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Abstract. Integral attacks belong to the classical attack vectors against
any given block ciphers. However, providing arguments that a given ci-
pher is resistant against those attacks is notoriously difficult. In this
paper, based solely on the assumption of independent round keys, we
develop significantly stronger arguments than what was possible before:
our main result is that we show how to argue that the sum of cipher-
texts over any possible subset of plaintext is key-dependent, i.e., the non
existence of integral distinguishers.
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1 Introduction

As symmetric primitives, due to their performance advantages, are a vital part
of our security building blocks, being able to assess their security is of great
practical importance and theoretical interest. The security of block ciphers, and
actually any symmetric primitive in use, is always the security against concrete
attacks. Two of the most important attacks are certainly differential and linear
attacks. Security arguments with respect to those attacks have been studied
for quite some time already, leading to important concepts like the Markov
model in [16]. Nowadays, we are usually able to bound, under the assumption
of independent round-keys, the probability of a differential characteristic (or the
correlation of a linear characteristic). Those are good, but certainly not fully
satisfactory security arguments, as we often ignore the differential or linear-hull
effect. Stronger arguments, like a bound of the expected differential probability,
require a dedicated design, see e.g. [18] and [8].

Another classical attack vector is integral attacks, which can be traced back
to high-order differentials by Lai [15], and then exploited by Knudsen to be used
in actual attacks [14] as well as the so-called ”Square attack” [10]. In a nutshell,
given a block cipher Ek, those attacks work by identifying a subset of plaintexts
M such that summing over the corresponding ciphertexts results in a constant
sum, i.e.,

∑
x∈M Ek(x) does not depend on the secret key k. Arguments for

security against those attacks, i.e. arguments showing that such a set M should
not exist for a given cipher, are very difficult to obtain. For most ciphers, we do
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not have any argument at all and if arguments are given, they only cover very
specific sets M .

In most attacks, M is chosen as a subspace and more specifically by fixing
some bits in the plaintext to constants. This specific choice of M is not at all
necessary for a successful attack, and indeed there are examples of more involved
plaintext sets being used for improved attacks. The main reason for this choice
is the relation to the algebraic degree of the cipher. Indeed, for a cipher of
algebraic degree at most d, taking M as any subspace of dimension larger than d
leads to a successful distinguisher, as the sum is zero. Thus, a first step towards
arguing the security of a block cipher against integral attacks is to show that
its algebraic degree is maximal. However, even this special case was only settled
very recently. For a long time, only upper bounds on the algebraic degree have
been discussed. At ASIACRYPT’20 in [12], it was shown for the first time how to
compute meaningful lower bounds on the degree of round-reduced block ciphers.
Technically, this approach is based on recent progress on the division property
initially introduced in [20].

While [12] demonstrated how to compute lower bounds on the degree for
the first time, several drawbacks remained: It does not allow to exclude integral
attacks and its applicability is limited due to a lack of efficiency. Further, only
bounds for round-reduced variants could be computed.

Limited Arguments. As outlined above, even if the degree is high, there might
still be integral distinguishers and attacks. An integral distinguisher in general
makes use of a fixed set M ⊂ Fn

2 of plaintext values and a bit-mask β such that,
for any key k the value of

∑
x∈M 〈β,Ek(x)〉 is independent of the key. In [12], this

was shown for a natural, but very limited, choice of sets M , where M consists
of just fixing bits in the input. While this is, to the best of our knowledge, the
best argument against integral attacks so far, it is far from being satisfactory. In
particular, it does not capture integral distinguishers where M consists of fixing
linear combination in the input, used in [17] or [19]. More generally, it does not
capture integral distinguishers where M is not a linear subspace, as in [22].

Limited Number of Rounds. The arguments given in [12] allowed to compute
lower bounds on the algebraic degree for a fixed number of rounds. When the
number of rounds is increased, computing the bounds quickly becomes infeasible.
This is in sharp contrast to the expected result. If r rounds of a given cipher
have maximal degree n − 1, it is naturally expected that more than r rounds
have the same degree. While this intuition is probably true in most cases, it is
of course not a sound security argument. Making this argument more precise is
non-trivial. It is clear that in general, given F of degree n− 1, representing the
(fixed-key) first-part of the cipher there always exists a function G such that
G ◦ F is of lower degree than F . Indeed, the easiest example is to choose G as
the inverse of F , in case F is a permutation. One might hope that in the case
of a keyed permutation, the situation is less bad, as at least the trivial example
above is not applicable anymore. However, even in the keyed case, as we show
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in Example 4, there exist permutations F and G such that

deg(G ◦ (F (x) + k)) < min(deg(F ), deg(G)).

That is, the degree of the composition is actually smaller than the individual
degrees, for any key k. This shows that it cannot be excluded simply by assuming
independent round keys that the degree (as a keyed function) decreases.

Lack of Efficiency. The proof of the lower bound of degree proposed in [12]
strongly ties to the division property [20], which is originally a tool to detect
an integral distinguisher. To prove the lower bound, we need to generate a key
pattern whose number of division trails is odd, and countable in practical time.
As pointed out in [12], it is not easy because the number of trails exponentially
increases unless a key pattern is generated in a clever manner. The so-called trail
extension was used to generate such a key pattern and enabled to prove lower
bounds on the degree (especially the number of rounds so that this lower bound
is maximal, i.e. 63), for SKINNY-64, GIFT-64, and PRESENT. On the other hand,
the applicability of the trail extension to other block ciphers is an open ques-
tion. Interestingly, we faced potential difficulties of the trail extension when we
tried expanding applications (the tweakable block cipher CRAFT as an example).
The number of trails exceeds the practically countable range quickly, and it is
unfeasible to prove a lower bound on the degree of CRAFT.

Our Contribution. In this paper we derive strong and tight bounds against
integral distinguishers for several block ciphers. The only assumption on which
we rely for our bounds is having independent-round key, i.e., independent round
keys are XORed with the full state. Our bounds are strong as we show that for
a cipher Ek, the sum

∑
x∈M 〈β,Ek(x)〉 is key-dependent for any possible set M

(excluding only the whole input space and the empty set) and any possible non-
zero mask β. We refer to this as the integral-resistance property. Our bounds are
tight as (in most cases) the minimal number of rounds where we can show the
non-existence matches the best known distinguishers. Our arguments extend to
an arbitrary number of rounds greater than that.

First, we fix our notation and recall the basic techniques in Sect. 2. We de-
velop the necessary theory to achieve the strong arguments in Sect. 3. To for-
malize the strong arguments, which means the guarantee of the non-existence
of integral distinguishers under the sole assumption of independent round keys,
we introduce the integral-resistance property. We develop the theoretical back-
ground to utilize the division property, for not only showing a lower bound of
the degree of a cipher as in [12], but to show the integral-resistance property.

In Sect. 4 we study how adding more rounds (separated with a key addition)
will affect the algebraic degree, the minimum degree, and the strong argument
against integral distinguishers. For the minimum degree and the strong argu-
ment, we are able to show that adding (keyed or un-keyed) rounds is never a
problem, as the minimum degree never decreases and the strong argument never
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vanishes when doing so. The algebraic degree on the other hand potentially de-
creases, as also sketched above. Here we are able to present efficiently computable
criteria on the S-box that allow to exclude such undesirable behavior.

The drawback of the lack of efficiency is handled in Sect. 5. We show that,
maybe counter-intuitively, a suitable rewriting of the cipher and in particular the
S-box, can have a significant effect on the running time of the techniques used in
[12]. We present (heuristic) conditions on how to choose a suitable description
of the cipher that allows to keep the number of division trails reasonably low -
a fact that is crucial as those have to be enumerated.

Finally, in Sect. 6 we apply the theory and tools developed to a set of ci-
phers. Besides the ciphers treated in [12], and which present a large fraction
of the primitives used in the running NIST lightweight competition, we added
a discussion of CRAFT [5], which was previously out of reach and a discussion
of the ciphers SIMON and Simeck as examples of non-SPN ciphers. We assume
independent round keys for all ciphers. Further, for GIFT-64 and SKINNY-64, we
assume, contrary to the specification, a key addition on the full state.

For all those applications we are able to show the non-existence of integral
distinguishers. Interestingly, except for GIFT-64 and PRESENT, our result matches
the best known attacks tightly, as can be seen in Table 1.

We finally emphasize the meaning of our results. Our results guarantee that
improving integral distinguishers is impossible under our assumption. This is
strong claim compared to heuristic attack failure. For example, for CRAFT, we
guarantee no integral distinguisher for 14 rounds and more. Thus any such distin-
guisher would have to violate our assumptions. In other words, it has to exploit
the key scheduling. For SKINNY-64 and GIFT-64 our results are slightly weaker
compared to the other applications because here round keys are not XORed
with the whole state in both ciphers. Room of improvements still remains with-
out exploiting key scheduling, but it must exploit the fact that the round key is
XORed with the half of the state only.

2 Preliminaries

In this section, we are going to recall the definitions and the different notations
of degree that are commonly used for Boolean functions. We also recall what was
shown in [12] and briefly explain the necessary background on division property
to explain how this was done technically.

2.1 Degree of Keyed Functions - Definitions and Results

A block cipher can be seen as a family of (keyed) vectorial boolean permutations,
that is, bijective functions Ek : Fn

2 → Fn
2 with k ∈ Fm

2 . We can represent such
functions with their algebraic normal form (ANF)

Ek(x) =
∑
u∈Fn

2

pu(k)x
u
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Table 1. Number of rounds of the best known integral distinguisher (together with a
reference for this) vs. the number of rounds we need to ensure the integral-resistance
property under the assumption that independent round keys are XORed to the full
state. Numbers in red indicate are tight results.

Cipher Known integral distinguisher Integral-resistance property
SKINNY-64 12 [11] 13
CRAFT 13 [5] 14
GIFT-64 10 [2] 12
PRESENT 9 [23] 13
SIMON32 15 [21] 16
SIMON48 16 [23] 17
SIMON64 18 [23] 19
SIMON96 22 [23] 23
SIMON128 26 [23] 27
Simeck32 15 [21] 16
Simeck48 18 [23] 19
Simeck64 21 [23] 22

with xu =
∏

i x
ui
i and pu(k) are functions pu : Fm

2 → Fn
2 mapping keys to values

in Fn
2 . We define the algebraic degree of Ek as the degree in the input variables

x, that is, the algebraic degree deg(Ek) is defined as

deg(Ek) := max
u

{wt(u) | pu 6= 0},

where wt(u) denotes the Hamming weight of u, i.e. the number of non-zero
coordinates of u.

The minimum degree of Ek, is defined as the minimum degree over all non-
zero component functions 〈β,Ek〉

minDeg(Ek) = min
β ̸=0

deg(〈β,Ek〉).

Until recently, getting meaningful lower bounds for both the algebraic degree
and the minimum degree was deemed essentially impossible for block ciphers
of relevant size (i.e. at least 64-bit block size). However at ASIACRYPT’20,
Hebborn et al. [12] managed to obtain such lower bounds at least for round-
reduced variants. The main idea is that to show a lower bound d on the algebraic
degree of Ek, one ”simply” needs to show that there exists a u ∈ Fn

2 such that
wt(u) ≥ d and pu 6= 0. If we denote the coefficients of pu by λu,v ∈ Fn

2 , that is,

Ek(x) =
∑

u∈Fn
2 ,v∈Fm

2

λu,vx
ukv,

this is the same as finding a u ∈ Fn
2 with wt(u) ≥ d and v ∈ Fm

2 such that
λu,v 6= 0, which is equivalent to pu 6= 0.

Finally, they also introduced an even stronger notion, namely the appearance
of all maximum-degree monomials, which is that for any given monomial xu of
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algebraic degree n−1, and for any component function 〈β, F 〉, there always exists
at least one key k such that the monomial xu appears in the ANF of 〈β,Ek〉.

However this paper comes with significant limitations. It was shown that
having the all maximum-degree monomial property allows to rule out basic inte-
gral distinguishers. Indeed, it can only rule out distinguishers constructed with
a set of plaintexts M built as an affine space of the form

M = {x ∈ Fn
2 s.t. ∀i ∈ I, xi = ci},

where I is a subset of {1, . . . , n} and ci are fixed constants in F2. On the other
hand, the case presented in [17], where the input set is an affine space with a
more convoluted structure, is not. For example, already the affine space

M = {x ∈ Fn
2 s.t. x0 + x1 = 0},

is out of scope, not to mention arbitrary subsets.
Despite these limitations, we can use the core idea of their work, which is,

after explaining how to compute such a λu,v, to decide how to choose these u
and v, allowing to actually compute λu,v in practical time so that we can prove
the various lower bounds and properties. We give more details about this in
Sect. 2.3. Before that, in the next section we first give a high-level overview of
the main tool used in their work, that is, division property.

2.2 High-Level Summary of Division Property
After the division property was first proposed in [20], many follow-up works
have been proposed [7]. In [12], the various notations, definitions, and theorems
about the division property were unified by using the parity set, which was used
as another view of the division property in [7]. Here we briefly recall the main
definitions and connections with the algebraic normal form.
Definition 1 (Parity Set). Let X ⊆ Fn

2 be a set. We define the parity set of
X as

U(X) :=

{
u ∈ Fn

2 such that
∑
x∈X

xu = 1

}
.

The addition of two subsets X,Y ⊆ Fn
2 is defined by

X+ Y := (X ∪ Y) \ (X ∩ Y).

In other words, we view the set of all subsets of Fn
2 as a binary vector space

of dimension 2n, and this addition is isomorphic to adding the binary indicator
vectors of the sets. From this perspective, for Xi ⊆ Fn

2 ,

U
(∑

Xi

)
=

∑
U (Xi)

holds, i.e. U is a linear mapping. Moreover, it was shown in [7] that there is a
one to one correspondence between sets and its parity set. That is the mapping
U : X 7→ U(X) is a bijection and actually its own inverse, i.e., U(U(X)) = X.

We next define the propagation as follows.
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Definition 2 (Propagation). Given F : Fn
2 → Fm

2 and a ∈ Fn
2 , b ∈ Fm

2 , we
say that the division property a propagates to the division property b, denoted
by a

F−→ b if and only if b ∈ U(F (U({a}))).

Here the image of a set X under F is defined as

F (X) :=
∑
a∈X

{F (a)},

that is again using the addition of sets as defined above. Given U1 = U(X), for
any function F , U2 = U(F (X)) is evaluated as

U2 = U(F (X)) =
∑
x∈X

U(F ({x})) =
∑

a∈U(X)

U(F (U({a}))) =
∑

a∈U1,a
F−→b

{b}. (1)

To determine U2 after applying the function F , it is enough to consider what
happens with individual elements of U1 to start with. Again, we emphasize that
the sum in Equation 1 is modulo two, that is, if an element appears an even
number of times on the right side, it actually does not appear in U2. Note that
the propagation rules shown in [21] can be proven by assigning concrete operation
to F . More generally, the propagation for any function F is described as follows.

Proposition 1 ([12]). Let F : Fn
2 → Fm

2 be defined as F (x) = y. For a ∈ Fn
2

and b ∈ Fm
2 , it holds that a F→ b if and only if yb contains the monomial xa.

We now generalize the definition above to the setting where F is actually
given as the composition of many functions as F = FR ◦ · · · ◦ F2 ◦ F1.

Definition 3 (Trail). Given F : Fn
2 → Fn

2 as F = FR ◦ · · · ◦ F2 ◦ F1, and
a0, . . . , aR ∈ Fn

2 we call (a0, . . . , aR) a (division) trail for the compositions of F
into the Fi if and only if

∀i ∈ {1, . . . , R}, ai−1
Fi−→ ai.

We denote such a trail by a0
F1−→ a1

F2−→ · · · FR−−→ aR.

Using the same considerations as in Equation 1, we can now state the main
reason of why considering trails is useful.

Theorem 1 ([12]). Given F : Fn
2 → Fn

2 as F = FR ◦ · · · ◦F2 ◦F1, and X ⊆ Fn
2 .

Then
U(F (X)) =

∑
a0,...,aR,a0∈U(X),a0

F1−→a1

F2−→···
FR−−→aR

{aR}

Finally, we show the link between the division property and the ANF.

Corollary 1 ([12]). Let F : Fn
2 → Fn

2 be a function with algebraic normal form

F (x) =
∑
u∈Fn

2

λux
u
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s0 f
s1

. . . f
sR

k1 kR−1

uR = eiu1
u

v1 vR−1

Fig. 1. Notations for the trails of a key-alternating block cipher, where the terms in
red are the parity-set vector of the corresponding state

where λu = (λ
(1)
u , . . . , λ

(n)
u ) ∈ Fn

2 . Furthermore, let X be the set such that U(X) =
{ℓ}. Then

λ
(i)
ℓ = 1 ⇔ ei ∈ U(F (X)) ⇔ #{a1, . . . , aR−1|ℓ

F1−→ a1
F2−→ · · · FR−−→ ei} = 1 mod 2

2.3 Proof of a Lower Bound on the Degree and Finding Key
Patterns

Now that we are equipped with the results from the previous section, we can give
more details about the work from [12] where the authors gave lower bounds on
the algebraic degree and minimum degree of block ciphers, as the techniques we
use in the next section to give strong arguments against integral distinguishers
strongly rely on their results. We put ourselves in the context of key-alternating
block ciphers, depicted in Figure 1. We assume that we have a round function f ,
and the block cipher E is built by alternating applications of f with a round key
addition (with an XOR) between them. As in [12], we assume that the round
keys are independent from each other. The internal states are thus denoted by
s0, . . . , sR, where R is the number of rounds, s0 is the input (plaintext) of the
block cipher and sR the output (ciphertext). The round keys are denoted by
k1, . . . , kr−1. The key length m is (r − 1)n.

As mentioned in Sect. 2.1, showing a lower bound d on the algebraic degree
of a block cipher is equivalent to exhibiting vectors u ∈ Fn

2 of weight at least
d and v ∈ Fm

2 (where m is the key length) so that λu,v is non-zero, which in
particular means that one coordinate λ

(i)
u,v is equal to 1. As each round key is

independent, we can write v as (v1, . . . , vR−1) so that kv = kv11 kv2
2 . . . k

vR−1

R−1 .
According to the previous section, proving that λ

(i)
u,v = 1 is equivalent to

showing that the number of trails (u, v)
E−→ ei is odd. We take the same denom-

ination as in [12], and call u the input pattern, v the key pattern and uR = ei
the output pattern. As mentioned in Sect. 2.1, to get lower bounds on the mini-
mum degree, instead of showing that a single λ

(i)
u,v is equal to 1, we now need to

compute the value of several of these λ
(i)
u,v so that we end up with a set of λu,v

which spans a vector space of dimension n.
In both cases, the main goal is to find (several) u and v so that we can

compute the coefficients λ
(i)
u,v in practical time, which according to the previous
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section, means being able to enumerate all corresponding trails. The core of the
work in [12] is thus to give a (heuristic) algorithm to determine which u and v to
choose so that we can actually enumerate all of these trails in a reasonable time.
As we also need to compute such λ

(i)
u,v for our results, we give a quick overview

of their algorithm and refer the reader to the full paper for more details. Their
main observation is that having a key pattern with a high weight tends to lower
the resulting number of trails, which is quite interesting since the lower this
number is, the easier (and quicker) enumerating them should be. However, the
naive idea of simply maximizing the weight of the key pattern is not enough,
and thus they used the following strategy. We start by fixing the input pattern
u and output pattern uR = ei, and focus on finding v = (v1, . . . , vR−1) so
that the number of trails is reasonably low. Starting from uR, we first search
for a (partial) key pattern vR−1 so that the number of trails (uR−1, vR−1) →
ei is odd and low (optimally, only one trail), maximizing the weight of the
(partial) key pattern vR−1 as it should help minimize the number of trails. After
finding such a vR−1, we now search in the same way for a partial key pattern
vR−2 so that again, the number of trails (uR−2, vR−2, vR−1) → ei is odd and
low (again, optimally, only one trail). The authors observed that this ”local
optimization” strategy seems to fail if we keep going too close to the first round.
Thus, we only keep doing this up to some round ”in the middle” Rmid , leading
us to a partial key pattern (vRmid

, . . . , vR−1) so that the number of trails from
(uRmid

, vRmid
, . . . , vR−1) to ei is odd and low. After that, we directly search for

the remaining parts of the key pattern (v1, . . . , vRmid−1) so that the number of
trails from (u, v1, . . . , vRmid−1) to uRmid

is odd and low, and finally verify that the
number of trails (u, v1, . . . , vR−1) → ei is still odd. If so, we proved that λ(i)

u,v = 1
and keep using the same strategy until we found enough (u, v) as we need. One
limitation is that for various technical reasons, the authors of [12] were limited to
SPN block ciphers, so that they were able to exploit Super S-box representations,
making ciphers like Feistel networks out of reach, and some ciphers (e.g. CRAFT)
did not have a favorable behavior regarding the trail extension technique that we
just summarized. Nonetheless, we actually managed to get results for the Feistel
networks ciphers SIMON and Simeck, as shown in Sect. 6.5, as well as getting
results on CRAFT with new techniques in Sect. 5.

In summary, from [12], we can efficiently compute the value of some coeffi-
cients λu,v, which we will use in the upcoming sections to prove our results.

3 Strong Arguments Against Integral Distinguishers

Here, we are going to derive necessary and sufficient conditions on when integral
distinguishers are not possible. More precisely, we aim at conditions such that
we can conclude that, for a cipher Ek, the sum∑

x∈M

〈β,Ek(x)〉
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is key-dependent for any possible set M (excluding only the whole input space
and the empty set) and any possible non-zero mask β. Note that this covers
a much larger set of possible integral distinguishers than commonly used in
previous works. Indeed, most classical integral distinguishers build the set M as
an affine space by fixing some bits to a constant value, while the other bits take
all possible values. Some recent works [17, 11] extended this further and built
M still as an affine space, but now using constant linear combinations of bits
instead of single bits. What we aim to show here is the most general case as we
are considering any possible set M , including sets without an affine structure.

Before stating the general results and explaining how to verify those effi-
ciently for specific ciphers (under the assumption of independent round keys),
we are going to consider simple examples to clarify the approach beforehand.

For this, we consider Boolean functions only, i.e. only a single output bit.
This can be thought of as investigating a single fixed β. All the examples will
be key-dependent with a key consisting of the three-bit key k = (k0, k1, k2).
Example 1 (Missing High-Degree Terms). As a first example, let fk : F3

2 → F2

be given as
fk(x0, x1, x2) = k1x0x1 + k1x0 + x1 + (k1k2 + k3)x2

While this function reaches the maximal degree (for a balanced function), it
clearly does not satisfy the condition that

∑
x∈M fk(x) is key-dependent for any

non-trivial M . Indeed, considering simply M = {000} leads to a key-independent
sum, simply as the constant term of fk is key-independent. When considering
a version of fk using an additional whitening key h = (h0, h1, h2) defined as
fh,k(x) = fk(x+ h), we get the polynomial expression

fh,k(x) = k1x0x1 + (k1h1 + k1)x0 + (k1h0 + 1)x1

+ (k1k2 + k3)x2 + (k1k2h2 + k1h0h1 + k1h0 + k3h2 + h1)

which now does contain a key-dependent constant term, but choosing M as
M ′ = {000, 001, 100, 101} leads to

∑
x∈M ′ fh,k(x) = 0 again. So while lower

degree integral attacks might be avoided by adding whitening keys, high degree
attacks remain unchanged. This is due to the fact that whitening keys do not
affect the coefficients of monomials of maximal degree.
Example 2 (Linearly Dependent High-Degree Terms). Consider now gk as

gk(x0, x1, x2) = k0x0x1 + k1x0x2 + (k0 + k1)x1x2.

Now, all quadratic terms are present. While for gk itself, there are key-independent
coefficients, e.g. the constant term, this is not the case for gh,k defined as
gh,k(x) = gk(x+ h). The corresponding expression is

gh,k(x) =
∑
u

λu(k)

= k0x0x1 + k1x0x2 + (k0h1 + k1h2)x0 + (k0 + k1)x1x2

+(k0h0 + k0h2 + k1h2)x1 + (k0h1 + k1h0 + k1h1)x2

+k0h0h1 + k0h1h2 + k1h0h2 + k1h1h2
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and contains every monomial of degree smaller than n with a key-dependent
coefficient. However, there are still sets M such that the corresponding sum is
key-independent. For this example, there are exactly two non-trivial sets namely

M0 = {000, 110, 011, 101} and M1 = F3
2 \M0

which yield to constant sums. Concretely we have∑
x∈M0

gh,k(x) =
∑

x∈M1

gh,k(x) = 0.

The reason for this is that the coefficients of gk (and thus of gh,k) of the mono-
mials x0x1, x0x2 and x1x2 are linearly dependent polynomials. Indeed, the set
can be written as M0 = U({110, 101, 011}). Thus, the sum can be written as∑

x∈U({110,101,011})

gh,k(x) =
∑

u∈{110,101,011}

λu(k) = k0 + k1 + (k0 + k1),

that is the sum of the linearly dependent coefficients.

Example 3 (Linearly Independent High-Degree Terms). A slight modification of
the second example is given by

ℓk(x) = k0x0x1 + k1x0x2 + k0k1x1x2

and the version with whitening keys leads to

ℓh,k(x) = k0x0x1 + k1x0x2 + (k0h1 + k1h2)x0 + k0k1x1x2 + (k0k1h2 + k0h0)x1

+(k0k1h1 + k1h0)x2 + k0k1h1h2 + k0h0h1 + k1h0h2.

As can be checked by running through all possible non-empty sets of size less
than eight, none of the corresponding sums will be key-independent.

The reason why the last example does not lead to any integral distinguishers
is, as we will elaborate in general next, that ℓk(x) (i) contains all monomials
of degree n − 1 and (ii) the corresponding coefficients are linearly independent
polynomials.

Considering a Single Output Bit. For two vectors u, v ∈ Fn
2 , we define (as

usually in this context)

u � v ⇔ (vi = 1 ⇒ ui = 1).

Lemma 1. Let fk : Fn
2 → F2 be a family of functions with ANF

fk(x) =
∑
u∈Fn

2

pu(k)x
u
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and consider a version of fk with an additional pre-whitening key k0, i.e.

fk,k0(x) := fk(x+ k0) =
∑
v∈Fn

2

qv(k, k0)x
v

Then we have
qv(k, k0) =

∑
u⪰v

pu(k)k
u⊕v
0

Proof. We express qv(k, k0) in terms of pu. We get

fk,k0
(x) = fk(x+ k0) =

∑
u∈Fn

2

pu(k) (x+ k0)
u

=
∑
u∈Fn

2

pu(k)

∑
v⪯u

xvku⊕v
0

 =
∑
v∈Fn

2

∑
u⪰v

pu(k)k
u⊕v
0

xv

ut

Next, we show a sufficient criterion to ensure that all the polynomials qv(k, k0)
are linearly independent (for v 6= (1, . . . , 1)). For this, we denote by ui the vector
in Fn

2 of weight n− 1 such that its ith position is zero. That is, ui is the bitwise
complement of the ith unit vector.

Theorem 2. Let fk and fk,k0 be defined as above. If the polynomials pui(k) are
linearly independent and p(1,...,1)(k) = 0, then all polynomials

{qv(k, k0) | v ∈ Fn
2 \ {1}}

are linearly independent.

Proof. Assume there are coefficients αv ∈ F2 such that

T =
∑

v∈Fn
2 \{1}

αvqv(k, k0) = 0.

We have to show that this implies αv = 0 for all v. We first rewrite this as

T =
∑

v∈Fn
2 \{1}

αvqv(k, k0) =
∑

v∈Fn
2 \{1}

αv

∑
u⪰v

pu(k)k
u⊕v
0


=

∑
v∈Fn

2 \{1}

αv

 ∑
v⊕w⪰v

pv⊕w(k)k
w
0

 =
∑

v∈Fn
2 \{1}

αv

 ∑
w∈Fn2

Sup(w)∩Sup(v)=∅

pv⊕w(k)k
w
0



=
∑
w∈Fn

2

 ∑
v∈Fn2 \{1}

Sup(w)∩Sup(v)=∅

αvpv⊕w(k)

 kw0
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Here, we denote by Sup(x) the set of non-zero bit positions, that is

Sup(x) = {i | x(i) = 1}.

The above implies that T = 0 if and only if for all w ∈ Fn
2 , we have

T (w) :=
∑

v∈Fn2 \{1}
Sup(w)∩Sup(v)=∅

αvpv⊕w(k) = 0.

We show that this implies αv = 0 by induction on the weight of v.

For wt(v) = 0, that is v being the all-zero vector, consider a vector w with
wt(w) = n−1. That is, w is one of the vectors ui. The set of vectors v such that
Sup(w) ∩ Sup(v) = ∅ contains only the all-zero vector and ei. We thus get,

T ((1, . . . , 1)) = α(0,...,0)pui
(k) + αeip((1...,1))(k) = 0.

By assumption p((1...,1))(k) is zero, while pui
(k) is not, thus α(0,...,0) = 0.

wt(v) = t ≤ n− 2: We now assume by induction that αv = 0 for all v of weight
smaller than t. We consider a vector w of weight wt(w) = n− (t+1). Then, the
set of vectors such that Sup(w)∩Sup(v) = ∅ contains one vector of weight t+1,
vectors of weight exactly t, and vectors of weight smaller than t. We split T (w)
accordingly as follows

T (w) =
∑

wt(v)=t+1
Sup(w)∩Sup(v)=∅

αvpv⊕w(k) +
∑

wt(v)=t
Sup(w)∩Sup(v)=∅

αvpv⊕w(k) +
∑

wt(v)<t
Sup(w)∩Sup(v)=∅

αvpv⊕w(k)

By the induction hypothesis, the last part is zero, as αv = 0 for wt(v) < t.
Furthermore, the first part is zero as here v ⊕ w = (1, . . . , 1) and p((1...,1))(k) is
zero, which implies

T (w) =
∑

wt(v)=t
Sup(w)∩Sup(v)=∅

αvpv⊕w(k) = 0.

Now here v⊕w is of weight n−1 and thus is one of the vectors ui. By assumption,
the polynomials pui

are linearly independent and thus T (w) = 0 implies αv = 0
for all v of weight t such that Sup(w)∩Sup(v) = ∅. As w was arbitrary of weight
n− (t+ 1) this means that αv = 0 for all v of weight t. ut

This finally implies, as a corollary, that there are no key-independent integral
distinguishers in a very general sense. Any sum of output values, except for the
empty sum and summing all outputs, is key-dependent. More precisely,
Corollary 2. Let fk and fk,k0

be defined as above and assume that the polyno-
mials pui(k) are non-constant linearly independent, and p(1,...,1)(k) = 0. Then,
for any proper non-empty subset M ⊂ Fn

2 the sum∑
x∈M

fk,k0(x)

depends on the value of the key (k, k0).
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Proof. It holds that

∑
x∈M

fk,k0
(x) =

∑
ℓ∈U(M)

∑
x⪯ℓ

fk,k0
(x)

 =
∑

ℓ∈U(M)

qℓ(k, k0).

As M is non-empty and not the full space, U(M) contains elements of weight
less than n. Then, the theorem above implies that the sum is non-zero viewed
as a polynomial in k and k0 and thus key-dependent as claimed. ut
We like to remark that this property is not only sufficient but also necessary.
Indeed, if the polynomials pui

are linearly dependent, there exist a linear combi-
nation that is constant zero. As the whitening key does not influence the value
of the monomials of degree n − 1, this directly leads to a set M corresponding
to a constant, i.e. key-independent, sum.

Linear Combinations of Output Bits. Let us next consider a family of vec-
torial Boolean functions Ek, with the most important example being a block
cipher. We want to extend the previous arguments to this case. Here, we want
to guarantee that any non-trivial linear combination of output bits is key de-
pendent. This can be done as follows.

Consider Ek : Fn
2 → Fn

2 be a family of functions with ANF

Ek(x) =
∑
u∈Fn

2

Pu(k)x
u

where now Pu(k) is a vector in Fn
2 . A linear combination of output bits is specified

by fixing a β ∈ Fn
2 and considering

〈β,Ek(x)〉 = 〈β,
∑
u∈Fn

2

Pu(k)x
u〉 =

∑
u∈Fn

2

〈β, Pu(k)〉xu

If we can ensure that, for each fixed non-zero β, the polynomials 〈β, Pu(k)〉
fulfill the conditions of Corollary 2, we ensured that no integral distinguisher is
possible on any linear combination of output bits.

So, for any non-zero β, the polynomials 〈β, Pui
(k)〉 should be linearly inde-

pendent and 〈β, P(1,...,1)(k)〉 = 0. The latter is true if and only if P(1,...,1)(k) = 0.
Note that in the case of a block cipher, since we need the block cipher to be
invertible, it can be at most of degree n− 1 and thus we are guaranteed to have
P(1,...,1)(k) = 0. For the former, we require that∑

i

αi〈β, Pui(k)〉 = 0 , αi ∈ F2

implies that all αi are equal to zero. This can be rewritten as

0 =
∑
i

αi〈β, Pui(k)〉 =
∑
i

αi

∑
j

β(j)P (j)
ui

(k)

=
∑
i,j

αiβ
(j)P (j)

ui
(k) =

∑
i,j

γi,jP
(j)
ui

(k)
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with γi,j = αiβ
(j) ∈ F2. One way to simplify this equation is to require something

(potentially significantly) stronger, namely that all n× n polynomials

pi,j(k) := P (j)
ui

are linearly independent.

On Key-Patterns and Matrices. Asking that all the polynomials pi,j are
linearly independent can be put into the following context for input-, output-
and key-pattern. Consider the polynomials in its ANF

pi,j(k) := P (j)
ui

=
∑
v∈Fℓ

2

λ(j)
ui,vk

v.

The values of λ(j)
ui,v are equal to the parity of the number of trails (ui, v) → ej ,

that is trails with input pattern ui, key-pattern v and output pattern ej . If we
want to show that all those polynomials are linearly independent, it is sufficient
(and actually necessary) to find a set of key-patterns v1, . . . vs, with s ≥ n2 such
that the integral-resistance matrix

I(E) =


λ
(1)
u1,v1 λ

(2)
u1,v1 λ

(n)
u1,v1 λ

(1)
u2,v1 λ

(2)
u2,v1 λ

(j)
ui,v1 λ

(n−1)
un,v1 λ

(n)
un,v1

λ
(1)
u1,v2 λ

(2)
u1,v2 · · · λ(n)

u1,v2 λ
(1)
u2,v2 λ

(2)
u2,v2 · · · λ(j)

ui,v2 · · · λ(n−1)
un,v2 λ

(n)
un,v2

...
...

...
...

...
...

...
...

λ
(1)
u1,vs λ

(2)
u1,vs λ

(n)
u1,vs λ

(1)
u2,vs λ

(2)
u2,vs λ

(j)
ui,vs λ

(n−1)
un,vs λ

(n)
un,vs


has full rank. This brings us to the following proposition which we apply in
Sect. 6.

Proposition 2 (INTEGRAL-RESISTANCE PROPERTY). Let E : Fn
2 ×

Fm
2 → Fn

2 be a block cipher and I(E) be a corresponding integral-resistance
matrix. If I(E) has full rank and k0 is an independent whitening key, Ek(x+k0)
fulfills the integral-resistance property, i.e for every proper subset M ⊂ Fn

2 and
output mask β ∈ Fn

2 the sum ∑
x∈M

〈β,Ek(x+ k0)〉

is key-dependent.

4 Guarantee for More Rounds

Even if the lower bound on the degree of an R-round block cipher is d, it is not
clear that R+1 rounds have a degree at least d. Indeed, the next example shows
that this is not only non-trivial but simply wrong in general.
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Example 4. Let F,G : F3
2 → F3

2 be permutations of degree 2 defined as follows:

F (x1, x2, x3) :=

x1x2 + x3

x1

x2

 , G(x1, x2, x3) :=

x1 + x2x3

x2

x3

 .

Then we can write the composition of F and G with a key addition in the middle
as

G(F (x) + k) = G

x1x2 + x3 + k1
x1 + k2
x2 + k3

 =

x3 + x1k3 + x2k2 + k1 + k2k3
x1 + k2
x2 + k3

 ,

which has only degree 1 in x.
Thus, the algebraic degree can decrease if the highest-degree monomials are

cancelled out by applying an additional one round. Although it is nontrivial in
general, for some block ciphers (with independent round key assumption), we
show that we can guarantee that the algebraic degree does not decrease. Intrigu-
ingly, as we will see in this section, this argument does not work for all choices
of S-boxes. The case of minimal degree and for the strong arguments against
integral distinguishers, the situation is more clear: Here, as we will detail later
in this section, adding additional rounds never allows to decrease the minimal
degree nor invalidates the strong argument.

4.1 More Rounds for the Algebraic Degree

We split the discussion of how to argue about the algebraic degree into parts,
dealing step by step with the linear layer, a single Boolean function, and finally
an entire round.

The linear layer does not change anything as both the algebraic degree as
well as the minimal-degree are invariant under affine equivalence (see e.g. [9]).
Lemma 2. Let F : Fn

2 → Fn
2 be any function and A : Fn

2 → Fn
2 be an affine,

invertible function, then it holds that

deg(F ◦A) = deg(A ◦ F ) = deg(F ),

minDeg(F ◦A) = minDeg(A ◦ F ) = minDeg(F ).

To cover a layer of S-boxes, we consider the general situation of a parallel
application of functions. Since the algebraic degree is the maximum degree of all
output bits, it is enough to look at each output bit separately. Therefore, it is
sufficient to consider the influence of an isolated S-box on the algebraic degree.

As a next step, the following theorem gives efficient to verify conditions on
when appending a single Boolean function does not decrease the algebraic degree.
Theorem 3. Let a Boolean function f : Fm

2 → F2 be given and consider a round
key k ∈ Fm

2 . Consider the algebraic normal form of the function

fk : Fm
2 → F2, fk(x) = f(x+ k)
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be given as
fk(x) =

∑
u∈Fm

2

pu(k)x
u.

Assume that
pei(k) /∈ span{pu(k) | u 6= ei and u 6= 0},

that is pei is not linearly dependent on the other coefficients when viewed as
a polynomial in k. Then it holds that deg(fk ◦ F ) ≥ deg(Fi) for any function
F : Fn

2 → Fm
2 . That is, the degree of the ith coordinate of F is a lower bound of

the algebraic degree of the composition of F with fk.

Proof. We denote the algebraic normal form of Fi by

Fi(y) =
∑
v∈Fn

2

λvy
v

Let the degree of Fi be d. Then, there exists a vector w of weight d such that
λw = 1. We now get

fk(F (y)) =
∑
u∈Fm

2

pu(k)F (y)u = pei(k)Fi(y) +
∑
u ̸=ei

pu(k)F (y)u

= pei(k)

∑
v∈Fn

2

λvy
v

+
∑
u ̸=ei

pu(k)F (y)u

= pei(k)λwy
w +

∑
v ̸=w

pei(k)λvy
v +

∑
u ̸=ei

pu(k)F (y)u.

By expanding the expression of F (y)u, the last sum can be rearranged into∑
ℓ∈Fn

2
qℓ(k)y

ℓ, where each qℓ(k) corresponds to a linear combination of the pu(k)
for u 6= ei.

fk(F (y)) = pei(k)λwy
w +

∑
v ̸=w

pei(k)λvy
v +

∑
ℓ∈Fn

2

qℓ(k)y
ℓ

= (pei(k)λw + qw(k)) y
w +

∑
v ̸=w

(pei(k)λv + qv) y
v.

As pei(k) is linearly independent from the pu(k) for u 6= ei and qw corresponds
to such a sum, the key-dependent coefficient of yw is non-zero. As wt(w) equals
d we conclude that deg(fk ◦ F ) ≥ d. ut

If a given Boolean function f fulfills the conditions of the above theorem, we say
that f preserves the degree of its ith input component.

Example 5. Consider the Boolean function

f(x) = x0x1x2 + x0x1 + x0x2 + x0 + x1x2 + x2x3 + x3 + 1.
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Then

fk(x) = x0x1x2 + (k2 + 1)x0x1 + (k1 + 1)x0x2 + (k1k2 + k1 + k2 + 1)x0

+(k0 + 1)x1x2 + (k0k2 + k0 + k2)x1 + x2x3 + (k0k1 + k0 + k1 + k3)x2

+(k2 + 1)x3 + k0k1k2 + k0k1 + k0k2 + k0 + k1k2 + k2k3 + k3 + 1.

The non-zero non constant coefficients to consider are

p1110(k) = 1 p1100(k) = k2 + 1 p1010(k) = k1 + 1
p0110(k) = k0 + 1 p1000(k) = k1k2 + k1 + k2 + 1 p0100(k) = k0k2 + k0 + k2
p0011(k) = 1 p0010(k) = k0k1 + k0 + k1 + k3 p0001(k) = k2 + 1.

While p1000, p0100, p0010 cannot be expressed as linear combination of the others
(as the quadratic term is unique in the non-constant terms) p0001 actually can
(as it is simply equal to p1100). So in this case we get that

deg(fk ◦ F ) ≥ max{deg(F0), deg(F1), deg(F2)},

and thus f preserves the degree of its first (x0), second (x1) and third (x2) input.
However, it does not always preserve the degree of its last input. Indeed, consider
F on four inputs y0, y1, y2, y3 such that

x0 = F0 = y0y1 x1 = F1 = y2y3 x2 = F2 = y2 x3 = F3 = y0y1y2y3.

Then deg(F ) = 4 while deg(fk ◦ F ) = 2.

Now, this theorem can be used to bound the algebraic degree as summarized in
the next corollary. For this, we denote by S(r)k an S-box layer (the r-fold parallel
application of S) together with an independent round key addition k, i.e.

Sk(x1, . . . , xr) = (S(x1 + k1), . . . , S(xr + kr)).

Corollary 3. Consider an S-box S : Fm
2 → Fm

2 . If, for each 1 ≤ i ≤ m there
exists a coordinate function Sj such that Sj preserves the degree of its ith input,
then for all functions F : Fmr

2 → Fmr
2 , we have deg(S(r)k ◦ F ) ≥ deg(F ).

Results. Based on Corollary 3, we computed which S-boxes preserve the degree.
For a single S-box, that can be checked efficiently for all practical relevant values
of n. The sage code that automatically checks the properties is given as supple-
mentary material. Especially, if we go through all 302 representatives of all affine
equivalence classes for 4-bit bijective S-boxes, there are 244 such S-boxes that
preserve the algebraic degree, while 58 do not. Some specific examples are that
the S-box of GIFT and PRESENT preserve the algebraic degree, while it is not the
case for the S-box of CRAFT, SKINNY-64 and SKINNY-128. We also tested the
inverse mapping over F2n for n = 3 to n = 8 (e.g. the AES S-box), and each of
them also preserves the algebraic degree. So in particular we see that any bound
on the algebraic degree of the AES implies the same bound for the full AES.
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4.2 More Rounds for the Minimal Degree

To bound the algebraic degree, we had to show that for any input bit i, there is
at least on output bit that preserves the degree of its ith input. For the minimal
degree, the situation is different in two ways. On the one hand, we have to ensure
more. As we want to bound the minimal degree, we have to bound the degree
of any linear combination of output bits. On the other hand, as we are going to
assume that F has a given minimal degree, we know that preserving the degree
of any linear combination of its input is sufficient. Finally, there is no direct
equivalence to Corollary 3 for minimal degree. However, the next theorem (and
its proof) shows that this can be dealt with. Indeed the case for minimal degree
is significantly easier.

Theorem 4. Let F : Fn
2 → Fm

2 be a function and S : Fm
2 → Ft

2 be a function
such that for any non-zero β ∈ Ft

2 the component function 〈β, S〉 is non-constant.
If we denote by Sk the function Sk(x) = S(x+k) parameterized by a key k ∈ Fm

2

then the minimal degree never decreases, that is

minDeg(Sk ◦ F ) ≥ minDeg(F ).

Proof. Let β ∈ Ft
2 be a non-zero vector. We consider the component function

f(x) = 〈β, S(x)〉 and show that the minimal degree of fk ◦ F is at least the
minimal degree of F . For this, consider a monomial of maximal degree in the
algebraic normal form of f , without loss of generality x0 · · ·xd−1. For fk, this
will in particular generate the term k1 · · · kd−1x0. This key-monomial k1 . . . kd−1

could also appear as part of the coefficients of different linear monomials xi, but
not in coefficients of non-linear monomials. Thus fk can be written as

fk(x) = k1 · · · kt−1〈γ, x〉+ gk(x)

with a non-zero γ ∈ Fm
2 and a polynomial g such that k1 · · · kt−1 cannot be ex-

pressed as a linear combination of its coefficients. That is, the term k1 · · · kt−1〈γ, x〉
cannot cancel in the algebraic normal form of fk ◦ F . Finally the degree of
〈γ, x〉 = 〈γ, F (y)〉 is bounded by the minimal degree of F by definition. ut

4.3 More Rounds for Strong Arguments

The strong arguments extends to more rounds automatically without any addi-
tional requirements. Indeed, consider the composition Ek ◦ F where Ek fulfills
the strong arguments and F is a fixed permutation. Note that if F is actually
key-dependent (using an independent key-value), the same argument applies.
Considering any non-empty set M ⊂ Fn

2 , and any β, we get∑
x∈M

〈β,Ek(F (x))〉 =
∑

y∈F (M)

〈β,Ek(y)〉,

which depends on k as any sum does for Ek. Note that in the context of block
ciphers where the round function is (most of the time) identical for each round



20 P. Hebborn et al.

Shuffle

Shuffle

L Shift

R Shift

SB

SB

SB

SB

PermuteNibblesMC k
0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

15 3 7 11

10 6 2 14

9 5 1 13

4 8 12 0

Fig. 2. Round function of CRAFT.

(assuming independent round keys and thus absorbing round constants), even
though this arguments is valid when adding an arbitrary amount of rounds before
Ek, it also includes the case where we add an arbitrary amount of rounds after
Ek. Indeed in this context, F r ◦Ek = Ek′ ◦F r, where F is the round function. If
the previous arguments hold for Ek ◦F r, it thus automatically holds for F r ◦Ek,
i.e. any sum

∑
x∈M 〈β, F r(Ek(x))〉 is key-dependent.

5 Improvements of Efficiency by using Equivalent S-boxes

The core part to guarantee the lower bound of degrees is to find a key pattern
where the number of division trails from a plaintext to a ciphertext is odd. To
find such a key pattern, the trail extension technique was proposed in [12]. A
key pattern is generated from the ciphertext side round by round as outlined in
Sect. 2.3. In the end, lower bounds on the (minimum) degree for round-reduced
variants of SKINNY-64, GIFT-64, and PRESENT could be efficiently computed. On
the other hand, it is open whether the trail extension technique can find such
key patterns for other ciphers. We used the tool provided in [12] and modified
it for the block cipher CRAFT. As a result, we failed to find key patterns in
spite of the similarity to SKINNY. This is because the round function of CRAFT
has fundamental problems to disturb trail extensions. In practice, the round
function of SKINNY-64 or GIFT-64 is significantly suited to the trail extension,
and the trail extension is unlikely succeeded in general.

We are only interested in the parity of the number of trails for a fixed pattern,
but in practice, we cannot know the parity unless all trails are enumerated.
Therefore, the feasibility highly depends on the number of trails, which we try
to keep significantly small. When the key pattern is sequentially generated in the
trail extension, the number of trails must be kept small throughout all iterations.

Let us focus on the CRAFT round function (see Fig. 2), in particular, a super
S-box, which consists of four 4-bit S-boxes, MixColumns, and four 4-bit S-boxes.
Let u, v, and w be the input, key, and output patterns on the super S-box, and the
trail extension technique generates (u, v) from w such that the Hamming weights
of u and v are as high as possible. As an example, we enumerated all (u, v) that
can propagate to w = 0x1200, where the two S-boxes and one MixColumns are
independently evaluated. Then, wt(u)+wt(v) = 13 is the maximum choice, e.g.,
(u = 0x7777, v = 0x2000) can propagate to w = 0x1200. Unfortunately, this
trail is not available because there are 4 different trails satisfying (u, v) → w.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >=20E >=20O
wt=13 0 0 0 1 0 0 0 8 0 0 0 8 0 0 0 16 0 0 0 48 0
wt=12 0 34 0 289 0 136 0 623 0 1 0 618 0 0 0 46 0 1 0 169 0
wt=11 28 873 24 3428 0 885 0 1476 0 19 0 1116 0 12 0 136 0 10 0 456 6
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Fig. 3. The number of (u, v) and their numbers of trails, output pattern is 0x1200. For
example, when wt(u) + wt(v) = 11, there are 3428 (u, v) whose number of trails is 4.
When the number of trails exceeds 20, the labels ≥20E and ≥20O are used for even
parity and odd parity, respectively.

Figure 3 summarizes the number of (u, v) and their numbers of trails when w =
0x1200. The numbers of (u, v) with wt(u) +wt(v) = 13 and wt(u) +wt(v) = 12
are 81 and 1917, respectively, but there is no (u, v) whose number of trails is
odd. When wt(u) + wt(v) = 11, there are 28 (u, v) whose number of trails is 1,
but the number is very few. In other words, the choice of the trail extension is
very limited among all trails. Even if such a rare propagation is adopted, after
several rounds, it is unlikely to restrict the number of trails to a size that is
able to handle in practice. This trend is not limited to w = 0x1200. Indeed, a
preferable propagation is very rare for many output pattern. This is our heuristic
explanation why the trail extension cannot find a key pattern for CRAFT.

5.1 Replacement to Equivalent S-box

We tackle the problem to expand the class of ciphers that we can prove a lower
bound on the degree. The core of the problem is having too many trails. There-
fore, we propose a new method to decrease the number of trails fundamentally.
Generally, this method is based on rewriting the ciphers specification (potentially
up to a linear change of plaintext and ciphertext and a different key-scheduling).
We call such ciphers equivalent. More specifically, we replace the S-box in such a
way that we get the exact same cipher. Thus, while we keep the cipher identical,
its behaviour with respect to division trails might well change.

The first important remark is that even constant addition changes the prop-
agation table of the division property unlike the differential distribution table or
linear approximation table. Under the key-alternating ciphers, constant addition
before/after S-boxes results in a different representation of the original cipher
because such constant addition can be included in the round key addition.

Proposition 3 (Equivalent S-box for key-alternating ciphers). Replacing
an S-box S in a key-alternating cipher with an S-box S′ : S′(x) = S(x⊕cin)⊕cout
results in an equivalent cipher under the independent round key.
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To demonstrate the effect of the equivalent S-box, we use the CRAFT S-box as an
example. There are 76 possible transitions in the propagation table (see the left
one in Table 2). On the other hand, in S′(x) = S(x⊕ 0x7)⊕ 0x7, there are only
56 possible transitions. The total number of trails decreases from 76 to 56. We
can expect that the use of S′ instead of S decreases the number of trails from a
plaintext to a ciphertext.

For ciphers whose linear layer consists of word-wise XOR and word-wise
shuffle such as CRAFT or SKINNY, there is a more wide equivalent class.
Proposition 4 (Equivalent S-box for ciphers with word-wise linear layer).
Replacing an S-box S in a key-alternating cipher whose linear layer consists of
word-wise XOR and word-wise shuffle with an S-box S′ : S′(x) = A−1 × S(A×
(x⊕ cin))⊕ cout results in an equivalent cipher under the independent round key.
An invertible linear transformation, denoted by A×x, is applied before the S-box,
and its inverse A−1 is multiplied after the S-box. Unlike in the generally studied
affine-equivalent class, we limit the second linear transformation to the inverse
of the former linear transformation. Since multiplication of A−1 and word-wise
XOR/shuffle are commutative, the multiplication of A−1 can be moved at the
beginning of the next round. Then, as A × A−1 is the identity, we see that the
ciphers are indeed equivalent.

The number of linear transformations is 20160 for 4-bit S-boxes. Therefore,
there are (at most) 20160 × 24 × 24 ≈ 222.23 equivalent S-boxes, and we can
choose a preferable S-box to prove the lower bound. Note that the target cipher
also changes to the cipher whose plaintext and ciphertext is linearly transformed,
but it never affects the algebraic degree, the minimum degree, and of course, the
claim of no integral distinguisher3.

5.2 Choice of Preferable Equivalent S-boxes

The most important problem is how to choose a preferable S-box from the equiv-
alent class. Intuitively, the lower number of possible trails, the better. However,
as far as we tried, this problem is not so simple, and choosing an S-box whose
propagation table has the following property is better. In the following, let u
and v be an input pattern and an output pattern, respectively.

– For any u with wt(u) = n − 1, the possible output pattern v is uniquely
determined when wt(u)− wt(v) is maximized.

– For any v with wt(v) = 1, the possible input pattern u is uniquely determined
when wt(u)− wt(v) is maximized.

– The number of possible transitions is as small as possible.

Note that these conditions are heuristically found, and whether adopting these
conditions is optimal or not is an open question. As a consequence, the use of
S-boxes satisfying these conditions allows us to prove the lower bound of CRAFT.
3 Similar technique is already known in [17, 11], but there is significant difference. In

previous works, a linear transformation is applied to S-boxes in the first and the last
rounds only. In our proposal, it is applied to all S-boxes in the middle rounds.
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Table 2. Propagation table for the CRAFT S-box. The left is the table of the original
S-box. The right is the table of the equivalent S-box described in Example 6

0 1 2 4 8 3 5 6 9 A C 7 B D E F
0 x x x x
1 x x x x
2 x x x x
4 x x x x
8 x x
3 x x x x x x
5 x x x x x x x x
6 x x x x
9 x x x x x x
A x x x x
C x x x x x
7 x x x x x x
B x x x x x x
D x x x x x
E x x x x x x x
F x

0 1 2 4 8 3 5 6 9 A C 7 B D E F
0 x
1 x x x
2 x x x
4 x x x
8 x
3 x x x x x x x
5 x x x x x
6 x x x
9 x x x x x
A x x x
C x x x
7 x x x x x
B x x x
D x x x x x
E x x x x x
F x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >=20E >=20O
wt=12 26 12 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
wt=11 448 230 4 46 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
wt=10 3021 1693 112 400 18 43 2 39 2 4 0 3 0 0 0 0 0 0 0 0 0
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Fig. 4. The number of (u, v) and their numbers of trails in the CRAFT super S-box using
the equivalent S-box described in Example 6. Output pattern is 0x1200.

Example 6. The following S-box

S′ : 0x0, 0xC, 0xA, 0x7, 0x9, 0x6, 0x1, 0xF, 0x8, 0xE, 0x4, 0x3, 0x2, 0x5, 0xD, 0xB

is equivalent to the original S-box of CRAFT and satisfies the three conditions.
Note that S′ is generated from the original S-box S as follows:

S′(x) = A−1 × S(A× (x⊕ 0x5))⊕ 0xD, A =

(
1 0 1 1
0 0 0 1
0 1 0 0
1 0 0 1

)
,

where x = x4‖x3‖x2‖x1 is identical to the transpose of (x4, x3, x2, x1), i.e.,
(x4, x3, x2, x1)

T . Table 2 shows the comparison between the propagation tables
of the original S-box and the equivalent S-box. The table of the equivalent S-box
is more sparse than that of the original one. Six propagations labeled in red color
correspond to the first and second conditions. For example, when v = 0x4, u with
maximum Hamming weight is uniquely determined to 0xA. As another example,
when u = 0xD, v with minimum Hamming weight is uniquely determined to 0x2.

Finally, we test the same experiment using the super S-box, i.e., we enumerate
all (u, v) that can propagate to w = 0x1200. Figure 4 summarizes the number
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of (u, v) and their numbers of trails. Unlike the original one shown in Fig. 3, the
majority of possible propagations has only one trail.

6 Applications

In this section we are going to apply our results, i.e. how to give stronger ar-
guments to a set of ciphers. For each cipher, we briefly explain some specific
observations and improvements. The results for all ciphers are given in Table 1.

In all ciphers whose block length is n, we need n2 key patterns to guarantee
no integral distinguisher, and the integral-resistance matrix has n4 entries, i.e.,
224 and 228 on 64-bit and 128-bit block ciphers, respectively. To compute these
entries efficiently, we use a key pattern in which key patterns for the 1st and
last rounds are non-zero if it is possible. Then, almost all entries in the integral-
resistance matrix must be 0, and the integral-resistance matrix has the form of
a diagonal block matrix. When all block matrices have full rank, the integral-
resistance matrix has full rank. Another important remark is that even if some
entries are not determined, we can still prove that the integral-resistance matrix
has full rank. For example, since the following matrix1 0 ⋆

0 1 0
0 0 1

 ,

has full rank independent of ⋆, we do not need to determine the entry ⋆. Note
that [1] observed that using the Convex Hull technique to modelize S-boxes [23]
in MILP can sometimes leads to inconsistencies. We double checked and made
sure that this phenomenon does not happen for the S-boxes that we use.

6.1 Applications to CRAFT

CRAFT is a lightweight tweakable block cipher published in ToSC 2019 [5]. The
block length is 64 bits, and 4-bit S-boxes are used as the nonlinear operation.
On our proof, we assume independent tweakeys each round.

The designers of CRAFT showed an 13-round integral distinguisher [5] in the
single tweak-key setting. For the tightness of results, our goal is therefore to
show that 14 rounds (and more) do not have any integral distinguisher under
the independent-tweakey assumption.

Figure 2 shows the round function of CRAFT. The propagation of the divi-
sion property for the SB and MixColumns are independently modeled, where
MixColumns is regarded as 16 parallel applications of 4-bit to 4-bit linear trans-
formation. Moreover, the first round consists of the SB only. As shown in Sect. 5,
we use an equivalent S-box instead of the original S-box to improve the efficiency.
Note that using the original S-box did neither allow to extend trails nor to find
key patterns whose number of trails is odd. Therefore, our new proposal using
an equivalent S-box is necessary to handle CRAFT.
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We start with the proof of having no integral distinguisher in 14 rounds. To
prove it, we need at least 4096 key patterns whose corresponding 4096 × 4096
integral-resistance matrix has full rank. Generating 4096 key patterns is time
consuming. Besides, it is unlikely that the integral-resistance matrix becomes full
rank when 4096 key patterns are generated without care. A systematic strategy
is required to efficiently generate such key patterns.

As a first improvement, we exploit the symmetry property of CRAFT. Denote

T



s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15


 =


s8 s12 s0 s4
s9 s13 s1 s5
s10 s14 s2 s6
s11 s15 s3 s7

 ,

then the round function R of CRAFT (excluding constant and tweakey additions)
fulfills R(T (s)) = T (R(s)). As we can ignore the impact of keys and constant
addition under the independent tweakey assumption, rotating by two columns
is thus invariant for the computation of key patterns. Therefore, once we find
a key pattern, the key pattern transformed by the symmetry property is also
available. Thanks to this property, 4096/2 = 2048 key patterns are enough.

As a second improvement, we use key patterns that share the same division
trail in the middle part. Concretely, we first construct 12-round input/key/out-
put patterns whose number of trails is odd, and then, the trail is systemati-
cally extended both forward and backward direction by 1 round, respectively.
Then, we can generate 2048 key patterns only from 32 12-round patterns. As a
consequence, we can generate 4096 key patterns whose corresponding integral-
resistance matrix has full rank. As shown in Sect. 4.3, once we can generate an
integral-resistance matrix of full rank for 14 rounds, it also guarantees no integral
distinguisher in 14 rounds and higher.

6.2 Applications to SKINNY-64

SKINNY is a lightweight block cipher published at CRYPTO’16 [4]. There are two
different version of SKINNY (64-bit block SKINNY-64 and 128-bit block SKINNY-128).

In [12], the lower bounds of the algebraic degree and the minimum degree
reach the maximum, i.e., 63, in 10-round SKINNY-64 and 11-round SKINNY-64,
respectively. It also shows that 13-round SKINNY-64 has 64 maximum degree
monomials. On the contrary, the best integral distinguisher reaches 11 rounds [11]4.
Note that SKINNY does not have the pre-whitening key, the 11-round integral
distinguisher can be extended to a 12-round one for free. 

Our goal is to show that 13 rounds and more never have integral distinguish-
ers under the assumption that each round-tweakey is independent and they are
XORed to the full state. Again, SKINNY does not have a pre-whitening key.
4 In the 11-round distinguisher shown in [11], each tweakey is not XORed to the full

state. However, we confirmed that there are 11-round distinguishers even when each
tweakey is XORed to the full state.
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Therefore, to prove no integral distinguisher in 13 rounds, we need to construct
a full-rank integral-resistance matrix for 12 rounds.

Similarly to CRAFT, the SC and MixColumns are independently modeled,
where MixColumns is regarded as 16 parallel applications of 4-bit to 4-bit lin-
ear transformation. Moreover, the last round consists of the SC only. Unlike
the CRAFT S-box, the division property table of the SKINNY-64 S-box is rela-
tively sparse. Therefore, the trail extension is possible without the equivalent
S-box technique [12]. However, using the equivalent S-box technique increases
the efficiency significantly. The following S-box

S′ : 0x1, 0xA, 0x2, 0xB, 0x3, 0xC, 0x4, 0x9, 0x6, 0xE, 0x5, 0xF, 0x8, 0x0, 0xD, 0x7

is equivalent to the original S-box of SKINNY-64 and satisfies the three conditions
shown in Sect. 5. We also use two improvements which are similar to CRAFT to
generate a full-rank integral-resistance matrix efficiently. The first improvement
is the so-called column rotation equivalence [12]. Once we find a key pattern,
three key patterns whose columns are rotated by 1, 2, and 3 are also available.
Thanks to this property, 4096/4 = 1024 key patterns are enough.

The second improvement used for CRAFT, i.e., to first generate division trails
which cover only 10 rounds and then extend it to 12 rounds, is also applicable
here. Unfortunately, we cannot use this trick for all of 1024 key patterns because
there is no 10-round division trail from specific input pattern to specific output
pattern. For key patterns where this is not possible, we need to generate key
patterns for 12 rounds directly.

As a consequence, we can generate 4096 key patterns whose corresponding
integral-resistance matrix has full rank. Again, once we generate a full rank
integral-resistance matrix for 12 rounds, it also guarantees that there is no inte-
gral distinguisher for 12 rounds and more.

6.3 Applications to GIFT-64

GIFT is a lightweight block cipher published as CHES’17 by Banik et al. [2],
with a 128-bit key and two variants depending on the block size : GIFT-64 and
GIFT-128 for 64-bit and 128-bit block size respectively. Its round function is
very simple and only consists of the key-addition, an S-box layer with 4-bit S-
boxes and a bit permutation layer. Note that in the original design, the round
key is only added to half of the state. As in [12] we are here considering a
slightly different variant where the round key is added to the full state, as well
as assuming that each round key is independent (as in the rest of this paper).

We reused the key patterns given by [12] for their proof of the ”all max-
imal degree monomial” property, leading to key patterns v1, . . . , vs with s =
n2 = 4096 for 11 rounds. Note that these key patterns already have the special
property mentionned at the start of Sect. 6.

We set a time limit of one minute for the computation of each coefficient in
the integral-resistance matrix. That is, if we could not compute the total number
of trails in less than one minute, we replace the coefficient by ⋆. By doing this
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Fig. 5. SIMON/Simeck round function [13].
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Fig. 6. SIMON/ Simeck one round extension
for pre-whitening key.

we are still able to compute enough coefficients so that we can prove that the
matrix is always full rank. Note that since GIFT doesn’t have a whitening key,
having the integral-resistance matrix at full rank for 11 rounds means that we
prove the resistance against integral distinguishers for 12 rounds (as in the case
of SKINNY-64). Thus with this, and assuming independent round keys, we were
able to prove that 12 rounds and higher of GIFT64 has no integral distinguisher,
according to Corollary 2.

6.4 Applications to PRESENT

PRESENT is another lightweight block cipher, published at CHES’07 [6], with a 64-
bit block size and the option between 80-bit and 128-bit key. Its round function is
also very simple, built with only a key addition, S-box layer of 4-bit S-boxes and
a bit permutation. Similarly to CRAFT, we first build input/output/key-patterns
leading to an odd number of trails for 11 rounds, and extend them by one round
both in the forward and backward direction using affine equivalent S-boxes for
the first and last round. In the end this allowed us to prove that 13 rounds and
higher of PRESENT, assuming independent round keys, does not have any integral
distinguisher, according to Corollary 2.

6.5 Applications to SIMON/Simeck

SIMON is a Feistel cipher which was published in 2013 [3]. Figure 5 shows the
round function where Si is the left circular shift by i positions. The shift con-
stants for SIMON are a = 8, b = 1, and c = 2. While the cipher operates on n-bit
words, the block length is 2n. SIMON supports the block lengths 32, 48, 64, 96,
and 128. The cipher Simeck [24] is very similar, it just replaces the shifts con-
stants by a = 0, b = 5, c = 1 (to allow an even more efficient implementation)
and supports the block lengths 32, 48, and 64.

For the division property of SIMON/Simeck we can observe the following word
rotation equivalence: let F (xi, yi, ki) = (xi+1, yi+1) be one round of SIMON/Simeck.
Then the round function is shift invariant, that is, for all 0 ≤ l < n

(a1, a2, a3)
F−→ (b1, b2) ⇔ (Sl(a1), S

l(a2), S
l(a3))

F−→ (Sl(b1), S
l(b2)).
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Showing the integral-resistance property for SIMON and Simeck requires, with
a naive approach, 4n2 key patterns. Based on the word rotation equivalence, we
can reduce this number down to 4n. Finding a key pattern where only one
combination of a monomial and an output bit leads to an odd number of trails
and all other combinations to an even number of trails leads to a unit vector
as a column in the integral-resistance matrix. In this row where the unit vector
has the 1 entry, we do not need to count the number of trails for other key
pattern and just insert a 0 there. If the number of trails is odd for the specific
monomial/output bit combination for another key pattern, we can just add the
unit vector to this column to create a 0 entry there. Unlike the other block ciphers
examined in this paper, the trail extension was not used, we simply maximized
the weight of the key patterns.

We iterated over all monomial/output bit combinations and try to find a
key pattern, so that the number of trails is odd. We parallelized the search of
key patterns, which leads to a program behaviour where for ”easy” monomi-
al/output bit combinations key patterns are found very fast and often give unit
vectors. When the program found key patterns for ”complicated” monomial/out-
put bit combinations, for many positions in the column the trail counting can
be omitted, which drastically improves the performance.

When we can compute the integral-resistance matrix of full rank for r rounds
of SIMON resp. Simeck, we still need a pre-whitening key on the full state to
ensure the integral-resistance property. For that we add one additional round in
the beginning (see Fig. 6). As we already assume independent round keys, we
can (virtually, similarly to masking or secret sharing) split the second round key
in two independent parts (k1 and k

(0)
0 ), and add k

(0)
0 on the right word. Then

(k
(0)
0 , k

(1)
0 ) is our pre-whitening key on the full state. The application of F before

does not change the integral-resistance property as shown in Sect. 4.3. This leads
to a proof of the integral-resistance property for r + 1 rounds.

The best known integral distinguishers for SIMON32 and Simeck32 cover 15
rounds [21]. We can show that the integral-resistance property holds for 16
rounds of both ciphers which is tight in terms of number of rounds. The integral
distinguishers shown in [23] for SIMON48/64/96/128 and SIMECK48/64 can be
extended by one round with the technique shown in [22]. Adding another round
gives our bounds in Table 1 where we show the integral-resistance property.

7 Conclusion and Future Work

In this paper, we were able to show strong security arguments against integral
distinguishers for several block ciphers following the SPN and Feistel designs.
Although these are the best security guarantees against integral distinguishers
so far, in theory, it could still be that it is easy to mount integral attacks. Our
result shows that any sum is key-dependent, however, this does not exclude the
case where the sum is simply one key bit, which could be exploited in an attack.

A wider application to more (block) ciphers would be interesting, especially
under the aspect of more automatization and less optimization by hand. We see
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further research directions in closing the gap for GIFT-64 and PRESENT between
the best known integral distinguisher and the integral-resistance property, and a
more intuitive understanding of what allows the degree to be extended to more
rounds. For the question of covering more rounds, in the case of an algebraic
degree, it would be interesting to better understand which S-boxes, or family of
S-boxes, allow to preserve the degree for more rounds.

Our results are inherently non applicable to cryptographic permutations be-
cause (i) the key addition is crucial for our results and to reduce the complexity
of the MILP models and (ii) the conditions for the integral distinguisher can-
not be fulfilled. Deriving similar results for permutations or permutation based
schemes would be interesting.
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