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Abstract. We study how to construct zkSNARKs whose SRS is univer-
sal and updatable, i.e., valid for all relations within a size-bound and to
which a dynamic set of participants can indefinitely add secret random-
ness. Our focus is: efficient universal updatable zkSNARKs with linear-
size SRS and their commit-and-prove variants. We both introduce new
formal frameworks and techniques, as well as systematize existing ones.
We achieve a collection of zkSNARKs with different tradeoffs. One of
our schemes achieves the smallest proof size and proving time compared
to the state of art for proofs for arithmetic circuits. The language sup-
ported by this scheme is a variant of R1CS that we introduce, called
R1CS-lite. Another of our constructions directly supports standard R1CS
and achieves the fastest proving time for this type of constraints.
These results stem from different contributions: (1) a new algebraically-
flavored variant of IOPs that we call Polynomial Holographic IOPs (PHPs);
(2) a new compiler that combines our PHPs with commit-and-prove zk-
SNARKs (CP-SNARKs) for committed polynomials; (3) pairing-based
realizations of these CP-SNARKs for polynomials; (4) constructions of
PHPs for R1CS and R1CS-lite. Finally, we extend the compiler in item
(2) to yield commit-and-prove universal zkSNARKs.
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1 Introduction

A zero-knowledge proof system [31] allows a prover to convince a verifier that a
non-deterministic computation accepts without revealing more information than
its input. In the last decade, there has been growing interest in zero-knowledge
proof systems that additionally are succinct and non interactive [12, 29, 40,
46], dubbed zkSNARKs. These are computationally-sound proof systems (argu-
ments) that are succinct, in that their proofs are short and efficient to verify:
the proof size and verification time should be constant or polylogarithmic in the
length of the non-deterministic witness. In circuit-based arguments for general



computations the verifier must at least read the statement to be proven which
includes both the description of the computation (i.e., the circuit) and its input
(i.e., public input). But this is not succinct; by reading the whole circuit, the
verifier runs linearly in the size of the computation. Preprocessing zkSNARKs
try and work around this problem [13, 28, 32, 44]. Here the verifier generates
a structured reference string (SRS) that depends on a certain circuit C; it does
this once and for all. This SRS can be used later to verify an unbounded number
of proofs for the computation of C. This is a succinct system: while the cost of
SRS generation does depend on |C|, proof verification does not have to.

Works on subversion-resistance show that CRS can be generated by a veri-
fier with no impact on security [1, 3, 24]. But contexts with many verifiers, e.g.
blockchains, require a trusted party. Solutions that mitigate this problem (e.g.
MPC secure against dishonest majority [7]) are still expensive and often imprac-
tical as they should be carried out for each single C. To address this problem,
Groth et al. [34] introduced the model of universal and updatable SRS. An SRS
is universal if it can be used to generate and verify proofs for all circuits of some
bounded size; it is updatable if any user can add randomness to it and a sequence
of updates makes it secure if at least one user acted honestly. They proposed the
first such zkSNARK, but their scheme requires an SRS of size quadratic in the
number of multiplication gates of the supported arithmetic circuits (and similar
quadratic update/verification time).

Recent works [18, 19, 21, 27, 45, 53] have improved on this result obtain-
ing universal and updatable SRS whose size is linear in the largest supported
circuit. In particular, the current Marlin [19] and PLONK [27] proof systems
achieve a proving time concretely faster than that of Sonic [45] while retain-
ing constant-size proofs ([18, 21, 53] have instead polylogarithmic-size proofs).
We also mention the very recent works of Bünz, Fisch and Szepieniec [17], and
Chiesa, Ojha and Spooner [20] that proposed zkSNARKs in the uniform random
string (URS) model, that is implicitly universal and updatable; their construc-
tions have a short URS and poly-logarithmic-size proofs. Yet another universal
zkSNARK construction is that in [41] which, despite its proofs of 4 group ele-
ments and comparable proving time, has an SRS which is not updatable.

Many of these efficient constructions (and the ones in this work) follow a
similar blueprint to build zkSNARKs, which we now overview.

The current landscape of zkSNARKs with universal SRS. A known mod-
ular paradigm to build efficient cryptographic arguments [36, 37] works in two
distinct steps. First construct an information-theoretic protocol in an abstract
model, e.g., interactive proofs [31], standard or linear PCPs [13], IOPs [9, 48].
Then apply a compiler that, taking an abstract protocol as input, transforms it
into an efficient computationally sound argument via a cryptographic primitive.
This approach has been successfully adopted to construct zkSNARKs with uni-
versal SRS in the recent works [17, 19, 27], in which the information theoretic
object is an algebraically-flavored variant of Interactive Oracle Proofs (IOPs),
while the cryptographic primitive are polynomial commitments [39]. Through
polynomial commitments, a prover can compress a polynomial p (as a message
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much shorter than all its concatenated coefficients) and can later open the com-
mitment at evaluations of p, namely to convince a verifier that y = p(x) for public
points x and y. In these IOP abstractions—called algebraic holographic proofs
(AHP) in [19] and polynomial IOPs1 in [17]—a prover and a verifier interact, one
providing oracle access to a set of polynomials and the other sending random
challenges (if public-coin). At the end of the protocol the verifier asks for evalua-
tions of these polynomials and decides to accept or reject based on the responses.
The idealized low-degree protocols (ILDPs) abstraction of [27] proceeds similarly
except that in the end the verifier asks to verify a set of polynomial identities
over the oracles sent by the prover (which can be tested via evaluation on random
points). To build a zkSNARK with universal SRS starting from AHPs/ILDPs we
let the prover commit to the polynomials obtained from the AHP/ILDP prover,
and then use the opening feature of polynomial commitments to respond to the
evaluation queries in a sound way. As we detail later, our contribution revisits
the aforementioned blueprint to construct universal zkSNARKs.

1.1 Our Contribution

In this work we propose Lunar, a family of new preprocessing zkSNARKs in
the universal and updatable SRS model that have constant-size proofs and that
improve on previous work [19, 27, 45] as to proof size and prover running time.

In Table 1, we present a detailed efficiency comparison between prior work
and the best representatives of our schemes, when using arithmetic circuit satis-
fiability as common benchmark. LunarLite has the smallest proof size (384 bytes
over curve BN128; 544 bytes over BLS12-381)2 and the lowest proving time com-
pared to the state of art of universal zkSNARKs with constant-size proofs for
arithmetic circuits. As we explain later, LunarLite uses a new arithmetization of
arithmetic circuit satisfiability that we call R1CS-lite, quite similar to rank-1
constraint systems (R1CS). A precise comparison to PLONK depends on the
circuit structure and how the number m of nonzero entries of R1CS-lite matri-
ces depends on the number a of addition gates3; for instance, PLONK is faster
for circuits with only multiplication gates, but LunarLite is faster when m ≤ 3a.

If we focus the comparison on solutions that directly support R1CS (of which
Marlin [19] is the most performant among prior work), our scheme Lunar1cs
(fast & short) offers the smallest SRS, the smallest proof and the fastest prover.
This comes at the price of higher constants for the size of the (specialized)
verification key and verification time4. Lunar1cs (short vk) offers a tradeoff: it
has smaller verification key and faster verification time, but slightly larger proofs,
3× larger SRS, and 5m more G1-exponentiations at proving time than Lunar1cs
(fast & short). Even with this tradeoff, Lunar1cs (short vk) outperforms Marlin
in all these measures. We implemented Lunar’s building blocks and we confirm
our observations experimentally (check full version).
1 Hereinafter we use AHP/PIOPs interchangeably as they are almost the same notion.
2 BN128 is 100-bits-secure while BLS12-381 has 128-bits-security.
3 Applying [14] PLONK’s proving time drops to 8n+ 8a, but our analysis still holds.
4 In practice this overhead is negligible. Lunar1cs (fast & short) takes 7 pairings to
verify (≈ 35ms); faster schemes, including some from this work, take 2 (≈ 10ms).
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Table 1. Efficiency of universal and updatable practical zkSNARKs for arithmetic
circuit satisfiability with O(1) proofs. n: number of multiplication gates; a: number of
addition gates; m ≥ n: number of nonzero entries in R1CS(-lite) matrices encoding the
circuit; N,N∗, A and M : largest supported values for n, a+m,a and m respectively.

zkSNARK
size time

|srs| |ekR| |vkR| |π| KeyGen Derive Prove Verify

G1 4N 36n — 20 4N 36n 273n
7 pairingsSonic

G2 4N — 3 — 4N — —
[45]

F — — — 16 — O(m logm) O(m logm) O(`+logm)

G1 3M 3m 12 13 3M 12m 14n+8m
2 pairingsMarlin

G2 2 — 2 — — — —
[19]

F — — — 8 — O(m logm) O(m logm) O(`+logm)

(small proof) G1
3N∗ 3n+3a 8 7 3N∗ 8n+8a 11n+11a

(fast prover) N∗ n+a 8 9 N∗ 8n+8a 9n+9a

PLONK G2 1 — 1 — 1 — — 2 pairings
[27] F — — — 7 — O((n+a) log(n+a)) O((n+a) log(n+a)) O(`+log(n+a))

G1 M m — 10 M — 8n+3m

LunarLite G2 M — 27 — M 24m —
7 pairings

[this work] F — — — 2 — O(m logm) O(m logm) O(`+logm)

G1 M m — 11 M — 9n+3m

Lunar1cs G2 M — 60 — M 57m —
7 pairings

(fast & short) F — — — 2 — O(m logm) O(m logm) O(`+logm)

G1 3M 3m 12 12 3M 12m 9n+8m

Lunar1cs G2 1 — 1 — 1 — —
2 pairings

(short vk) F — — — 5 — O(m logm) O(m logm) O(`+logm)

Our main contribution to achieve this result is to revisit the aforementioned
blueprint to construct universal zkSNARKs by proposing: (1) a new algebraically-
flavored variant of IOPs, Polynomial Holographic IOPs (PHPs), and (2) a new
compiler that builds universal zkSNARKs by using our PHPs together with
commit-and-prove zkSNARKs (CP-SNARKs) [18] for committed polynomials.
Additional contributions include: (3) pairing-based realizations of these CP-
SNARKs for polynomials, (4) constructions of PHPs for both R1CS and a novel
simplified variant of it, (5) a variant of the compiler (2) that yields a commit-
and-prove universal zkSNARK. The latter is the first general compiler from (al-
gebraic) IOPs to commit-and-prove zkSNARKs. A CP-SNARK permits to verify
a proof through a commitment to an input (rather than an input in the clear)
that, crucially, we can reuse among proofs5. Below we detail our contributions.

Polynomial Holographic IOPs (PHPs). Our PHPs generalize AHPs6 as
well as ILDPs. A PHP consists of an interaction between a verifier and a prover
sending oracle polynomials, followed by a decision phase in which the verifier
outputs a set of polynomial identities to be checked on the prover’s polynomials
(such as a(X)b(X)− z · c(X)

?
= 0, for oracle polynomials a, b, c and some scalar

5 We compose CP-SNARKs as gadgets to modularly build complex schemes; as studied
recently [18, 54], they are useful to prove properties of committed values [11, 35].

6 PHPs generalize AHPs where the verifier is “algebraic”, including all schemes in [19].
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z), as well as a set of degree tests (e.g. deg(a(X)) < D). The PHP model is close
to ILDPs, but the two differ with respect to zero-knowledge formalizations: while
ILDPs lack one altogether, we introduce and formalize a fine-grained notion of
zero-knowledge—called (b1, . . . , bn)-bounded zero-knowledge—where the verifier
may learn up to bi evaluations of the i-th oracle polynomial. When compared
to AHPs, PHP has, again, a more granular notion of zero-knowledge, as well as
verification queries that are more expressive than mere polynomial evaluations.

As we shall discuss next, these two properties of PHPs—expressive verifier’s
queries and a highly flexible zero-knowledge notion—naturally capture more
(and more efficient) strategies when compiling into a cryptographic argument
(e.g., we can weaken the required hiding property of the polynomial commit-
ments and the zero-knowledge of the CP-SNARKs used in our compiler).

From PHPs to zkSNARKs through another model of polynomial com-
mitments. We describe how to compile a (public-coin) PHP into a zkSNARK.
For AHPs and ILDPs [19, 27], compilation works by letting the prover use poly-
nomial commitments on the oracles and then open them to the evaluations asked
by the verifier. Our approach, though similar, has a key distinction: a different
formalization of polynomial commitments with a modular design.

Our notion of polynomial commitments is modular : rather than seeing them
as a monolithic primitive—a tuple of algorithms for both commitment and
proofs—we split them into two parts, i.e., a regular commitment scheme with
polynomials as message space, and a collection of commit-and-prove SNARKs
(CP-SNARKs) for proving relations over committed polynomials. We find sev-
eral advantages in this approach.

As already argued in prior work on modular zkSNARKs through the commit-
and-prove strategy [11, 18], one benefit of this approach is separation of concerns:
commitments are required to do one thing independently of the context (com-
mitting), whereas what we need to prove about them may depend on where we
are applying them. For example, we often want to prove evaluation of commit-
ted polynomials: given a commitment c and points x, y, prove that y = p(x)
and c opens to p. But to compile a PHP (or AHP/ILDP) we also need to be
able to prove other properties about them, such as checking degree bounds or
testing equations over committed polynomials. Because these properties—and
the techniques to prove them—are somehow independent from each other, we
argue they should not be bundled under a bloated notion of polynomial com-
mitment. Going one step further in this direction, we formalize commitment
extractability as a proof of knowledge of opening of a polynomial commitment.
This modular design allows us to describe an abstract compiler that assumes
generic CP-SNARKs for the three aforementioned relations—proof of knowledge
of opening, degree bounds and polynomial equations—and can yield zkSNARKs
with different tradeoffs depending on how we instantiate them.

We also find additional benefits of the modular abstraction. First, a CP-
SNARK for testing equations over committed polynomials more faithfully cap-
tures the goal of the PHP verifier (as well as the AHP verifier in virtually all
known constructions). Second, we can allow for realizations of CP-SNARKs for
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equations over polynomials other than the standard one, which reduces the prob-
lem of (batched) polynomial evaluations via random point evaluation. As an ap-
plication, we show a simple scheme for quadratic equations that can even have
an empty proof (see below); our most efficient realizations exploit this fact.

From PHPs to zkSNARKs: fine-grained leakage requirements. Our
second contribution on the compiler is to minimize the requirements needed to
achieve zero-knowledge. As we shall discuss later, this allows us to obtain more ef-
ficient zkSNARKs. A straightforward compiler from PHPs to zkSNARKs would
require hiding polynomial commitments and zero-knowledge CP-SNARKs; we
weaken both requirements. Instead of “fully” hiding commitments, our compiler
requires only somewhat hiding commitments. This new property guarantees, for
each committed polynomial, leakage of at most one evaluation on a random
point. Instead of compiling through “full” zero-knowledge CP-SNARKs, our com-
piler requires only (b1, . . . , bn)-leaky zero-knowledge CP-SNARKs. This new no-
tion is weaker than zero-knowledge and states that the verifier may learn up to
bi evaluations of the i-th committed polynomial.

We show that by using a somewhat-hiding commitment scheme and a (b1, . . . ,
bn)-leaky zero-knowledge CP-SNARK that can prove the checks of the PHP
verifier, one can compile a PHP that is (b1 + 1, . . . , bn + 1)-bounded ZK into a
fully-zero-knowledge succinct argument.

Although related ideas were used in constructions in previous works [27], our
contribution is to systematically formalize (as well as expand) the properties
needed on different fronts: the PHP, the commitment scheme, the CP-SNARKs
used as building blocks and the interaction among all these in the compiler.

Pairing-based CP-SNARKs for committed polynomials.We consider the
basic commitment scheme for polynomials consisting of giving a “secret-point
evaluation in the exponent” [32, 39] and then show CP-SNARKs for various
relations over that same commitment scheme. In particular, by using techniques
from previous works [19, 27, 39] we show CP-SNARKs for: proof of knowledge
of an opening in the algebraic group model [25] (which actually comes for free),
polynomial evaluation, degree bounds, and polynomial equations. In addition to
these, we propose a new CP-SNARK for proving opening of several commitments
with a proof consisting of one single group element; the latter relies on the PKE
assumption [32] in the random oracle model. Also, we show that for a class of
quadratic equations over committed polynomials (notably capturing some of the
checks of our PHPs), we can obtain an optimized CP-SNARK in which the proof
is empty as the verifier can test the relation using a pairing with the inputs (the
inputs are commitments, i.e., group elements). This technique is reminiscent of
the compiler from [13] that relies on linear encodings with quadratic tests.

PHPs for constraint systems. We propose a variety of PHPs for the R1CS
constraint system and for a simplified variant of it that we call R1CS-lite. In
brief, R1CS-lite is defined by two matrices L,R and accepts a vector x if there
is a w such that, for c = (1,x,w), L · c ◦R · c = c. We show that R1CS-lite
can express arithmetic circuit satisfiability with essentially the same complexity
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of R1CS, and its simpler form allows us to design slightly simpler PHPs. We
believe this characterization of NP problems to be of independent interest.

Part of our techniques stem from those in Marlin [19]: we adopt their encoding
of sparse matrices; also one of our main building blocks is the sumcheck protocol
from Aurora of Ben-Sasson et. al. [8]. But in our PHPs we explore a different
protocol that proves properties of sparse matrices and we introduce a refined
efficient technique for zero-knowledge in a univariate sumcheck. In a nutshell,
compared to [8] we show how to choose the masking polynomial with a specific
sparse distribution that has only a constant-time impact on the prover. This
idea and analysis of this technique is possible thanks to our fine-grained ZK
formalism for PHPs. By combining this basic skeleton with different techniques
we can obtain PHPs with different tradeoffs (see Table 2).

Commit-and-prove zkSNARKs from PHPs. We propose the first general
compiler from an information-theoretic object such as (algebraic) IOPs— and
more in general PHPs—to Commit-and-Prove zkSNARKs7. Recall that the lat-
ter is a SNARK where the verifier’s input includes one (or several) reusable
hiding commitment(s), i.e., to check that R(u1, . . . , u`) holds for a tuple of com-
mitments (ĉj)j∈[`] such that ĉi opens to ui. By reusable we mean that these
commitments could be used in multiple proofs and with different proof systems
since their commitment key is generated before the setup of the proof system.
To obtain a CP-SNARK we cannot apply the committing methods for polyno-
mials used in [19, 27]: these require a known bound on how many times we will
evaluate the polynomials. This is analogous to knowing a bound on the number
of proofs over those same committed polynomials, which may be unknown at
commitment time. Therefore we apply more stringent requirements and assume
these commitments to be full-fledged hiding rather than just somewhat-hiding.

To obtain our commit-and-prove compiler we adapt our compiler to zk-
SNARKs to include the following key idea: we prove a “link” between the commit-
ted witnesses (uj)j∈[`]—which open hiding commitments (ĉj)j∈[`]—and the PHP
polynomials (pj)j∈[n]—which open somewhat-hiding commitments (cj)j∈[n]. We
design a specific CP-SNARK for this task, CPlink. Our construction works for
pairing-based commitments and supports a wide class of linking relations which
include those in our PHP constructions.

Simplifying a little bit, our techniques involve proving equality of images
of distinct (committed) polynomials on distinct domains and they are of inde-
pendent interest. In particular they can plausibly be adapted to compile other
zkSNARKs with similar properties—e.g., Marlin or PLONK [19, 27]—into CP-
SNARKs with commitments that can be reused among different proofs.

Efficient CP-SNARKs with a universal setup are strongly motivated by prac-
tical applications. One of them is committing-ahead-of-time [10, 18] in which we
commit to a value possibly before we can predict what we are going to prove
about it. A CP-SNARK with a universal SRS, like those in this work, can be a
requirement in the context of committing-ahead-of-time: if the setting requires
7 Here we do not consider the alternative approach of explicitly proving in the PHP
a relation augmented with commitment opening; this is often too expensive [18].
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committing to data before knowing what properties to prove about them (which
can happen on-demand), the same setting can benefit from an (unspecialized)
SRS string available before knowing what to prove about the committed data.

Our work improves on the efficiency of LegoUAC in [18], a modular CP-
SNARK construction with universal setup for universal relations (and the only
one in literature to the best of our knowledge). Our results are also complemen-
tary to those of [18] (in particular their specialized CP-SNARKs with universal
setup) and to those of works on efficient composable CP-SNARKs on commit-
ments in prime order groups, such as [11]: our universal CP-SNARK can be
composed with the schemes in these works as they can all be derived from the
same SRS, or with some of the transparent instantiations in [11].

1.2 Other Related Work

In this work we focus on practical zkSNARKs with a universal and updatable
setup and constant-size proofs. Recent work builds on our formalizations to
expand this area designing a fully algebraic framework for modular arguments
[47]. Here we briefly survey other works that obtain universality through other
approaches at the cost of a larger proof size.

Concurrent work in [42] proposes a new scheme with universal—but not
updatable— SRS and an asymptotically linear prover (our prover is quasi-linear
due to the use of FFT). By recursive composition they achieve an asymptotically
Oλ(1)-size proof. In practice this is about 9× larger than some of our proofs.

Spartan [49] obtains preprocessing arguments with a URS; it trades a trans-
parent setup for larger arguments and less efficient verification, ranging from
O(log2(n) to O(

√
n), depending on the instantiation.

Concurrent work in [43] extends Spartan techniques obtaining a linear-time
prover. They obtain asymptotically constant-sized proofs through one step of
recursive composition with Groth16 [33]; they do not discuss concrete proof
sizes. This, however, yields a scheme with universal but not updatable setup. It
would require an existing scheme with universal and updatable setup to achieve
the latter; their work can thus be seen as complementary to ours.

Other works obtain universal SNARGS through a transparent setup and
by exploiting the structure of the computation for succinctness. They mainly
use two classes of techniques: hash-based vector commitments applied to oracle
interactive proofs [4, 5, 6] or multivariate polynomial commitments and doubly-
efficient interactive proofs [51, 53, 55, 56, 57, 58].

Fractal [20] achieves transparent zkSNARKs with recursive composition—
the ability of a SNARG to prove computations involving prior SNARGs. Their
work also uses an algebraically-flavored variant of interactive oracle proofs that
they call Reed–Solomon encoded holographic IOPs.

Another line of work, e.g., [2, 8, 15, 16, 26], obtains a restricted notion of
succinctness with no preprocessing, a linear verifier and sublinear proof size.
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1.3 Outline

See Section 2 for preliminaries. In Section 3 we define PHPs; we describe PHP
constructions in Section 4. Section 5 describes how to compile PHPs to universal
zkSNARKs. Concrete compilations for the Lunar zkSNARKs are in Section 6.

2 Preliminaries and Notation

Universal Relations. A universal relation R is a set of triples (R, x,w) where
R is a relation, x ∈ Dx is called the instance (or input), w ∈ Dw the witness,
and Dx,Dw are domains that may depend on R. Given R, the corresponding
universal language L(R) is the set {(R, x) : ∃w : (R, x,w) ∈ R}. For a size bound
N ∈ N, RN denotes the subset of triples (R, x,w) in R such that R has size at
most N, i.e. |R| ≤ N. In our work, we also write R(R, x,w) = 1 (resp. R(x,w) = 1)
to denote (R, x,w) ∈ R (resp. (x,w) ∈ R).

When discussing schemes that prove statements on committed values we
assume that Dw can be split in two subdomains Du×Dω, and sometimes we use
an even more fine-grained splitting of Du := (D1 × · · · × D`) for some arity `.

2.1 Algebraic Preliminaries

We denote by F a finite field, by F[X] the ring of univariate polynomials, and by
F<d[X] (resp. F≤d[X]) the set of polynomials in F[X] of degree < d (resp. ≤ d).

We briefly describe some algebraic preliminaries (see full version for details):

Vanishing and Lagrange Basis Polynomials. For any subset S ⊆ F we denote by
Z S(X) :=

∏
s∈S(X − s) the vanishing polynomial of S, and by LSs (X) the s-th

Lagrange basis polynomial, which is the unique polynomial of degree at most
|S| − 1 such that for any s′ ∈ S it evaluates to 1 if s = s′ and to 0 otherwise.

Multiplicative subgroups. If H ⊆ F is a multiplicative subgroup of order n, then
its vanishing polynomial has a compact representation Z H(X) = (X |H| − 1).
Similarly, for such H it holds LH

η (X) = η
|H| ·

X|H|−1
X−η [38, 50, 52]. Both Z H(X) and

LH
η (X) can be evaluated in O(log n) field operations. We assume that H comes

with a bijection φH : H→ [n], and we use elements of H to index the entries of a
matrix M ∈ Fn×n, i.e., Mη,η′ denotes MφH(η),φH(η′), and similarly for vectors.
For any vector v ∈ Fn, we denote by v(X) its interpolating polynomial in H, i.e.,
the unique degree-(|H| − 1) polynomial such that, for all η ∈ H, v(η) = vη.

Univariate sumcheck. We use the lemma from [8, 19], which shows that for any
p ∈ Fd[X] and multiplicative subgroup H ⊂ F, σ =

∑
η∈H p(η) iff there exists

q(X), r(X) such that p(X) = q(X)Z H(X)+Xr(X)+σ/|H| with deg(r) < n−1.

Polynomial masking.Given a subgroupH ⊂ F and an integer b ≥ 1,MaskHb (p(X))
is a shorthand for p(X)+Z H(X)ρ(X) for a randomly sampled ρ(X)←$F<b[X].

Definition 1 (Bivariate Lagrange polynomial). The bivariate Lagrange
polynomial for a multiplicative subgroup H ⊆ F is ΛH(X,Y ) := Z H(X)·Y−X·Z H(Y )

n·(X−Y ) .
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This polynomial has two properties useful for our work: for all η ∈ H, ΛH(X, η) =
LH
η (X), and it can be evaluated in O(log n) time (see full version).

Sparse Matrix Encodings. For a matrix M , ||M || denotes the number of its
nonzero entries, which we call its density. We occasionally use encodings for
sparse matrices inspired to [19]. Let K be another multiplicative subgroup of F
such that |K| ≥ ||M ||. In brief, a sparse encoding of a matrix M is a triple of
polynomials (valM, rowM, colM) in F<|K|[X], where rowM : K → H (resp. colM :
K → H) is the function such that rowM(κ) (resp. colM(κ)) is the row (resp.
column) index of the κ-th nonzero entry of M , and valM : K→ F is the function
that encodes the values of M in some arbitrary ordering. Hence it holds that for
all κ ∈ K, valM(κ) = M rowM(κ),colM(κ). We define the matrix-encoding polynomial
of M as the bivariate polynomial VM (X,Y ) :=

∑
κ∈K valM(κ) · LH

rowM(κ)(X) ·
LH
colM(κ)(Y ), and note that for all η, η′ ∈ H, VM (η, η′) = Mη,η′ .
The following lemma shows that a sparse encoding polynomial of a matrix

M can be used to express linear transformations by M . Proof in the full version.

Lemma 1 (Sparse Linear Encoding). Let M ∈ Fn×n and let VM (X,Y ) be
its matrix-encoding polynomial. Let v,y ∈ Fn be two vectors and v(X), y(X) be
their interpolating polynomials over H. Then y = M · v if and only if y(X) =∑
η∈H v(η) · VM (X, η).

Joint Sparse Encodings for Multiple Matrices. When working with multiple ma-
trices, it is sometimes convenient to use a sparse encoding that keeps track of
entries that are nonzero in either of the matrices. This has the advantage of hav-
ing a pair of col, row polynomials common to all matrices. For example, for two
matrices L,R, this encoding includes polynomials {valL, valR} encoding their
values, and polynomials {col, row} that maintain the indices in which either of
the matrix is nonzero. Namely, for any κ ∈ K, we have valL(κ) = Lrow(κ),col(κ) and
valR(κ) = Rrow(κ),col(κ). In this case though |K| is in the worst case ≥ ||L||+||R||.

3 Polynomial Holographic IOPs

In this section we define our notion of Polynomial Holographic IOPs (PHP), that
generalizes algebraic holographic proofs (AHPs) [19]. We show how to compile
them into one another in the full version. In a nutshell, a PHP is an interactive
oracle proof (IOP) system that works for a family of universal relations R that is
specialized in two main ways. First, it is holographic, i.e., the verifier has oracle
access to the relation encoding, a set of oracle polynomials created by a trusted
party, the holographic relation encoder (or simply, encoder) RE . Second, it is
algebraic in the sense that the system works over a finite field F: at each round
the prover can send field elements or oracle polynomials to the verifier, while the
latter can perform algebraic checks as queries over the prover’s messages.

More formally, a Polynomial Holographic IOP is defined as follows.
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Definition 2 (Polynomial Holographic IOP (PHP)). Let F be a family of
finite fields and let R be a universal relation. A Polynomial Holographic IOP over
F for R is a tuple PHP = (r, n,m, d, ne,RE ,P,V) where r, n,m, d, ne : {0, 1}∗ →
N are polynomial-time computable functions, and RE ,P,V are three algorithms
for the encoder, prover and verifier respectively, that work as follows.

- Offline phase: The encoder RE(F,R) takes as input a field F ∈ F and a
relation description R, and returns n(0) polynomials {p0,j}j∈[n(0)] encoding R.

- Online phase: The prover P and verifier V run for r(|R|) rounds and take
respectively as input a tuple (R, x,w) ∈ R and an instance x; the verifier has
also oracle access to the polynomials encoding R.
In the i-th round, V sends a message ρi ∈ F to the prover, and P replies
with m(i) messages {πi,j ∈ F}j∈[m(i)], and n(i) oracle polynomials {pi,j ∈
F[X]}j∈[n(i)], such that deg(pi,j) < d(|R|, i, j).

- Decision phase: After the r(|R|)-th round, the verifier outputs two sets of
algebraic checks of the following type.
• Degree checks: to check a bound on the degree of the polynomials sent by
the prover. More in detail, let np =

∑r(|R|)
k=1 n(k) and let (p1, . . . , pnp) be the

polynomials sent by P. The verifier specifies a vector of integers d ∈ Nnp ,
which is satisfied if and only if ∀k ∈ [np] : deg(pk) ≤ dk.

• Polynomial checks: to check that certain polynomial identities hold for the
oracle polynomials and the prover messages. Formally, let n∗ =

∑r(|R|)
k=0 n(k)

and m∗ =
∑r(|R|)
k=1 m(k), and denote by (p1, . . . , pn∗) and (π1, . . . , πm∗) all

the oracle polynomials (including the encoder’s) and all the messages sent
by the prover. The verifier can specify a list of ne tuples, each of the form
(G, v1, . . . , vn∗), where G ∈ F[X,X1, . . . , Xn∗ , Y1, . . . , Ym∗ ] and every vk ∈
F[X]. Then a tuple (G,v) is satisfied if and only if F (X) ≡ 0 where

F (X) := G(X, {pk(vk(X))}k∈[n∗], {πk}k∈[m∗])

The verifier accepts if and only if all the checks are satisfied.

Efficiency Measures. Given the functions r, d, n,m in the tuple PHP, one can
derive some efficiency measures of the protocol PHP such as the total number
of oracles sent by the encoder, n(0), by the prover np, by both in total, n∗; or
the number of prover messages m∗. In addition to these, we define the following
shorthands for two more measures of PHP; degree D, and proof length L(|R|):

D := max
R∈R

i∈[0,r(|R|)]
j∈[n(i)]

(d(|R|, i, j)), L(|R|) :=
∑

i∈[r(|R|)]
j∈[n(i)]

m(i) + d(|R|, i, j).

PHP should satisfy completeness, (knowledge) soundness and zero-knowledge:

Completeness. If for all F ∈ F and any (R, x,w) ∈ R, the checks returned by
VRE(F,R)(F, x) after interacting with (honest) P(F,R, x,w) are always satisfied.
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Soundness. A PHP is ε-sound if for every field F ∈ F , relation-instance tuple
(R, x) /∈ L(R) and prover P∗ we have Pr[〈P∗,VRE(F,R)(F, x)〉 = 1] ≤ ε.
Knowledge Soundness. A PHP is ε-knowledge-sound if there exists a polynomial-
time knowledge extractor E such that for any prover P∗, field F ∈ F , relation R,
instance x and auxiliary input z:

Pr
[
(R, x,w)∈ R : w← EP

∗
(F,R, x, z)

]
≥ Pr[〈P∗(F,R, x, z),VRE(F,R)(F, x)〉=1]−ε

where E has oracle access to P∗, i.e., it can query the next message function of
P∗ (and rewind it) and obtain all the messages and polynomials returned by it.

Zero-Knowledge. A PHP is ε-zero-knowledge if there exists a PPT simulator S
such that for every field F ∈ F , every triple (R, x,w) ∈ R, and every algorithm
V∗ the following random variables are within ε statistical distance:

View
(
P(F,R, x,w) ,V∗

)
≈ε View

(
SV
∗
(F,R, x)

)
where View

(
P(F,R, x,w) ,V∗

)
consists of V∗’s randomness, P’s messages

π1, . . . , πm∗ (which do not include the oracles), and V∗’s list of checks, while
View

(
SV∗(F,R, x)

)
consists of V∗’s randomness followed by S’s output, obtained

after having straightline access to V∗, and V∗’s list of checks.

Remark 1 (About messages and constant polynomials). We explicitly model the
prover’s messages πi, although they could be replaced by (degree-0) polynomial
oracles evaluated on 0 during the checks. This is useful for zero-knowledge: while
messages are supposed not to leak information on the witness (i.e., they must
be simulated), this does not hold for the oracles. Thus, in our compiler, we will
not need to hide messages πi from the verifier, only the oracles.

On the class of polynomial checks. Above we describe the class of polynomial
checks of the verifier in full generality; nonetheless, when possible, we use more
convenient notations. We note that this class includes low-degree polynomials
like G({pi(X)}i) (e.g., p1(X)p2(X)p3(X) + p4(X)), in which case each vi(X) =
X, polynomial evaluations pi(x), in which case vi(X) = x, tests over P messages,
e.g., pi(x)− πj , and combinations of all these.

Public coin and non-adaptive queries. In the rest of this work, we only
consider PHPs that are public coin and non-adaptive: the messages of the verifier
are random elements and its checks are independent of the prover’s messages.

Below we define two additional properties that can be satisfied by a PHP:

Bounded Zero-Knowledge. This property will be useful for our compiler
of Section 5. We require that zero-knowledge holds even if the view includes a
bounded number of evaluations of oracle polynomials at given points.

However, we cannot allow evaluations on any possible point: specific points
could leak bits of information of the witness. Thus we define a notion of “admis-
sible” evaluations. Below we say that a list L = {(i1, y1), . . . } is (b,C)-bounded
where b ∈ Nnp and C is a PT algorithm if ∀i ∈ [np] : |{(i, y) : (i, y) ∈ L}| ≤ bi
and ∀(i, y) ∈ L : C(i, y) = 1.
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Definition 3 ((b,C)-Zero-Knowledge). We say that PHP is (b,C)-Zero-
Knowledge if for every triple (R, x,w) ∈ R, and every (b,C)-bounded list L,
the following random variables are within ε statistical distance:(

View
(
P(F,R, x,w),V

)
, (pi(y))(i,y)∈L

)
≈ε S(F,R, x,V(F, x),L).

where p1, . . . , pnp are the polynomials returned by the prover P.
Moreover, we say that PHP is honest-verifier zero-knowledge with query

bound b (b-HVZK for short) if there exists a PT algorithm C such that PHP is
(b,C)-ZK and for all i ∈ N we have Pry ←$ F[C(i, y) = 0] ∈ negl(λ).

3.1 PHP Verifier Relation

We formalize the definition of an NP relation that models the PHP verifier’s
decision phase. We shall use it in our compiler in Section 5.

Let PHP = (r, n,m, d, ne,RE ,P,V) be a PHP protocol over a finite field fam-
ily F for a universal relation R, with D as its maximum degree. We define Rphp

as a family of relations that express the checks of V over the oracle polynomials,
which can be formally defined as follows.

Let np, n∗ ∈ N be two positive integers, and consider the following relations:

Rdeg

(
(dj)j∈[np], (pj)j∈[np]

)
:=
∧

j∈[np]
deg(pj)

?
≤ dj

Req

(
(G′,v), (pj)j∈[n∗]

)
:= G′

(
X, (pj(vj(X)))j∈[n∗]

) ?≡ 0

where G ∈ F[X,X1, . . . , Xn∗ ] and v = (v1, . . . , vn∗) ∈ F[X]n
∗
. For a PHP verifier

that returns a polynomial check (G′,v), Req expresses such check if one considers
G′ as the partial evaluation of G at (Y1 = π1, . . . , Ym∗ = πm∗). Rdeg instead
expresses the degree checks of a PHP verifier.

Given relations RA ⊂ Dx × Dw and RB ⊂ D′x × Dw with a common domain
Dw for the witness, consider the product RA × RB ⊂ Dx × D′x × Dw containing
all the tuples (xA, xB ,w) where (xA,w) ∈ RA and (xB ,w) ∈ RB . For ne ∈ N, let

Rn∗,np,ne := Rdeg ×
ne times︷ ︸︸ ︷

Req × · · · × Req and Rphp :=
{
Rn∗(|R|),np(|R|),ne(|R|) : R ∈ R

}
where n∗(|R|) =

∑r(|R|)
i=0 n(i) and np(|R|) =

∑r(|R|)
i=1 n(i) are the number of total

and prover oracle polynomials respectively, when running PHP with relation R.

4 Our PHP Constructions

We propose a collection of PHP constructions for two types of constraint systems:
the by now standard rank-1 constraint systems [28] and an equally expressive
variant we introduce in Section 4.1 called R1CS-lite.

R1CS-lite can be seen as a simplified version of R1CS with only two matrices.
In brief, an R1CS-lite relation is defined by two matrices L,R and is satisfied if
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Table 2. Comparison of our PHP constructions, all with complexities: O(m logm) for
RE , O(m logm+n logn) for P and O(`+logm+logn) for V. To have a simpler table,
we assume |K| = m > 2n, which is often the case. We call |π| = 5n+ 2m− 2`+ 2ba +
2bb + 2bs + 6bq − 4, and |π′| = |π| + n − ` + bw + 7bq. For verifier checks, we denote
by “deg” the number of degree checks that require a tight bound; the last two columns
show the degree of the two polynomial checks: in the first one we have all vj(X) = y
and in the second one all vj(X) = X. “Rk” (“full”) denote remark (resp. full version).

PHP
degree

oracles
msgs

proof V checks
name ref. RE P length deg degX,{Xi}(G1) degX,{Xi}(G2)

PHPlite1 4.1 2m 8 7 1 |π|+ 2m 2 2 2
PHPlite1x Rk.2 2m 5 7 1 |π|+ 2m 2 2 3
PHPlite2 full m 24 7 1 |π| 2 2 2
PHPlite2x full m 16 7 1 |π| 2 2 3
PHPr1cs1 full 3m 9 8 1 |π′|+ 4m 2 2 2
PHPr1cs1x full 3m 6 8 1 |π′|+ 4m 2 2 3
PHPr1cs2 full m 57 8 1 |π′| 2 2 2
PHPr1cs2x full m 42 8 1 |π′| 2 2 3
PHPr1cs3 full 3m 12 8 1 |π′| 2 2 5

there exists a vector c such that (L · c) ◦ (R · c) = c. We show that R1CS-lite
is as expressive as R1CS since it can represent arithmetic circuit satisfiability
with essentially the same complexity as R1CS (see full version)8. It allows us to
obtain PHP constructions (and resulting zkSNARKs) that are simpler and more
efficient. More formally, R1CS-lite is defined as follows.

Definition 4 (R1CS-lite). Let F be a finite field and n,m ∈ N be positive
integers. The universal relation RR1CS-lite is the set of triples

(R, x,w) := ((F, n,m, `, {L,R}),x,w)

where L,R ∈ Fn×n, max{||L||, ||R||} ≤ m, the first ` rows of R are (−1, 0, . . . , 0)
∈ F1×n, x ∈ F`−1, w ∈ Fn−`, and for c := (1,x,w), it holds (Lc) ◦ (Rc) = c.

In this section, we present one PHP for R1CS-lite relations and give the
intuition to obtain other PHP variants. The PHPs for the R1CS language follow
the same bare-bone protocol, differing mainly in the number of matrices and an
additional witness vector. In Table 2 we give a summary of all our PHPs and
their measures.

4.1 Our PHPs for R1CS-lite

In all our constructions we use a variant of R1CS-lite in which we slightly expand
the witness, and we express the witnesses and the check in polynomial form.
8 Comparing to R1CS, the number of columns in R1CS-lite matrices do not change
and the number of rows increase by the amount of public inputs, for the same circuit.
The count of nonzero entries in R1CS-lite is smaller for virtually every circuit.

14



Definition 5 (Polynomial R1CS-lite). Let F be a finite field, and n,m ∈ N
be positive integers. The universal relation RpolyR1CS-lite is the set of triples(

(F, n,m, {L,R}, `),x, (a′(X), b′(X))
)

where L,R ∈ Fn×n, max{||L||, ||R||} ≤ m, x ∈ F`−1, a′(X), b′(X) ∈ F≤n−`−1[X],
and such that, for L :={φ−1H (i)}i∈[`], x′=(1,x), a(X) :=

∑
η∈L x

′
φH(η) ·LH

η (X)+
a′(X) · Z L(X) and b(X) := 1 + b′(X) · Z L(X), it holds, over F[X,Z],

a(X) + Z · b(X) +
∑

η,η′∈H
(Lη,η′ + Z ·Rη,η′) · a(η′) · b(η′) · LH

η (X) = 0 (1)

In the full version we prove that L(RR1CS−lite) ≡ L(RpolyR1CS-lite).

Our PHP PHPlite1. We describe the main ideas of our protocol PHPlite1. The
prover’s goal is to convince the verifier that the polynomials a(X), b(X) satisfy
equation (1). To this end, the relation encoder RE encodes the matrices L,R by
using a joint sparse encoding (see Section 2.1), which consists of four polynomials
(valL, valR, col, row) in F<|K|[X]. In this case we use a multiplicative subgroup
K ⊆ F of minimal cardinality such that |K| ≥ 2m ≥ ||L||+ ||R||.

By applying the sparse linear encoding of Lemma 1 to the matrices L and R
and using the property of the bivariate Lagrange polynomial that ΛH(X, η) =
LH
η (X), equation (1) can be expressed as

0 = a(X) + Z · b(X) +
∑

η∈H
a(η) · b(η) · (VL(X, η) + Z · VR(X, η))

=
∑

η∈H
(a(η) + Z · b(η)) · ΛH(X, η) + a(η) · b(η) · VLR(X, η, Z) (2)

where, exploiting the use of col, row common to L,R, VLR(X,Y, Z) equals:

VL(X,Y )+Z ·VR(X,Y ) =
∑

κ∈K
(valL(κ)+Z · valR(κ)) · LH

row(κ)(X) · LH
col(κ)(Y )

In order to show that a(X), b(X) satisfy equation (2), the verifier draws
random points x, α←$F that are used to “compress” the equation from F[X,Z]
to F. Then, the prover’s task becomes to show that∑

η∈H
(a(η) + α · b(η)) · ΛH(x, η) + a(η) · b(η) · VLR(x, η, α) = 0

This is done via a univariate sumcheck over p(X) := (a(X)+α·b(X))·ΛH(x,X)+
a(X) · b(X) · VLR(x,X, α). However, since p(X) depends on the witness, we
make the sumcheck zero-knowledge by doing it over p(X) + s(X) for a random
polynomial s(X) sent by the prover in the first round. Although this resembles
the zero-knowledge sumcheck technique of [8], we propose an optimized way
to randomly sample a sparse s(X), which is sufficient for the bounded zero-
knowlegde of our PHP. So, for the sumcheck the prover sends two polynomials
q(X), r(X) such that s(X)+p(X) = q(X) ·Z H(X)+X ·r(X). The verifier checks
this equation by evaluating all the polynomials on a random point y←$F\H. To
do this, the verifier can compute on its own (in O(log n) time) the polynomials
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ΛH(x, y), Z H(y), and query all the others, except for VLR(x, y, α). For the latter
the prover sends a candidate value σ and runs a univariate sumcheck to convince
the verifier that σ =

∑
κ∈K(valL(κ) + α · valR(κ)) · LH

row(κ)(x) · L
H
col(κ)(y).

In what follows we give a detailed description of the PHP protocol PHPlite1.

Offline phase RE(F, n,m, {L,R}, `). The holographic relation encoder takes as
input a description of the specific relation and outputs eight polynomials{
col(X), row(X), cr(X), col′(X), row′(X), cr′(X), vcrL(X), vcrR(X)

}
∈ F≤|K|[X].

The polynomials {col, row, valL, valR} are the joint sparse encoding of {L,R}.
The holographic relation encoder computes:

cr(X) :=
∑

κ∈K
col(κ) · row(κ) · LK

κ (X)

{vcrM (X) :=
∑

κ∈K
valM (κ) · cr(κ) · LK

κ (X)}M∈{L,R}

col′(X) := X · col(X), row′(X) := X · row(X), cr′(X) := X · cr(X)

Essentially, the polynomials cr(X), vcrL(X) and vcrR(X) are low-degree ex-
tensions of the evaluations in K of

(
col(X) · row(X)

)
,
(
valL(X) · col(X) · row(X)

)
and

(
valR(X) · col(X) · row(X)

)
respectively, while col′, row′ and cr′ are a shifted

version of col, row and cr each. The intuition behind expanding the sparse en-
coding of L, R in this way is to keep the polynomial checks of the verifier of the
lowest possible degree. In particular we are interested in obtaining a PHP where
degX,{Xi}(G) ≤ 2 as it enables interesting instantiations of our compiler. As an
example, by adding cr(X) we can replace terms involving col(X) · row(X) with
cr(X). This shall become more clear when looking at the decision phase.

Online phase 〈P ((F, n,m, {L,R}, `),x, (a′(X), b′(X))) ,V(F, n,m,x)〉.

Round 1: P {â′(X), b̂′(X), s(X)} V

The prover samples polynomials qs(X)←$Fbs+bq−1[X] and rs(X)←$Fbr+bq−1[X],
and sets s(X) := qs(X) · Z H(X) +X · rs(X). Note that, whenever br + bq ≤ n,
the pair qs(X), rs(X) is a unique decomposition of s(X), and also s(X) ∈
F≤n+bs+bq−1[X]. P sends s(X) to V together with randomized versions of the
witness polynomials â′(X)←$Mask

H\L
ba+bq

(a′(X)) ∈ F≤n−`+ba+bq−1[X] and

b̂′(X)←$Mask
H\L
bb+bq

(b′(X)) ∈ F≤n−`+bb+bq−1[X].

Round 2: V x, α P {q(X), r(X)} V

The verifier sends two random points x, α←$F. The prover uses the pair x, α to
“compress” the check of equation (1) over F[X,Z] into the sumcheck statement∑
η∈H p(η) = 0 over F for the polynomial p(X) := (â(X)+α · b̂(X)) ·ΛH(x,X)+
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â(X) · b̂(X) · VLR(x,X, α) where, for x′ = (1,x), we have

â(X) := â′(X) · Z L(X) +
∑

η∈L
x′
φH(η) · L

H
η (X) ∈ F≤n+ba+bq−1[X],

b̂(X) := b̂′(X) · Z L(X) + 1 ∈ F≤n+bb+bq−1[X],

Next, P computes and sends polynomials q(X) ∈ F≤2n+ba+bb+2bq−3[X] and
r(X) ∈ F≤n−2[X]—such that s(X) + p(X) = q(X) · Z H(X) + X · r(X)—to
prove the univariate sumcheck

∑
η∈H s(η)+ p(η) = 0. Note that by construction∑

η∈H s(η) = 0; its role here is to (sufficiently) randomize q(X), r(X) in a way
that their evaluations do not leak information about the witness (Theorem 2).

Round 3: V y P σ, { q′(X), r′(X) } V

The verifier sends a random point y←$F \ H. The prover uses y to compute
σ ← VLR(x, y, α) and then defines the degree-(|K| − 1) polynomial

p′(X) :=
∑

κ∈K
(valL(κ) + α · valR(κ)) · LH

row(κ)(x) · L
H
col(κ)(y) · L

K
κ (X)

The goal of the prover is to convince the verifier that
∑
κ∈K p

′(κ) = σ and

∀κ ∈ K : p′(κ) = (valL(κ) + α · valR(κ)) · LH
row(κ)(x) · L

H
col(κ)(y)

These two statements can be combined in such a way that P does not need to
send p′(X), which is implicitly known by V as it depends on RE polynomials.

The first claim, since deg(p′) < |K|, reduces to proving that its constant term
is σ
|K| , for which P sends r′(X) ∈ F≤|K|−2[X] such that p′(X) = X · r′(X) + σ

|K| .
The second claim, by definition of LH(·), means proving that ∀ κ ∈ K:

n2p′(κ)(x− row(κ))(y− col(κ))=
(
valL(κ)+αvalR(κ)

)
row(κ)col(κ)Z H(x)Z H(y).

By definition of p′(X) and of the relation polynomials, P can define

t(X) :=
σ

|K|
·n2·(xy+cr(X)−x·col(X)−y·row(X))+r′(X)·n2·(xy·X+cr′(X)−

x·col′(X)−y ·row′(X))−
(
vcrL(X)+α·vcrR(X)

)
·Z H(x)·Z H(y) ∈ F≤2|K|−2[X]

that equals 0 on any κ ∈ K. This way, P computes q′(X) := t(X)
Z K(X) ∈ F≤|K|−2[X]

and sends σ and {q′(X), r′(X)} to V.

Decision phase. The verifier outputs the following degree checks

deg(â′), deg(b̂′), deg(s), deg(q), deg(q′)
?
≤ Dsnd (3)

deg(r)
?
≤ n− 2 (4)

deg(r′)
?
≤ |K| − 2 (5)
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and the following two polynomial checks:

s(y) +
(
â′(y) ·Z L(y) +

∑
η∈L

x′
φH(η) · L

H
η (y)

)(
ΛH(x, y)+σ( b̂

′(y) ·Z L(y) + 1)
)

+ ( b̂′(y) · Z L(y) + 1) · α · ΛH(x, y)− q(y) Z H(y)− y r(y)
?
= 0 (6)

σ

|K|
· n2 · (xy + cr(X) − x · col(X) − y · row(X) )

+ r′(X) · n2 · (xy ·X + cr′(X) − x · col′(X) − y · row′(X) )

−
(
vcrL(X) + α · vcrR(X)

)
· Z H(x) · Z H(y)− q′(X) · Z K(X)

?
= 0 (7)

Above, we highlight the oracle polynomials in gray , the prover messages in
blue, and the coefficients of the verifier’s polynomial checks in red. This is to
help seeing how the above checks fit the form described in Definition 2.

In the first degree check, Dsnd is an integer that can be chosen by the verifier
and governs the soundness error as shown in Theorem 1. While for correctness
we need Dsnd ≥ D − 1, where D is the degree of the PHP (shown below), this
bound does not need to be tight (i.e., Dsnd = D− 1) as is the case for the degree
checks on r and r′. This observation has an impact on our compiler where, by
choosing Dsnd to be the maximal degree supported by the commitment scheme,
one does not need to create a proof for degree checks of the form “≤ Dsnd”.

Security Analysis. We state knowledge soundness and zero-knowledge of
PHPlite1; full proofs are in the full version.

Theorem 1 (Knowledge Soundness). Our protocol PHPlite1 is ε-knowledge-
sound with ε = |H|

|F| +
2Dsnd+|H|
|F\H| .

Theorem 2 (Zero-Knowledge). Our PHP protocol PHPlite1 is perfect zero-
knowledge. Furthermore, it is perfect b-HVZK with b = (ba, bb, bs, bq, br,∞,∞).

For an intuition about soundness we refer to the intuitive description of the
construction. For b-HVZK, we present the main ideas. Following a rather stan-
dard argument, we have that up to ba (resp. bb) evaluations of â′ (resp. b̂′) are
randomly distributed due to their construction through Mask. Instead, up to bq
(resp. br) evaluations of q (resp. r) can be argued random thanks to the random-
ness of the polynomials qs and rs defining s(X) = qs(X) · Z H(X) +X · rs(X).
In particular, this uses that for γ ∈ F \ H, s(X) is (bs + bq)-wise indepen-
dent even conditioned on rs(X), and that the honest q(X) is determined by
(p(X) + s(X)−Xr(X))/Z H(X), where p(X) is that defined in round 2.

Remark 2 ( PHPlite1x: a variant with fewer relation polynomials). We present a
variant of PHPlite1, that we call PHPlite1x, which has fewer relation polynomials.
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In particular, the RE of PHPlite1x does not output col′(X), row′(X) and cr′(X),
and the second polynomial check, of degree 3 with a public term X, becomes:

n2 ·
(
X · r′(X) +

σ

|K|

)
·
(
xy + cr(X) − x · col(X) − y · row(X)

)
−
(
vcrL(X) + α · vcrR(X)

)
· Z H(x) · Z H(y)− q′(X) · Z K(X)

?
= 0 (8)

PHPlite2: Separate Sparse Matrix Encodings. We propose another PHP
for R1CS-lite called PHPlite2. PHPlite2 is very similar to PHPlite1, indeed its first
two rounds of the online phase are identical. The main difference is that in
PHPlite2 the matrices {L,R} are encoded in sparse form separately. Namely,
L,R are represented with the functions {valM , rowM , colM}M∈{L,R} so that, for
any κ ∈ K, valM (κ) = M rowM (κ),colM (κ). The main benefit of this choice is that
we can work with a subgroup K ⊂ F such that |K| ≥ m ≥ max{||L||, ||R||},
which is half the size of the one needed in PHPlite1. Using this encoding, the
VLR(X,Y, Z) polynomial in equation (2) here becomes∑
κ∈K

(
valL(κ) · LH

rowL(κ)(X) · LH
colL(κ)(Y ) + Z · valR(κ) · LH

rowR(κ)(X) · LH
colR(κ)(Y )

)
So, in round 3 of PHPlite2 the prover’s goal is to show that σ = VLR(x, y, α)
for the equation above. This is done analogously to PHPlite1 except that here
{valM , rowM , colM}M∈{L,R} are expanded in a total of 24 relation polynomials
for the goal of keeping 2 the degree of the second polynomial check. See Table 2
for a summary of PHPlite2 measures and its variant PHPlite2x, and the full version
for a detailed description.

5 Compiler from PHPs to Universal zkSNARKs

We start with the definitions for our compiler. Some of the following notions are
standard or were introduced in previous works, while some others are new. For
space reasons, we defer to the full version for formal definitions .

Commitment Schemes. In our work we use the notion of type-based commit-
ments, introduced by Escala and Groth [22]: these are a generalization of regular
commitments that unify several committing methods into the same scheme. As
done in [11], in this work we exploit the formalism of type-based commitments to
describe commit-and-prove zero-knowledge proofs that work with commitments
of different types, tailoring different properties for the same message space.

More in detail, a type-based commitment scheme is a tuple of algorithms
CS = (Setup,Commit,VerCom) that works as a commitment scheme with the
difference that the Commit and VerCom algorithms take an extra input type that
represents the type of c. All the possible types are included in the type space
T . Having different types helps for a more granular description of the security
properties of the commitment scheme. For example, a commitment scheme for
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a set of types {type1, type2} could be trapdoor hiding for commitments of type
type1 and could be computationally hiding for commitments of type type2. In
this case, we say that the commitment scheme is type1-trapdoor hiding and
type2-computationally hiding. We assume succinct commitments.

zkSNARKs with Universal and Specializable SRS. A zkSNARK with
specializable universal SRS for a family of relations {RN}N∈N, introduced by
Groth et al. [34], is a tuple of algorithms Π = (KeyGen,Derive,Prove,Verify)
where KeyGen is probabilistic and upon input public parameters and size bound
N produces the srs and a trapdoor tdk, Derive is deterministic and upon input
srs and R ∈ RN produces ekR, vkR, and the prover Prove and verifier Verify act as
usual. We require the standard notions of completeness, succinctness, knowledge-
soundness and zero-knowledge.

Universal CP-SNARKs. We adapt the notion of commit-and-prove SNARKs
of [18] to universal relations. Very roughly speaking, a universal CP-SNARK for
a family of relationships R and a commitment scheme CS is a universal SNARK
for a family of relations RCom which includes all the relations RCom such that
RCom(x, c,w) = 1 if and only if R(x,w) = 1 and c is a commitment that opens to
w and R ∈ R. As in [18], in the definition we add syntactic sugar to this idea to
handle relations where the domain of the witness is more fine grained and split
over `+ 1 subdomains for a fixed ` ∈ N.

More in detail, we denote a universal CP-SNARK as a tuple of algorithms
CP = (KeyGen,Derive,Prove,Verify) where: (i) KeyGen(ck,N) → srs := (ek, vk)
generates the structured reference string. (ii) Derive(srs,R)→ (ekR, vkR) is a de-
terministic algorithm that takes as input an srs produced by KeyGen(ck,N), and a
relation R ∈ RN. (iii) Prove(ek, x, (cj)j∈[`], (uj)j∈[`], (oj)j∈[`], ω)→ π outputs the
proof for (x,w) ∈ R and w = (u1, . . . , u`, ω). (iv) Verify(vkR, x, (cj)j∈[`], π)→ {0, 1}
rejects or accepts the proof. Sometimes we use a more general notion of knowl-
edge soundness for CP-SNARKs introduced by Benarroch et al. [11] named
knowledge soundness with partial opening . The intuition is to consider adver-
saries that explicitly return valid openings for a subset of the commitments that
they return, thus enabling to formally define knowledge soundness in the context
where not all the commitments need to be extracted.

In the basic completeness notion of Universal CP-SNARKs, the CP-SNARK
is required to work with commitments of any type. We also define a weaker notion
of completeness in which the CP-SNARK works only when certain witnesses are
committed with a specific type. We call this notion T -restricted completeness.
This is useful if we want to use a CP-SNARK that supports only a subset
T of the types of the commitment scheme. We give a few examples. Suppose
the commitment scheme has two different types, type1, type2, and there exists a
CP-SNARK that only works with commitments of type1. Alternatively, a CP-
SNARK for a relation with `1 + `2 committed witnesses could work only when
the first `1 commitments are of type type1 and the subsequent `2 commitments
are of type type2. And clearly, more fine-grained combinations are possible.
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Commitment-only SRS. We say that a universal CP-SNARK has a commitment-
only SRS if the key generation algorithm is deterministic. Notice that for Uni-
versal CP-SNARK with commitment-only SRS the notion of zero-knowledge in
the SRS model is not achievable. In fact, formally speaking, the commitment
key ck is part of the description of a relation; thus, the actual SRS of the CP-
SNARK would be the empty string. However, the classical result of [30] shows
that NIZK in the plain model exists only for trivial languages. Therefore we
consider a weaker notion of zero-knowledge for these CP-SNARKs, that we call
trapdoor-commitment zero-knowledge in the SRS model , where the trapdoor
necessary for simulation comes from the commitment key of CS.

5.1 Compiler’s Building Blocks

Commitments to Polynomials. Recall that a PHP verifier has access to
two sets of oracle polynomials: those from the relation encoder (which describe
the relation) and those from the prover (which should supposedly convince the
verifier to accept a public input x). The compiler commits to polynomials in
both sets; it requires all these commitments to be binding, but not to fully hide
any of these polynomials.

The commitments for the relation encoding polynomials—whose type we
denote by rel—do not need to hide anything: they open to polynomials repre-
senting the relation, which is public information. The polynomial commitments
of type rel have weaker requirements for one more reason. Besides not requiring
them to be hiding, we will not require them to be extractable (i.e., we do not
assume a CP-SNARK that has knowledge soundness for them, here is the reason
to use the notion of knowledge soundness with partial opening).

Above, we ignored leakage when committing to relation encoding polynomi-
als; we cannot do the same when committing to the polynomials from the PHP
prover as they contain information about the witness. If we do not prevent some
leakage we will lose zero-knowledge. At the same time we will show that we do
not need full hiding for these polynomials either, just a relaxed property that
may hold even for a deterministic commitment algorithm. We call this property
somewhat-hiding—defined below— and denote its type by swh.

In the remainder of this section we will assume CS to be a polynomial com-
mitment scheme; i.e., a commitment scheme in which the message space M is
F≤d[X] for a finite field F ∈ F and an integer d ∈ N. Without loss of generality
we assume d to be an input parameter of Setup.

Definition 6 (Somewhat-Hiding Polynomial Commitments). Let CS =
(Setup,Commit,VerCom) be a type-based commitment scheme for a class of poly-
nomials F≤d[X] and a class of types T , and that works as in Type-Based Com-
mitment Schemes, but where we allow Commit to be deterministic. Then CS is
said to be type-typed somewhat-hiding if there exist three algorithms (ck, td =
(td′, s))←Sck(s) where s ∈ F, (c, st)←TdCom(td, γ) and o←TdOpen(td, st, c, f)
such that: (1) the distribution of the commitment key returned by Sck with a uni-
formly random s←$F as input is identical to the one of the key returned by Setup;
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(2) for any f ∈ F<d[X], (c, o) ≈ (c′, o′) where (c, o) ← Commit(ck, type, f),
(c′, st)← TdCom(td, f(s)) and o′ ← TdOpen(td, st, c′, f).

CP-SNARKs for the Commitment Scheme. We assume that the commit-
ment scheme CS is equipped with a CP-SNARK CPphp = (KeyGenphp,Provephp,
Verifyphp) for a relation family R′ ⊇ Rphp (we defined Rphp in Section 3.1), and
with a CP-SNARK CPopn = (KeyGenopn,Proveopn,Verifyopn) for the (trivial) re-
lation family Ropn = {ψ, (pj)j∈[`] : ` ∈ N} whose instance is the empty string ψ
and witnesses are tuples of polynomials. A CP-SNARK for Ropn is essentially a
proof of knowledge of the openings of ` commitments.

Leaky Zero-Knowledge. We define a weaker zero-knowledge notion that is suffi-
cient to be satisfied by the CPphp CP-SNARK in our compiler. This new property
allows better efficiency and flexibility of the compiled protocols. Intuitively, a
CP-SNARK for relations over committed polynomials is leaky zero-knowledge if
its proofs may leak information about a bounded number of evaluations of these
polynomials. More in detail, a CP-SNARK is (b,C)-leaky zero-knowledge if there
exists a ZK simulator that has access to a list of leaked values {uij (yj)}(i,j) where
the list {(ij , yj)}j∈N is (b,C)-bounded (see Section 3).

5.2 The Compiler

At a high level, we follow the known paradigm stemming from [40, 46] in which
the prover commits to the oracles, answers the verifier’s queries generated using
a random oracle and proves correctness of these answers. A high-level description
of the compiled SNARK Π = (KeyGen,Derive,Prove,Verify) follows:

– The KeyGen algorithm runs the setup of the commitment scheme CS and
generates keys for the auxiliary CP-SNARKs.

– The Derive algorithm, when deriving a specialized SRS for a specific relation
R, commits to all the polynomials returned by the relation encoder RE(R)
using rel-typed commitments.

– The prover Prove algorithm executes internally the PHP prover P, at each
round of P it commits the polynomials from P using swh-typed commitments;
it proves it knows their opening using CPopn; concatenate the commitments,
the proofs and the rest of the messages from P. It computes a hash of the
partial transcript, which it then uses as the next message to feed to the P. At
the last round it uses CPphp to prove that the PHP verifier V would accept.

– The verifier checks all the CP-SNARK proofs of opening for the commitments
and executes the decision stage of V with input the instance and the random
oracle hash values computed over the partial transcripts. It thus generates an
instance for CPphp and checks the related CP-SNARK proof.

For compactness in the exposition, we state the main result of the section in
one theorem, however in the full version we restate the theorem in two steps: first
we compile to universal interactive argument systems, and secondly we compile
the latter argument systems to SNARKs using the Fiat-Shamir transform—thus
the following theorem holds in the random oracle model.
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Theorem 3. Let PHP = (r, n,m, d, ne,RE ,P,V) be a non-adaptive public-coin
PHP over a finite field family F and for a universal relation R. Let CS be a
type-based commitment scheme for a class of polynomials F<d[X] and a class of
types T = {rel, swh} that is T -binding and swh-somewhat-hiding and equipped
with CP-SNARKs CPopn for Ropn and CPphp for Rphp.

– The scheme Π = (KeyGen,Derive,Prove,Verify) is a zkSNARK with specializ-
able universal SRS for the family of relations R.

– If CPopn is TP-ZK, and, for a checker C, PHP (resp. CPphp) is (b + 1,C)-
bounded honest-verifier zero-knowledge (resp. (b,C)-leaky zero-knowledge) then
Π is zero-knowledge in the SRS model.

Remark 3 (On completeness). It is sufficient for CPphp to be T -restricted com-
plete, with T =

(
(rel)n(0)‖(swh)np

)
∈ T n∗ , to obtain the completeness of Π.

Remark 4 (On updatable SRS). If the commitment key generated by Setup is
updatable [?, 34], and CPopn and CPphp have commitment-only SRS then the
SRS of Π is updatable.

Intuition on Security Proof. The proof of knowledge soundness follows the stan-
dard argument of simulating a prover for the PHP extracting the polynomials
from the commitments sent by the adversary and use the binding property of
the commitments together with the knowledge soundness of CPphp to prove that
the verifier of the PHP protocol would indeed accept.

We now provide an intuition about zero-knowledge; for simplicity we describe
it as if the protocol involved a single committed polynomial. First, observe that
we assume a PHP with b+1-bounded ZK—i.e., we can simulate interaction with
an honest prover even after we have leaked b+ 1 evaluations of the polynomial.
Since we assume a commitment scheme that is only somewhat-hiding (Definition
6), we are actually leaking one evaluation of the committed polynomial (in par-
ticular on a random point). We now combine this fact with the ZK property we
are assuming on the CP-SNARKs in the compiler—b-leaky ZK— and this allows
us to still simulate an interaction with an honest prover that is indistinguishable
after further b leaked evaluations.

Compiler to Universal CP-SNARK. We briefly explain how to adapt our
compiler to turn PHPs into CP-SNARKs. More details appear in the full version.

We consider a natural sub-class of PHP where the extractor for the knowl-
edge soundness satisfies a stronger property usually denoted as straight-line ex-
tractability in the literature. In particular, we assume there exists an extractor
WitExtract that on input the polynomials sent by a malicious prover interacting
with the verifier can extract the valid witness.

Recall that the instances for CP-SNARKs are tuples of the form (x, ĉ1, . . . , ĉ`)
for a value ` ∈ N, where x is an instance for the relation and ĉ1, . . . , ĉ` commits to
chunks of the witness. The commitments ĉ1, . . . , ĉ` are just classical commitments
(in the sense that they are hiding and binding, but there are no restrictions on
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other properties they might have). Therefore we consider CP-SNARKs for typed-
commitment schemes with class of types T = {rel, swh, lnk}, where the latter
type is reserved for the input commitments (and thus the commitment scheme
is lnk-typed hiding and lnk-typed binding).

The compiler to a CP-SNARK is exactly the same as the compiler pre-
sented before but where the prover, after having computed all the commitments
c1, . . . , cnp (and the proofs for CPopn and CPphp), additionally computes a CP-
SNARK proof for the relation Rlink that says that the commitments ĉ1, . . . , ĉ`
open to values u1, . . . , u` and the commitments c1, . . . , cnp open to polynomials
p1, . . . , pnp such that WitExtract(p1, . . . , pnp) = (u1, . . . , u`, ω), therefore creating
a link between the computed proof and the input commitments ĉ1, . . . , ĉ`.

6 Instantiating Our Compiler: Our Universal zkSNARKs

We propose different instantiations of the building blocks needed by our compiler
of Section 5: (i) (type-based) pairing-based commitment schemes for polynomi-
als; (ii) a collection of CP-SNARKs for various relations over such committed
polynomials. Next, we describe different options to combine them together in
our compiler, when applied to our PHP constructions (see Table 2). The re-
sulting zkSNARKs offer different tradeoffs in terms of SRS size, proof size, and
verification time. Table 1 summarizes the most interesting among these schemes.

We denote a bilinear group setting by a tuple (q,G1,G2,GT , e), whereG1,G2,
GT are additive groups of prime order q, and e : G1 ×G2 → GT is an efficiently
computable, non-degenerate, bilinear map. We focus on Type-3 groups and use
the bracket notation of [23], i.e., for g ∈ {1, 2, T} and a ∈ Zq, we write [a]g to
denote a · Pg ∈ Gg, where Pg is a fixed generator of Gg.

6.1 Pairing-Based Commitment Schemes for Polynomials

We show two type-based commitment schemes, denoted CS1 and CS2 respec-
tively, with type set {rel, swh} and for degree-d polynomials. The commitment
of a polynomial p is essentially the evaluation in the exponent of p in a secret
point s, following the scheme of Groth [32] and Kate et al. [39]. Slightly more
in detail, in both schemes, the commitment key ck contains encodings of powers
of a secret point s, and a commitment of type swh to a polynomial p(X) is a
group element [p(s)]1. The only difference between the two schemes are the com-
mitments of type rel, which in CS1 are [p(s)]1 whereas in CS2 are [p(s)]2. As
discussed in the next section, the advantage of having some polynomials commit-
ted in G2 is that one immediately gets a way to test quadratic equations over
committed polynomials where each quadratic term involves exactly one poly-
nomial of type rel. Both types of commitments are computationally binding
under the power-discrete logarithm assumption [44]; we prove commitments of
type swh to also be somewhat hiding.

Remark 5 (On updatability of our SNARKs). Since the commitment schemes
CS1 and CS2 that we work upon generate keys that only contain monomials

24



in the exponent, our constructions are updatable in the sense that participants
can easily re-randomize them at will. Pointing to previous works on updatable
SNARKs, “a CRS that consists solely of monomials (. . . ) is updatable” [34].

6.2 Pairing-Based CP-SNARKs for CS1 and CS2

We show CP-SNARKs for various relations over polynomials committed using
CS1 or CS2. Our CP-SNARKs work over both commitment schemes unless ex-
plicitly stated otherwise. A full description of these schemes is in the full version.

Proof of Knowledge: “I know p and c opens to p”. We show two schemes. (i)
CPAGM

opn is a trivial scheme in which the proof is the empty string and is knowledge-
sound in the algebraic group model [25]; this is an observation already done in
previous work, e.g., [19, 27]. (ii) CPPKE

opn , is novel and provides extractability based
on the mPKE assumption and, when used on more than one commitment, on the
random oracle heuristic. In a nutshell, this scheme uses the classical technique
of giving as a proof a group element πopn = γ · c, where γ ∈ F is a secret but
such that πopn can be publicly computed if one knows the opening of c. What is
new in our scheme is a way to batch this proof for ` commitments in such a way
that we have only one extra group element as a proof, instead of ` elements.

Polynomials Evaluation: “
(
pi(xi) = yi

)
i∈[`]”. We first give a CP-SNARK for

single polynomial evaluation—“p(x) = y”—CPeval,1, secure under the d-SDH
assumption and the extractability of CPopn, and then we extend it into a CP-
SNARK CPeval to support batching. Both schemes stem from techniques in [39].

Polynomial Equations: A CP-SNARK CPeq for general polynomial equations,
e.g., a(X)b(X) − 2c(X)d(X)e(X) = 0), relying mainly on CPopn and CPeval. It
is based on the idea of doing evaluations on a random point, with optimizations
from [27], based on the linearity of the commitment, to minimize proof size.

Quadratic Polynomial Equations: A novel CP-SNARK for quadratic polynomial
equations9 specific to commitment scheme CS2; although less general than CPeq,
CPqeq is more efficient since its proof may simply be empty, while verification
consists of some pairing checks over the commitments. The basic intuition is
simple: to check that G(p1(X), . . . , p`(X)) = 0 for a quadratic polynomial G it
is possible to homomorphically compute G over the values (p1(s), . . . , p`(s)) in
the target group using pairings and the linear property of the commitments. For
this to be possible, for each quadratic monomial pi(X)pj(X), we need at least one
of [pi(s)]2 or [pj(s)]2 in G2. This holds if they are committed through different
types, i.e., one as rel and the other as swh. Otherwise, if they are both in the
same group, we let the prover create one of the two polynomials committed in
the “symmetric” group. Interestingly, for carefully designed equations, the CPqeq

proof can be empty and all the verifier needs to do is verifying a pairing product.

Degree Bound: “(deg(pi) ≤ di)i∈[`]”. Two CP-SNARKs—CP
(?)
deg and CP

(2)
deg—such

that CP
(?)
deg works over both commitment schemes while CP

(2)
deg works only over

9 Here “quadratic” means it supports products of at most two polynomials.

25



CS2. The basic idea is to commit to the shifted polynomial p∗(X) = XD−dp(X)
and then prove that the polynomial equation XD−d · p(X)− p∗(X) = 0 using a
CP-SNARK for polynomial equations, either CPeq or CPqeq. This idea is extended
in order to batch together these proofs for several polynomials.

6.3 Available Options to Compile Our PHPs

We discuss how to combine the aforementioned CP-SNARKs for committed
polynomials to obtain CP-SNARKs for the Rphp relations corresponding to our
PHPs. All our PHPs have a similar structure in which the verifier checks consist
of one vector d of degree checks, and two polynomial checks ((G′1,v1), (G

′
2,v2)).

Hence, for each PHP the corresponding relation Rphp can be expressed as:

Rdeg((dj)j∈[np], (pj)j∈[n(0)+1,n∗]) ∧
{
Req((G

′
i,vi), (pj)j∈[n∗])

}
i∈{1,2}

where G′i is the partial evaluation of Gi on the prover message σ.
In all the PHPs, in the first polynomial check the v1,j(X) are constant poly-

nomials (in particular, they all encode the same point, i.e., ∀j : v1,j(X) = y),
while in the second check they are the identity, i.e., ∀j : v2,j(X) = X. Further-
more, in those PHPs where degX,{Xi}(G2) = 2, the second Req relation can be
replaced by its specialization for quadratic equations.

We use two main compilation options for our PHPs (outlined in Figure 1):

Fig. 1. Different options to compile our PHPs. We mark compatibility with commit-
ment schemes CS1 and CS2 respectively by a circle and a square (both shapes mean
full compatibility). Dotted lines mean either option is possible. An index 1 or 2 for an
arrow to Req denotes whether it refers to the first or second polynomial check.

6.4 Zero-knowledge Bounds when Instantiating PHPs

Our compiler assumes a CP-SNARK CPphp that can be (b,C)-leaky-ZK to com-
pile a PHP protocol that is (1 + b)-bounded ZK (see Theorem 3), as the com-
mitments reveals one evaluation per oracle polynomial.Among the CP-SNARKs
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we propose to realize CPphp, the only one that is leaky-ZK is the CPeq scheme.
Its leakage is due to the fact that the proof includes evaluations of those poly-
nomials that end up in the set S used to optimize the proof size. Note that this
concern arises only when using it to prove the first polynomial check. Indeed, in
all of our schemes the second polynomial check involves only oracle polynomials
that are not related to the witness, and thus for those polynomials the amount
of leakage does not matter. We discuss how to choose b for the b-leaky-ZK of
CPeq when proving the first polynomial check in all of our PHPs.

PHPs for R1CS-lite. The first polynomial check is the same in both construc-
tions. Through the syntax for relation Req we write the polynomial G′1 as

G′1(Xa, Xb, Xs, Xq, Xr) := Xa ·Xb ·ga,b+Xa ·ga+Xb ·gb+Xq ·gq+Xr ·gr+Xs+g0

where the goal is to prove that on a given y, G′1((pj(y))j∈[5]) = 0, that is:

â′(y)b̂′(y) · ga,b + â′(y) · ga + b̂′(y) · gb + s(y) + q(y) · gq + r(y) · gr + g0
?
= 0

To this end, CPeq chooses a set S of size 1; for instance it reveals b̂′(y) and
nothing more. Thus, CPeq for this polynomial check is b-leaky-ZK with b =
(ba, bb, bs, bq, br) = (0, 1, 0, 0, 0). From Theorem 3, PHPlite1 and PHPlite2 need to
be (1, 2, 1, 1, 1)-bounded ZK, and we can optimize the degrees and instantiate
PHPlite∗ with â′ ∈ F≤n+1[X], b̂′ ∈ F≤n+2[X], qs ∈ F≤1[X], rs ∈ F≤1[X].

PHPs for R1CS. All these constructions need to be (1, 2, 1, 1, 1, 1)-bounded ZK.
The analysis is the same as for R1CS-lite; we omit details for lack of space.

6.5 Our Resulting zkSNARKs and CP-SNARKs

In the full version we provide a table with the efficiency of all the zkSNARKs
obtained through the different options to instantiate the compiler on all of our
PHPs. We also discuss how those measures are obtained and give the costs for
the CP-SNARKs resulting from the commit-and-prove compiler. We recall that
the most representative zkSNARKs (in the algebraic group model) are shown in
Table 1 together with a comparison with the state of the art. We recall that all
our constructions are universal and updatable.

We note that instantiating our proofs under the mPKE assumption (instead
of the AGM) is significantly more efficient than for those in [19]. The overhead
of instantiating our proofs under mPKE is: for us, have 4 more G1 elements and
the prover needs up to 3n + 6m more G1 exponentiations: in [19], 11 more G1

elements in the proof and 11n+ 5m more exponentiations to the prover.
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