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Abstract. It is known, from the work of Dai et al. (in CRYPTO’17),
that the PRF advantage of XORP (bitwise-xor of two outputs of n-bit
random permutations with domain separated inputs), against an adver-
sary making q queries, is about q/2n for q ≤ 2n−5. The same bound
can be easily shown to hold for XORP[k] (bitwise-xor of k outputs n-bit
pseudorandom random permutations with domain separated inputs), for
k ≥ 3. In this work, we first consider multi-user security of XORP[3]. We
show that the multi-user PRF advantage of XORP[3] is about

√
uqmax/2

n

for all qmax ≤ 2n/12, where u is the number of users and qmax is the
maximum number of queries the adversary can make to each user. In the
multi-user setup, this implies that XORP[3] gives security for O(2n) users
even allowing almost O(2n) queries to each user. This also indicates sig-
nificant improvement in the single-user setup (i.e., when u = 1), where
the distinguishing advantage of the adversary even after making O(2n)
queries is O( 1√

2n
), i.e., negligible. Subsequently, we consider a simple

efficient variant of XORP[3] in which we use five calls to produce 2n bit
output (instead of six calls in the case of XORP[3]). This variant also
achieves similar level of security. As an immediate application, we can
construct a variant of block cipher based counter mode which provides
much higher security (both in the single-user and the multi-user setup)
compared to the security of the encryption part of GCM at the cost of
efficiency.

Keywords: Random permutation, PRF security, multi-user security, χ2

method, XOR construction.

1 Introduction

Luby-Rackoff Backwards. Pseudorandom functions (PRFs) are important
cryptographic primitives. Construction of PRFs using other primitives is an in-
triguing problem in cryptography. In the context of symmetric-key cryptography,
construction of PRFs from pseudorandom permutations (PRPs) is commonly
termed “Luby-Rackoff Backwards” [BKR98].3

† The work was carried out when the author was affiliated with the Indian Statistical
Institute, Kolkata.

3 In reference to the seminal work by Luby and Rackoff ([LR88]) who considered the
converse problem and showed how to construct a PRP from a PRF.
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A potential drawback of block ciphers (modeled as a PRP) is that they merely
achieve birthday bound security, i.e., a block cipher becomes distinguishable from
a PRF when it is queried O(2n/2) times, where n is the block size. Achieving
security beyond the birthday bound (BBB) is very much desirable but non-
trivial. Bellare, Krovetz, and Rogaway ([BKR98]) and Hall, Wagner, Kelsey,
and Schneier ([HWKS98]) initiated the study of constructions of good PRFs
from block ciphers with BBB security. Since then the problem has received a lot
of attention and at present, it is an intensely investigated area of research.

Different constructions have been proposed in the literature that achieve
varying level of BBB security. A particularly simple construction which we
refer to as the XORP construction, has received much attention in this con-
text. Given an n-bit random permutation RP, the construction is given by
XORP : {0, 1}n−1 → {0, 1}n; XORP(x) = RP(0‖x)⊕ RP(1‖x).

In a generalized version of XORP, denoted by XORP[k], xor of k indepen-
dent n-bit random permutations is considered (though in this work, we will
consider its domain separated version). Lucks [Luc00] showed BBB security for
XORP[k] for all k ≥ 2. More precisely, he showed that the construction is se-

cure up to O(2
kn
k+1 ) queries. This was further improved in a sequence of pa-

pers [BI99,CLP14,Pat10,Pat08,DHT17]. In particular, in [DHT17], it was shown
that the PRF advantage of an adversary making at most q queries to the XORP
construction is at most q

2n +3( q
2n )1.5 indicating that XORP is secure up to O(2n)

queries.
On the other hand, Mennink et al. [MP15] showed a reduction proving that

the security of XORP[k] can be reduced to that of XORP for any k ≥ 3. Hence,
XORP[k] also achieves n-bit security. So, to begin with, PRF security of XORP[k]
for k ≥ 2 looks settled. But we show that further improvement is possible (in
terms of the distinguishing advantage of the adversary) even in the case of
XORP[3]. Consideration of XORP (or its general version XORP[k]) is important
since it has been used to obtain some constructions achieving BBB (or some-
times almost full) security (e.g., CENC [Iwa06,BN18c], PMAC Plus [Yas11],
and ZMAC [IMPS17]).

Multi-user Security. In the multi-user PRF setting of XORP[k], the adver-
sary can query multiple independent random functions in the ideal world or
multiple independent XORP[k]’s (by independent choice of underlying random
permutation) in the real world. In the present-day scenario, multi-user security
(first considered in [BBM00] in the context of public-key cryptography) of a cryp-
tographic primitive is a prudent goal to achieve. Perhaps, due to the large scale
deployment of primitives over the internet it deserves more urgent attention.
Quite a few recent works ([BT16,HTT18,BHT18,HT17,ML15]) have addressed
this area.
Multi User Security of XORP[k]. To motivate its significance in a concrete
manner let us further investigate the multi-user security of XORP[k]. Until now,
the best single-user PRF advantage for XORP[k] is q/2n for any k ≥ 2 (ignoring
the other lower order terms). By using standard hybrid reduction, multi-user
PRF bound of XORP[k] is uqmax/2

n, where u is the number of users and qmax
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is the maximum number of queries per user. When we use AES (so n = 128) as
the underlying block cipher, we have to limit u and qmax such that uqmax ≤ 296

if we tolerable distinguishing advantage is at most 2−32. Even though the limit
is reasonable for the time being, it may be a concern as the number of users as
well as amount of usage of the internet is growing at a huge pace. One option to
boost the security is to increase the block size n. Unfortunately, AES does not
support block size other than 128 4. The other option could be to come up with
some construction which provides stronger security. In this work, we investigate
the second option.

1.1 Our Contribution

In this paper, we investigate the multi-user PRF security of XORP[3] construc-
tion. We show that, for any adversary, making at most qmax queries to any user,
the multi-user PRF advantage for XORP[3] is at most 20

√
uqmax/2

n, where u is
the number of users and qmax ≤ 2n/12. The result shows that XORP[3] can be
simultaneously used by O(2n) users even after allowing the adversary to make
almost O(2n) queries to each user (provided the keys, i.e the underlying ran-
dom permutations of XORP[3] are chosen independently by each user); though
in practice the random permutation should be instantiated with a block cipher
with sufficiently long key (see [ML15]). For a single user, i.e., when u = 1, the
result says that even if the adversary is allowed to query almost all inputs of

the block cipher, its distinguishing advantage is O
(

1√
2n

)
, which is negligible in

n. To the best of our knowledge, this is the first result (in the standard model)
showing negligible advantage for an adversary that is allowed to query almost
the entire domain.

We also analyze the single-user PRF security of a simple variant of XORP[3],
which we denote as XORP′[3]. This construction makes 5 calls to the underlying
block cipher (instead of 6 in case of XORP[3]) to generate 2 output blocks. Even
with a saving in the number of block cipher calls we show that the PRF security
of XORP′[3] is very similar to that of XORP[3]. In particular, we show that the

PRF advantage of the construction is bounded by
5
√
q

N + 256q
N2 + 8192q

N
3
2

. Though

we have analyzed the single-user case for the sake of simplicity, multi-user PRF
security of XORP′[3] can be analyzed in the same way as that of XORP[3].

In order to emphasize our contribution further, we mention that multi-
user PRF advantage of XORP[2] (obtained in [HS20] using the χ2 method)
and XORP′[2] (obtained in [Cog18] using Patarin’s Mirror theory) are at most

O
(√

nq
2n

)
and O

(
q
2n

)
, where q is the total number of queries made to all the

users.

1.2 Our Technique

We use the χ2 method, introduced in [DHT17], which has of late emerged as
a potent tool for bounding statistical distance between two joint distributions.

4 However, Rijndael has variants with larger block sizes.
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Though relatively new, it has so far been effectively applied in quite a few other
works ([BN18c,BN18a,CLL19,Men19,GM20]). Although its application to bound
PRF advantage of an adversary for XORP[k] is not novel, in the present case
of XORP[3] and XORP′[3], the analyses become significantly intricate. In the
case of XORP[3], we need to handle the multi-user scenario with subtle but
important adjustments. On the other hand, in case of XORP′[3], calculations are
quite involved. However, as discussed above, by applying this method we get
significantly better bounds than the existing ones. We give technical description
of the χ2 method in Section 2.3.

2 Preliminaries

2.1 Notation

In this paper, we denote 2n by N . We fix G to be the group Fn2 , and denote
the group addition (i.e., bit-wise xor) by +. For an element g ∈ G and a subset
H ∈ G, we denote by g + H the subset {g + h|h ∈ H}. Sometimes (will be clear
from context) we will term the elements of G as blocks.5

For a positive integer s, we denote an s-tuple (x1, . . . , xs) as xs; however,
when the value of s is clear from the context we will drop it (for notational
simplicity) and denote the tuple as x. Also, when a sequence xs is partitioned
into subsequences (in a way that will be appropriately specified), we will denote
the i-th subsequence by x̂i. Moreover, by slightly abusing the notation we will
denote by (xs \ x̂i) the subsequence of xs formed (maintaining the same order of
xs) by removing the elements of x̂i.

For a random variable X, we write PrX to denote the probability distribution
(or function) corresponding to X. Sample space of a random variable X is a set
Ω so that PrX(Ω) = 1. Support of X is the sample space Ω of X so that for all
x ∈ Ω, PrX(x) > 0. Given a set S and the tuple Xs := (X1, . . . ,Xs), we will write
X1, . . . ,Xs←$S to mean that Xi’s are sampled uniformly and independently from
the set S. Moreover, these are also independent with all other previously sampled
random variables in the context. A sample, i.e., a particular realization of Xs

will be denoted by xs := (x1, . . . , xs).

With and Without Replacement. Let S be a set of size M and s be a
positive integer. To distinguish between with replacement (WR) sampling and
without replacement (WOR) sampling (when they appear in the same context)
we write X1, . . . ,Xs←wrS to represent that X1, . . . ,Xs are chosen randomly in
WR manner from S (i.e., X1, . . . ,Xs←$S), and we write X1, . . . ,Xs←worS to
mean that Xi’s are randomly sampled in WOR manner from the set S. Let

Ss = {(x1, . . . , xs) : xi’s are distinct elements of S}

5 We do not reserve the term ‘block’ solely for this purpose. However, its presence in
other contexts will not create any ambiguity.
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be the set of all block-wise distinct (i.e., the elements of the tuple are distinct)
s-tuples of blocks. Note that |Ss| = M(M−1) · · · (M−s+1). We use shorthand
notation Ms := M(M − 1) · · · (M − s+ 1). In this notation, a WOR sample Xs

is chosen uniformly from Ss. In other words,

Pr[Xs = as] =
1

|S|s
, for all as ∈ Ss.

So, Ss is the support of Xs.

Definition 1 (Random Set). A subset Vr ⊆ G of size r is called a random
r-set if it is chosen uniformly from the set of all r sized subsets of G. Thus, for
every V ⊆ G, with |V| = r,

Pr[Vr = V] =
(
N
r

)−1
.

Throughout the paper we denote a random r-set in G as Vr. A random r-set
can be constructed by drawing a random WOR sample, i.e., Vr = {X1, . . . ,Xr},
where (X1, . . . ,Xr)←worG. Note that the complement set G \ Vr is a random
(N − r)-set. We will require the following estimate from [BN18c].

Lemma 1 ([BN18c]). If 2w < N then 1− (N−r)w
Nw ≤ 2rw

N .

2.2 Adversary and advantage

Here, we recall the notion of adversarial advantage in the context of a generic
indistinguishability game. An oracle adversary or oracle distinguisher A is an
oracle algorithm that interacts with an oracle O through a set of (potentially
adaptive) queries and responses. Finally, it returns a bit b ∈ {0, 1}. We express
this as AO → b. In an indistinguishability game, A interacts with two oracles
O1 and O2. The goal of A is to distinguish between O1 and O2 only from the
corresponding queries and responses. The advantage of the adversary in this
game, denoted AdvA(O1,O2), is given by

AdvdistO1,O2
(A) := |Pr[AO1 → 1]−Pr[AO2 → 1]|,

where the probabilities are taken over the random coins of A,O1, and O2.

Pseudorandom function (PRF) is a very important cryptographic primitive.
For example, while analyzing message authentication code (MAC), we mostly
study PRF security as it is a stronger notion than MAC. It has also been used
to define encryption schemes, authenticated encryptions and other cryptographic
algorithms. PRF security is quantified by PRF advantage. Below we describe the
PRF advantage of a keyed function which is relevant for this work.

Let m and n be positive integers. Let Funcm→n is the set of all functions
from {0, 1}m to {0, 1}n, and let RFm→n←$Funcm→n, i.e., RFm→n is a function
chosen uniformly at random from Funcm→n. Also, let K be a finite set, termed
the key space. Given a function f : K × {0, 1}m → {0, 1}n, for every k ∈ K,
we denote by fk the function (also termed a keyed function) f(k, ·) ∈ Funcm→n.
The PRF advantage of an oracle adversary A against f is defined as follows.
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Definition 2 (PRF advantage). Let f : K × {0, 1}m → {0, 1}n be a function
and A be a distinguisher. Then the PRF advantage of A against f is defined as

Advprf
f (A) := Advdistf,RF(A) = |Pr[AfK → 1 : K←$K]− Pr[ARFm→n → 1]|.

PRP Advantage is defined in an analogous manner. Here, instead of a ran-
dom function oracle the adversary A interacts with a random permutation or-
acle RPn←$Permn, where Permn is the set of all permutations on {0, 1}n. PRP
advantage is relevant in the context of a block cipher which is modeled as a
pseudorandom permutation. More formally, an n-bit block cipher is a function
e : K×{0, 1}n → {0, 1}n such that for all K ∈ K, eK := e(K, ·) is a permutation
on {0, 1}n. The PRP advantage of A against e is defined as

Advprp
e (A) = Advdiste,RP(A) = |Pr[AeK → 1 : K←$K]− Pr[ARPn → 1]|.

We write Advprf
f (q, t) = maxA Advprf

f (A) where maximum is taken over all
adversaries making at most q queries and runs in time t. We similarly define
Advprp

f (q, t) for PRP advantage.

Since we are concerned with information theoretic security (with the only
restriction that the adversary makes total q queries), w.l.o.g we assume that the
adversary is deterministic and does not repeat its queries.

When A is interacting with RFm→ n, the outputs follow uniform and in-
dependent distributions over {0, 1}n which we denote as U1, . . . ,Uq ←$ {0, 1}n.
Similarly, X1, . . . ,Xq denote the outputs of fK where K←$K. We denote the
probability distributions associated to U1, . . . ,Uq and X1, . . . ,Xq by PrU and
PrX respectively. Thus,

Advprf
f (A) = |PrX(E)−PrU(E)|, (1)

where E is the set of all q-tuple responses xq = (x1, . . . , xq) ∈ ({0, 1}n)q at
which A returns 1. It is well known that the statistical distance between the
distributions PrX and PrU is given by

‖PrU−PrX‖
def
=

1

2

∑
xq∈({0,1}n)q

|PrX(xq)−PrU(xq)| = max
E⊆({0,1}n)q

(PrX(E)−PrU(E)).

(2)
Multi-user PRF Advantage is a generalization of the PRF advantage of a
keyed function to the multi-user scenario. Let u be the number of users denoted
by the elements of [u]. With a keyed function f : K × {0, 1}m → {0, 1}n, we
associate its multi-user extension f (u) : Ku × [u] × {0, 1}m → {0, 1}n mapping
(ku, i, x) to fki(x), for all ku ∈ Ku, i ∈ [u]. Let RF denote the random function
from [u] × {0, 1}m to {0, 1}n. We define the multi-user advantage against f for
u users as

Advmu prf
f (u, qmax, q, t) = max

A
Advdistf(u),RF(A),

where the maximum is taken over all adversaries A that run in time t making at
most qmax queries to each user and q queries altogether to all users. To simplify
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our analysis, w.l.o.g. we allow A to make exactly qmax queries to each user in
[u]. Indeed, this can only increase A’s advantage which we are going to upper
bound. So, with this convention, we have q = u× qmax. Also, following the same
considerations made for the single-user case we assume, w.l.o.g, that A makes
distinct queries to individual users.

2.3 χ2 Method

Given a set Ω, let Xq := (X1, . . . ,Xq) and Zq := (Z1, . . . ,Zq) be two random
vectors distributed over Ωq = Ω × · · · × Ω (q times) according to the distri-
butions PrX and PrZ respectively. In what follows, we will require the following
conditional distributions.

PrX|xi−1(xi) := Pr[Xi = xi | X1 = x1, . . . ,Xi−1 = xi−1],

PrZ|xi−1(xi) := Pr[Zi = xi | Z1 = x1, . . . ,Zi−1 = xi−1].

When i = 1, PrX|xi−1(x1) represents Pr[X1 = x1]. Similarly, for PrZ|xi−1(x1). Let
xi−1 ∈ Ωi−1, i ≥ 1. The χ2-distance between these two conditional probability
distributions is defined as

χ2(PrX|xi−1 ,PrZ|xi−1) :=
∑
xi∈Ω

(PrX|xi−1(xi)−PrZ|xi−1(xi))
2

PrZ|xi−1(xi)
, (3)

with the assumption that the support of the distribution PrX|xi−1 be contained
within the support of the distribution PrZ|xi−1 . Further, when the distributions
PrX|xi−1 and PrZ|xi−1 are clear from the context we will use the notation χ2(xi−1)
for χ2(PrX|xi−1 ,PrZ|xi−1). Then the crux of the χ2 method is the following the-
orem from [DHT17] (see also [BN18b]).

Theorem 1 ([DHT17]). Following the notation as above and suppose the sup-
port of the distribution PrX|xi−1 is contained within the support of the distribution
PrZ|xi−1 for all xi−1, then

‖PrX −PrZ‖ ≤

(
1

2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

, (4)

where for each i, the expectation is over the (i − 1)-th marginal distribution of
PrX.

3 Multi-User PRF Security of XORP[3]

In this section, we analyze the multi-user PRF security of XORP[3](x). For-
mally, the output of XORP[3] is given by XORP[3](x) := RP(x‖00)⊕RP(x‖01)⊕
RP(x‖10), where RP is an n-bit random permutation and x ∈ {0, 1}n−2. In the
multi-user setting of XORP[3], we let A to interact with u users [u] : {1, . . . , u}.
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In the real world, each of the u users holds an independent copy of the under-
lying random permutation RP. In the ideal world, there is a random function
RF : [u] × {0, 1}n−2 → {0, 1}n. We allow A to make total q queries of the form
(ui, xi) with ui ∈ [u], xi ∈ {0, 1}n−2 for i ∈ [q]. Repeating our assumptions for
multi-user security in this setting we have (i) For all v ∈ [u] if (v, xi), (v, xj) are
two queries then xi 6= xj (ii) For all v ∈ [u] the number of queries of the form
(v, x) is qmax. So, we have q = u× qmax.

Let the transcript of replies be P := (P1, . . . ,Pq) when A is interacting in
the real world and R := (R1, . . . ,Rq) when it is interacting in the ideal world,
where Pi,Ri ∈ G are the replies to the i-th query. Therefore, here our goal is to
upper bound ‖PrP−PrR‖. Here, it is important to observe that the qmax replies
given by any user is distributed independently of the other replies. For exam-
ple, suppose w.l.o.g. that user 1’s reply is the sequence (P1, . . . ,Pqmax). Then
(P1, . . . ,Pqmax) is independent of (Pqmax+1, . . . ,Pq). Indeed, this follows from
the fact that each user in [u] holds an independent copy of RP.

Now, there is a subtle technical difficulty involved while working with the
distributions PrP and PrR in the setting of the χ2-method. The difficulty arises
because user Ui for the i-th query is not completely dependent on i. We will
highlight and elaborate more on the issue at the appropriate place in our proof
of Theorem 2 (see the discussion immediately following (7)).

In order to overcome the difficulty, we reorder the samples P and R to get new
samples S and U respectively. In S, Pi’s are grouped into a sequence of u blocks,
where each block comprises of qmax Pi’s output by the same user; similarly
for the distribution U (though we note that R and U are the same, because any
reordering of a sequence of q outputs of a random function is identical to itself).6

Now it is easy to see that in S and U each i ∈ [q] uniquely identifies Ui ∈ [u]. In
Fig. 3.1, we present a precise description of the samples U and S together with
a formal explanation presented below.

For i ∈ [u], let Ii := {(i− 1)qmax + j : j ∈ [qmax]}. So, the sequence (Ii)i∈[u]
partitions [q]. Let U := (U1,U2, . . . ,Uq), be a WR or with replacement sample
(represented as a tuple) of size q, each Ui is sampled from G uniformly and
independently. In other words, we have U←$Gq. On the other hand, the sample
S := (S1,S2, . . . ,Sq) is generated (as described in Fig. 3.1) as follows. First, for

each i ∈ [u], a WOR or without replacement sample T̂i = (Tj,k : j ∈ Ii, k ∈ [3])

of size 3qmax is generated, where T̂i is independent of T̂j for each 1 ≤ j ≤ i− 1.

6 It is not difficult to conceive a bijection between P and S effected by the reordering
described here (since R and U are identical we only focus on P and S). Indeed, for
this purpose one can consider an extended transcript P′ := ((P1, U1), . . . , (Pq, Uq))
which also contains the user Ui associated with the i-th query, and subsequently
express the bijection in an explicit manner. However, we will not do that here in
order to reduce notational complexity. More so, because we will not refer to this
bijection in the subsequent discussion.
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Then for each ` ∈ [q], S` is computed as

S` = T`,1 + T`,2 + T`,3.

So both U and S have the same sample space Gq, and since they are permu-
tations of R and P respectively, we note that

‖PrS −PrU‖ = ‖PrP −PrR‖ (5)

Here it can be noted that the reordering works in the case of XORP[3] because
the distribution of the output of any query does not depend on the input value in
both worlds. Moreover, we assumed with no loss of advantage for the adversary,
the number of queries to each user is constant (maximum allowed for each user).

Random Experiment for U

1 : U := (Ui : i ∈ [q])←wrG

2 : return U

Random Experiment for S

1 : for 1 ≤ i ≤ u
2 : T̂i := (Tj,k : j ∈ [Ii], k ∈ [3])←worG

// T̂i is sampled independent of T̂j , 1 ≤ j ≤ i− 1

3 : for 1 ≤ ` ≤ q
4 : S` = T`,1 + T`,2 + T`,3

5 : return S := (S` : ` ∈ [q])

Fig. 3.1: Description of sampling methods of random variables U, S.

Now, we state our main theorem which provides an upper bound on the
statistical distance ‖PrS −PrU‖. The theorem shows that the sample S is very
close to the uniform sample U even though it is computed from a non-uniform
sample.

Theorem 2 (Pseudorandomness of S). Let U and S be the random vectors
as described in Fig. 3.1. Then, for all qmax ≤ N/12

‖PrS −PrU‖ ≤
20
√
uqmax

N

We postpone the proof to Section 3.4.

3.1 Application to Single-user PRF Security of XORP[3]

We now describe the cryptographic implications of the result from Theorem 2.
Let us define XORP[3] construction based on a single keyed n-bit block cipher
e : K × {0, 1}n → {0, 1}n with key-space K. For x ∈ {0, 1}n−2 and k ∈ K, we
define

XORPe[3](k, x) = ek(x‖00)⊕ ek(x‖01)⊕ ek(x‖10) (6)
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Using the hybrid argument we can replace e by a random permutation at the cost
of PRP advantage. Then we can apply our result to get the following corollary.

Corollary 1. For all q ≤ 2n/12,

Advprf
XORPe[3]

(q, t) ≤ Advprp
e (3q, t′) +

20
√
q

2n

where t′ ≈ t+ 3q.

The above corollary is a simple hybrid argument where we replace the underlying
block cipher e by a random permutation. We note that outputs of a random
permutation for distinct inputs is exactly a WOR or without replacement sample
and hence we apply Theorem 2.

3.2 Application to Multi-user PRF Security of XORP[3]

Similarly, we state multi-user security of XORP construction.

Advmu prf
XORPe[3]

(u, qmax, q, t) ≤ Advmu prp
e (u, 3qmax, t

′) +
20
√
uqmax

N

where u denotes the number of users.

3.3 Application to Counter Mode Encryption

Parity method encryption scheme introduced by Bellare-Goldreich-Krawczyk in
[BGK99] is a probabilistic encryption scheme based on a pseudorandom function.
Let FK : {0, 1}n → {0, 1}n be a pseudorandom function. Then for message
m ∈ {0, 1}n and randomness rt := (r1, . . . , rt) ∈ ({0, 1}n)t, the ciphertext of
the parity method encryption scheme is given by (rt, FK(r1)⊕ · · · ⊕ FK(rt)⊕m).
For all q ≤ N/(e2t), the PRF-advantage of this construction is shown to be
O(q2/N t)+O(q3/N3t/2) for even t and O(q2/N t)+O(q4/N2t) for odd t. Thus, for
t = 2, the construction achieves n-bit security and for t = 4, it achieves beyond
n-bit security. However, the construction requires a pseudorandom function and
random coins.

Counter mode encryption is a practical alternative to the above scheme. In
counter mode encryption, we replace the random coins by some nonce (which
does not repeat over all executions). More precisely, for nonce N and message m,
the ciphertext of the counter mode encryption is (N, FK(N) ⊕ m). If the nonce
does not repeat then the security of the encryption relies on the PRF security
of FK.

As the counter mode is quite popular and has wide applications, the multi-
user security of the counter mode is also of considerable significance. Now,
XORP[3], which uses pseudorandom permutations, can be seen to be the fol-
lowing counter mode encryption scheme.
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Let s be the size of the counter (maximum message length is at most n2s).

1. Given a message m = (m1, . . . ,m`) ∈ {0, 1}n`, and a nonce N ∈ {0, 1}n−s−2,
we define xi,j = N‖〈j〉2‖〈i〉s, for all j ∈ [3], i ∈ [`].

2. Let zi = eK(xi,1)⊕ eK(xi,2)⊕ eK(xi,3) for all i ∈ [`].
3. The ciphertext is defined as (N, z1 ⊕m1, . . . , z` ⊕m`).

The multi-user PRF security of the above encryption scheme is the same
as the multi-user PRF security of XORP[3]. More precisely, the u-user privacy
advantage of the counter mode encryption scheme (provided the nonce does
not repeat) for an adversary making (i) at most qmax queries to each user,
(ii) maximum number of message blocks is at most `, and (iii) total q queries
made to all usersis given by (following the same hybrid argument as before)

Advmu prp
e (u, 3`q, t′) +

20
√
uqmax

N
.

3.4 Proof of Theorem 2

First, in Fig. 3.2, we describe the extended random variables X and Y which
extends S and U respectively. Here, by extension we mean that S and U are
marginal random variables of X and Y respectively. Note that in line 7 of the
random experiment for Y, the execution following else will not be required in
our paper. It is kept only for the sake of the completeness of the definition. We
will formally show this in Claim 1.

Random Experiment for X

1 : for 1 ≤ i ≤ u
2 : T̂i := (Tj,k : j ∈ [Ii], k ∈ [3])←worG

// T̂i is independent of T̂`, 1 ≤ ` ≤ i− 1

3 : for 1 ≤ i ≤ q
4 : Si = Ti,1 + Ti,2 + Ti,3

5 : Xi = (Ti,1,Ti,2, Si)

6 : return X := (Xi : i ∈ [q])

Random Experiment for Y

1 : for 1 ≤ i ≤ u
2 : initialize S

0
i = G

3 : for j ∈ Ii

4 : k = j − (i− 1)qmax

5 : Uj ←$G

6 : Nj =
{

(v1, v2)|

v1, v2,Uj + v1 + v2 ∈ S
k−1
i ,

Uj + v1 + v2, v1, v2 distinct
}

7 : if Nj 6= ∅ then (Vj,1,Vj,2)←$Nj

8 : else (Vj,1,Vj,2) = (0, 0)

9 : Yj = (Vj,1,Vj,2,Uj)

10 : S
k
i = S

k−1
i \ {Vj,1,Vj,2,

11 : Vj,3 := Uj + Vj,1 + Vj,2}
12 : return Y := (Y1, . . . ,Yq)

Fig. 3.2: X and Y are extended random variables of S and U respectively.
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Claim 1 In the Random Experiment for Y (in Fig. 3.2), Nj 6= ∅ holds for all
j. Therefore, line 8 (following else) never executes.

Proof of claim. Without loss of generality first we fix user i. Then it is sufficient
to show that for any uj ∈ G, we can choose distinct v1, v2 ∈ Sk−1i such that
uj + v1 + v2 ∈ Sk−1i \ {v1, v2} for k ≤ qmax. To do this, we fix uj ∈ G. Note
that the distinctness of v1, v2, uj + v1 + v2 is equivalent to the distinctness of
v1, v2, uj . Now, we choose v1 arbitrarily from the set Sk−1i \ {uj}. This is clearly
possible as we have that |Sk−1i \ {uj}| ≥ N − 3(k − 1) > N − 3qmax ≥ 3N

4 ,

since qmax ≤ N
12 by our assumption. Next, we choose v2 arbitrarily from the set

D = Sk−1i \ {{uj , v1} ∪ {(uj + v1) + {G \ Sk−1i }}}. This is also possible since
|D| ≥ N − (2× 3(k − 1) + 2) > N − 6qmax ≥ N

2 . Then it is easy to see that, for
the given uj , the choice of v1 and v2 satisfies the desired condition. �

Let C = G3 denote the set of all 3-tuples of G. To understand the probability
distributions of the random vectors X and Y and their supports we consider the
following involution (a permutation with self inverse) ρ over the set C mapping
(x1, x2, x3) to (x1, x2, x1 + x2 + x3).

We extend the definition of the mapping ρ to a mapping ρ∗ which is defined
over Cc for any c. Formally, we define ρ∗(z1, . . . , zc) := (ρ(z1), . . . , ρ(zc)). From
the random experiments, it is trivial to see that

ρ(Xi) = Ti := (Ti,1,Ti,2,Ti,3) ρ(Yi) = Vi := (Vi,1,Vi,2,Vi,3)

where Vi,3 = Ui +Vi,1 +Vi,2. So, for every i ∈ [q], ρ∗(Xi) = Ti and ρ∗(Yi) = Vi.
In other words, the random variables X and Y are equivalent to the random
variables T and V := ((Vi,1,Vi,2,Vi,3), i ∈ [q]) respectively. More precisely, in

the first case, for each i ∈ [u], we first have WOR sample T̂i and then define X̂i
by applying ρ on each block. Whereas, in the second case, for each i ∈ [u], we

first sample Ŷi (extending a WR sample Ûi) and then we define V̂i by applying

ρ on each block. However, V̂i behaves like a WOR sample (though it is not
perfect WOR sample, it would have same support as a WOR sample). So for

every i ∈ [u] and every j ∈ [qmax], the support of T̂ji (as well as V̂ji ) is the set

Γ̂ ji := {((ai′,1, ai′,2, ai′,3) : i′ ∈ [j]) : a′i′,ks are distinct for all i′ ∈ [j], k ∈ [3]}.

Hence, the support of X̂ji (as well as Ŷji ), denoted as Ω̂ji , would be the set of all
such 3j tuples

Ω̂ji := {(xi′,j : i′ ∈ [j], k ∈ [3]) ∈ G3i :((ai′,1, ai′,2, ai′,3) : i′ ∈ [j]) ∈ Γ̂ ji
ρ(ai′,1, ai′,2, ai′,3) = (xi′,1, xi′,2, xi′,3)}.

Therefore, the support of vectors X and Y is given by Ω = (Ω̂qmax

i |i ∈ [u]).
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Next, for a fixed i ∈ [q] let i = (j − 1)qmax + k, j ∈ [u], k ∈ [qmax]. Then it

follows that Xi = X̂j,k ∈ X̂kj . Then for every xi ∈ Ωi, the conditional probability
for X can be expressed as

PrX(xi | xi−1)
def
= Pr[Xi = xi |X̂k−1j = x̂k−1j , (Xi−1 \ X̂j) = (xi−1 \ x̂k−1j )]

= Pr[X̂j,k = x̂j,k |X̂k−1j = x̂k−1j ], (7)

since X̂j is independent of (Xi−1 \ X̂j)

= Pr[T̂j,k = t̂j,k |T̂k−1j = t̂k−1j ]

=
1

(N − 3(k − 1))3
. (8)

Here, we take a small but important detour in our proof to explain the tech-
nical issue involving the distributions PrP and PrR mentioned in the beginning.
Note that in (7) the independence of X̂j from (Xi−1\X̂j) follows because the user
number ui is completely determined by i. This is not the case for the original
distribution PrP. Indeed, for this distribution A can make adaptive choice of
user ui for the i-th query based on all the previous queries, and hence Pi may
depend on the entire Pi−1. By reordering P into S (and correspondingly X) we

make ui completely determined by i, and hence the independence of X̂j from

(Xi−1 \ X̂j). Similar observation holds in (9) corresponding to the reordering of
the distribution R into U (and subsequently into Y).

Now, we introduce some notations for the random experiment Y.

For all i ∈ [q], let us denote ui = xi,3, i.e., xi = (xi,1, xi,2, ui). As before,
let ρ(xi′) = ti′ for every i′ ∈ [i]. So, ti′,j ’s are distinct. Now, we define the two
crucial sets for our analysis. For j ∈ [u], k ∈ [qmax] let us denote

Skj = G \ {t`,p : ` ∈ [Ij ], p ∈ [3]}, with S0
j = G,

Nui(x̂k−1j ) := {v1, v2 ∈ Sk−1j : ui + v1 + v2 ∈ Sk−1j and v1, v2, ui distinct 7}.

Now, for Ui = ui and Ŷk−1j = x̂k−1j , the set Ni and the set Skj (defined in the
line 5 and line 9 of the random experiment of Y in Fig. 3.2) is exactly the same
as the set Nui(x̂k−1j ) and Skj defined above. It is easy to observe the following:

If x̂k−1j ∈ Ω̂k−1j then the set Nui(x̂k−1j ) is nonempty as xi,1, xi,2 ∈ Nui(x̂k−1j ).

Recall that in Claim 1 we have already justified that the set Ni is non-empty
(and hence line 8 of the Random Experiment for Y is never executed) using a
different argument. Now, we compute the conditional probability on the support
of Y.

7 As noted earlier in Claim 1, the condition that v1, v2, ui are distinct is equivalent to
the condition that v1, v2, v1 + v2 + ui are distinct.
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Claim 2 Let i = (j − 1)qmax + k, with i ∈ [q], j ∈ [u], k ∈ [qmax]. Then for all
xi ∈ Ωi we have,

PrY(xi | xi−1)
def
= Pr[Yi = xi | Yi−1 = xi−1] =

1

N
× 1

|Nui(x̂k−1j )|
.

Proof of claim. First, note that xi−1 ∈ Ωi−1, and Nui(x̂k−1j ) cannot be the empty

set as xi,1, xi,2 ∈ Nui(x̂k−1j ). So,

PrY(xi | xi−1)
def
= Pr[Yi = xi | Yi−1 = xi−1]

= Pr[Ŷj,k = x̂j,k | Ŷk−1j = x̂k−1j , (Yi−1 \ Ŷk−1j ) = (xi−1 \ x̂k−1j )],

(9)

(since (Yi−1 \ Ŷk−1j ) is independent of Ŷk−1j and Ŷj,k)

= Pr[Ŷj,k = x̂j,k | Ŷk−1j = x̂k−1j ]

= Pr[Ui = ui | Ŷk−1j = x̂k−1j ]×Pr[(Vi,1,Vi,2) = (xi,1, xi,2) |

Ui = ui ∧ Ŷk−1j = x̂k−1j ]

=
1

N
× 1

|Nui(x̂k−1j )
. (10)

The last equality follows from the definition of sampling of Ui and (Vi,1,Vi,2).�

We now apply the χ2 method to X and Y.

χ2(xi−1) :=
∑
xi

(PrX(xi |̂xk−1j )−PrY(xi |̂xk−1j ))2

PrY(xi |̂xk−1j )

=(a)

∑
xi=(xi,1,xi,2,ui)

(
1

(N−3(k−1))3 −
1

N |Nui (̂xk−1
j )|

)2
1

N |Nui (̂xk−1
j )|

=(b) C ×
∑
ui

∑
(xi,1,xi,2)

(
|Nui(x̂k−1j )| −D

)2
|Nui(x̂k−1j )|

=(c) C ×
∑
ui

(
|Nui(x̂k−1j )| −D

)2
, (11)

where C = N
((N−3(k−1))3)2 , and D = (N−3(k−1))3

N . The equality (a) follows by

plugging the conditional probabilities derived in (8) and (10). The expression on
the r.h.s. of (b) is obtained by algebraic simplification. The equation (c) follows
from the observation that

(1)

(
|Nui (̂xk−1

j )|−D
)2

|Nui (̂xk−1
j )|

is functionally independent of (xi,1, xi,2),

and (2) for each ui, the number of choices of (xi,1, xi,2) is |Nui(x̂k−1j )|.
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Next, in order to apply Theorem 1, we compute Ex[χ2(Xi−1)] which (from
(11)) is given by

C ×
∑
ui

Ex[
(
|Nui(X̂k−1j )| −D

)2
].

Note that |Nui(x̂k−1j )| is a function of x̂k−1j , and so, it is also a function of t̂k−1j .

When x̂k−1j is sampled according to X̂k−1j , t̂k−1j would be sampled according to

T̂k−1j (WOR sample).
For notational simplicity, let r = N − 3(k − 1) and r′ = N − r = 3(k − 1).

Note that D = r3

N . Also, let

Vr = G \ {T`,p : ` ∈ Ij , ` ≤ i, p ∈ [3]},

which is a random r-set in G. Then the set Nui(x̂k−1j ) is same as the set

{v1, v2 ∈ Vr : ui + v1 + v2 ∈ Vr, and u, v1, v2 distinct}.

We denote the size of the set by Nui
r . Then we have

Ex[χ2(Xi−1)] = C ×
∑
ui

Ex[
(
Nui
r −D

)2
]. (12)

Next, we apply the following core lemma (its proof is postponed to section 3.5)
to get an upper bound on the r.h.s. of (12).

Lemma 2 (core lemma for XORP). Let C, r, r′ be defined as above, where
r′ ≤ N

4 . Then for every b ∈ G, we have

Ex[Nb
r] =

r3

N
, and Ex[(Nb

r −
r3

N
)2] ≤ 1

C

(
576

N3
+

48(r′)3

27N6

)
. (13)

Subsequently, for r′ ≤ N
4 we have

Ex[χ2(Xi−1)] ≤ 576

N2
+

48(r′)3

27N5
.

Now, we continue to bound the statistical distance between X and Y using
the χ2-method as follows. Since qmax ≤ N/12, we have r′ ≤ N/4 (a required
condition for our core lemma). Therefore

‖PrX −PrY‖ ≤

(
1

2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

=

1

2

u∑
j=1

qmax∑
k=1

Ex[χ2(Xk−1)]

 1
2

≤

 u∑
j=1

qmax∑
k=1

288

N2
+

48(r′)3

54N5

 1
2
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≤

 u∑
j=1

qmax∑
k=1

288

N2
+

48(k − 1)3

2N5

 1
2

, since r′ = 3(k − 1)

≤

 u∑
j=1

288qmax
N2

+
47qmax

4

2N5

 1
2

≤
(

288uqmax
N2

+
47uqmax

4

2N5

) 1
2

≤ 12
√

2uqmax
N

+
64
√

2uqmax
2

N
5
2

.

≤ 12
√

2uqmax
N

(1 + 6/(12)1.5) , since qmax ≤ N/12

≤
20
√
uqmax

N
.

Therefore, we finally have

‖PrQ −PrS‖ ≤ ‖PrX −PrY‖ ≤
20
√
uqmax

N
.

�

3.5 Proof of Lemma 2

Let r,N be positive integers such that r′ = N − r ≤ N
4 . Let G be a group of size

N , and Vr be a random r-set in G.

Definition 3. For u ∈ G we associate a random variable Nu
r defined as the size

of the following set

Nu
r := {g1 6= g2 ∈ Vr : u + g1 + g2 ∈ Vr, g1 6= u 6= g2.}

We would like to note that Nu
r as defined above is equivalent to the previous

definition since Vr is a random r′-set. We represent Nu
r as a sum of indicator

random variables. To do so we define the set Gu of tuples of distinct elements of
G as

Gu = {(g1, g2)|g1 6= g2 ∈ G \ {u}}.

So, |Gu| = (N − 1)(N − 2). Then we have

Nu
r =

∑
g∈Gu

Ig, (14)

where, for g = (g1, g2), the indicator random variable Ig is defined as

Ig =

{
1 if g1, g2, u + g1 + g2 ∈ Vr, and g1 6= u 6= g2

0 otherwise.
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We note that g1, g2, u+ g1 + g2 are distinct elements of G since g1 6= u 6= g2. So,
the number of r-sets that contain the three distinct elements g1, g2, u + g1 + g2
is exactly

(
N−3
r−3
)
. Thus,

Ex[Ig] = Pr[{g1, g2, u + g1 + g2} ⊆ Vr] =

(
N−3
r−3
)(

N
r

) =
r3

N3
. (15)

By using the linearity of expectation, we have

Ex[Nu
r] =

∑
g∈Gu

Ex[Ig]

=
∑
g∈Gu

r3

N3
= |Gu| ×

r3

N3
=

r3

N
.

Now, we compute the second part of the lemma which gives a bound on the
variance of Nu

r. Since Nu
r is sum of indicator random variables, we can write

Var[Nu
r] = Var[

∑
g∈Gu

Ig]

=
∑
g∈Gu

Var[Ig] +
∑

g 6=g′∈Gu

Cov(Ig, Ig′).

For the sake of notational simplicity, we denote the set {g1, g2, u + g1 + g2} as

Sg
u for every g ∈ Gu. In (15), we have shown that Ex[Ig] = r3

N3 . As Ig is a 0− 1
random variable, Ex[I2g] = Ex[Ig]. Thus,

Var[Ig] = Ex[I2g]−Ex[Ig]
2

= Ex[Ig](1−Ex[Ig])

=
r3

N3
×
(

1− r3

N3

)
. (16)

Therefore,∑
g∈Gu

Var[Ig] = |Gu| ×
r3

N3
×
(

1− r3

N3

)

≤ 6r2(r − 1)(r − 2)

N2
by employing Lemma 18. (17)

. Now, we compute the covariance term. Note that IgIg′ = 1 if and only if

Sg
u ∪ Sg′

u ⊆ Vr. So,

Ex[IgIg′ ] = Pr[Sg
u ∪ Sg′

u ⊆ Vr] =
rw

Nw
,

where w = |Sg
u ∪Sg′

u |. Here, it is not difficult to see that the possible values taken
by w are 3, 5, and 6. Indeed, for w = 4 it is necessary to have |Sg

u ∩ Sg′

u | = 2.

8 Considering r′ ≤ N
4
< 3N

4
≤ r, here we settle for a weaker bound which is sufficient

for our purpose.
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But this implies Sg
u = Sg′

u (since any two elements of Sg
u or Sg′

u determines the
third element), which violates the fact that w = 4.

Accordingly, we can partition the sum of covariances as follows.

∑
g 6=g′∈Gu

Cov(Ig, Ig′) =
∑

w∈{3,5,6}

∑
g 6=g′∈Gu
|Sgu∪S

g′
u |=w

Cov(Ig, Ig′). (18)

Now, we consider the three possible cases according to the value of w.

Case w = 3: In this case, we have

|{(g, g′)| g 6= g′ ∈ Gu, |Sg
u ∪ Sg′

u | = 3}| = 5(N − 1)(N − 2).

To arrive at the above expression note that the choice of g = (g1, g2) can be made
in (N − 1)(N − 2) ways (since u /∈ {g1, g2}). Now, after fixing g the potential
number of ordered choices for g′ = (g′1, g

′
2) from the elements of Sg

u can be seen
to be 6. Finally, from these 6 choices we discount the choice (g′1, g

′
2) = (g1, g2).

Now, since w = 3, we have

Cov(Ig, Ig′) = Ex[IgIg′ ]−Ex[Ig]Ex[Ig′ ]

=
r3

N3
−
(
r3

N3

)2

=
r3

N3
×
(

1− r3

N3

)

Therefore, similar to (17) we get∑
g 6=g′∈Gu
|Sgu∪S

g′
u |=3

Cov(Ig, Ig′) ≤
30r2(r − 1)(r − 2)

N2
(19)

Case w = 5: Here, we have

|{(g, g′)| g 6= g′ ∈ Gu, |Sg
u ∪ Sg′

u | = 5}| = 9(N − 1)(N − 2)(N − 4).

To justify the above expression, observe that after fixing g in (N−1)(N−2) ways
the common element between the sets Sg

u and Sg′

u can be determined in 3× 3 = 9
ways (note that in this case we necessarily have |Sg

u ∩ Sg′

u | = 1). Following this,
one of the two remaining elements of Sg′

u can be chosen (from outside of the set
Sg
u ∪ {u}) in N − 4 ways. This fixes g’.

Next, for w = 5 we have

Cov(Ig, Ig′) = Ex[IgIg′ ]−Ex[Ig]Ex[Ig′ ] =
r5

N5
−
(
r3

N3

)2

.
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Therefore,

∑
g 6=g′∈Gu
|Sgu∪S

g′
u |=5

Cov(Ig, Ig′) = 9(N − 1)(N − 2)(N − 4)

(
r5

N5
−
(
r3

N3

)2
)

(20)

Case w = 6: In this case, the sets Sg
u and Sg′

u are necessarily disjoint. Ensuring
this condition the choice of g1, g2, g

′
1 can be made (following similar argument as

in the w = 5 case) in (N−1)(N−2)(N−4) ways. Now, letting S := Sg
u ∪{u, g′1},

it can be seen that the choice of g′2 should be made from outside of the set
S ∪{u+ g′1 + s|s ∈ S} which has cardinality 8. Therefore, we have the following.

|{(g, g′)| g 6= g′ ∈ Gu, |Sg
u ∪ Sg′

u | = 6}| = (N − 1)(N − 2)(N − 4)(N − 8).

So, for w = 6 we have

∑
g 6=g′∈Gu
|Sgu∪S

g′
u |=6

Cov(Ig, Ig′) = (N − 1)(N − 2)(N − 4)(N − 8)

(
r6

N6
−
(
r3

N3

)2
)

(21)

Next, to express the upper bound on Var[
∑

g∈Gu
Ig] in terms of r′ we consider

the sum of (17) and (19) together and (20) and (21) together.

C × (
∑
g∈Gu

Var[Ig] +
∑

g 6=g′∈Gu
|Sgu∪S

g′
u |=3

Cov(Ig, Ig′)) ≤
N

(r3)
2 ×

36r2(r − 1)(r − 2)

N2

=
36

N(r − 1)(r − 2)

≤ 576

N3
(22)

The last inequality follows from (r− 2) ≥ N
4 . Suppressing the simplification,

we get

C × (
∑

g 6=g′∈Gu
|Sgu∪S

g′
u |=5

Cov(Ig, Ig′)) +
∑

g 6=g′∈Gu
|Sgu∪S

g′
u |=6

Cov(Ig, Ig′)) ≤
N

(r3)
2×(

r3

N3
)×
(

12N(r′)3

(N − 3)(N − 5)

)

≤ 48(r′)3

27N6
. (23)

For the last inequality note that (r− 2) > N
4 and (N − 5) > 3N

4 for N ≥ 32. So,

we have r(r − 1)(r − 2) > (N4 )3, and (N − 1)(N − 2)(N − 3)(N − 5) > ( 3N
4 )4.

Hence, the upper bound.
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Therefore, finally we get

Ex[χ2(Xi−1)] = C ×
∑
ui

Ex[
(
Nui
r −D

)2
]

= C ×
∑
ui

Var[Nui
r ]

=
∑
ui

C ×Var[Nui
r ]

≤ 576

N2
+

48(r′)3

27N5
. (24)

�

4 An Efficient Variant of XORP[3]

In this section, we consider an efficient version of XORP[3], which we term
XORP′[3]. Formally, given an n-bit random permutation RP and an input x ∈
{0, 1}n−3, the output of XORP′[3] is given by

RP(x‖000)⊕ RP(x‖001)⊕ RP(x‖010) ‖ RP(x‖000)⊕ RP(x‖101)⊕ RP(x‖110).

So, for 2n-bit output XORP′[3] makes 5 calls to the underlying random permu-
tation RP - a saving of one call compared to XORP[3].

In Theorem 3, which is our main result of this section, we bound the total
variation between the probability distributions of the random vectors S and U
defined over the same sample space G2q. The formal description of these random
variables is given in Fig. 4.1. The random vector

U := (U1,1,U1,2,U2,1,U2,2, . . . ,Uq,1,Uq,2)

is a WR sample (represented as a vector) of size 2q, each Ui,j is sampled from
G. Whereas,

S := (S1,1,S1,2,S2,1,S2,2, . . . ,Sq,1,Sq,2)

is generated (as described in Fig. 4.1) from a WOR sample

T := (T1,1,T1,2, . . . ,T1,5,T2,1,T2,2, . . . ,T2,5, . . . ,Tq,1,Tq,2, . . . ,Tq,5)

of size 5q, each Ti,j is sampled from G. More precisely, Si,j = Ti,1+Ti,2j+Ti,2j+1

for all 1 ≤ i ≤ q, 1 ≤ j ≤ 2. So both U and S have the same sample space G2q.

Now, we state our main theorem which provides an upper bound on the total
variation between U and S. In other words, it shows the distribution of S is very
close to uniform even though it is computed from a non-uniform distribution.

Theorem 3 (Pseudorandomness of S). Let U and S be the random vectors
as described in Fig. 4.1. Then, for all q ≤ N/8,

‖PrS −PrU‖ ≤
5
√
q

N
+

256q

N2
+

8192q

N
3
2

Clearly, the PRF advantage of the above construction (when block cipher is

replaced by a random permutation) is at most
5
√
q

2n + 256q
22n + 8192q

2
3n
2

for all q ≤ 2n−3.
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Random Experiment for U

1 : U := (Ui,j : i ∈ [q], j ∈ [2])←wrG

2 : return U

Random Experiment for S

1 : T := (Ti,j : i ∈ [q], j ∈ [5])←worG

2 : for 1 ≤ i ≤ q
3 : for 1 ≤ j ≤ 2

4 : Si,j = Ti,1 + Ti,2j + Ti,2j+1

5 : return S := (Si,j : i ∈ [q], j ∈ [2])

Fig. 4.1: Description of sampling methods of random variables U, S.

4.1 Proof of Theorem 3

Proof will follow in a similar path as the proof of XORP[3]. First, in Fig. 4.2,
we describe the extended random variables X and Y which extends S and U
respectively. Here, by extension we mean that S and U are marginal random
variables of X and Y respectively. By using similar argument as in Claim 1,
which we do not present due to lack of space, we can show that the set Ni is
always non-empty. Hence, execution of the part following else in line 5 of the
Random Experiment for Y will never happen. It is kept only for the sake of the
completeness of the definition.

Random Experiment for X

1 : T = (Ti,j : i ∈ [q], j ∈ [5])←worG

2 : for 1 ≤ i ≤ q
3 : for 1 ≤ j ≤ 2

4 : Si,j = Ti,1 + Ti,2j + Ti,2j+1

5 : Xi = (Si,1, Si,2,Ti,1,Ti,2,Ti,4)

6 : Si = (Si,1, . . . , Si,w)

7 : return X := (X1, . . . ,Xq)

Random Experiment for Y

1 : initialize S0 = G

2 : for 1 ≤ i ≤ q
3 : Ui := (Ui,1,Ui,2)←$G

4 : Ni =
{

(v1, v2, v3)| v1, v2, v3,
Ui,1 + v1 + v2,Ui,2 + v1 + v3 ⊆ Si−1,

and distinct
}

5 : if Ni 6= ∅ then (Vi,1,Vi,2,Vi,3)←$Ni

else (Vi,1,Vi,2,Vi,3) = (0, 0, 0)

6 : Yi = (Ui,1,Ui,2,Vi,1,Vi,2,Vi,3)

7 : Si = Si−1 \ {Vi,1,Vi,2,Vi,3,

Ui,1 + Vi,1 + Vi,2,Ui,2 + Vi,1 + Vi,3}
8 : return Y := (Y1, . . . ,Yq)

Fig. 4.2: X and Y are extended random variables of S and U respectively.

Let C = G5 denote the set of all 5-tuples of G. To understand the probability
distributions PrX and PrY of the random vectors X and Y (respectively), and
their supports we consider the following permutation ρ over the set C which maps
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the tuple (x1, . . . , x5) to (x1+x2+x3, x1+x4+x5, x1, x2, x4). It is easy to see that ρ
is a permutation and ρ−1(x′1, x

′
2, . . . , x

′
5) = (x′3, x

′
4, x
′
1+x′3+x′4, x

′
5, x
′
2+x′3+x′5). We

extend the definition of ρ over Cc for any c as ρ∗(z1, . . . , zc) = (ρ(z1), . . . , ρ(zc)).
From the random experiments, it is trivial to see that

1. ρ(Xi) = Ti := (Ti,1, . . . ,Ti,5) and
2. ρ(Yi) = Vi := (Vi,1,Vi,2,Ui,1 + Vi,1 + Vi,2,Vi,3,Ui,2 + Vi,1 + Vi,3).

So, for every i ≤ q, ρ∗(Xi) = Ti and ρ∗(Yi) = Vi. In other words, the random
variables X and Y are equivalent to T and V := (Vi,j , i ∈ [q], j ∈ [5]) respectively.
In the first case, we first sample T and then define X by applying ρ−1 on each
block. Whereas, in the second case, we first sample Y and then we define V by
applying ρ on each block. So, for every i, the support of Ti is the set of all block-
wise distinct tuples (ai′,j : i′ ∈ [i], j ∈ [w]). Hence, the support of Xi, denoted as
Ωi, would be the set of all such iw tuples

Ωi := {(xi′,j : i′ ∈ [i], j ∈ [w]) ∈ Giw : (ai′,j : i′ ∈ [i], j ∈ [5]) is block-wise distinct},

where ρ(xi′) = ai′ := (ai′,j : j ∈ [5]) for all i′. In fact, for every xi ∈ Ωi, the
conditional probability for X can be expressed as

PrX(xi | xi−1)
def
= Pr[Xi = xi |Xi−1 = xi−1]

= Pr[Ti = ti |Ti−1 = ti−1]

=
1

(N − 5(i− 1))5
. (25)

Now, we are going to argue that the support of Yi contains Ωi for all i. First,
for all (x1, . . . , xi) ∈ Ωi, let us denote ui := (ui,1, ui,2) = (xi,1, xi,2). Next, let
xi = (x1, . . . , xi) ∈ Ωi be a fixed i-tuple of blocks with xi = (ui, xi,3, xi,4, xi,5). As
before, let ρ(xi′) = ti′ for every i′ ∈ [i]. So, ti′,j ’s are distinct. Next, we define
the following set

Nui(xi−1) := {(v1, v2, v3) : v1, v2, v3, ui,1 + v1 + v2, ui,2 + v1 + v3 ∈ Si−1 ,and

v1, v2, v3, ui,1 + v1 + v2, ui,2 + v1 + v3 distinct},

where Si−1 = G \ {ti′,j : i′ < i, j ∈ [5]}. Given that Ui = ui and Yi−1 = xi−1,
the set Ni (defined in the line 4 of the random experiment of Y in Fig. 4.2) is
exactly the same as the set Nui(xi−1) defined above. It is easy to observe the
following:

If xi ∈ Ωi then the set Nui(xi−1) is nonempty as xi,3, xi,4, xi,5 ∈ Nui(xi−1),

and xi ∈ Ωi is indeed in the support of Yi. Now, we have the following claim on
the support of Y.9

9 As noted in the beginning of this proof, Ni can be shown to be non-empty by an
argument similar to Claim 1.
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Claim 3 For all xi ∈ Ωi,

PrY(xi | xi−1)
def
= Pr[Yi = xi | Yi−1 = xi−1] =

1

N2
× 1

|Nui(xi−1)|
.

Proof of claim. First, note that xi−1 ∈ Ωi−1, and Nui(xi−1) cannot be the empty
set as xi,3, xi,4, xi,5 ∈ Nui(xi−1). So,

PrY(xi | xi−1)
def
= Pr[Yi = xi | Yi−1 = xi−1]

= Pr[Ui = ui| Yi−1 = xi−1]×Pr[(Vi,1,Vi,2,Vi,3) = (xi,3, xi,4, xi,5) |
Ui = ui ∧ Yi−1 = xi−1]

=
1

N2
× 1

|Nui(xi−1)|
, (26)

where the last equality follows from the definition of sampling of Ui and
(Vi,1,Vi,2,Vi,3) in the Random Experiment for Y (see Fig. 4.2). �

We now apply the χ2 method to X and Y.

χ2(xi−1) :=
∑
xi

(PrX(xi|xi−1)−PrY(xi|xi−1))2

PrY(xi|xi−1)

=(a)

∑
xi=(ui,xi,3,xi,4,xi,5)

(
1

(N−5(i−1))5 −
1

N2|Nui (xi−1)|

)2
1

N2|Nui (xi−1)|

=(b) C ×
∑
ui

∑
(xi,3,xi,4,xi,5)

(
|Nui(xi−1)| −D

)2
|Nui(xi−1)|

=(c) C ×
∑
ui

(
|Nui(xi−1)| −D

)2
, (27)

where C = N2

((N−5(i−1))5)2 , and D = (N−5(i−1))5
N2 . The equality (a) follows by

plugging the conditional probabilities derived in (25) and (26). The expression
on the r.h.s. of (b) is obtained by algebraic simplification. The equation (c)

follows from the observation that

(
|Nui (xi−1)|−D

)2
|Nui (xi−1)| is functionally independent

of (xi,3, xi,4, xi,5), and for each ui, the number of choices of (xi,3, xi,4, xi,5) is
|Nui(xi−1)|. Next, in order to apply Theorem 1, we compute Ex[χ2(Xi−1)] which
(from (27)) is given by

C ×
∑
ui

Ex[
(
|Nui(Xi−1)| −D

)2
].

Note that |Nui(xi−1)| is a function of xi−1, and so, it is also a function of ti−1.
When xi−1 is sampled according to Xi−1, ti−1 would be sampled according to
Ti−1 (WOR sample).
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For notational simplicity, let r = N − 5(i − 1) and r′ = N − r = 5(i − 1).
Also, let Vr = G \{Ti′,j : i′ ∈ [i−1], j ∈ [5]} which is a random r-set in G. Then
the set Nui(Xi−1) is same as the set

{(v1, v2, v3) : v1, v2, v3, ui,1 + v1 + v2, ui,2 + v1 + v3 ∈ Vr,

v1, v2, v3, ui,1 + v1 + v2, ui,1 + v1 + v3 distinct}

We denote the size of the set by Nui
r . Then we have

Ex[χ2(Xi−1)] = C ×
∑
ui

Ex[
(
Nui
r −D

)2
]

= C ×
∑
ui

(
Ex[

(
Nui
r −Ex[Nui

r ]
)2

] + (Ex[Nui
r ]−D)2

)
=
∑
ui

C ×Var[Nui
r ] +

∑
ui

C × (Ex[Nui
r ]−D)2. (28)

Next, we apply the following lemma to get an upper bound on the r.h.s. of (28).

Lemma 3. For every u ∈ G2, we have

C × (Ex[Nu
r]−D)2 ≤ 25

N4
,

C ×Var[Nu
r] ≤

214r′

N6
+

224r′

N5
for N ≥ 100.

Subsequently, when N ≥ 100 and r′ ≤ 5N
8 we have

Ex[χ2(Xi−1)] ≤ 214r′

N4
+

224r′

N3
+

25

N2
.

We defer the proof of the lemma to Section 4.2.

Finally, from Theorem 1 and Lemma 3, we get

‖PrS −PrU‖ ≤ ‖PrX −PrY‖ (29)

≤

(
1

2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

≤

(
q∑
i=1

25

N2
+

47r′

N4
+

224r′

N3

) 1
2

since r′ = 5(i− 1) ≤ 5q ≤ 5N/8

≤

(
q∑
i=1

25

N2
+

475(i− 1)

N4
+

2245(i− 1)

N3

) 1
2

since r′ = 5(i− 1)

≤
(

25q

N2
+

48q2

N4
+

226q2

N3

) 1
2

≤
5
√
q

N
+

256q

N2
+

8192q

N
3
2

for N ≥ 100. (30)

�
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4.2 Proof of Lemma 3

Let r,N be positive integers such that r′ = N − r ≤ 5N
8 . Let G be a group of

size N , and Vr be a random r-set in G. For u = (u1, u2) ∈ G2 we associate a
random variable Nu

r defined as the size of the following set

Nu
r := {(g1, g2, g3) ∈ G3 : g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3 ∈ Vr,

g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3 distinct.}

We represent Nu
r as a sum of indicator random variables. To do so we define

the set Gu of tuples of distinct elements of G as

Gu = {(g1, g2, g3) : g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3 ∈ G,

g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3 distinct}.

Let |Gu| = Nu. Then we have the following claim.

Claim 4 Nu ≤ (N − 1)(N − 2)(N − 3).

Proof of claim. It may be observed that for fixed u, g1 /∈ {u1, u2}. Otherwise,
either u1 + g1 + g2 = g2 or u2 + g1 + g3 = g3 which contradicts the distinctness
requirement. Discounting for the fact u1, u2 may be equal we get that the number
of choices for g1 is at most (N − 1). Similarly, we have that g2 /∈ {u1, g1} and
g3 /∈ {g1, g2, u1 + g1 + g2}. Hence, the claim follows. �

Next, we have

Nu
r =

∑
g∈Gu

Ig, (31)

where, for g = (g1, g2, g3) ∈ Gu, the indicator random variable Ig is defined as
follows.

Ig =

{
1 if g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3 ∈ Vr and distinct,

0 otherwise.

So, we have

Ex[Ig] = Pr[{g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3 ∈ Vr} ⊆ Vr]

=

(
N−5
r−5
)(

N
r

)
=

r5

N5
. (32)
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By using the linearity of expectation, we have

Ex[Nu
r] =

∑
g∈Gu

Ex[Ig]

=
∑
g∈Gu

r5

N5

≤ r5

N(N − 4)
using Claim 4.

Therefore, plugging in the values of C and D we have

C × (Ex[Nu
r]−D)2 ≤ N2

(r5)2
×
(

r5

N(N − 4)
− r5

N2

)2

≤ 16

N2(N − 4)2

≤ 25

N4
for N ≥ 20. (33)

Now, we compute the variance using the following relation.

Var[
∑
g∈Gu

Ig] =
∑
g∈Gu

Var[Ig] +
∑

g 6=g′∈Gu

Cov(Ig, Ig′). (34)

For the sake of notational simplicity, for every g ∈ Gu, we denote the set

{g1, g2, g3, u1+g1+g2, u2+g1+g3} as Sg
u . In (32), we have obtained Ex[Ig] = r5

N5 .
As Ig is a 0− 1 random variable, Ex[I2g] = Ex[Ig]. Thus,

Var[Ig] = Ex[I2g]−Ex[Ig]
2

= Ex[Ig](1−Ex[Ig])

=
r5

N5
×
(

1− r5

N5

)
(35)

≤ r5

N5
× 10r′

N
using Lemma 1. (36)

Therefore, by using the estimate of Nu from Claim 4 we get

C ×
∑
g∈Gu

Var[Ig] =
N2

(r5)2
×Nu ×

r5

N5
× 10r′

N
.

≤ 214r′

N6
for N ≥ 16. (37)

Now, we compute the covariance term of (34). Note that IgIg′ = 1 if and only

if Sg
u ∪ Sg′

u ⊆ Vr. So,

Ex[IgIg′ ] = Pr[Sg
u ∪ Sg′

u ⊆ Vr] =
r`

N `
,

where ` = |Sg
u ∪Sg′

u |. Here, it is not difficult to observe that ` ∈ {5, 6, 7, 8, 9, 10}.
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Accordingly, we can partition the sum of covariances as follows.∑
g 6=g′∈Gu

Cov(Ig, Ig′) =
∑

`∈{5,6,7,8,9,10}

∑
g 6=g′∈Gu
|Sgu∪S

g′
u |=`

Cov(Ig, Ig′)

=
∑

`∈{5,6,7,8,9,10}

∆u
`COV`,

(38)

where

∆u
` = |{(g, g′) ∈ Gu ×Gu|g 6= g′, |Sg

u ∪ Sg′

u | = `}|,

and

COV` =
r`

N `
−
(
r5

N5

)2

=

(
r5

N5

)(
(r − 5) . . . (r − `+ 1)

(N − 5) . . . (N − `+ 1)
− r5

N5

)
=

(
r5

N5

)
× Γ`,

where Γ` =
(

(r−5)...(r−`+1)
(N−5)...(N−`+1) −

r5

N5

)
. Therefore,

C × COV` =
N

r5(N − 1)4
× Γ`

≤ 1024

N8
× Γ` for N ≥ 16. (39)

Now, we estimate the order of magnitude of ∆u
` and Γ` for different values of `

through the following claims.

Claim 5 With the notations mentioned above we have the following upper bounds.

1. ∆u
5 ≤ 40Nu,

2. ∆u
6 ≤ 600Nu,

3. ∆u
7 ≤ 600NNu,

4. ∆u
8 ≤ 200NNu,

5. ∆u
9 ≤ 25N2Nu,

6. ∆u
10 = (N3 − cN2)Nu for some c with 10 ≤ c ≤ 36 and N ≥ 15.

Proof of claim. Below, we provide case by case justification of the above claim,
although with significant compromise on the accuracy of the constants as our
primary focus is on the order of magnitude of the considered variables. In each
case, i.e. for ` ∈ {5, 6, 7, 8, 9, 10}, we fix some g ∈ Gu and consider the number of
g′ ∈ Gu for which |Sg

u ∩Sg′

u | = `, and then the final expression of ∆u
` is obtained

by multiplying with the cardinality (Nu) of Gu (i.e., the number of g). Here note
that u = (u1, u2) is already fixed.
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1. In this case, we have Sg
u = Sg′

u . Now, with g fixed, g
′

1, g
′

2 can be fixed by the
elements of Sg

u in at most 5×4 = 20 ways. Not all such choices will be valid
(because for some of them g

′

1 + g
′

2 + u1 /∈ Sg
u ). For each valid choice of g

′

1, g
′

2

there are at most 2 choices of g
′

3 (indeed g
′

3 ∈ Sg
u \ {g

′

1, g
′

2, g
′

1 + g
′

2 +u1}). So,
∆u

5 ≤ 40Nu.

2. In this case, 4 elements of Sg
u can be chosen in 5 ways. These 4 elements

can be assigned to the 4 elements of Sg′

u in at most 5×4×3×2 = 120 ways.
This fixes the tuple g′. So, ∆u

6 ≤ 120× 5×Nu = 600Nu.
3. Here, 3 elements of Sg

u can be chosen in 10 ways. The chosen elements can
be assigned to 3 elements of Sg′

u in 5× 4× 3 = 60 ways. Fixing any of the
remaining 2 elements of Sg′

u can be done in at most N ways. This fixes the
tuple g′. So, we have ∆u

7 ≤ 600NNu.
4. Following an argument quite similar to the above, we get that ∆u

8 ≤ 200NNu.
5. In this case, the two sets Sg

u and Sg′

u intersect in a single element. This can
happen in 25 possible ways and fixing any two from {g′1, g

′

2, g
′

3} \ Sg
u fixes

the remaining one (among {g′1, g
′

2, g
′

3}) if it is already not in Sg′

u . Now, the
two elements can be fixed in at most N2 number of ways. So, the claim for
this case is established.

6. In this case, the sets Sg
u and Sg′

u are disjoint. So, for fixed g the number of
choices of g

′

i is N − di, for integers di, 1 ≤ i ≤ 3. Now, d1 = |Sg
u ∪ {u1, u2}|.

So, 5 ≤ d1 ≤ 7. Similarly, (conditioned on the choice of g
′

1) we have that
d2 = |Sg

u ∪ {u1, g
′

1} ∪ u1 + g
′

1 + Sg
u |. From this it follows that 5 ≤ d2 ≤ 12.

Finally, following similar argument, and compromising on accuracy it follows
that (conditioned on the choice of g

′

1 and g
′

2 ) 5 ≤ d3 ≤ 17. So, for this case,
the possible number of choices of g′ for fixed g is (N − d1)(N − d2)(N − d3)
which is (N3 − cN2) for some 10 ≤ c ≤ 36 and N ≥ 15. �

Claim 6

Γ` ≤
10r′

N

for ` ∈ {5, 6, 7, 8}

Proof of claim. This (weaker) bound follows from Lemma 1. �

Claim 7
∆u

9Γ9 +∆u
10Γ10 ≤ 720r′N3,

for N ≥ 100

Proof of claim. Here we use the estimates of ∆u
9 and ∆u

10 from Claim 5 with
Nu ≤ N3. Also, we suppress the tedious calculation (verified using symbolic
algebra package) and get the final upper bound 720r′N3 for N ≥ 100. �

Next, using the estimates form Claim 5, Claim 6, and Claim 7 together with
(39) and Nu ≤ N3 we get the following upper bound on the r.h.s. of (38).
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C ×
∑

g 6=g′∈Gu

Cov(Ig, Ig′) = C ×
∑

`∈{5,6,7,8,9,10}

∆u
`COV`

≤ 1024

N8
×

∑
`∈{5,6,7,8,9,10}

∆u
`Γ`

≤ 1024

N8
×
(

640N3 × 10r′

N
+ 800N4 × 10r′

N
+ 720r′N3

)
≤ 1024

N8
× (6400r′N2 + 8000r′N3 + 720r′N3)

≤ 224r′

N5
for N ≥ 100. (40)

Finally, using (33),(37), and (40) the r.h.s. of (28) yields

Ex[χ2(Xi−1)] ≤
∑
u

25

N4
+

214r′

N6
+

224r′

N5

=
25

N2
+

214r′

N4
+

224r′

N3
for N ≥ 100. (41)

�

5 Conclusion

In this paper, we have demonstrated much stronger PRF security gurarantee
of a block cipher based PRF construction termed XORP[3] in the multi-user
and single-user setting. With the choice of a sufficiently secure block cipher, the
construction allows simultaneous (independent) use by O(2n) users even when
the adversary makes almost O(2n) many queries to each user. In the single-user
scenario our result implies O

(
1/
√

2n
)
, i.e., negligible distinguishing advantage

for an adversary even allowing it to make almost O(2n) many queries. We have
also considered an efficient version of XORP[3], termed XORP′[3] which uses less
number of block cipher calls but achieves same level of security. We have also
shown an application of our result to counter mode encryption. In the end, we
invite the reader to investigate whether the variant XORP′[3] can be further
extended to achieve still better security/ efficiency.
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