk, and Jesper B Nielsen. Relaxing chosen-ciphertext
security. In Annual International Cryptology Conference, pages 565–582. Springer,
2003.

https://eprint.iacr.org/2020/222

30 L.Chen et al.

8. David Chaum, Eugène van Heijst, and Birgit Pfitzmann. Cryptographically strong
undeniable signatures, unconditionally secure for the signer. In Joan Feigenbaum,
editor, Advances in Cryptology — CRYPTO ’91, pages 470–484, Berlin, Heidelberg,
1992. Springer Berlin Heidelberg.

9. Long Chen, Ya-Nan Li, and Qiang Tang. CCA updatable encryption against ma-
licious re-encryption attacks (full version). Cryptology ePrint Archive, Report
2020/XXX, 2020.

10. Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart, and Samuel Scott.
Key rotation for authenticated encryption. In Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 20-24, 2017, Proceedings, Part III, pages 98–129, 2017.

11. Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network
coding over the integers. In International Workshop on Public Key Cryptography,
pages 142–160. Springer, 2010.

12. Jens Groth. Homomorphic trapdoor commitments to group elements. IACR Cryp-
tology ePrint Archive, 2009:7, 2009.

13. Payment Card Industry. Data Security Standard. Requirements and Security As-
sessment Procedures. Version 3.2 PCI Security Standards Council (2016).

14. Michael Klooß, Anja Lehmann, and Andy Rupp. (R)CCA secure updatable en-
cryption with integrity protection. In Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part I, pages 68–99, 2019.

15. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. Hmac: Keyed-hashing for mes-
sage authentication, 1997.

16. Hugo Krawczyk, Kenneth G Paterson, and Hoeteck Wee. On the security of the tls
protocol: A systematic analysis. In Annual Cryptology Conference, pages 429–448.
Springer, 2013.

17. Maxwell N Krohn, Michael J Freedman, and David Mazieres. On-the-fly verifica-
tion of rateless erasure codes for efficient content distribution. In IEEE Symposium
on Security and Privacy, 2004. Proceedings. 2004, pages 226–240. IEEE, 2004.

18. Anja Lehmann and Björn Tackmann. Updatable encryption with post-compromise
security. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III, pages 685–716, 2018.

19. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. Swifft:
A modest proposal for fft hashing. In International Workshop on Fast Software
Encryption, pages 54–72. Springer, 2008.

20. Ueli Maurer, Andreas Rüedlinger, and Björn Tackmann. Confidentiality and in-
tegrity: A constructive perspective. In Theory of Cryptography Conference, pages
209–229. Springer, 2012.

21. Atsuko Miyaji, Masaki Nakabayashi, and Shunzo Takano. Characterization of
elliptic curve traces under fr-reduction. In International Conference on Information
Security and Cryptology, pages 90–108. Springer, 2000.

22. Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Annual international cryptology conference, pages 129–140.
Springer, 1991.

	CCA Updatable Encryption Against Malicious Re-Encryption Attacks

