
Efficient Fully Secure Computation via
Distributed Zero-Knowledge Proofs

Elette Boyle1, Niv Gilboa2, Yuval Ishai3, and Ariel Nof3

1 IDC Herzliya, Israel?

eboyle@alum.mit.edu
2 Ben-Gurion Univeristy, Israel??

gilboa@bgu.ac.il
3 Technion, Israel? ? ?

{yuvali, ariel.nof}@cs.technion.ac.il

Abstract. Secure computation protocols enable mutually distrusting
parties to compute a function of their private inputs while revealing
nothing but the output. Protocols with full security (also known as guar-
anteed output delivery) in particular protect against denial-of-service at-
tacks, guaranteeing that honest parties receive a correct output. This
feature can be realized in the presence of an honest majority, and sig-
nificant research effort has gone toward attaining full security with good
asymptotic and concrete efficiency.
We present an efficient protocol for any constant number of parties n,
with full security against t < n/2 corrupted parties, that makes a black-
box use of a pseudorandom generator. Our protocol evaluates an arith-
metic circuit C over a finite ring R (either a finite field or R = Z2k ) with
communication complexity of 3t

2t+1
S+ o(S) R-elements per party, where

S is the number of multiplication gates in C (namely, < 1.5 elements
per party per gate). This matches the best known protocols for the semi-
honest model up to the sublinear additive term. For a small number of
parties n, this improves over a recent protocol of Goyal et al. (Crypto
2020) by a constant factor for circuits over large fields, and by at least
an Ω(logn) factor for Boolean circuits or circuits over rings.
Our protocol provides new methods for applying the distributed zero-
knowledge proofs of Boneh et al. (Crypto 2019), which only require log-
arithmic communication, for compiling semi-honest protocols into fully
secure ones in the more challenging case of t > 1 corrupted parties. Our
protocol relies on replicated secret sharing to minimize communication
and simplify the mechanism for achieving full security. This results in
computational cost that scales exponentially with n.
Our main protocol builds on a new honest-majority protocol for veri-
fying the correctness of multiplication triples by making a general use
of distributed zero-knowledge proofs. While the protocol only achieves
the weaker notion of security with abort, it applies to any linear secret-
sharing scheme and provides a conceptually simpler, more general, and

?
Supported by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and ERC Project HSS
(852952).

??
Supported by ISF grant 2951/20, ERC grant 876110, and a grant by the BGU Cyber Center.

? ? ?
Supported by ERC Project NTSC (742754), ISF grant 2774/20, NSF-BSF grant 2015782, and
BSF grant 2018393.



2 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

more efficient alternative to previous protocols from the literature. In
particular, it can be combined with the Fiat-Shamir heuristic to simul-
taneously achieve logarithmic communication complexity and constant
round complexity.

1 Introduction

Protocols for secure computation [38, 19, 2, 7] enable a set of parties with private
inputs to compute a joint function of their inputs while revealing nothing but
the output. Secure computation protocols provide a general-purpose tool for
computing on sensitive data while eliminating single points of failure.

Beyond privacy and correctness, a highly desirable feature of such protocols
is guaranteed output delivery, also known as full security, where honest parties
are guaranteed to receive the final output of computation. This is in contrast to
weaker notions of security, such as security with abort or fairness, which leave
protocols vulnerable to denial-of-service attacks.

Full security can be achieved with an honest majority, namely when there
are n ≥ 3 parties of which at most t < n/2 are corrupted. This holds uncon-
ditionally given secure point-to-point channels and a broadcast primitive [35]
(where the latter can be realized from a public-key infrastructure using digital
signatures [12]), or alternatively using only secure channels assuming t < n/3 [2,
7]. However, despite intensive research efforts, there is still a significant efficiency
gap between the best known protocols achieving full security and those achieving
weaker notions. We focus on the communication complexity of such protocols,
which in the domain of concretely efficient protocols typically dominates overall
cost. In this work, “concretely efficient” is interpreted as making only black-box
use of a pseudo-random generator (PRG).4

A useful metric for measuring efficiency of fully secure protocols is the ratio
between the communication cost of the protocol and that of the best known
protocol with a “minimal” level of security, namely security against semi-honest
parties, who act as prescribed by the protocol but try to learn additional in-
formation from messages they receive. Minimizing the overhead of full security
has been the subject of a large body of work; see [26, 21, 6, 5, 23] and references
therein. Here we focus on the more challenging case of a minimal honest majority
(t < n/2). The ultimate goal is to obtain full security with the same communi-
cation complexity as the best known protocols that achieve semi-honest security,
up to sublinear additive terms.

The most relevant state of the art toward this goal is captured by two recent
works: Boyle et al. [5] in the special case of 3 parties (i.e., n = 3, t = 1), and
Goyal et al. [23] that approaches the goal for general n.

4 As opposed to expensive cryptographic tools such as fully homomorphic encryp-
tion [36, 17], where communication is asymptotically small but overall concrete costs
are high. In the context of protecting against malicious parties, a PRG is not known
to imply sublinear-communication arguments for NP in the standard setting.



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 3

For the special case of 3 parties, the fully secure protocol of Boyle et al. [5]
matches the amortized cost of the best known semi-honest protocol in this setting
(due to Araki et al. [1]). More specifically, the protocol from [5] evaluates an
arithmetic circuit C over a finite ring R with an amortized communication cost
of a single R-element per party per multiplication gate.5 The protocol applies
to rings R that are either finite fields or rings of the form R = Z2k , and in
particular applies to Boolean circuits with an amortized cost of just 1 bit per
party per AND gate.

Very recently, Goyal et al. [23] presented a fully secure protocol for arbitrary
n that applies to the case where R is a large finite field, and provides informa-
tion theoretic security. In the case that parties do not deviate from the protocol,
the amortized per-party communication cost is 5.5 field elements, matching that
of the best known information-theoretic semi-honest protocol. However, several
gaps remain to the ultimate goal. If cheating occurs, the amortized communica-
tion cost of the protocol increases to 7.5 field elements per party, above the 5.5
semi-honest baseline. Further, by allowing black-box use of PRGs in the place of
information theoretic security, the semi-honest baseline can be improved. Finally,
the protocol of [23] only applies to the case that R is a finite field, as opposed to
more general rings, and the quoted communication complexity is achieved only
when the field is large. For instance, for Boolean circuits the protocol induces
an additional log n factor. Overall, removing these limitations introduces several
challenges which require new techniques.

In this work, we make progress toward closing the remaining gaps, focusing
our attention on the practically motivated case of a constant number of par-
ties6 n. Even in this setting, designing fully secure protocols is a challenging
task. Indeed, concretely efficient protocols in an even more restricted settings
of n = 3, 4 or 5 parties, of which only t = 1 may be corrupted, have been the
target of several previous works (e.g., [25, 31, 33, 20, 6, 5]). However, these proto-
cols are heavily tailored to the case t = 1, and there are multiple difficulties one
encounters when trying to efficiently extend them to larger t.

For a constant threshold t and n = 2t+ 1, the relevant semi-honest baseline
is a protocol from [4] that optimizes a protocol of Damg̊ard and Nielsen [11]
using pseudorandom secret sharing [18, 10]. The amortized communication cost
is 3t

2t+1 (< 1.5) R-elements per party per multiplication gate. This sets our target
communication goal for full security.

Relaxing full security to security with abort, this goal was recently met by
Boyle et al. [4]. For the case of non-constant t, the amortized overhead of security
with abort was also eliminated recently, first for n = 3t+ 1 parties by Furukawa
and Lindell [15] and then for n = 2t + 1 parties by Goyal and Song [22]. (A
similar result, with a bigger sublinear additive term, can be obtained from the

5 Namely, communication of S+ o(S) ring elements per party, where S is the number
of multiplication gates in C.

6 More generally, our main protocol incurs computation and storage costs that scale
exponentially with n. However, these costs involve only symmetric cryptography and
can be shifted almost entirely to an offline phase, before the inputs are known.



4 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

technique of [4].) However, in all these protocols, the parties immediately abort
whenever cheating is detected. As always, the challenge of full security is in safely
recovering to completion in the case corrupt parties send improper messages,
withhold information, or exit the computation prematurely.

1.1 Our Contributions

Our main contribution is a secure computation protocol for any constant number
of parties n = 2t + 1 that achieves full security against up to t malicious par-
ties with the same amortized communication as for the best known semi-honest
protocol mentioned above. Our protocol applies to both Boolean and arithmetic
circuits, and even over the rings Z2k . It uses a broadcast channel Fbc (necessary
to achieve full security in this setting, where broadcast is not possible without
setup [34]), and makes only black-box use of a PRG. The total size of strings
communicated over Fbc is sublinear in the circuit size.

A basic building block in our construction is an arbitrary n-party protocol
Πmult for private multiplication based on replicated secret-sharing [27]. In such a
protocol, inputs to a multiplication gate are shared by replicated secret sharing,
and if all parties act honestly then in the end of the protocol the product of the
inputs is also shared by the same scheme. Furthermore, even if t malicious parties
act dishonestly in the protocol, they do not obtain information on the inputs
of the honest parties. The usefulness of replicated secret sharing for simplifying
general secure computation protocols was first pointed out by Maurer [30]. The
most communication-efficient instance of a protocol of this type was given by
Boyle et al. [4], combining the approach of Damg̊ard and Nielsen [11] with the
pseudorandom secret sharing technique of Cramer et al. [10] (see also [18]).

Our first result shows how to use this building block in a generic way to
achieve full security with only sublinear additive communication overhead when
no cheating occurs. When cheating does occur, there is an additional additive
term that grows linearly with a circuit “width” parameter W . Intuitively, the
circuit width captures the amount of space required by the computation.

At a very high level, the protocol starts by using Πmult to privately com-
pute shares of the outputs of all multiplication gates, without reconstructing
them. It then ensures that these outputs are correct by applying distributed
zero-knowledge proofs, i.e., proofs of a statement on an input that is distributed
between several verifiers. Such proofs for simple languages, including the “degree-
2 languages” we require, can have sublinear (in fact, logarithmic) length in the
size of the statement [4], which we use to achieve low communication overhead.
A major challenge that we solve is efficient recovery from failures. We achieve
this by a careful combination of a player elimination approach (cf. [24]) with an
authentication mechanism (cf. [35]). Our particular way of combining these tech-
niques takes advantage of the redundancy provided by replicated secret sharing
and the amortization enabled by pseudorandom secret sharing.

Using the concrete instantiation of Πmult from [11, 4], we can eliminate the
extra O(W ) additive overhead and obtain the following main result.



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 5

Theorem 1.1 (Efficient fully secure MPC for constant n). Let R be a
finite field or a ring of the form Z2k , let t ≥ 1 be a constant security threshold
and n = 2t + 1. Then, assuming a black-box access to a PRG, there is a fully
t-secure n-party protocol that evaluates an arithmetic circuit over R, with S
multiplication gates, by communicating 3t

2t+1S + o(S) ring elements per party.

Compared to the recent protocol from [23], this improves the worst-case amor-
tized communication by at least a factor of 5 over big fields, and by at least a
5 log2 n factor for Boolean circuits and circuits over Z2k . Moreover, unlike the
protocol from [23], here we can match the amortized cost of the best known
semi-honest protocol even when cheating occurs. However, unlike the protocol
from [23], our protocol is restricted to a constant number of parties and provides
computational (rather than information-theoretic) security.

The simpler case of security-with-abort. As an intermediate step in con-
structing fully secure protocols, we develop a protocol that is only secure-with-
abort, i.e., the adversary can force the honest parties to abort without receiv-
ing an output. Unlike our main protocol, here we apply a general compilation
technique that is not restricted to replicated secret sharing or a small num-
ber of parties. Instead, we give a simple protocol for verifying the correctness
of secret-shared multiplication triples by making a general use of (sublinear-
communication) distributed zero-knowledge proofs. The main difference between
the triple verification task and distributed zero knowledge is that in the latter
there is a prover who knows all of the (distributed) secrets, whereas in the for-
mer there is no such prover. Nevertheless, we show that triple verification can be
efficiently reduced to distributed zero knowledge. The high-level idea is to view
the shares held by all parties except Pi as a secret-sharing of the share held by Pi.
This allows each party to prove to the other parties that a computation it locally
performed on its shares was done correctly using distributed zero knowledge.

We stress that unlike similar verification protocols from [3, 4, 22], our ap-
proach is very general and can rely on any instantiation of the underlying dis-
tributed proofs primitives. In particular, using the distributed zero-knowledge
protocols from [4, 5], the verification cost is logarithmic in the size of the circuit.
This is similar to a verification procedure from [22] and better than the square-
root complexity of an earlier triple verification protocol from [4]. Compared to
the protocol from [22], our approach is more general, and can rely on any dis-
tributed zero-knowledge protocol for degree-2 languages, which in fact reduces to
a “zero-knowledge fully-linear IOP” for such languages [4]. Another advantage
of our triple verification protocol over that of [22] is that it can be combined
with the Fiat-Shamir heuristic to simultaneously achieve logarithmic communi-
cation complexity and constant (as opposed to logarithmic) round complexity.
See Section 4.3 for a detailed discussion of concrete efficiency.

As in the generic version of our main theorem, we can apply the above tech-
nique to compile any semi-honest MPC protocol that builds on a private multi-
plication sub-protocol into a similar protocol that achieves security-with-abort.
However, in the current case the private multiplication sub-protocol Πmult can



6 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

use any linear secret-sharing scheme, in particular Shamir’s scheme [37]. As a
result, our compiler can yield protocols that are efficient for any (super-constant)
number of parties n. This is captured by the following theorem.

Theorem 1.2 (Security-with-abort compiler for any n, informal). Let
R be either a finite field or a ring of the form Z2k , let t ≥ 1 be a security
threshold, and n = 2t + 1. Then, assuming a black-box access to any n-party t-
private protocol Πmult for multiplying linearly shared secrets over R, there is an
n-party protocol Π for arithmetic circuits over R with the following security and
efficiency properties. The protocol Π is t-secure-with-abort, with the same type
of security (information-theoretic or computational) as Πmult. It evaluates an
arithmetic circuit with S multiplication gates using communication complexity of
|Πmult| ·S+on(S) elements of R, where |Πmult| is the communication complexity
of Πmult, and on hides polynomial terms in n.

Theorem 1.2 can be viewed as a more general alternative to the recent proto-
col from [22], which is tailored to a special kind of semi-honest protocol. Our
approach is more general both in its treatment of the underlying multiplication
sub-protocol and in the use of general distributed zero-knowledge proofs.

2 Preliminaries
Notation. Let P1, . . . , Pn be the set of parties and let t be such that n = 2t+ 1.
In this work, we assume that there exists an honest majority and so the number
of corrupted parties is at most t. We use [n] to denote the set {1, . . . , n}. We
denote by F a finite field and by Z2k the ring of integers modulo 2k. We use the
notation R to denote a ring that can either be a finite field or the ring Z2k . We
use JxK to denote a secret sharing of x with threshold t (as defined below) and
〈x〉 to denote an additive sharing of x.

2.1 Computation Model

In this work, we model the computation that represent the functionality the
parties wish to compute, as a straight-line program, with addition and multipli-
cation instructions [9]. The advantage of this representation is that it captures
the notion of width, which is defined to be the maximal numbers of registers
required to store memory during the computation.

Definition 2.1 (Straight-line programs). A straight-line program over a ring
R consists of an arbitrary sequence of the four following instructions, each with
a unique identifier id:

– Load an input into memory: (id, R̂j ← xi).

– Add values in memory: (id, R̂k ← R̂i + R̂j).

– Multiply two values in memory: (id, R̂k ← R̂i · R̂j).
– Output value from memory, as element of R: (id,Oi ← R̂j).

where x1, . . . , xn are the inputs, O1, . . . , On are the outputs and R̂1, . . . , R̂W are
registers holding memory. We define the size of a program P as the number of
multiplication instructions and denote it by S. We define the width of P as the
number of registers W .



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 7

Every arithmetic circuit with S multiplication gates can be converted into a
straight-line program of size S by sorting its gates in an arbitrary topological
order. We will assume for simplicity that each party has a single input and
receives a single output. Our constructions can be easily adapted to the setting
of multiple inputs and outputs per party.

2.2 Threshold Linear Secret Sharing Schemes

Definition 2.2. A t-out-of-n secret sharing scheme is a protocol for a dealer
holding a secret value v and n parties P1, . . . , Pn. The scheme consists of two
interactive algorithms: share(v), which outputs shares JvK = (v1, . . . , vn) and
reconstruct(JvKT , i), which given the shares vj , j ∈ T ⊆ {1, . . . , n} outputs v or ⊥.
The dealer runs share(v) and provides Pi with a share of the secret vi. A subset
of users T run reconstruct(JvKT , i) to reveal the secret to party Pi by sending
their shares to Pi. The scheme must ensure that no subset of t shares provide
any information on v, but that v = reconstruct(JvKT , i) for any T , |T | ≥ t + 1.
We say that a sharing is consistent if reconstruct(JvKT , i) = reconstruct(JvKT ′ , i)
for any two sets of honest parties T, T ′ ⊆ {1, . . . , n}, and |T |, |T ′| ≥ t+ 1.

Verifiable Secret Sharing (VSS). We say that share(v) is verifiable if at the end
of share(v), either the parties hold a consistent sharing of the secret or the honest
parties abort. This is achieved by adding a consistency check after each party
receives its shares from the dealer. We will describe consistency checks for the
secret sharing schemes used in our work below.

Authenticated Secret Sharing. We say that a secret sharing scheme is authen-
ticated if, assuming that the sharing phase was correctly executed, malicious
parties cannot prevent the correct reconstruction of the secret by tampering
with their shares. (Authenticated secret sharing is sometimes also referred to as
robust secret sharing.) We remark that it is not straightforward to achieve this
when t ≥ n/3, as standard error-correcting techniques do not suffice. In fact,
perfect reconstruction is provably impossible to achieve in this setting, and one
must settle for statistically small error probability. There is a recent line of work
on optimizing the efficiency of authenticated secret sharing; see [13] and refer-
ences therein. However, the asymptotically good constructions are quite complex
and are not attractive when the number of parties are small. In this work, we
only need to make minimal use of this primitive which is independent of the
size of the circuit. Thus, any implementation will suffice. An example for such a
simple implementation is the well-known construction of Rabin and Ben-Or [35]
based on pairwise authentication of shares.

Local linear operations and multiplication. In this work, we require that linear
operations over a ring for a given secret sharing scheme can be carried out locally.
In particular, given JxK, JyK and some public constant c, the parties can compute:
(1) Jx+ yK (2) Jc · xK and (3) Jc+ xK. We use the notation JxK + JyK, c · JxK and
c+ JxK to denote the three local procedures respectively that achieve this. Thus,
we have Jx+ yK = JxK + JyK, Jc · xK = c · JxK and Jc+ xK = c+ JxK.



8 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

While a linear secret sharing scheme does not allow multiplication of shares
without interaction, we assume that given JxK and JyK, the parties can locally
compute 〈x · y〉 (thus the interaction is required for reducing the threshold). We
denote the operation of computing the product’s additive sharing by JxK · JyK.

Local conversion from JxK to JxiK. Given a consistent sharing JxK, we require
that the parties are able to locally generate a consistent sharing JxiK, where xi

is the share of x held by party Pi.

Instantiation 1: Replicated Secret Sharing [27] To share a secret x ∈ R,
for each subset T of t parties the dealer hands a random share xT to the parties

in T = {P1, . . . , Pn} \ T , under the constraint that x =
∑

T⊂{P1,...,Pn}: |T |=t

xT .

The share held by each party Pi is the tuple consisting of all xT such that Pi ∈ T .
Thus, the number of shares is

(
n
t

)
and each party holds

(
n−1
t

)
shares.

It is easy to see that replicated secret sharing scheme is linear over R and
allows local multiplication to obtain an additive sharing of the product when t <
n/2. Local conversion from JxK to JxiK can be done by sharing each component
xT that Pi holds separately. For each T for which Pi ∈ T , every party Pj ∈ T
will hold xT , while parties not it T will set their share to be 0.

Pairwise consistency. Observe that since n = 2t + 1 in our setting, each share
is held by a subset of t+ 1 parties. Thus, a sharing is inconsistent if a cheating
dealer hands different values to honest parties in the same subset. In order to
verify that a sharing is consistent, it suffices that every pair of parties verify that
they hold the same share for each subset T , which includes both parties. This
can be done with low communication by having these parties compare a hash
of their joint shares. Observe that if pairwise inconsistency is detected then this
pair can ask the dealer to publish the conflicted share, as in this case, this share
is already known to the adversary.

Instantiation 2: Shamir’s Secret Sharing [37] In this well-known scheme,
the dealer defines a random polynomial p(x) of degree t over a finite field F such
that the constant term is the secret. Each party is associated with a distinct
non-zero field element α ∈ F and receives p(α) as its share of the secret. Linear
operations on secrets can be computed locally on the shares, since polynomial
interpolation is a linear operation. In addition, given shares of x and y, the
parties can locally multiply their shares to obtain a sharing of degree 2t of x · y.

Finally, observe that since each share is a point on a polynomial, then a
consistent sharing JxK is also a consistent sharing of Pi’s share xi, written as JxiK
(the only difference is that now the secret is not stored at the point 0 but at the
point αi).

Polynomial consistency. A Shamir secret sharing is consistent if all shares (p(α1) =
β1, . . . , p(αn) = βn) lie on the same degree-t polynomial. A simple way to check
the consistency of m sharings: (β1,1, . . . , β1,n),. . .,(βm,1, . . . , βm,n) together in a
batch is to generate n random coefficients c1, . . . , cn ∈ F and a random degree-t



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 9

polynomial q(x), compute (
∑m
i=1 ciβi,1 + q(α1), . . . ,

∑m
i=1 ciβi,n + q(αn)), open

the shares, and check that they lie on a degree t polynomial.
We stress that Shamir’s scheme can be used only in our base secure-with-

abort construction. The fully secure construction relies on properties that hold
only for replicated secret sharing.

2.3 Πmult – Private Multiplication Protocol

In our main protocol, the parties first compute each multiplication instruction
using a protocol Πmult that satisfies only the following a weak notion of security
and then run a verification protocol to detect and recover from cheating.

Definition 2.3. Let Πmult be an n-party protocol that takes as inputs JxK and
JyK and outputs JzK. We say that Πmult is a private multiplication protocol in the
presence of a malicious adversary controlling up to t parties if it satisfies two
properties.

Correctness If JxK and JyK are consistent sharings and all the parties follow
the protocol’s instructions, then JzK is a consistent sharing of z = x · y.

Privacy Denote the set of honest parties by J and denote the vector of all
input shares held by the honest parties by uJ . Then, for every adversary A
controlling up to t parties, and for every two vectors of shares uJ ,u

′
J the view

that A has in the protocol when the honest parties hold uJ is computationally
indistinguishable from its view when the honest parties hold u′J .

We say that Πmult is a replicated and private multiplication protocol if in
addition to the correctness and privacy properties it holds that if JxK and JyK are
consistent sharings of x and y in a replicated secret sharing scheme for threshold
t, and all the parties follow the protocol’s instructions, then JzK is a consistent
sharing of z = x · y in the same replicated secret sharing scheme for threshold t.

The latter property in the above definition will be used in our fully secure
construction.

Instantiation: The DN [11] multiplication protocol In the DN protocol,
the parties prepare in advance two random sharings JrK, 〈r〉 which are used in
the following way. First, the parties locally compute 〈x · y − r〉 = JxK · JyK− 〈r〉
and send the result to P1. Then, P1 reconstructs x · y − r and sends it back to
the parties. The parties then locally compute Jx · yK = x · y − r + JrK. A simple
optimization to the second step is having P1 share x ·y− r to the parties instead
of sending it in the clear. Then, we can let the shares of t parties be 0 and
let the shares of the remaining parties be computed given the value of xy − r
and the t zero shares (for replicated secret sharing this translates into having
the share given to one subset of t+ 1 parties being x · y − r and the remaining
shares being 0). Thus, we can have P1 send xy− r to t parties, and then P1 and
these t parties can locally compute their shares of xy− r and add them to their
shares of r, while the remaining parties set their output to be their shares of r.
Thus, the overall communication in the online step is n − 1 + t elements, and



10 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

so 2t+1−1+t
2t+1 ≤ 1.5 elements per party. The masking of all sent messages in this

protocol with random value guarantees that the protocol satisfies the privacy
requirement. For the offline step, it is possible to produce JrK, 〈r〉 without any
interaction [10] or using interaction but with reduced computational overhead
for large number of parties [11] (using hyper-invertible matrices). We refer the
reader to [8, 29] for exact analysis.

In the full version of this paper, we describe other instantiations for Πmult

that can be usefull in some settings.

2.4 Other Basic Ideal Functionalities
Let Frand(t) be an ideal functionality that hands the parties a sharing of a
random secret value with threshold t, while allowing the adversary to choose
the corrupted parties’ shares. This functionality can be realized for both Shamir
and the replicated secret sharing scheme [10, 11]. We remark that for replicated
secret sharing, the functionality can be realized without any interaction (except
for a setup step) [10], which makes the protocol fully secure. This is of high
importance for our fully secure construction.

Let Fcoin be an ideal functionality that hands the parties fresh random coins.
In the security with abort model, it can be realized by calling Frand and opening
the result. To achieve full security, heavier machinery is required. Nevertheless,
we can reduce the number of calls to this functionality to the size of the security
parameter (as it is possible to call it only to generate a seed r from which all
the required randomness is derived.

Finally, Let Fbc be a secure broadcast functionality which allows the parties
to broadcast a message to all the other parties. We remark that use of a broadcast
channel is necessary to achieve full security within this setting, where broadcast
is not possible without setup [34]. Full security of Fbc is achievable given PKI
setup [35]. The number of times this functionality is called will be sublinear in
the size of the circuit and so any reasonable implementation will suffice.

3 Prove Correctness of Degree-2 Relations Over Shared
Data

In this section, we present the main building block for our constructions: a
protocol that allows the parties to prove that a degree-2 computation over their
shares was carried-out correctly. Specifically, in our protocol, we have a party Pi
who wishes to prove that the following equation holds:

c−
L∑
k=1

(ak · bk) = 0 (1)

where c, {ak}Lk=1 and {bk}Lk=1 are known to Pi and are secret shared among
the parties via a consistent t-out-of-n linear secret sharing scheme (see Defini-
tion 2.2). We note that the above task can be seen as an application of the dis-
tributed zero-knowledge proof system defined in [4]. In the setting of distributed
zero-knowledge proofs there is a prover who wishes to prove a statement in zero-
knowledge, where the statement is held in a distributed manner across multiple



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 11

verifiers. An example for a statement that is distributed across verifiers, is our
setting in which the statement is secret shared among the verifiers. As in any
zero-knowledge proof system, the definition of distributed zero-knowledge inter-
active proofs requires that three properties will be satisfied: completeness (if
the statement is correct and the parties follow the protocol, then the verifiers
will output accept with probability 1), soundness (if the statement is incorrect,
then the honest verifiers will output accept only with a small probability) and
zero-knowledge (no information about the inputs is leaked during the execution).
However, in distributed zero-knowledge proof protocols, the above requirements
should be met even if the prover colludes with a subset of verifiers. As shown
in [4], for low-degree relations it is possible to construct zero-knowledge proof
protocols with sub-linear communication complexity. In Section 3.1, we rely on
one of their ideas to design a highly-efficient protocol to prove that Eq. (1) holds.
In Section 3.2 we take a step further and provide a protocol where an honest
prover can also identify a cheating verifier in case the proof is rejected.

3.1 The Functionality Fabort
proveDeg2Rel - Prove Correctness with Abort

We begin with a protocol that is secure with abort, i.e., it allows a malicious
verifier to cause honest parties to reject even when the statement is correct. In
this section, we assume that the prover knows also JcK (i.e., the shares of all par-
ties of c)7. In contrast, for the aks and bks, Pi does not need to know the other
parties’ shares, and in fact, in this case, Pi’s share is the secret itself. We com-
pute the ideal functionality Fabort

proveDeg2Rel. The functionality checks that Eq. (1)
holds using the honest parties’ shares. This is sufficient since in the honest ma-
jority setting, the honest parties’ shares fully determine both the secret and the
corrupted parties’ shares. Observe that in case the equation holds, Fabort

proveDeg2Rel

lets the adversary determine the output (i.e., accept or reject) for each party,
whereas if the equation does not hold, the output is always reject. Note also that
in case the prover is corrupt, Fabort

proveDeg2Rel hands the adversary S also the inputs,
and all shares of c (since these are known anyway to the real world adversary).

Computing Fabort
proveDeg2Rel using distributed zero-knowledge proofs. While the def-

inition of Fabort
proveDeg2Rel yields a setting which is similar to the setting of dis-

tributed zero-knowledge proofs defined in [4], there is still one difference. The
zero-knowledge property in the definition of [4] considers only privacy in the
presence of a subset of verifiers. Here however we assume that the prover does
not know the verifiers’ shares of the aks and bks. Thus, the proof protocol must
also prevent the prover from learning any information on these shares. Thus,
any distributed zero-knowledge proof used to realize Fabort

proveDeg2Rel must provide
this stronger requirement.

A concrete protocol to compute Fabort
proveDeg2Rel. We next show how to compute

this functionality using the fully linear interactive oracle proof from [4] with
low communication. The idea works as follows. First, the parties define a g-gate

g (ν1, . . . , νL) =
∑L/2
`=1 ν2`−1 · ν2`. We now can write Eq. (1) as

7 It is possible to avoid this assumption, but it nevertheless holds for our verification
protocol that uses this proof as a building block.



12 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

FUNCTIONALITY 3.1 (Fabort
proveDeg2Rel- Prove Correctness of a Shared Secret)

Let S be the ideal world adversary controlling a subset < n/2 of corrupted
parties.
The functionality Fabort

proveDeg2Rel works with S and honest parties holding con-
sistent t-out-of-n secret sharings JcK, {JakK}Lk=1, {JbkK}Lk=1.
Fabort

proveDeg2Rel is invoked by an index i sent from the honest parties and works
as follows:

1. Fabort
proveDeg2Rel receives from the honest parties their shares of c, {ak}Lk=1 and
{bk}Lk=1.

2. Fabort
proveDeg2Rel computes c, {ak}Lk=1 and {bk}Lk=1. Then, it computes the cor-

rupted parties’ shares of these values and sends them to S. If Pi is corrupted,
then it sends also JcK, {ak}Lk=1 and {bk}Lk=1 to S.

3. Fabort
proveDeg2Rel checks that Eq. (1) holds.

If it holds, then it sends accept to S to receive back outj ∈ {accept, reject}
for each honest party Pj , which is handed to party Pj .
Otherwise, it sends reject to S and the honest parties.

c− g
(
a1, b1, . . . , aL/2, bL/2

)
− g

(
aL/2+1, bL/2+1, . . . , aL, bL

)
= 0.

Next, the prover Pi, who knows all inputs, computes the output of the two g gates
and verifiably secret shares them to the parties. Let g1 = g

(
a1, b1, . . . , aL/2, bL/2

)
and g2 = g

(
aL/2+1, bL/2+1, . . . , aL, bL

)
. Thus, the parties hold now a t-out-of-n

secret sharing of c, g1 and g2. Hence, the parties can locally compute JbK =
JcK − Jg1K − Jg2K and check that b = 0 by revealing their shares of b. Since an
honest majority exists, the adversary cannot do any harm in the opening beyond
causing the parties to abort. However, this is not enough; a corrupted Pi may
cheat when sharing g1 and g2. To prevent this, the parties carry-out an additional
test. Let f1, . . . fL be polynomials defined in the following way: for each e ∈ [L],
fe(1) is the eth input to the first g-gate, and fe(2) is the eth input to the second
g-gate. It follows that fe is a linear function (i.e., polynomial of degree-1). Next,
define the polynomial q(x) = g(f1(x), . . . , fL(x)). From the definition of q, it
follows that: (1) q(1) is the output of the first g-gate and q(2) is the output of
the second; (2) q is of degree-2 (since g is a circuit of of multiplicative depth-1
and the f polynomials are of degree-1). Now, to check that Pi shared the correct
q(1) and q(2), it suffices to check that q(r) = g(f1(r), . . . , fL(r)) for some random
r in the ring/field. To carry-out the check, the parties can locally compute a t-
out-of-n secret sharings of q(r) and f1(r), . . . , fL(r) via Lagrange interpolation
over their shares (note that this is a local linear operation), open these sharings
and check the equality in the clear. This requires that Pi will share also q(3), so
that the parties have enough points on q (and so r cannot be in {1, 2, 3})). Note
however that opening L shares results with communication cost that is linear in
L. To achieve communication that is logarithmic in L, instead of opening, we let
Pi prove that

q(r)− g(f1(r), . . . , fL(r)) = 0 (2)



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 13

by repeating the exact same process as above. This is possible since Eq. (2) has
the same form as Eq. (1) and since all parties hold a consistent sharing of all
the inputs to Eq. (2). Note that this time we only have L inputs (instead of 2L).
Thus, the parties can repeat the process logL times, until there are only small
constant number of inputs and then check equality to 0 by opening. One subtle
security issue that arise here is that fe(r) is a linear combination of inputs. Thus,
to securely open it, the parties randomize the f polynomials by adding (only in
the last step) a random point to each polynomial. This is achieved by using Frand

to generate an additional shared point for each of f polynomials. Note that the
degree of q is now 4 (since the degree of f was increased to 2) and so Pi needs
to share 5 points on q instead of 3. As an additional optimization, we also deffer
the check of equality to 0 of the b values to the end, and then perform a single
check by taking a random linear combination of all b values generated in each
step of the recursion. As we will argue below, the cost per step in the recursion
is constant, and so since we have logL steps, the overall communication cost is
logarithmic in L. The protocol is formalized in Protocol 3.2.

Cheating probability for finite fields. We now compute the probability that the
parties output accept, even though Eq. (1) does not hold, when the protocol
is executed over finite fields. Note that for this to hold, the prover Pi has two
choices: (i) not to cheat in the protocol, hoping that the linear combination of the
b values will yield 0. This will happen with probability 1

F ; (ii) cheat when sharing
the points on the polynomial q. This means that q 6= g(f1, . . . , fL) and so the
polynomial h(x) = q(x)−g(f1(x), . . . , fL(x)) is not the zero polynomial. Thus, by
the Schwartz–Zippel lemma, the probability that h(r) = 0 for a randomly chosen
r ∈ F\{1, 2, 3} is bounded by 2

|F|−3 (since the degree of the polynomial h is 2) in

the first logL− 1 rounds and 4
|F|−5 in the last round (since then the degree of h

is 4). Observe that for the prover to successfully cheat, this event should happen
in one of the iterations of the protocol. Thus, the overall cheating probability is

bounded by 2(logL−1)
|F|−3 + 4

|F|−5 <
2 logL+4
|F|−5 . Finally, note that 1

F < 2 logL
|F|−3 and so

a malicious prover will increase its success cheating probability by cheating as
in (ii). If the field is not large enough to achieve the desired level of security, the
parties can repeat the protocol several times.

We prove that Protocol 3.2 securely computes Fabort
proveDeg2Rel in the full version

of the paper.

Extending the protocol to the ring Z2k . The main challenge in extending the
verification protocol to rings, and in particular the ring Z2k , is that we require
interpolation and not all elements in a ring have an inverse. To overcome this,
the solution suggested in [4, 5] is to work over the extension ring Z2k [x]/f(x), i.e.,
the ring of all polynomials with coefficients in Z2k working modulo a polynomial
f that is of the right degree and is irreducible over Z2. As shown in [4, 5], this
enables to define enough points on the polynomial that allow interpolation.



14 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

PROTOCOL 3.2 (Securely Computing Fabort
proveDeg2Rel)

– Inputs: Prover Pi holds 2L+1 inputs c, {ak}Lk=1, {bk}Lk=1. The parties hold
a consistent t-out-of-n secret sharing of each of these inputs. Pi knows all
shares of c.

– The protocol:
1. The parties set L̄ = L.
2. For l = 1 to log L̄− 1:

(a) The parties define linear polynomials f1, f2 . . . , fL such that for each
e ∈ [L] the polynomial fe is defined by the two points:

fe(1) =

{
ad e

2
e if e mod 2 = 1

b e
2

if e mod 2 = 0
fe(2) =

{
aL

2
+d e

2
e if e mod 2 = 1

bL
2
+ e

2
if e mod 2 = 0

(b) Let q(x) = g(f1(x), . . . , fL(x)) be a polynomial of degree 2, where

g(f1(x), . . . , fL(x)) =

L/2∑
`=1

f2`−1(x) · f2`(x).

Then, Pi locally computes q(1), q(2), q(3) and verifiably secret
shares (VSS) them to the other parties (If the check consistency
fails for some party, then it outputs reject).

(c) The parties locally compute JblK = JcK − Jq(1)K − Jq(2)K and store
the result.

(d) The parties call Fcoin to receive a random r ∈ R \ {1, 2, 3}.
(e) The parties locally compute Jq(r)K and Jf1(r)K, . . . , JfL(r)K via La-

grange interpolation.
(f) The parties set c ← q(r), and ∀k ∈ [L/2] : ak ← f2k−1(r), bk ←

f2k(r) and L← L/2.
3. The parties exit the loop with L = 2 and inputs c, a1, a2, b1, b2 that are

known to Pi and are secret shared among the parties. Then:
(a) The parties call Frand to receive Jw1K and Jw2K, where w1, w2 ∈ R are

Pi’s shares. Then, they define two polynomials f1, f2 of degree-2 such
that: f1(0) = w1, f1(1) = a1, f1(2) = a2 and f2(0) = w2, f2(1) =
b1, f2(2) = b2.

(b) Party Pi defines a polynomial q(x) = g(f1(x), f2(x)) where
g(f1(x), f2(x)) = f1(x) · f2(x). Thus, q is of degree-4. Then, Pi com-
putes q(0), q(1), . . . , q(4).

(c) Party Pi verifiably secret shares (VSS) the points q(0), q(1), . . . , q(4)
to the other parties (If the check consistency fails for some party,
then it outputs reject).

(d) The parties locally compute JblogLK = JcK− Jq(1)K− Jq(2)K.
(e) The parties call Fcoin to receive random r, γ1, . . . γlogL ∈ R.
(f) The parties locally compute JbK =

∑logL
l=1 γl · JblK.

(g) The parties locally compute Jf1(r)K, Jf2(r)K and Jq(r)K via Lagrange
interpolation.

(h) The parties run reconstruct(JbK, j), reconstruct(Jq(r)K, j),
reconstruct(Jf1(r)K, j) and reconstruct(Jf2(r)K, j) for each j ∈ [n].
If any party received ⊥ in any of these executions or if b 6= 0 or
q(r) 6= f1(r) · f2(r), then it outputs reject. Otherwise, the parties
output accept.



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 15

We note that the cheating probability when working with the extension ring
and hence the statistical error of the protocol is different, since the number of
roots of a polynomial defined over a ring, is larger than its degree. For a program
with m multiplication instructions, the error will be roughly 2 logm+4

2d
, where d is

the extension degree. We refer the reader to [4, 5] for more details. Nevertheless,
the main observation here is that the communication when using this solution
blows up only by a constant, and so asymptotically the complexity remains the
same.

Cost Analysis In the first logL−1 iterations, the prover shares 3 ring elements
in each iteration. In the last round, the prover shares 5 elements, followed by
opening 4 shared elements. Using a PRG, it is possible to share a secret by
sending t ≈ n/2 ring elements, and opening a secret requires transmission of
n2 elements. To realize Fcoin (with abort) it suffices to open a random sharing.
Hence, in this case, the overall communication cost per party is

(1.5 + n− 1) log(L− 1) + 2.5 + 4(n− 1) ≈ n · log(L) + 4n field elements.

The asymptotic communication complexity is thus O(n logL + n). When the
verified shared triples are defined over a ring, then the cost is multiplied with
the degree of extension d. We ignore here the cost of consistency checks (in the
VSS protocol) that can typically be batched together with a small constant cost.

For the computational cost, we remark that while our protocol requires many
interpolations, all polynomials used in the protocol are of small degree (up to 4).
Thus, the number of operations (i.e., multiplications and additions) required for
each interpolation is a small constant. The number of polynomials that we have
in the protocol is L+ 1 in the first iteration, L/2 + 1 in the second, L/4 + 1 in
the third and so on. Over logL iterations, we thus have O(L) polynomials and
so the overall computational cost is also O(L) operations.

A Constant-Round Protocol using the Fiat-Shamir Transform The
number of rounds in Protocol 3.2 is logarithmic in the size of the input. In the full
version of the paper, we show how to use the Fiat-Shamir transform [14] to reduce
interaction and achieve constant number of rounds. This transform applies to
public-coin protocols and proceeds by letting the prover generating the challenge
in each round on its own, by applying a random oracle H : {0, 1}∗ → {0, 1}κ to
the concatenation of the messages exchanged so far. In our protocol, the prover
secret shares 3 elements in each round. This means that the random oracle should
be applied on the shares sent to all the parties. This seems problematic, since
the shares are private information which cannot be revealed, and so the verifiers
have no way to compute the public randomness. Nevertheless, we show how to
solve it by changing slightly the protocol.

Batching n Proofs Together In our protocols, we will call Protocol 3.2 n
times in parallel, each time for one of the parties participating in the multi-
party computation. Naively, this means that the communication cost per party
will be O(n2 logL + n2). We now show how to batch together these n proofs,
reducing the cost to O(n logL+ n).



16 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

To reduce the term O(n2 logL) to O(n logL), one simply need to call Fcoin

once for each round of the n proofs. The parties can jointly generate a seed from
which all the randomness is derived.

To reduce the term O(n2) to O(n), recall first that in our proof the parties
perform two tests: (i) they check that b = 0 and (ii) they check that q(r) = f1(r)·
f2(r). These checks are carried-out by opening the secret shared b, f1(r), f2(r)
and q(r) and checking that (i) and (ii) hold in the clear.

It is immediate to see that the first check can be compressed to one single
check by taking a random linear combination of the b values in n proofs and
opening the result. For the second check, we observe that verifying (ii) across
n proofs is equivalent to check the correctness of n multiplication triples. This
can be done in O(n) complexity and O(1) rounds via the verification technique
of [32]. We present the details in the full version, where we show that the overall
communication per party for running n proofs in parallel is

n logL+ 8n field elements

and the asymptotic complexity is O(n logL+ n) as required.

3.2 The Ideal Functionality FcheatIdntfy
proveDeg2Rel- Prove Correctness with

Cheating Identification

In this section, we augment our protocol to prove degree-2 relations over shared
data to achieve an additional property: if the protocol ends with the parties
rejecting the proof, then in addition to reject, the parties will also output a pair
of parties, with the guarantee that one of these parties belongs to the set of cor-
rupted parties. Our protocol computes the ideal functionality FcheatIdntfy

proveDeg2Rel de-

fined in Functionality 3.3. The functionality works the same as the Fabort
proveDeg2Rel

functionality defined in the previous section, with one addition: in case the out-
put is reject, it outputs a pair of parties’ indices. These contain the index of
the prover and of an additional party chosen by the ideal world adversary S.
If Pi is corrupted, then S is allowed to pick any party it wishes. Otherwise, it
must pick an index of a corrupted party. This ensures that one of the chosen
parties is corrupted: in the first case, it is the prover, whereas in the second case
S hands a corrupted party’s index. Note also that in this functionality, unlike
Fabort

proveDeg2Rel, all honest parties output the same output.
To compute functionality we use Protocol 3.2 from the previous section,

with one additional step: in case that the parties reject the proof, the prover is
asked to identify a party who cheated in the execution. Then, the pair of parties
outputted by the protocol includes the prover and the party that was pointed
at by the prover. Clearly, if the prover is corrupted, then regardless of the party
it chooses, the output pair will contain a corrupted party. However, it is not
clear how an honest prover will identify a party who cheated in the protocol
(note that in this case, we know that the degree-2 relation holds, and so if the
protocol ends with a reject, then it means that someone sent incorrect messages
during the execution of the proof-of-correctness protocol). To allow an honest
prover to correctly identify cheaters, we require the following additional property



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 17

FUNCTIONALITY 3.3 (FcheatIdntfy
proveDeg2Rel- Prove Correctness - Identify Cheating)

Let S be the ideal world adversary controlling a subset < n/2 of corrupted
parties. The functionality FcheatIdntfy

proveDeg2Rel is invoked by an index i sent from the

honest parties and works exactly as Fabort
proveDeg2Rel with the following modifica-

tion:
If Eq. (1) holds, then FcheatIdntfy

proveDeg2Rel sends accept to S, to receive back out ∈
{accept, reject}. Then, FcheatIdntfy

proveDeg2Rel sends out to the honest parties. If Eq. (1)

does not hold, then FcheatIdntfy
proveDeg2Rel sends reject to the honest parties.

If the output handed to the honest parties is reject:

– If Pi is corrupted, then S sends an index j ∈ [n] to FcheatIdntfy
proveDeg2Rel.

If Pi is honest, then S send an index j where Pj is corrupted.
– FcheatIdntfy

proveDeg2Rel sends the pair (i, j) to the honest parties.

from our protocol: the shares held by the parties should be known to the prover.
To leverage this property, we first observe the following fact:

Fact 3.4 Each message sent by each verifier Pj in Protocol 3.2 is a determin-
istic function of (1) messages received from the prover Pi; (2) its inputs to the
protocol; and (3) randomness received from Fcoin and Frand.

This implies that if the inputs of all parties and the randomness chosen during
the execution are known to Pi, then it can compute by himself the messages that
should be sent by the other parties, and so Pi can identify cheating parties that
send incorrect messages. We stress that this fact does not mean that Pi knows
in advance what messages should be sent in the execution, since these depend
on randomness received in the execution only after Pi sends his messages. Thus,
knowing the shares held by all parties does not break the soundness of the
protocol, which rely on the randomness of the evaluated point r - randomness
which Pi cannot predict.

Our protocol is described and proved in the full version of the paper. It is
identical to Protocol 3.2 with the following modifications in the last steps: (i)
the random sharings of f1(0) and f2(0) are now verifiably secret shared by Pi
(this is allowed since Pi knows now all the inputs and essential to achieve the
property of Pi knowing the messages that should be sent by all other parties); (ii)
the messages to reconstruct the secrets are now broadcast (to ensure anonymous
output) and (iii) if the parties reject the proof, the prover Pi identify a cheating
party and broadcasts its index to the other parties.

Batching n proofs together and communication cost. In section 3.1 we showed a
way to batch n proofs together when only security with abort is considered. This
enabled us to reduce communication complexity of n proofs ran in parallel from
O(n2 logL+n2) to O(n logL+n) elements sent per party. While the optimization
to reduce the term O(n2 logL) to O(n logL) can be used here as well (call Fcoin

once for each round for all protocols), we note that it is impossible to batch all



18 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

the checks at the end of the protocol together, since then the prover will lose the
ability to identify cheaters.

Thus, the communication cost of running n proofs together per party is

n logL+ 4n · |Fbc| field elements.

4 Secure Computation of any Straight-Line Program
with Abort

In this section we present a base construction, which is only secure with abort.
Given a straight-line program P , the protocol computes P (x) in two stages. It
first executes a protocol which computes P (x) using a private multiplication
protocol, as defined in Section 2.3. It then runs a verification protocol which
requires communication that is sublinear in the program’s size S. If the verifica-
tion protocol accepts then the value of P (x) is correct, while if the verification
protocol rejects then the honest parties abort the protocol.

The protocol can be based on any linear threshold secret-sharing as defined in
Section 2.2 and works for both finite fields and the ring Z2k . When instantiating
the protocol with Shamir’s secret sharing scheme, the obtained protocol matches
the complexity achieved by the protocol of [22] for finite fields and arbitrary
number of parties. When using replicated secret sharing as the underlying secret
sharing scehme, the obtained protocol improves upon the result of [4] for constant
number of parties over the ring Z2k ; while the additive sub-linear term in [4] is
square root of the size of the program, in our protocol it is logarithmic in the
program’s size.

4.1 Verifying Correctness of Multiplications with Abort

In this section, we show how the parties can verify correctness of many mul-
tiplication triples with sub-linear communication complexity in the number of
triples. A multiplication triple in a ring R is a secret shared tuple JxK, JyK, JzK
such that z = x·y. In other words, a triple shares both the inputs and the output
of a multiplication instruction.

At the beginning of the protocol, the parties hold sharings of many multi-
plication triples denoted by (Jx1K, Jy1K, Jz1K), . . . , (JxmK, JymK, JzmK) and want to
verify that zi = xi · yi for each i ∈ [m]. The ideal functionality we compute is
defined in Functionality 4.1. Observe that it allows the ideal world adversary S
to force rejection even if all triples are correct. In contrast, if there exists a triple
which is incorrect, then the output will always be reject. Note also that Fabort

vrfy

hands S the corrupted parties’ shares of all triples and the additive difference
dk = zk − xk · yk when dk 6= 0 (i.e., the triple is incorrect). This is justified by
the fact that, as we will see, these are known anyway to the adversary in the
main protocol that works in the Fabort

vrfy -hybrid model. Moreover, in many private
multiplication protocols, the adversary is even allowed to choose the additive
difference (see [16, 29, 8]).



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 19

FUNCTIONALITY 4.1 (Fabort
vrfy - Verify Correctness of Multiplications)

Let S be the ideal world adversary controlling a subset of < n/2 corrupted
parties. The functionality Fabort

vrfy is invoked by the honest parties sending their

shares of m multiplication triples {(xk, yk, zk)mk=1} to Fabort
vrfy .

Then, Fabort
vrfy computes all secrets and the corrupted parties’ shares which are

sent to S.
Then, it checks that zk = xk · yk for all k ∈ [m]. If this holds, it sends accept
to S. In this case, it waits for S to send outj ∈ {accept, reject} which is then
handed to the honest party Pj . Otherwise, Fabort

vrfy sends reject to S and the
honest parties. In addition, it sends dk = zk − xk · yk for each k ∈ [m] for
which dk 6= 0 to S.

To compute this functionality efficiently, the parties take a random linear
combination β =

∑m
k=1 θk · (zk−xk · yk) (where θk is random and jointly chosen

by the parties) and wish to check that β = 0. Observe that since β is a 2-degree
function of {(xk, yk, zk)mk=1}, and these are secret shared via a linear threshold
scheme among the parties, it follows that the parties can locally compute an
additive sharing of β. At this point, we would want the parties to open the sharing
of β and check equality to 0. However, an additive sharing has no robustness in
it and so the parties have no way to verify that the received shares are correct.
To overcome this, we first ask the parties to secret share their additive shares of
ψ =

∑m
k=1 θk · (xk · yk) in a verifiable way. Denote by ψi the additive share of

ψ held by party Pi. Once the parties hold JψiK for each i ∈ [n], the parties can
compute JβK =

∑m
k=1 θk · JzkK −

∑n
i=1Jψ

iK and reconstruct the value of β. By
the properties of the reconstruct procedure, the corrupted parties cannot do any
harm beyond causing an abort. However, this is not enough since a corrupted
party can share any value it wishes. Thus, the parties need to verify that each
party shared the correct value. Towards achieving this, recall that one of the
properties of the secret sharing scheme, is that it allows local conversion from
JxkK, JykK to JxikK, Jy

i
kK where xik, y

i
k are the shares of xk, yk held by party Pi

respectively. Thus, the parties wish to verify that

∀i ∈ [n] :

m∑
k=1

θk · (JxikK · JyikK)− JψiK = 0. (3)

Letting JciK = JψiK, JaikK = θk · JxikK and JbikK = JyikK we have that the parties
ensure that ∀i ∈ [n] : JciK −

∑m
k=1Ja

i
kK · JbikK = 0. This is exactly the type of

statement that can be verified using Fabort
proveDeg2Rel defined in Section 3. Hence,

the parties call Fabort
proveDeg2Rel and proceed only if it outputs accept. The formal

description of the protocol and a security proof appear in the full version of the
paper.

Extending the protocol to the ring Z2k . If the parties work over the ring Z2k ,
then the statistical error of the protocol is only 1/2. To achieve an error which
is sufficiently small, the parties can choose θ1, . . . , θm from a larger ring Z2k+s .
Then, the probability that β = 0 when ∃k ∈ [m] : dk = zk − xk · yk 6= 0 will be
at most 2−s.



20 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

Communication Complexity. Note that in the protocol each party only shares
one element and reconstructs one element. The cost of computing Fabort

vrfy thus

equals to the cost of calling n copies of Fabort
proveDeg2Rel plus a small constant cost.

By the analysis in Section 3.1, we conclude that the cost is O(n logm+ n).

4.2 The Main Protocol
Our main protocol works in the Fabort

vrfy -hybrid model. In the protocol, the parties
first verifiably secret shares their inputs to the other parties. Then, they compute
the program using Πmult. Before revealing the outputs, they call Fabort

vrfy to verify

the correctness of all multiplication triples. If the output received from Fabort
vrfy is

reject, then they abort. Otherwise, they proceed to reconstruct the output. The
formal description appears in the full version of the paper.

Communication complexity. Let m be the number of multiplication gates in the
program and let |Πmult| be the communication cost per party when running
Πmult. Thus, the communication cost is |Πmult| · m + O(logm · n). Amortized
over the size of the program and assuming that m >> n, we have that the cost
per gate is |Πmult|.

Practical instantiations. Our protocol can be instantiated using both replicated
and Shamir’s secret sharing schemes (see Section 2.2). The former is usually used
for small number of parties and when working over rings, whereas the latter is
usually preferred when the number of parties grows, due to the fact that the
size of each share grows at most logarithmically with n. For Πmult, it is possible
to use protocols such as [1, 28] (for 3 parties) or the DN protocol [11] for any
number of parties. As shown in Section 2.3 (see also [4], the communication cost
of the semi-honest DN protocol with replicated secret-sharing and pseudorandom
secret sharing is less than 1.5 ring elements per party per multiplication. This
dominates the amortized cost of our main protocol.

4.3 Concrete Efficiency
To illustrate the efficiency of our protocol, we measured the exact communication
cost of our verification protocol, for various program sizes and number of parties.
In Table 1, we present the number of field elements sent per party amortized
over the size of the program, when instantiating our protocol with Shamir’s
secret sharing scheme. The reported numbers in the table can be seen as the
cost of strengthening security from semi-honest to malicious, per multiplication
instruction. As can be seen, the communication overhead of our verification
protocol is so low, that even when the number of parties is increased to 1000,
the cost is still less just 0.76 field element per instruction. We note that when
the field is small, the verification protocol can be “lifted” to an extension field F
of the same characteristic, without changing the base semi-honest protocol. As
a result, the statistical error can be reduced to (roughly) an inverse of the size
of the extension field.

In Table 2 we present the communication cost when our protocol is used to
compute a program defined over the ring Z2k for some k ≥ 1 (when k = 1 this
is equivalent to computing a binary circuit), with replicated secret sharing as



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 21

Field Elements per Party per Triple# of Multiplication
Triples (m) n = 25 n = 50 n = 500 n = 1000

215 0.02 0.03 0.38 0.76

220 0.0007 0.001 0.01 0.02

225 0.00002 0.00005 0.0005 0.001

230 0.0000009 0.000002 0.00002 0.0003

Table 1. Field elements sent per party in the verification of m multiplication triples,
per one triple, when Shamir’s secret sharing is used, for different sizes of m and number
of parties n. The numbers are computed via the formula (10n+ n · logm) · 1

m
and the

statistical error is 2 logm+4
|F|−5

.

Ring Elements sent per Party per Triple# of Multiplication
Triples (m) n = 3 n = 5 n = 7 n = 9 n = 11

215 0.002 0.13 0.22 0.41 0.97

220 0.00008 0.005 0.008 0.01 0.03

225 0.000003 0.0002 0.0003 0.0005 0.001

230 0.0000001 0.000007 0.00001 0.00001 0.00005

Table 2. Ring elements sent per party in the verification of m multiplication triples,
per one triple, for different sizes of m and number of parties n, when the semi-honest
computation is over the ring Z2k and using replicated secret sharing scheme. The
numbers are computed via the formula

((
n−1
t

)
· 2 + 2.5n+ n log(m)

)
· 1
m
· d, where the

extension degree d satisfies the condition d > 40+log(2 logm+4) to achieve statistical
error of 2−40.

the underlying secret sharing scheme. Recall that in this case, the verification
protocol is carried-out over an extension ring (see the end of Section 3.1). To
compute the number of ring elements sent in the verification protocol, we thus
multiply the communication cost obtained over fields with the degree extension
d (since the size of each element is increased by a factor of d). The extension
degree depends on the desired statistical error, which is approximately 2 logm+4

2d
.

This means in particular that for security of s bits, the extension degree should
satisfy the condition d > s+ log(2 logm+ 4). In Table 2, we report the number
of sent ring elements per instruction for each party, with statistical error of at
most 2−40, and so it suffices to set d = 46. In addition, each opening of a secret
requires each party to send

(
n−1
t

)
elements. However, note that this is not the

case for sharing a secret, since here we can have all subsets except one derive
their share from a pre-distributed seed (known also to the dealer), and have the
dealer send just one share (to adjust the secret) to one subset of t+1 shares. This
means that sharing a secret yields cost of 0.5 ring elements per party, exactly
as for Shamir’s secret sharing. Due to the fast increase of the share’s size in this
scheme, we report the cost up to 11 parties. Note that even for n = 11, programs
of size ≥ 215) can be computed in the presence of malicious adversaries, while
paying an extra cost of less than 1 ring elements per instruction beyond the cost
of semi-honest security.

For the computational cost, we saw that in Fabort
proveDeg2Rel the number of local

operations is O(m) with small constants. Observe that in Fabort
vrfy the parties only



22 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

Communication per party
(field elements)

# of rounds

Nordholt et al. [32] O(m+ n) O(1)

Boneh et al. [4] O(n
√
m+ n) O(1)

Goyal et al. [22] O(n logm+ n) O(logm)

This work (with Fiat-Shamir) O(n log m + n) O(1)
Table 3. Comparison to previous works of communication and round complexity, when
verifying m multiplication triples by n parties.

need to compute a linear combination of m inputs and so the cost is roughly m
operations. Since we have n calls to Fabort

proveDeg2Rel, the overall cost is n ·O(m).

Comparison to previous works. In Table 3 we compare our security-with-abort
verification protocol with previous works. As can be seen, our work as well
as [4, 22] achieve sublinear communication, whereas [32] achieves only linear
communication in the amount of verified triples m. Our improvement compared
to [4] is that our sublinear additive term is logarithmic in m rather than just
square root of m. Compared to [22], we are able to use the Fiat-Shamir transform
to achieve constant number of rounds (see Section 3.1), whereas in their protocol,
the parties carry out a joint multiparty computation is each step of the protocol,
and so it is unclear how to reduce interaction via the Fiat-Shamir transform.

5 Achieving Full Security for Constant Number of Parties

In this section, we show how to augment our base construction to full security,
including fairness and guaranteed output delivery, without changing the amor-
tized communication cost.

Our protocol works by having the parties divide the program into segments
and compute each segment separately. For each segment, the parties work in
the same way as before, that is, computing it first using a private multiplica-
tion protocol and then running a verification protocol. However, we change the
verification protocol so that it will give the parties more information besides
outputting merely accept or reject. Specifically, in the case of reject, the verifica-
tion protocol will also output a pair of parties in conflict, such that at least one
of them is guaranteed to be corrupted. Once such a pair is known, the parties
will remove both parties from the protocol and recompute the segment without
them. Since one of the eliminated parties is corrupt, it follows that an honest
majority is maintained even though the number of parties was reduced by two.
Removing two parties and restarting the segment computation without them
raises several challenges. In particular, the parties need to carefully move from a
t-out-of-n sharing to a (t− 1)-out-of-(n− 2) secret sharing. Our solution to this
includes having authentication tags over the shares, which prevent corrupted
parties from cheating in the process. We present a novel technique for comput-
ing these tags efficiently, requiring a single tag for all the shares held by a subset
of t + 1 parties and using sublinear communication in the number of shares.
We stress that authentication is required only for the secrets that are stored in
memory when moving from one layer to the next layer. This fact together with



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 23

the sublinear communication of our verification protocol implies that the overall
amortized communication cost per multiplication instruction remains |Πmult|.

The construction in this section is designed for replicated secret sharing
scheme only and thus we assume that the number of parties n is constant. Our
construction depends on two properties that hold for replicated secret sharing:
(1) Pair-wise consistency: when opening a secret, the opening will fail if there ex-
ist two parties which do not agree on a certain share. If we know in advance that
the sharing was consistent, such a disagreement can occur only with a corrupted
party. This is used in our protocol to find a pair of disputed parties, where at
least one of them is guaranteed to be corrupt. (2) For each input held by a party
Pi, we can define a consistent secret sharing of this input, which is known to
Pi. This holds since any secret held by Pi is known to t other parties and so it
is possible to define a sharing where the share of one subset of t + 1 parties is
the input itself, whereas the shares of the other subsets is 0. This property is
required in our verification protocol when each party proves it behaved honestly
when sharing a secret.

This section is organized as follows. In Section 5.1 we present the updated
verification protocol which allows identification of a pair of conflicting parties
to eliminate. In Section 5.2 we present two additional sub-protocols which are
required for our construction. Finally, in Section 5.3 we present the main protocol
for computing any arithmetic program.

5.1 Joint Verification of Multiplications with Cheating Identification
In this section, we present the verification protocol, with the property that when
cheating took place in the execution of the private multiplication protocol, the
parties will be able to identify a pair of conflicting parties (and not just reject the
computation). Our protocol realizes the functionality F full

vrfy formally described

in Functionality 5.1, which is defined similarly to Fabort
vrfy but with two differ-

ences: first, the parties always receive the same output. Second, if the trusted
party computing F full

vrfy outputs reject (which means that there exists an incor-
rect multiplication triple), then the ideal world adversary can pick one of two
options: provide a pair of parties to eliminate, where at least one of them is a
corrupted party, or let F full

vrfy detect such pair. In the latter, F full
vrfy receives the

inputs, randomness and views of the honest parties when computing some in-
correct multiplication triple. Then, based on this information, F full

vrfy finds a pair
of conflicting parties and outputs it to the parties.

Our protocol to compute F full
vrfy is an extension of our protocol from Section 4.1.

In order to add the cheating identification property to our verification protocol,
we need to provide a mechanism to identify a pair of conflicting parties in each
step for which the parties may output reject in the original protocol. There are 4
such steps: (i) when the VSS protocol to share the additive shares fails due to
inconsistency; (ii) when Fabort

proveDeg2Rel returns reject; (iii) when the opening of β
fails due to inconsistency; and (iv) when the parties output reject since β 6= 0.

Note that in (i), we can simply ask the dealer to broadcast any share for
which pair-wise inconsistency exist. Since this can happen only with shares that
are known to the adversary, no secret information is never revealed. To identify



24 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

FUNCTIONALITY 5.1 (F full
vrfy- Verify Mult. with Cheating Identification)

Let S be the ideal world adversary controlling a subset < n/2 of corrupted
parties. The functionality F full

vrfy is invoked by the honest parties sending their

shares of m multiplication triples {(xk, yk, zk)mk=1} to F full
vrfy.

Then, F full
vrfy computes all secrets and the corrupted parties’ shares. These shares

are sent to S.
Then, it checks that zk = xk · yk for all k ∈ [m]. If this holds, it sends accept
to S. Otherwise, it sends reject to S and dk = zk − xk · yk for each k ∈ [m]
such that dk 6= 0. Then:

– If F full
vrfy sent accept, then it waits for S to send out ∈ {accept, reject} which is

then handed to the honest parties. If out = reject, then S is required to send
a pair of indices (i, j) to F full

vrfy with at least one of them being a corrupted

party. Then, F full
vrfy hands (i, j) to the honest parties.

– If F full
vrfy sent reject, then S chooses one of the next two options:

• Send a pair of indices (i, j) to F full
vrfy with at least one of them being a

corrupted party. Then, F full
vrfy hands (i, j) to the honest parties.

• Ask F full
vrfy to find a pair of conflicting parties in the k̄th multiplication.

Then, F full
vrfy commands the honest parties to send their inputs, randomness

and views in the execution to compute k̄th triple. Then, based on this
information, F full

vrfy computes the messages that should have been sent by
each corrupted party, and find a pair of parties Pi, Pj , where Pj received
an incorrect message. Then, F full

vrfy sends (i, j) to the honest parties and S.

a pair of conflicting parties in case (iii), we use the pairwise-consistency check of
replicated secret sharing to identify a disputed pair. Namely, that inconsistency
can occur only when an honest party and a corrupted party disagree on the
value of a share held by both of them. Note that in addition we need that
the messages in the consistency check will broadcast (via Fbc), otherwise the
parties may not agree on the disputed pair they output. For (ii), we simply

use FcheatIdntfy
proveDeg2Rel. Recall that our protocol to realize FcheatIdntfy

proveDeg2Rel requires that
the proving party will know the shares held by the other parties. This indeed
holds for replicated secret sharing, since the parties convert JxkK, JykK, JzkK to
JxikK, Jy

i
kK, Jz

i
kK by setting the shares of all subsets T for which Pi /∈ T to be 0 (see

Section 2.2). Finally, for case (iv), if the parties reject since β 6= 0, we observe
that this means that no one cheated in the verification protocol itself (with high
probability). Thus, the parties can conclude that cheating took place in one
of the calls to the private multiplication protocol to compute the program. The
parties thus continue to localize the fault by running a binary search on the set of
multiplication triples, aiming to find the first triple k where the corrupted party
have cheated and zk 6= xk · yk. In each step of the search, the parties repeat the
verification protocol on a smaller set of triples. The search will continue at the
worst case (i.e., if no execution have ended with obtaining a pair of conflicting
parties), until the parties are left with one incorrect triple. Finally, the parties
can check the execution of the multiplication protocol for computing this triple,



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 25

and use it to find a pair of disputing parties. For this final check, we define
an ideal functionality FminiMPC that receives the input, randomness and view
of each honest party in the multiplication protocol and output the first pair
of parties for which incoming and sent messages do not match. Observe that
this functionality is called just once for the entire computation and so its cost
is amortized away, regardless of the way it is realized. We provide a formal
description of the protocol and proof of security in the full version of the paper.

Cheating probability. Assume that there is one incorrect triple. Then, if the ad-
versary does not cheat in the verification protocol, then this triple will be tested
in at most logm executions of the protocol. In each execution, the probability
that it will pass the test is bounded by 1

|F| . This holds since the parties will out-

put accept in this case only if the random linear combination cause the opened
value to be 0. Note that if the output of the parties is accept when examining
a set of triples, then they stop the search in this set. Thus, an incorrect triple
has logm attempts to be accepted. The overall cheating probability is therefore
bounded by logm · 1

|F| .

We remark that the protocol can be extended to work over a ring in the same
way as for Fabort

vrfy . See the remark at the end of Section 4.1.

Communication cost. Our protocol is recursive. In jth step of the recursion, the
parties secret share one element, reconstruct one element (using Fbc) and call

FcheatIdntfy
proveDeg2Rel for each party over a set of triples of size m/2j . Sharing a secret

requires each party to send
(
n
t

)
elements (we ignore here the consistency check

which can be typically done with constant cost), reconstruction requires sending(
n−1
t

)
elements by each party and the cost of n invocations of FcheatIdntfy

proveDeg2Rel, as

shown in Section 3.2, is n log(m/2j) + 4n ·
(
n−1
t

)
· |Fbc| per party. Overall, the

obtained cost per party is roughly(
n

t

)
· logm+

(
n− 1

t

)
· logm · 4n · |Fbc|+ n · logm · log

√
m ring elements. (4)

For constant number of parties, the asymptotic cost is roughlyO (logm · log
√
m)),

which is sublinear in m. We remind the reader that when the triples were com-
puted over the ring Z2k , then the verification protocol is carried-out over an
extension ring; see the end of Section 4.2 for more details.

5.2 Two Additional Building Blocks

Computing Authentication Tags We next show how to compute an authen-
tication tag over shares held by a subset T of t + 1 parties. Let xT1 , . . . , x

T
L be

the shares held by the parties in T . The authentication tag τT is computed as
follows: τT =

∑L
k=1 u

T
k · xTk + vT , where uT = (uT1 , . . . , u

T
L) and vT are random

secret keys that are shared among the parties using authenticated secret sharing
(see definition in Section 2). Observe that for the long vector uT it is possible to
secret share a random seed from which the key is expanded, thus using the ex-
pensive mechanism of authenticated secret sharing only small constant number
of times.

To compute the tag we observe that the parties can first locally compute an
additive sharing of

∑m
k=1 u

T
k ·xTk . This is done by taking JuTk K · JxTk K, where JxTk K



26 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

is simply defined such that the share held by subset T is xTk and the shares held
by the other subsets is 0. Then, we let each party secret share each additive
share and prove that it shared the correct secret. The observation here is that
we can utilize the functionality FcheatIdntfy

proveDeg2Rel for this proof, as the additive share
each party computes and shares to the other parties, is a 2-degree function of
inputs that are verifiably shared among the other parties. If all proofs passed the
check, then the parties can locally add the shared secrets, add JvT K to the result
and reconstruct the obtained tag. If the reconstructions fails due to pair-wise
inconsistency, then the parties obtain a conflicting pair of parties.

Formally, The parties work as follows:

Πauth(xT1 , . . . , x
T
L, Ju

T K, JvT K):

1. The parties locally compute 〈zT 〉 =
〈∑L

k=1 u
T
k · xTk

〉
=
∑L
k=1Ju

T
k K · JxTk K

2. Let zT,i the additive share of zT held by Pi. Note that by definition zT,i = 0
for each Pi /∈ T . Then, each party Pi ∈ T verifiably secret shares (VSS) zT,i

to the other parties.
3. For each i ∈ [n] such that Pi ∈ T , the parties convert JuTk K to JuT,ik K for each

k ∈ [L] and send JzT,iK and
(
JuTk K, JxTk K

)L
k=1

to FcheatIdntfy
proveDeg2Rel.

4. If the parties received reject, (i, j) from FcheatIdntfy
proveDeg2Rel in any of the calls in

the previous step, then the parties output the first pair of conflicting parties
(Pi, Pj). Otherwise, they proceed to the next step.

5. The parties locally compute JτT K =
∑
i | Pi∈T JzT,iK + JvT K.

6. The parties reveal τT by sending their shares via Fbc to each other. If the
shares are inconsistent, then the parties output the first pair of parties for
which pair-wise consistency exists. Otherwise, they output τT .

Communication Complexity. We note that in practice the parties can call FcheatIdntfy
proveDeg2Rel

once per party for all shares (over the same layer of instructions). Thus, the cost
is dominated by each party secret sharing its additive sharing of zT , and opening
the shared tag at the end. Overall, this means that for each subset T of t + 1
parties, the cost per party is

(
n
t

)
+ |FcheatIdntfy

proveDeg2Rel|+
(
n−1
t

)
· |Fbc|.

Player Elimination and Recovery We next show how the parties can remove
a pair of conflicting parties and restart the computation without them.

Denote the parties to eliminate by Pi and Pj . The goal is to recompute the
segment, but with less parties. Since we are guaranteed that at least one of the
parties is corrupted, then we move from a t-out-of-n secret sharing to a (t− 1)-
out-of-(n− 2) secret sharing (i.e., the number of parties is reduced by 2 and the
threshold is reduced by 1). In order to achieve this, we distinguish between three
types of shares:

– Shares that are known to either Pi or Pj : In this case, no action is needed
by the parties, as each such share is now known to t active parties, which is
exactly what needed by the updated threshold.

– Shares that are known to both Pi and Pj : Shares in this category are held
by a subset T of t + 1 parties, with Pi, Pj ∈ T . Since we require that from
now on each share will be held by a subset of t parties, it suffices to reveal



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 27

this share to a subset T ′ of t parties, which will add the share to its current
share. To minimize communication, we can take T ′ = T \ {Pi, Pj}∪{Pk} for
some Pk /∈ T . This implies that we need all parties in T to send the share to
Pk.This is where the authentication tags are being used. Each party that holds
the share sends it to Pk. However, corrupted parties may send incorrect values.
Thus, the keys used to authenticate the share are also being revealed (recall
that they are secret shared using an authentication secret sharing scheme and
so cheating is not possible when opening these values). Once the keys are
revealed, party Pk checks for each share it received, that the tag is correct
given the authentication keys (i.e., that τT =

∑L
k=1 u

T
k · xTk + vT ). Since in

each subset there exists at least one honest party, then at least one of the
possible shares is correct, and so the check will pass for this share.

– Shares that are not known to both Pi and Pj : Note that each such share is
known to a set of t + 1 active parties. Since the threshold is now reduced to
t, we just let one subset of t parties (there are exactly

(
t+1
t

)
= t + 1 such

subsets) locally add this share to the share already held by it. Note that the
parties can locally update the authentication tag for the updated share of this
subset, by simply adding the tag of the added share to the existing tag.

Observe that only for shares in the second category interaction is required. There
are

(
n−2
t−1
)

such shares, which are transmitted from t+ 1 parties to a single party.
Recall that this cost is paid only for shares that are stored between segments of
the program. Nevertheless, later we will see that for specific instantiations, it is
possible to eliminate this cost completely.

5.3 The Main Protocol
In this section, we describe our main protocol to compute any straight-line pro-
gram. Our protocol computes the program segment by segment. Throughout the
protocol we maintain the following invariant: at the beginning of each segment’s
computation, the parties hold a consistent sharing of the values on the input
layer of the segment, an authentication tag for the shares held by each subset of
t+ 1 parties on the input layer and an authenticated secret sharing of the keys
used to compute the tag. A computation of a segment includes using private mul-
tiplication and computing authentication tags for the shares on the output layer
of the segment. Then, the parties use the verification protocol to verify that the
output is correct. If the verification succeeds, then the parties can proceed to the
next segment. Otherwise, the parties hold a pair of parties to eliminate. In this
case, they apply the player elimination and recovery subprotocol and recompute
the segment with less two parties and updated secret sharing of the input layer.
To achieve fairness when outputs are revealed we use again the authentication
mechanism. Here however, we cannot authenticate all shares held by a subset
T together, since the shares may be intended to different parties. Thus, for the
output layer of the entire program, the parties compute new authentication tags
for each subset of shares intended to party Pi and held by a subset of parties T .
The formal description can be found in the full version of this paper.

Size of the segments. Each time we repeat the computation of a segment, it
means that one corrupted party was eliminated. Thus, each segment can be



28 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

computed at most t times. If we split the program to O(n2) equally sized seg-
ments (i.e., with the same amount of multiplication instructions), then amortized
over the entire program, it can be shown that the average number of repetitions
per instruction is approximately 1.

Communication Complexity for constant number of parties. For each segment
with m/O(n2) multiplication instructions, we call Πmult for each multiplica-
tion, call Πauth for each subset of t + 1 parties at the output layer and call
F full

vrfy once. The asymptotic cost of F full
vrfy per party for a segment of size m/n2

is O(log(m/n2) · log
√
m/n2). Thus, the cost of computing the segment is m

n2 ·
|Πmult|+O(log(m/n2) · log

√
m/n2). Summing over all O(n2) segments, the cost

per party is thus m · |Πmult| + O(n2 log(m/n2) · log
√
m/n2). Letting the pro-

gram’s size S be its number of multiplication instructions, and assuming that n
is constant, the cost of our protocol per multiplication per party is |Πmult|+o(S).

If cheating took place, then the parties need to recover shares held by the
eliminated parties for each secret stored in memory between the segments. The
number of such secrets is bounded by the width of the program W . Thus, in case
of cheating the cost per party is |Πmult| ·S+O(W )+o(S). Note that W ≤ S and
in many cases, W will be much smaller than S, and so O(W ) can be ignored.

Removing the O(W ) term when Πmult is Instantiated with [11] If we
instantiate Πmult with the DN protocol [11], then as explained in Section 2.3, the
cost of Πmult is 1.5 elements per party. We next show how it is possible to recover
from cheating without increasing the communication cost, improving upon our
general construction from Section 5.2. Recall that in the DN protocol, the output
shares (of each multiplication) are computed by taking JrK+(xy−r), where JrK is
a sharing of a random r that was generated in the offline step (possibly without
any interaction), and xy − r is computed by party P1 (the parties send him
masked additive shares of x · y). Note that xy − r is in fact sent from P1 only
to one subset of t + 1 parties (including P1 itself), denoted by T . Now, assume
that cheating was detected and two parties, say Pi and Pj are eliminated. To
recover the computation, it suffices that the parties will generate a new JrK with
the updated t − 1 threshold, and that one subset of t active parties will add
xy− r to its share of r. If the eliminated parties are not both in T , then this can
be done without interaction. However, if both of them are in T , then xy − r is
known now only to t−1 active parties. Thus, we require that some party Pk /∈ T
will learn xy − r. To this end, we ask party P` ∈ T (` 6= i, j) to send xy − r
to Pk. To detect whether P` sent the correct value, we use the authentication
mechanism as before. Specifically, the parties compute authentication tags for all
xy−r received during the computation (for secrets that are outputs of segments
only). Thus, if the authentication succeeds, then Pk has the correct xy − r and
the parties can recompute the segment. Otherwise, Pk accuse P` of sending him
an incorrect value. Note that in this case, we know again that either Pk or
P` are corrupted. Moreover, this is a new pair of conflicted parties that does
not overlap with the original pair. In this case, we restart the recovery process
to remove 4 parties and update the sharings to a (t − 2)-out-of-(n − 4) secret



Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 29

sharing. As before, we ask a party from T to send xy−r to a party outside of T ,
with both parties not being one of the eliminated parties, and so on. Note that
the process can end with two outcomes: (1) At some point, no one complains.
In this case, the parties successfully removed t′ < t pair of parties, where in
each pair, one of the parties is guaranteed to be corrupted. The parties thus
can continue the computation. (2) The parties keep adding pair of conflicted
parties to the list, until we are left with one honest party. This holds since we
started with t − 1 active parties in T , and t outside of T . Thus, at some point
there will remain one party outside of T . This party must be honest since we
overall eliminated t pairs of semi-corrupted parties, with the property that one
of them must be corrupted. Since there are t corrupted parties, the remaining
party is honest. In this case, following the 3-party construction of [5], this honest
party can be used as a trusted party and complete the computation. Note that
in the above process, each pair that is eliminated requires the transmission of
one element. However, in future multiplications, the overall communication is
reduced by at least one element, since a party that is eliminated, will not be
part of the interaction anymore. Thus, amortized over the circuit, the recovery
process is communication-free. The overall cost of our entire protocol is thus
1.5 · S + o(S), with no dependency on the width of the circuit.

References

1. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: ACM CCS
(2016)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
ACM Symposium on Theory of Computing (1988)

3. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure multi-
party computation with a dishonest minority. In: CRYPTO (2012)

4. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear pcps. In: CRYPTO (2019)

5. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party compu-
tation via sublinear distributed zero-knowledge proofs. In: ACM CCS (2019)

6. Byali, M., Hazay, C., Patra, A., Singla, S.: Fast actively secure five-party compu-
tation with security beyond abort. In: ACM CCS (2019)

7. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: ACM Symposium on Theory of Computing (1988)

8. Chida, K., Genkin, D., Hamada, K., Ikarashi, D., Kikuchi, R., Lindell, Y., Nof,
A.: Fast large-scale honest-majority MPC for malicious adversaries. In: CRYPTO
(2018)

9. Cleve, R.: Towards optimal simulations of formulas by bounded-width programs.
In: ACM Symposium on Theory of Computing (1990)

10. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: TCC (2005)

11. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: CRYPTO (2007)

12. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)



30 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

13. Fehr, S., Yuan, C.: Towards optimal robust secret sharing with security against a
rushing adversary. In: EUROCRYPT (2019)

14. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO (1986)

15. Furukawa, J., Lindell, Y.: Two-thirds honest-majority MPC for malicious adver-
saries at almost the cost of semi-honest. In: ACM CCS (2019)

16. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: STOC (2014)

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM sympo-
sium on Theory of computing (2009)

18. Gilboa, N., Ishai, Y.: Compressing cryptographic resources. In: CRYPTO (1999)
19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A

completeness theorem for protocols with honest majority. In: ACM Symposium on
Theory of Computing (1987)

20. Gordon, S.D., Ranellucci, S., Wang, X.: Secure computation with low communica-
tion from cross-checking. In: ASIACRYPT (2018)

21. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional MPC with
guaranteed output delivery. In: CRYPTO (2019)

22. Goyal, V., Song, Y.: Malicious security comes free in honest-majority MPC. IACR
Cryptol. ePrint Arch. (2020)

23. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest
majority MPC. In: CRYPTO (2020)

24. Hirt, M., Maurer, U.M., Przydatek, B.: Efficient secure multi-party computation.
In: ASIACRYPT (2000)

25. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure compu-
tation with minimal interaction, revisited. In: CRYPTO (2015)

26. Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.: Secure protocol
transformations. In: CRYPTO (2016)

27. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan (1989)

28. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: ACM CCS (2018)

29. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: ACM CCS (2017)

30. Maurer, U.M.: Secure multi-party computation made simple. Discrete Applied
Mathematics (2006)

31. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
The garbled circuit approach. In: ACM CCS (2015)

32. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority
MPC by batchwise multiplication verification. In: ACNS (2018)

33. Patra, A., Ravi, D.: On the exact round complexity of secure three-party compu-
tation. In: CRYPTO (2018)

34. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

35. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: ACM Symposium on Theory of Computing (1989)

36. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. Foundations of secure computation (1978)

37. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
38. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: Sympo-

sium on Foundations of Computer Science (1986)


