
Proofs for Inner Pairing Products and
Applications

Benedikt Bünz1, Mary Maller2, Pratyush Mishra3,
Nirvan Tyagi4 and Psi Vesely5

1 Stanford University
2 Ethereum Foundation

3 UC Berkeley
4 Cornell University

5 UC San Diego

Abstract. We present a generalized inner product argument and demon-
strate its applications to pairing-based languages. We apply our general-
ized argument to prove that an inner pairing product is correctly evaluated
with respect to committed vectors of n source group elements. With a
structured reference string (SRS), we achieve a logarithmic-time verifier
whose work is dominated by 6 logn target group exponentiations. Proofs
are of size 6 logn target group elements, computed using 6n pairings and
4n exponentiations in each source group.
We apply our inner product arguments to build the first polynomial com-
mitment scheme with succinct (logarithmic) verification, O(

√
d) prover

complexity for degree d polynomials (not including the cost to evaluate
the polynomial), and a SRS of size O(

√
d). Concretely, this means that

for d = 228, producing an evaluation proof in our protocol is 76× faster
than doing so in the KZG commitment scheme, and the CRS in our
protocol is 1000× smaller: 13MB vs 13GB for KZG.
As a second application, we introduce an argument for aggregating n
Groth16 zkSNARKs into an O(logn) sized proof. Our protocol is signifi-
cantly faster (> 1000×) than aggregating SNARKs via recursive compo-
sition: we aggregate ∼ 130, 000 proofs in 25 minutes, versus 90 proofs via
recursive composition. Finally, we further apply our aggregation protocol
to construct a low-memory SNARK for machine computations that does
not rely on recursive composition. For a computation that requires time
T and space S, our SNARK produces proofs in space Õ(S + T ), which
is significantly more space efficient than a monolithic SNARK, which
requires space Õ(S · T ).

1 Introduction

An inner product argument proves that an inner product relation holds between
committed vectors. In this work, we present a new construction of inner product
arguments for pairing-based languages that yields a logarithmic time verifier — a
significant improvement over the linear time verifier of previous work. We use our
new inner product argument to build (1) a new polynomial commitment scheme
that achieves novel asymptotic characteristics of succinct verification and opening



proofs that can be computed in time square root of the polynomial degree as well
as a square root sized SRS; and (2) a new approach for aggregation of Groth16
general-purpose SNARKs [Gro16] useful for verifiable computation, avoiding the
expensive costs of recursive proving circuits. We provide an open-source Rust
implementationof all our protocols and applications and benchmark them against
the state of the art. Our benchmarks show that the asymptotic improvements
translate to significant practical gains.

Inner product arguments. Inner product arguments (IPA) are core compo-
nents of many primitives, including zero-knowledge proofs and polynomial and
vector commitment schemes [BCC+16; BBB+18; WTS+18; LMR19; BGH19;
BCMS20]. Despite the fact that the inner product arguments constructed in these
works largely share the same core strategy as the original protocol in [BCC+16],
they all spend significant effort in reproving security to accommodate for minor
changes (introduced for efficiency and/or application-specific purposes). This
repeated effort adds significant overhead in the process of auditing the security of
inner product arguments, and enables errors to slip through unnoticed. Our first
contribution is an abstraction of previous work into a generalized inner product
argument (GIPA). While the techniques in GIPA are not novel, they do provide
a unified view of all prior work, enabling simpler exposition and simpler security
proofs. In particular, this means that our single security proof suffices to prove
the security of all prior GIPA instantiations [BCC+16; BBB+18; LMR19], as
well as the protocols introduced in this paper.

We additionally prove security for the non-interactive variant of GIPA in a
generalization of the algebraic group model [FKL18], which we dub the algebraic
commitment model. Because GIPA is a public-coin protocol, it can be transformed
to a non-interactive argument using the Fiat–Shamir heuristic, and it is this
variant that is used in applications— non-interactive Bulletproofs secures almost
2 billion USD of Monero [O’L18]. However, due to a technicality about modeling
random oracles in recursive arguments (the generic transformation leads to a
super-polynomial extractor), prior works provided no satisfactory security proof
for these non-interactive variants. Our security proof remedies this oversight, and
we envisage that our techniques may be useful in proving the security of other
non-interactive and recursive protocols [BFS20].

Reducing verification cost. Making use of the high level GIPA blueprint,
our second contribution is a protocol for reducing the verifier cost for specific
inner product arguments over pairing-based languages. For a committed vector
length of n, we reduce the verifier cost from O(n) for existing protocols [LMR19],
to O(log n), which is an exponential improvement. To do this, we introduce
a new pairing-based commitment scheme with structured keys and prove its
security. We then exploit a special structure of the “homomorphic collapsing”
execution of GIPA (first observed in [BGH19]) with our commitment scheme. In
particular, the outsourced computation is reduced to opening a KZG polynomial
commitment scheme. We rely on a trusted setup that is updatable [GKM+18]
and can be used for languages of different sizes (up to some maximum bound
specified by the SRS).
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Equipped with our new logarithmic-time verifier for inner products over
pairing-based languages, we next turn to apply our techniques to two applications:
(1) polynomial commitments, and (2) SNARK aggregation.

Polynomial commitments. Polynomial commitment (PC) schemes [KZG10]
are commitment schemes specialized to work with polynomials. A committer
outputs a short commitment to a polynomial, and then later may convince a
verifier of correctness of an evaluation of that committed polynomial at any
point via a short evaluation proof, or “opening”. PC schemes have been used
to reduce communication and computation costs in a vast breadth of appli-
cations including proofs of storage and replication [XYZW16; Fis18], anony-
mous credentials [CDHK15; FHS19], verifiable secret sharing [KZG10; BDK13],
and zero-knowledge arguments [WTS+18; MBKM19; Set20; GWC19; XZZ+19;
CHM+20].

In this work, we use a combination of inner product arguments in order to
build a pairing-based polynomial commitment scheme that requires a universal
structured reference string of size only

√
d when committing to degree d polyno-

mials, and where proving an evaluation claim only requires O(
√
d) cryptographic

operations (i.e., group/pairing operations not including scalar computation).
We achieve this while maintaining constant-sized commitments, O(log d)-sized
evaluation proofs, and O(log d) verifier time.

This compares to a linear sized CRS for the widely used KZG [KZG10]
commitment scheme. Concretely, this means that for polynomial of degree 222,
KZG requires a large SRS of size ∼ 400MB. This can cause deployment hurdles
in applications in decentralized systems, as this SRS needs to be stored by every
prover. For example, in SNARKs relying on polynomial commitments [GWC19;
CHM+20], the degree of the polynomial is roughly the size of the circuit, which
can be large [BCG+14; WZC+18]. A large SRS also has a non-trivial impact on
security [GGW18]. In contrast, the SRS of our protocol has size 3MB, which is
over 130× smaller, making deployment much easier.

Furthermore, as noted above, computing an evaluation proof requires only
O(
√
d) cryptographic operations, which is much better than KZG, which requires

O(d) cryptographic operations. This is important for applications such as vector
commitments [LY10] and proofs of space [Fis19], where a polynomial is committed
to just once, but the commitment is opened at many different evaluation points.

SNARK aggregation. A SNARK aggregation protocol takes as input many
SNARK proofs and outputs a single aggregated proof that can be verified more
quickly than individually verifying each SNARK. This is useful for applications
where the batch of proofs will be verified many times by different clients. For
example, this is the case in applications that aim to improve the scalability of
decentralized blockchains by using SNARKs to prove the correctness of state
transitions [Whi; BMRS20].

We use our inner product arguments to design an aggregation protocol for
Groth16 [Gro16] SNARKs that enjoys the following efficiency properties when
aggregating n proofs: (a) aggregation requires O(n) cryptographic operations,
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(b) the aggregated proof has size O(log n), and (c) verification requires O(log n)
cryptographic operations, and O(n) field operations.

Our protocol offers asymptotic and concrete improvements over prior ap-
proaches that aggregate proofs via recursive composition. In more detail, these
approaches create (another) SNARK for the circuit that contains n copies of the
Groth16 verifier circuit [BCTV14a; BCG+20]. This entails constructing arith-
metic circuits for computing pairings, which is expensive (for example, computing
a pairing on the BLS12-377 curve requires ∼ 15, 000 constraints [BCG+20]).
In contrast, our protocol “natively” works with pairing-based languages. This
results in the following efficiency savings: (a) our protocol does not have to reason
about arithmetic circuits for computing pairings, (b) our protocol does not have
to compute FFTs, which require time O(n log n), and (c) our protocol does not
require special cycles or chains of curves [BCTV14a; BCG+20]. Put together,
these savings allow us to aggregate proofs over ∼ 1400× faster than the recursive
approach. Furthermore, our protocol requires the verifier to only perform O(n)
field operations, as opposed to O(n) cryptographic operations for the recursive
approach.

Low-memory SNARKs for machine computations. We leverage our
aggregation protocol to construct a low-memory SNARK for (non-deterministic)
machine computations. In more detail, if for a machine M , checking an execution
transcript requires space S and time T , then our SNARK prover takes space
Õ(S + T ) to produce a proof for that execution. In comparison, constructing
a monolithic proof for the entire computation at once requires space Õ(S ·
T ), whereas the only other solution for constructing low-memory SNARKs for
machine computations requires recursive composition of proofs [BCCT13], which
is concretely expensive.

Summary of contributions.

• We provide a unifying generalization of inner product arguments, identifying
and formalizing the appropriate doubly-homomorphic commitment property.

• We prove security of the non-interactive Fiat-Shamir transform of this
protocol, implying security for the entire family of protocols.

• We provide a new set of inner product arguments for pairing-based languages
that improve verifier efficiency from linear to logarithmic by introducing a
trusted structured setup.

• We construct a new polynomial commitment scheme with constant-sized
commitments, opening time square root in the degree and square root sized
CRS. The opening verifier runs in logarithmic time and opening proofs are
logarithmic in size.

• We design an aggregator for Groth16 [Gro16] pairing-based SNARKs that
produces an aggregated proof of logarithmic size. We apply our aggregator to
construct a low-memory SNARK for machine computations without relying
on recursive composition.

• We implement a set of Rust libraries that realize our inner product argu-
ment protocols and applications from modular and generic components. We
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polynomial
commitment

communication complexity transparent
setup

time complexity

CRS commitments openings d = 220 Commit Open Verify

Kate et al.[KZG10] d G1 1 G1 1 G1 96b no d G1 d G1 1 P,G1

Bulletproofs [BBB+18] d G1 1 G1 log(d) G1 1.3 KB yes d G1 d G1 d G1

Hyrax [WTS+18]
√
d G1

√
d G1 log(d) G1 33 KB yes d G1

√
d G1

√
d G1

DARKs [BFS20] d GU 1 GU log(d) GU 8.6 KB yes d GU d log(d) GU log(d) GU
Virgo [ZXZS20] 1 1 H log(d)2 H 183 KB yes d log(d) H d log(d) H log(d)2 H
Groth [Gro11] 3

√
d G2

3
√
d GT 3

√
d G1 25 KB yes d G1

2
3
√
d G1

3
√
d P

This work
√
d G2 1 GT log(d) GT 2.5 KB no d G1

√
d P log(d)GT

Table 1: Efficiency comparisons for polynomial commitment schemes. All numbers
are given asymptotically. We use G1,G2,GT to represent groups in a bilinear map, P
to represent pairings, GU to represent groups of unknown order, and H to represent
hash functions. For simplicity we only specify the dominant costs e.g., if there are d
G1 and d G2 group exponentiations we simple write d G2. Column 5 is the expected
size of one commitment plus one opening proof at d = 220 over a BN256 curve.

evaluate our implementation, and find that our PC scheme is over 14× faster
to open than a KZG commitment [KZG10] for polynomials of degree 106,
and that our aggregation scheme aggregates over 1400× faster than the
alternative 2-chain approach.

Related work. Lai, Malavolta, and Ronge [LMR19] introduced an inner product
argument for pairing based languages. Their scheme runs over a transparent
setup and is secure under the SXDH assumption. Their work improves on Groth
and Sahai Proofs [GS08] which are a method to prove pairing-based languages
under zero-knowledge without reducing to NP. Their proving costs are dominated
by a linear number of pairings, their proof sizes are logarithmic and their verifier
running costs are dominated by a linear number of group exponentiations. Our
pairing based IPA’s have much lower verification costs but we use a trusted setup.
Our generalized IPA argument can be used to greatly simplify the security proofs
for their Theorems 3.2, 4.1, 4.2 and 4.3, and we prove security of a non-interactive
variant in the algebraic commitment model.

In Table 1, we compare the efficiency of various polynomial commitment
schemes. [KZG10] introduced a pairing based polynomial commitment scheme
with constant sized proofs. Their scheme is secure under an updatable setup
in the algebraic group model. Groth [Gro11] designed a pairing based “batch
product argument” secure under SXDH. This argument that can be seen as a form
of polynomial commitment scheme and our two-tiered polynomial commitment
techniques were inspired by this work. Under discrete-logarithm assumptions,
Bayer and Groth designed a zero-knowledge proving system to show that a
committed value is the correct evaluation of a known polynomial [BG13]. Both
the prover and verifier need only compute a logarithmic number of group ex-
ponentiations, however verifier costs are linear in the degree of the polynomial.
Wahby et al. proved that it is possible to use the inner product argument of
Bulletproofs [BBB+18] to build a polynomial commitment scheme [WTS+18].
Bowe et al. [BGH19] argued that the inner product argument of Bulletproofs is
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also highly aggregatable, to the point where aggregated proofs can be verified
using a one off linear cost and an additional logarithmic factor per proof. Attema
and Cramer [AC20] recently provided an orthogonal generalization of the inner
product argument. They show that the inner product argument can be seen as a
black box compression mechanism for sigma protocols and show that it can be
used as a proof system for secret shared data.

Polynomial commitment schemes have also been constructed using Reed-
Solomon codes [ZXZS20]. These commitments use highly efficient symmetric
key primitives, however the protocols that use them require soundness boosting
techniques that result in large constant overheads. Bünz et al.[BFS20] designed a
polynomial commitment scheme in groups of unknown order such as RSA groups
or class groups with efficient verifier time and small proof sizes. However, it
requires super-linear commitment and prover time. Asymptotically, our scheme
positions itself competitively among state-of-the-art PCs (see Table 1). In terms
of concrete efficiency, the trusted setup scheme of Kate et al. [KZG10] allows for
constant proof sizes and verifier time (versus our logarithmic results), whereas our
protocol offers quadratic improvements to opening efficiency and the maximum
degree polynomial supported by a SRS of a given size.

Prior aggregatable SNARKs have relied on efficiently expressing SNARK ver-
ifiers as as arithmetic circuits [BCTV14b; BCG+13]. For pairing based SNARKs
this was achieved through the use of pairing-friendly cycles [BCTV14a] or two-
chains [BCG+20]. Known cycles and two-chains for the 128-bit security level
require roughly 768-bit curves, which are ∼ 10× more expensive than the roughly
384-bit curves used when recursion is not necessary. Bowe et al. introduce a novel
approach to recursive SNARKs that works with cycles of standard (non-pairing)
curves [BGH19]. Bünz et al. [BCMS20] generalize and formalize this approach.
Chiesa et al. build a post-quantum recursive SNARK [COS20]. For all of these
approaches we expect to significantly improve on prover time because we do not
rely on expensive NP reductions.

Subsequent work. Prior (full) versions of this work included an additional
polynomial commitment construction based on GIPA that only requires an
unstructured reference string. In this construction, the prover computes O(

√
d)

pairings and exponentiations, the opening proof consists of O(log(d)) group
elements, and the verifier performs O(

√
d) exponentiations for degree d univariate

polynomials. Recent subsequent work [Lee20] introduced a new PC scheme (called
Dory) that builds on, and improves upon, our unstructured-setup construction.
The key improvement is that the verifier time of this scheme is O(log d), which is
achieved by cleverly switching the commitment key in every round of the GIPA
protocol and folding the old commitment key into the committed vector. This is
possible when GIPA is instantiated with a bilinear group as the key space of the
commitment to one vector is the message space of the commitment to the other
vector, and vice versa. It is therefore possible to combine keys and messages
homomorphically. However, log-verification costs of Dory are concretely more
costly than our log-verification structured-setup PC scheme (≈ 6×): at d = 220,
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Dory’s opening proofs are 18KB and computed in 6 seconds, while our scheme
has proofs of size 2.5KB computed in 1 second.

Further subsequent works have applied our inner product arguments to
aggregate vector commitment opening proofs [SCP+21], construct incrementally-
verifiable computation without recursion [TFBT21], and aggregate SNARKs in
blockchain settings using existing trusted setups [GMN21].

2 Technical Overview

2.1 Generalized Inner Product Argument

The first contribution of our paper is a generalized inner product argument we
denote GIPA. At a high level, our protocol generalizes the protocols of [BCC+16;
BBB+18] as follows. The protocols of [BCC+16; BBB+18] enable proving the
correctness of inner products of scalar vectors committed via the Pedersen
commitment scheme [Ped92]. Our protocol generalizes their techniques to enable
proving the correct computation of a large class of inner products between vectors
of group and/or field elements committed to using (possibly distinct) doubly
homomorphic commitments. We explain in more detail below.

Starting point: inner product arguments. The inner product argument
(IPA) by [BCC+16] enables a prover to convince a verifier that two committed
vectors (using Pedersen vector commitments) have a publicly known inner product.
It does this by elegantly rescaling the committed vectors to half their size in each
round. In each round the verifier sends a random challenge, which the prover uses
to take a linear combination of the right and left half of the committed vectors,
and they both rescale the commitment keys accordingly.

After log2m such reduction step the prover simply opens the commitment
and the verifier checks that the product relation holds. In Bulletproofs [BBB+18]
the authors improve on the IPA by committing to the two vectors and the scalar
in a single commitment, while maintaining the halving structure of the argument.
This enables sending just two commitments per round.

We observe that the same argument structure works for a much wider class
of commitment schemes. In particular we require only that the commitment
scheme is binding and has the homomorphic properties that enable the rescaling
step. This property is that the commitment scheme is doubly homomorphic, i.e.,
homomorphic over the messages and the commitment keys.

Doubly homomorphic commitments. At a high level, a doubly homomorphic
commitment scheme is a binding commitment scheme (Setup,CM) where the key
space K, message space M, and commitment space C form abelian groups of the
same size such that CM((ck1 + ck2); (M1 +M2)) = CM(ck1,M1) +CM(ck1;M2) +
CM(ck2,M1) + CM(ck2,M2) .

The Pedersen commitment CM(g,a)→
∏
i g
ai
i is the doubly homomorphic

commitment used in Bulletproofs. Lai, Malavolta, and Ronge [LMR19] used
a doubly homomorphic commitment for bilinear groups where the committed
vectors consist of group elements in a bilinear group: CM(v,v′,w,w′;A,B)→∏
i e(vi, Ai)e(Bi, wi),

∏
i e(v

′
i, Ai)e(Bi, w

′
i) .
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In some of our protocols the verifier already has access to one of the committed
vectors. For instance, in the polynomial commitment scheme the verifier can
simply compute the vector consisting of the monomials of the evaluation point.
Such protocols are also captured by our abstraction since the identity commitment
is doubly homomorphic. In the actual protocols, the prover doesn’t send any
scalings of these vectors, and the verifier simply computes them directly.

Inner products. Building on our generalization of commitment schemes
that work for inner product arguments, GIPA also generalizes the types of inner
products that can be proven between committed vectors. It can be used not only to
show inner products between field elements, but for arbitrary inner product maps
〈·, ·〉 that are bilinear, i.e., for which 〈a+b, c+d〉 = 〈a, c〉+〈a,d〉+〈b, c〉+〈b,d〉
. It immediately follows our generalized argument works for bilinear pairings. We
apply GIPA to three different inner products:

〈·, ·〉 : Gm1 ×Gm2 7→ GT , 〈A,B〉 =
∏m−1
i=0 e(Ai, Bi)

〈·, ·〉 : Gm1 × Fm 7→ G1, 〈A, b〉 =
∏m−1
i=0 Abii

〈·, ·〉 : Fm × Fm 7→ F, 〈a, b〉 =
∑m−1
i=0 aibi

We refer to the first inner product as the inner pairing product.

Security proof. We prove both the interactive and the non-interactive variant of
GIPA to be knowledge-sound. The interactive security proof shows the (k1, . . . , kr)-
special soundness of GIPA protocols, which implies knowledge-soundness via a
recent result of Attema and Cramer [AC20] (previous interactive security proofs
showed only witness-extended emulation). In particular, we reduce the security
of any GIPA instantiation to the binding of its commitment scheme.

We also prove knowledge-soundness of the non-interactive version of GIPA
given by the Fiat-Shamir transform. It is known from folklore that applying the
Fiat-Shamir transformation to a r-round interactive argument of knowledge with
negligible soundness error yields a non-interactive argument of knowledge in the
random oracle model where the extractor E runs in time O(tr) for an adversary
that performs at most t = poly(λ) random oracle queries. GIPA has logm rounds
for m = poly(λ) so this transformation yields a super-polynomial extractor.
Given this, we directly prove the security of the non-interactive argument in
the algebraic commitment model, a generalization of the algebraic group model
[FKL18] for doubly-homomorphic commitments. In essence, whenever the prover
outputs a commitment he must also give an opening to it with respect to some
linear combination of commitment keys; the commitment schemes we consider
can be shown to achieve this model in their own respective algebraic group
models. Our security proof yields an efficient linear-time extractor and negligible
knowledge-soundness. Given the generality of GIPA this also yields the first tight
security analysis of non-interactive Bulletproofs [BCC+16; BBB+18] and the
many related protocols [LMR19; BGH19; BCMS20].

TIPP and MIPP. Generically GIPA protocols have logarithmic communication
but linear verifier time as computing the final commitment key takes a linear
number of operations. We introduce TIPP, a logarithmic verifier variant for the

8



inner pairing product and MIPP for the multi-exponentiation inner product.6

These schemes use universal and updatable structured references string as com-
mitment keys. Their commitments are based on that of Abe et al. [AFG+16],
where given a commitment key (v0, v1) ∈ G2 the commitment to (A0, A1) ∈ G2

1

is given by e(A0, v0)e(A1, v1), and the KZG polynomial commitment [KZG10].
Instead of the verifier having to compute the verification key itself, we leverage

a recent insight by Bowe, Grigg, and Hopwood [BGH19]. The final commitment
key in GIPA can be viewed as a polynomial commitment to a degree m polynomial
that can be verified in logm time. Using the structured setup we can outsource
computing the commitment key to the prover. The verifier simply verifies that the
commitment key was computed correctly. This amounts to evaluating the poly-
nomial at a random point and checking a KZG [KZG10] polynomial commitment
proof.

2.2 Applications

We show how to use instantiations of our generalized inner product argument to ob-
tain interesting applications: a polynomial commitment scheme where computing
evaluation proofs for polynomials of degree d requires only O(

√
d) cryptographic

operations, and a protocol for aggregating n Groth16 SNARKs [Gro16] to produce
an aggregate proof of size O(log n) and verifiable in time O(log n).

2.2.1 Polynomial commitment

Following Groth [Gro11] we use two-tiered homomorphic commitments: i.e.
commitments to commitments. Suppose we wish to commit to a polynomial

f(X,Y ) = f0(Y ) + f1(Y )X + . . .+ fm−1(Y )Xm−1 =
∑m−1
i=0 fi(Y )Xi.

We can view this polynomial in matrix form

f(X,Y ) = (1, X,X2, . . . , Xm−1)


a0,0 a0,1 a0,2 . . . a0,`−1

a1,0 a1,1 a1,2 . . . a1,`−1

a2,0 a2,1 a2,2 . . . a2,`−1

...
. . .

...
am−1,0 am−1,1 am−1,2 . . . am−1,`−1




1
Y
Y 2

. . .
Y `−1


One first computes commitments A0, . . . , Am−1 to f0(Y ), . . . , fm−1(Y ). Next one
commits to the commitments A0, . . . , Am−1.

On receiving an opening challenge (x, y) the prover evaluates the first tier at x
to obtain a commitment A to f(x, Y ). This is done using MIPP. The prover then
opens the second tier commitment A at y in order to obtain ν = f(x, y). This is
done using a KZG univariate polynomial commitment scheme [KZG10]. To apply
our prover efficient polynomial commitment scheme to univariate polynomials,
commit to f(X,Xn) and open at (x, xn).

Note that for m ≈ ` ≈
√
d both the MIPP and the KZG commitment are

only of square root size. This results in a square root reference string. In order

6We actually introduce two variants of MIPP: MIPPu, where both the vectors are
committed, and MIPPk where the verifier already knows the exponent, but it’s of a
structured form.
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to achieve square root prover time (in addition to evaluating the polynomial)
the prover needs to store the A0, . . . , Am−1 when committing to the polynomial.
Using these values the resulting MIPP can be opened in O(m) = O(

√
d) time.

2.2.2 SNARK aggregation and proofs of machine computation

Pairing-based SNARKs such as Groth16 can be proven and verified using only
algebraic operations (e.g., field operations, group operations and pairings). This
means we can aggregate by applying TIPP to the Groth16 verifier equations, such
that whenever TIPP verifies the aggregator must have seen some verifying proof.
In particular, to aggregate n Groth 16 proofs {(Ai, Bi, Ci)}ni=1 ∈ G1 ×G2 ×G1,
one first computes commitments to the Ai, Bi, Ci values. Then the aggregator
computes

∏n
i=1 e(Ai, Bi)

r2i and
∏n
i=1 C

r2i

i for some random value r and proves
these are correct using our pairing based arguments. Finally the verifier checks
that these values satisfy a randomized version of the Groth16 verifier equations.
Overall the verifier only performs one field multiplication per instance and
O(log(n)) cryptographic operations for the TIPP protocol.

Low-memory SNARKs for machine computation. We make use of the
SNARK aggregation protocol to build a low-memory SNARK that does not rely
on recursive computation. Our approach proceeds by producing an individual
Groth16 proof for each machine step and aggregating these individual proofs.
The key observation is that due to the structure of the intermediate computation
state, i.e., the output of one computation step becomes the input to the next, we
can speed up the verifier’s work from linear in the number of computation steps
to logarithmic with an additional inner product commitment to the intermediate
states. See Section 8 for details.

2.3 Implementation

We implement a set of Rust libraries that realize our inner product argument pro-
tocols and applications. Our libraries consists of a number of modular and generic
components: (a) a generic interface for inner products, and instantiations for
scalar products, multi-scalar multiplication, and pairing products; (b) a generic
interface for doubly-homomorphic commitments, with instantiations for Pedersen
commitments, the commitments of [AFG+16], and trivial identity commitments;
(c) a generic implementation of GIPA that relies on the above interfaces, and
instantiations for the various concrete inner products and corresponding com-
mitments; and (d) implementations of our polynomial commitment scheme and
our aggregation scheme for Groth16 proofs. See Sections 6 and 7 for evaluation
details.

3 Notation

We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]
n
i=1 as a short-hand for

the vector (a1, . . . , an), and [ai]
n
i=1 = [[ai,j ]

m
j=1]ni=1 as a short-hand for the vector

(a1,1, . . . , a1,m, . . . , an,1, . . . , an,m); |a| denotes the number of entries in a. We
analogously define {ai}ni=1 with respect to sets instead of vectors. If x is a binary

string then |x| denotes its bit length. For a finite set S, let x
$←− S denote that x
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is an element sampled uniformly at random from S. We also write x
$←− A() to

denote when an algorithm A samples and uses randomness in the computation of
x.

Inner pairing product notation. We introduce some special notation related
to our inner pairing product argument, some of which is borrowed from the
Pedersen inner product introduced in [BBB+18]. We write group operations as
multiplication. For a scalar x ∈ F and vector A ∈ Gn, we let Ax = (Ax1 , . . . , A

x
n) ∈

Gn, and for a vector x = (x0, . . . , xm−1) ∈ Fn we let Ax = (Ax0
0 , . . . , A

xm−1

m−1 ).
For a bilinear group (G1,G2,GT , q, g, h, e) and pair of source group vectors
A ∈ Gn1 , B ∈ Gn2 we define A∗B =

∏n
i=1 e(Ai, Bi). For two vectors A,A′ ∈ Gn

we let A ◦A′ = (A0A
′
0, . . . , Am−1A

′
m−1).

Let A‖A′ = (A0, . . . , An−1, A
′
0, . . . , A

′
m−1) be the concatenation of two vec-

tors A ∈ Gn and A′ ∈ Gm. To denote slices of vectors given A ∈ Gn· and 0 ≤ ` <
n− 1 we write A[:`] = (A0, . . . , A`−1) ∈ G` and A[`:] = (A`, . . . , An−1) ∈ Gn−`.
Languages and relations. We write {(x) : p(x)} to describe a polynomial-
time language L ⊆ {0, 1}∗ decided by the polynomial-time predicate p(·). We
write {(x;w) : p(x,w)} to describe a NP relation R ⊆ {0, 1}∗ × {0, 1}∗ between
instances x and witnesses w decided by the polynomial-time predicate p(·, ·).
Security notions. We denote by λ ∈ N a security parameter. When we state
that n ∈ N for some variable n, we implicitly assume that n = poly(λ). We denote
by negl(λ) an unspecified function that is negligible in λ (namely, a function that
vanishes faster than the inverse of any polynomial in λ). When a function can be
expressed in the form 1 − negl(λ), we say that it is overwhelming in λ. When
we say that algorithm A is an efficient we mean that A is a family {Aλ}λ∈N of
non-uniform polynomial-size circuits. If the algorithm consists of multiple circuit
families A1, . . . ,An, then we write A = (A1, . . . ,An).

Arguments of knowledge and Commitments. We use several standard
notions in this paper such as interactive arguments of knowledge and commitments.
For completeness, we include their definitions in the full version [BMM+19].

4 Generalized Inner Product Argument (GIPA)

We now generalize the inner product argument (IPA) from [BCC+16; BBB+18] to
work for all “doubly homomorphic” inner product commitments. The generalized
inner product argument (GIPA) protocol is described with respect to a doubly
homomorphic inner product commitment and an inner product map defined over
its message space. All of the inner pairing product arguments in this paper as
well as the discrete-log inner product argument from [BCC+16; BBB+18] can be
described as instantiations of GIPA, sometimes with non-black-box optimizations
that do not work generally. The generalized version enables us to simplify the
proof of security of the specific instantiations presented in the rest of the paper
and provides a “compiler” that lets the reader plug in their own computationally
binding “inner product commitment” to obtain a new inner product argument
(of knowledge).

Protocol intuition. The protocol works by reducing the instance from size m
to m/2 each round. As an intuition, we will show how to reduce an instance with
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Prove(〈group〉, ck = (ck1, ck2, ck3); (a, b)) Verify(〈group〉, ck, C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If m = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a ∈ M1, b ∈ M2 Return CM (ck; (a, b, a~ b)) == C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Else m ≥ 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m
′

= m/2 m
′

= m/2

zL = 〈a[m′:], b[:m′]〉

zR = 〈a[:m′], b[m′:]〉

CL = CM(ck1, ck2, ck3; a[m′:]‖0, 0‖b[:m′], zL)

CR = CM(ck1, ck2, ck3; 0‖a[:m′], b[m′:]‖0, zR)

CL, CR ∈ Image(CM)

x ∈ Fp x
$←− Fp

a
′

= a[:m′] + x · a[m′:]

b
′

= b[:m′] + x
−1 · b[m′:]

ck′1 = ck1,[:m′] + x
−1 · ck1,[m′:] ck′1 = ck1,[:m′] + x

−1 · ck1,[m′:]
ck′2 = ck2,[:m′] + x · ck2,[m′:] ck′2 = ck2,[:m′] + x · ck2,[m′:]

C
′

= Collapse(x · CL + C + x
−1 · CR)

Recurse on (〈group〉, (ck′1, ck
′
2, ck3), (a

′
, b
′
)) Recurse on (〈group〉, (ck′1, ck

′
2, ck3), C

′
)

Fig. 1: Generalized inner product argument. Cases are based on the length m of
the message (and correspondingly commitment key) vectors. Here, 0 is the vector
containing m′ sequential group identity elements for the appropriate group.

2 expensive mappings ~ to an instance with just a single ~. Given a1, a2, b1, b2 a
prover wants to convince a verifier that (a1 ~ b1) + (a2 ~ b2) = c for an expensive
map ~. To do this the prover sends cross terms l = a1 ~ b2 and r = a2 ~ b1. The
verifier then sends a challenge x. Note that for a′ = x ·a1 +a2 and b′ = x−1 ·b1 +b2
we have that a′ ~ b′ = x · l + c+ x−1 · r. Since the prover has to commit to the
cross terms l and r before knowing x, if x is uniformly sampled from a sufficiently
large space then checking this latter equation implies that c = (a1~b1)+(a2~b2)
with overwhelming probability.

GIPA extends this idea to work for committed vectors a1,a2, b1, b2. It relies on
doubly homomorphic commitments with a commitment key ck where CM(ck,a) =
CM(x−1 · ck, x · a).

4.1 Doubly homomorphic commitments

We can apply GIPA over any commitment scheme which is “doubly-homomorphic.”
For example, consider the Pedersen commitment scheme:

Setup(1λ)→ ck CM(ck,a)→ c

Return (g1, . . . , gm)
$←− G Return ga11 · · · gamm

This scheme allows us to commit to elements in the message space M = Fmp
under commitment keys in the key space K = Gm for a group G of prime order
p. We denote the key space (i.e., the image of the setup algorithm) by K. The
commitment space is additively homomorphic because for all a, b ∈ M and
g ∈ K we have that ga · gb = ga+b. The key space is also homomorphic because
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for all g,w ∈ K and a ∈M we have that ga ·wa = (g ◦w)a. Thus, we consider
the Pedersen commitment scheme to be doubly-homomorphic (i.e., homomorphic
in both the commitment space and the key space).

Definition 1 (Doubly homomorphic commitment scheme). A commit-
ment scheme (Setup,CM) is doubly homomorphic if (K,+), (M,+) and (Image(
CM), +) define abelian groups such that for all ck, ck′ ∈ K and M,M ′ ∈ M it
holds that

1. CM(ck;M) + CM(ck;M ′) = CM(ck;M1 +M ′)
2. CM(ck;M) + CM(ck′;M) = CM(ck + ck′;M)

Observe that if CM is doubly homomorphic then for all x ∈ Zp it holds that
CM(x · ck;M) = CM(ck;x ·M).

4.2 Inner Product

We consider inner products as bilinear maps from two equal-dimension vector
spaces over two groups to a third group.

Definition 2 (Inner product map). A map ~ :M1 ×M2 →M3 from two
groups of prime order p to a third group of order p is an inner product map if for
all a, b ∈M1 and c, d ∈M2 we have that

(a+ b) ~ (c+ d) = a~ c+ a~ d+ b~ c+ b~ d

Given an inner product ~ between groups we define the inner product between
vector spaces 〈, 〉 :Mm

1 ×Mm
2 →M3 to be 〈a, b〉 :=

∑m
i=1 ai ~ bi

We use three different inner products in this paper. For the Pedersen com-
mitment described above we have that ~ is multiplication between elements
in Fp and 〈, 〉 is the dot product. In TIPP we have that ~ : G1 × G2 → GT
and A ~ B = e(A,B). In this case we refer to the resulting protocols as inner
pairing product arguments. In MIPP we use the inner product ~ : G × F → G
and A~ b = Ab, a multiexponentiation inner product.

Inner product commitment. We further define an inner product commitment
which consists of a doubly homomorphic commitment with a message space that
is the Cartesian product of three message subspaces and an inner product that
maps the first two message subspaces to the third. For GIPA the committed
vectors and commitment keys halve in every round. If the commitments are
constant sized, we can add commitments of different length. If not, we need
to assume that the commitment key has a collapsing property such that addi-
tions of commitments are still well defined: Concretely we require that there
exists a collapsing function Collapse to reduce the size of commitments with
repeated entries. For example consider a commitment scheme with commitment
key [g1, g2, g3, g4] ∈ G4 that commits a message vector with repeated entries,
[a1, a2, a1, a2] ∈ F4 as [ga11 , ga22 , ga13 , ga24 ]. Then, we can define a collapsing function
that outputs the shorter commitment [(g1g3)a1 , (g2g4)a2 ] under a compressed
commitment key [g1g3, g2g4] ∈ G2.
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Definition 3 (Inner product commitment). Let (Setup,CM) be a doubly
homomorphic commitment with message space M =Mm

1 ×Mm
2 ×M3 and key

space K = Km1 ×Km2 ×K3 defined for all m ∈ [2j ]j∈N, where |Mi| = |Ki| = p is
prime for i ∈ [3]. Let ~ :M1 ×M2 →M3. We call ((Setup,CM),~) an inner
product commitment if there exists an efficient deterministic function Collapse
such that for all m ∈ [2j ]j∈N, M ∈ M, and ck, ck′ ∈ K such that ck3 = ck′3 it
holds as

Collapse

CM

 ck1‖ck′1
ck2‖ck′2
ck3

∣∣∣∣∣∣
M1‖M1

M2‖M2

M3

 = CM

 ck1 + ck′1
ck2 + ck′2
ck3

∣∣∣∣∣∣
M1

M2

M3

 .

We refer to the requirement above as the collapsing property.

Let ((Setup,CM),~) be a binding inner product commitment as defined
above. In Fig. 1 we present a generalized inner product argument defined for
all m ∈ [2j ]j∈N. We prove that this protocol is an argument (resp., proof) of
knowledge when instantiated with a computationally (resp., statistically) binding
inner product commitment. The proof of the following theorem is presented in
the full version [BMM+19].

Theorem 1 (GIPA knowledge-soundness). If ((Setup,CM),~) is a com-
putationally (resp., perfectly) binding inner product commitment, then (Setup,
Prove, Verify), where CM and ~ instantiate the Prove and Verify algorithms pre-
sented in Fig. 1, has perfect completeness and computational (resp., statistical)
knowledge-soundness for the relation

RIPA =

{(
ck ∈ Km1 ×Km2 ×K3 C ∈ Image(CM);a ∈Mm

1 , b ∈Mm
2

)
:

C = CM (ck; (a, b, 〈a, b〉))

}
.

Non-interactive argument. In order to turn the public-coin interactive
argument into a non-interactive proof we rely on the Fiat–Shamir heuristic. This
results in all challenges being generated from a cryptographic hash function
instead of by a verifier. The proof for the following theorem is presented in the
full version [BMM+19].

Theorem 2. If ((Setup,CM),~) is a computationally (resp., perfectly) binding
inner product commitment then in the algebraic group model and modeling Hash
as a random oracle FS(GIPA) is a non-interactive argument of knowledge against
an efficient t-query adversary in the random oracle model.

Efficiency. Let m be a power of 2 and ` = log2m, the number of rounds in
the GIPA protocol. The prover communication consists of 2` commitments, 1M1

element, and 1M2 element. When the commitment scheme used is constant-sized,
an instantiation of GIPA produces log-size proof. The prover makes 2 commitments
to (m + 1)-element messages in the first round, 2 commitments to (m/2 + 1)-
element messages in the second, and 2 commitments to (m/2i−1 + 1)-element

messages in the i-th. It holds that 2 ·
∑`
i=1

(
m

2i−1 + 1
)

= 4m + 2` − 4 ≈ 4m.
So we say the prover commits to a total of 4m elements. Before computing
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these commitments, however, the prover first must compute the zL and zR
inner products, similarly requiring 2m invocations of ~ on 4m elements. Upon
receiving the 2 commitments sent each round, the verifier uses them along with
the challenge xi it sampled that round to compute C ′, requiring 2` multiplications
in Image(CM).

The prover and verifier each compute ck′ in each round, requiring 2m multi-
plications in K. Some extensions of the GIPA protocol we’ll introduce later use
trusted setups to produced structured commitment keys. In these protocols, the
verifier doesn’t compute ck′ themself in each round, but instead is sent the final
rescaling ck ∈ K1 ×K2 ×K3 that can be seen as a polynomial commitment in
the verifiers challenges because of how the commitment key was structured. The
verifier asks for an opening at a random point, which they can check with a small
constant number of multiplications and pairings, and O(`) field operations. This
technique achieves a log-time verifier.

The prover alone computes a′ and b′, requiring m multiplications in each of
M1 and M2. In some instantiations of GIPA, one or both of the vectors in M1

and M2 are included in full in the public input (i.e., the commitment performs
the identity map on these inputs). In this case the verifier computes a′ and/or b′

themself.

4.3 Instantiation

GIPA can be instantiated with different commitments and inner product maps. In
Bulletproofs [BBB+18] it is instantiated with the generalized Pedersen commit-
ment defined above, where K = Gm ×Gm ×Gm, M = Fmp × Fmp × Fp, and ~ is
the field addition operation. The reader can verify the commitment is a binding,
doubly-homomorphic commitment scheme if the DL assumption holds for G.

As a second example, in [LMR19] GIPA is instantiated for the inner pairing
product a~ b ≡ e(a, b) using the public-coin setup commitment scheme

CM((v,w,1); (A,B,A ∗B)) = (A ∗ v,w ∗B,A ∗B) .

Parts of the commitment may be computable directly from inputs to the verifier.
For efficiency reasons the prover would not have to transmit that part of the
commitment. We can formulate instantiations of GIPA for the inner pairing
product map and the identity commitment scheme, which is perfectly (and thus
statistically) binding.

An improvement on [LMR19]. GIPA also directly yields an improvement to
the protocol presented in [LMR19] for proving knowledge of committed vectors
of source group elements such that their inner pairing product is a public target
group element. Replacing Lai et al.’s commitment scheme with [AFG+16] results
in a 2 times faster prover and verifier for the relation while retaining the same
proof size and assumptions.

5 Log-time verifier inner pairing product arguments

We present three inner product protocols that build on GIPA with the use of a
trusted setup. Informally, these protocols prove the following relations:
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(1) TIPP: An inner pairing product argument that proves Z ∈ GT is the inner
pairing product between committed vectors A ∈ Gm1 and B ∈ Gm2 .

(2) MIPPu: An unknown-exponent multiexponentiation inner product argument
that proves U ∈ G1 is the multiexponentiation product between committed
vectors A ∈ Gm1 and b ∈ Fm.

(3) MIPPk: A known-exponent multiexponentiation inner product argument
that proves U ∈ G1 is the multiexponentiation inner product between a
committed vector A ∈ Gm1 and an uncommitted vector b = [bi]m−1

i=0 for
b ∈ F.

Our arguments achieve log-time verification by building on a recent observation
about inner product arguments by Bowe, Grigg, and Hopwood [BGH19]. A
specially structured commitment scheme allows the prover to send the final
commitment key and a succinct proof (as a KZG polynomial opening) of its
correctness, which is verified via a log-time evaluation of the polynomial and two
pairings.

5.1 Inner product commitments with structured setup

We construct inner product commitments for our arguments that are structured-
key variants of the pairing-based commitment for group elements introduced by
Abe et al. in [AFG+16] and of the Pedersen commitment for field elements [Ped92].
The setup algorithms for the inner product arguments are input a security
parameter λ and a max instance size m ∈ {2n}n∈Z+ . A type 3 bilinear group

description 〈group〉 ← SampleGrp3(1
λ) is sampled. The structured setup proceeds

by sampling random trapdoor elements α, β
$←− F, and constructing the prover

and verifier keys (SRS) as follows for generators g ∈ G1 and h ∈ G2:

(〈group〉, pk = (
[
gα

i
]2m−2

i=0
,
[
hβ

i
]2m−2

i=0
), vk = (gβ , hα))

$←− Setup(1λ,m)

The inner product commitment keys are derived by taking the even powers from

the prover SRS as w =
[
gα

2i
]m−1

i=0
and v =

[
hβ

2i
]m−1

i=0
. They are used as keys for

the following inner product commitments. Observe that the vector commitment
components of these inner product commitments are simply the structured-key
variants of [AFG+16] and [Ped92]. The inner product values U,Z and the known
vector b are committed to as the identity with keys initialized to 1.

(1) TIPP: CMTIPP((v,w, 1GT ); A,B, Z) := (A ∗ v,w ∗B, Z)

(2) MIPPu: CMMIPP-u((v,w, 1GT ); A, b, U) := (A ∗ v,wb, U)

(3) MIPPk: CMMIPP-k((v,1F, 1GT ); A, b, U) := (A ∗ v, b, U)

It follows directly from the q-ASDBP assumption (see full version [BMM+19])
that these commitments are binding with respect to both the commitment key
and the proving SRS. Note that the commitment keys only use even powers of
trapdoor elements. This is to prevent an adversary from using (gβ , hα) to find
collisions in the commitment scheme—observe that e(g, hα) · e(gα, h−1) = 1GT .
The proving SRS requires all powers in order to compute the succinct KZG
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polynomial opening proofs for the final commitment keys. This is the reason for
our introduction of a new security assumption.

KZG polynomial commitments. As mentioned, we make use of the KZG
polynomial commitment scheme [KZG10] which commits to polynomials of some

max degree n. For polynomial f(X) =
∑n−1
i=0 aiX

i where a = [ai]
n−1
i=0 , the

commitment is computed with an analogously-structured trapdoor commitment

key ck =
[
gα

i
]n−1

i=0
as KZG.CM(〈group〉, ck,a) = cka.

To open a point (x, y) where y = f(x), KZG uses the polynomial remainder
theorem which says f(x) = y ⇔ ∃q(X) : f(X) − y = q(X)(X − x). The proof
is just a KZG commitment to the quotient polynomial q(X) where if q(X) has
coefficients b, then KZG.Open(〈group〉, ck,a, x) = ckb. The verifier key consists
of hα, and the verifier runs KZG.Verify(〈group〉, hα, C,W, x, y) for commitment
C and opening W and checks that e(Cg−yW x, h) = e(W,hα).

5.2 Final commitment keys

Recall in GIPA, the verifier is required to perform a logarithmic amount of work
to verify the final commitments CL and CR, using the challenges of each round
of recursion to transform the commitments homomorphically. Assuming the
commitments are of constant size this means that the verifier can efficiently check
that these values are correct. However, the verifier must also perform a linear
amount of work in rescaling the commitment key ck. Thus to achieve logarithmic
verification time, when instantiating GIPA we need to avoid having the verifier
rescale the commitment keys. We do this by outsourcing the work of rescaling
the commitment keys to the prover.

The prover will compute the final commitment keys and then prove that
they are well-formed, i.e., that they are exactly what the verifier would have
computed in an unmodified instantiation of GIPA. Recall, we have structured

our commitment keys as w =
[
gα

2i
]m−1

i=0
and v =

[
hβ

2i
]m−1

i=0
. Without loss of

generality, we will present the approach inspired by techniques from [BGH19]
with respect to proving well-formedness of the final commitment key for w ∈ G1;
the techniques will apply analogously to v ∈ G2.

In each round of GIPA, the commitment key is homomorphically rescaled by
the round challenge x as:

w′ = w[:m/2] ◦wx
[m/2:] =

[
gα

2i(1+xαm+2i)
]m/2−1

i=0
.

Repeating this rescaling over ` = logm recursive rounds with challenges x =
[xj ]

`
j=0, we claim (and show using an inductive argument in the full version [BMM+19])

that the final commitment key w takes the form:

w = g
∏`
j=0

(
1+x`−jα

2j+1
)
.

We can then view this final commitment key w as a KZG polynomial commitment
to the polynomial fw(X) defined below (and analogously v as the commitment
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Prove(〈group〉, f(X), g = [gα
i

]2m−2
i=0 ) Verify(〈group〉, (f(X), hα))

w = KZG.CM(〈group〉, g, f(X)) w ∈ G1

z ∈ Fp z
$←− Fp

π = KZG.Open(〈group〉, g, f(X), z) π ∈ G1 Return KZG.Verify(〈group〉, hα, w, π, f(z))

Fig. 2: The argument (of Rck) used to allow a prover to prove well-formedness of
the final structured commitment key. The final commitment key w is interpreted as a
KZG polynomial commitment that the prover must open at a random point. Shown
for w ∈ G1, but holds analogously for v ∈ G2.

to fv(X)):

fw(X) =
∏̀
j=0

(
1 + x`−jX

2j+1
)

fv(X) =
∏̀
j=0

(
1 + x−1

`−jX
2j+1

)
Thus, to prove the well-formedness of the final commitment keys, the prover
will prove the following relation Rck making direct use of the KZG polynomial
opening proof. Again, without loss of generality, the relation is presented with
respect to the final commitment key w ∈ G1.

Rck =
{(
〈group〉, w ∈ G2, f(X), hα ; g = [gα

i

]2m−2
i=0

)
: w = gf(α)

}
Our protocol for proving Rck is given in Fig. 2. At a high level, the verifier
produces a challenge point z ∈ F. If the prover can provide a valid KZG opening
proof of fw(z) for commitment w, then the verifier accepts. We formally prove
the security of this argument system in the full version [BMM+19]in the algebraic
group model.

5.3 TIPP: Inner pairing product

The TIPP protocol allows a prover to show that for T,U, Z ∈ GT , they know
A ∈ G1 and B ∈ G2 such that T and U are pairing commitments to A and B,
and Z is the inner pairing product Z = A ∗B.

This description is not quite general enough to cover the needs of our applica-
tions, such as batch verification. For example, to check that m pairing equations
are simultaneously satisfied (i.e., that [Zi = e(Ai, Bi)]

m−1
i=0 ), it is not sufficient to

prove that Πm−1
i=0 e(Ai, Bi) = Πm−1

i=0 Zi. Rather, instead you must prove the inner
pairing product of a random linear combination defined by verifier challenge
r ∈ F: Πm−1

i=0 e(Ai, Bi)
ri = Πm−1

i=0 Zr
i

i .

We support this by modifying the TIPP relation to include the linear combi-
nation challenge r. For notational simplicity, we will use powers of two (matching
that of our commitment keys) and define a public vector of field elements
r = [r2i]2m−2

i=0 . The prover first commits to T and U , and then the verifier send a

18



random field element r. Thus, the TIPP relation is captured formally as follows:

RTIPP =


 〈group〉, gβ ∈ G1, h

α ∈ G2, T, U, Z ∈ GT , r ∈ F ;

w = [gα
2i

]m−1
i=0 ,A ∈ Gm1 , v = [hβ

2i

]m−1
i=0 ,B ∈ Gm2 ,
r = [r2i]m−1

i=0 ∈ Fm

 :

T = A ∗ v ∧ U = w ∗B ∧ Z = Ar ∗B

 .

Observe that if T = A ∗ v is a commitment to A, then T = Ar ∗ vr−1

is a
commitment to Ar under the commitment key vr−1

. Intuitively, the argument
proceeds by having the prover act as if it is working with a rescaled commitment
key v′ = vr−1

. TIPP runs the GIPA protocol with CMTIPP where the collapsing
function is defined as the identity, Collapseid(C) = C, over message (Ar,B, Z =

Ar ∗B) and commitment key (v′ = vr−1

,w, 1GT ). Since all components of the
commitment are compact, the identity collapsing function is sufficient.

Lastly, since the protocol is run over a rescaled commitment key v′, the poly-
nomial with which the prover proves the well-formedness of the final commitment
key is also rescaled. It is as follows (derived in the full version [BMM+19]):

f ′v(X) =
∏̀
j=0

(
1 + x−1

`−j(rX)
2j+1

)
A full description of the protocol is given in Figure 3. Because the protocol is
public-coin, we can transform the interactive argument into a non-interactive proof
using the Fiat-Shamir heuristic. In later sections, we may overload TIPP.Prove
and TIPP.Verify as their non-interactive counterparts in which the prover will
output a proof π that will be taken as an additional input by the verifier. This
will be the case for MIPPu and MIPPk as well.

Communication and time complexity. Table 2 gives an overview of the
communication and time complexity of our inner product protocols. Here we
provide accounting for TIPP. The prover SRS consists of 2m elements in G1

and 2m elements in G2. The SRS consists only of monomials and therefore is
updatable. The verifier’s SRS consists of the group description, 1 elements in G1

and 1 elements in G2.
We calculate the prover computation. Our recursive argument requires log(m)

rounds. The left and right commitments at each recursive round of GIPA require
a total of 6m pairings to compute: 3m in the first round, 3m

2 in the second
round, and 3m

2j−1 in the j-th round. Homomorphically rescaling the commitment
keys (v,w) and the messages (A,B) require a total of 2m exponentiations in
each source group. The prover for the final commitment key costs 2m group
exponentiations in each source group (for each commitment key). In total this
sums to 6m pairings, 4m G1 exponentiations and 4m G2 exponentiations.

Regarding proof size, we have 6 log(m) GT elements from the recursive
argument, 1 G1 element and 1 G2 element from the final openings, and 2 G1

elements and 2 G2 elements from the final commitment key argument (i.e., w, v,
and their proofs of correctness).

The verifier computes 7 pairings: 3 from the recursive argument and 4 from the
final commitment key argument. Homomorphically rescaling the commitments in
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TIPP.Prove(〈group〉, pk = (
[
gα

i
]2m−2

i=0
,
[
hβ

i
]2m−2

i=0
), (T,U, Z, r), (A,B,w,v, r))

↔ TIPP.Verify(〈group〉, vk = (gβ , hα), (T,U, Z, r)) :
1. Prover rescales A and v with respect to linear combination challenge r:

A′ = Ar v′ = vr−1

.

Run GIPA:
2. Prover and verifier run GIPA with CMTIPP and Collapseid with some minor changes:

GIPACM-TIPP.Prove(〈group〉, (v′,w, 1GT ), (A′,B))↔ GIPACM-TIPP.Verify(〈group〉, ·, (T,U, Z))

(a) The verifier does not take as input a commitment key, and does not perform commitment
key rescalings during GIPA execution. The verifier takes as output the final commitment C,
the final message values (A,B), and the recursive round challenges x = [xj ]

logm
j=0 .

(b) The prover stores the recursive round challenges x and the final commitment keys (v, w) =
(ck1, ck2).

(c) The prover sends the final commitment keys (v, w) to the verifier.

Prove well-formedness of final commitment keys:
3. Define the following polynomials for ` = logm:

fw(X) =
∏̀
j=0

(
1 + x`−jX

2j+1
)

f ′v(X) =
∏̀
j=0

(
1 + x−1

`−j(rX)2
j+1
)

4. Prover and verifier run the argument from Figure 2 for each final commitment key v and w:

CK.Prove(〈group〉, fw(X),
[
gα

i
]2m−2

i=0
)↔ CK.Verify(〈group〉, (w, fw(X), hα))

CK.Prove(〈group〉, f ′v(X),
[
hβ

i
]2m−2

i=0
)↔ CK.Verify(〈group〉, (v, f ′v(X), gβ))

5. Verifier returns 1 if the above arguments accept and if CMTIPP((v, w, 1GT ); (A,B, e(A,B))) == C.

Fig. 3: TIPP argument of knowledge for inner pairing product between committed
vectors.

communication complexity time complexity

|SRS| |π| Prove Verify

TIPP 2m G1 + 2m G2 6 logm GT + 3 G1 + 3 G2 4m G1 + 4m G2 + 6m P 7 P + 6 logm GT
MIPPu m G1 + 2m G2 2 logm GT + 3 G1 + 2 G2 + 1 F 3m G1 + 3m G2 + 2m P 6 P + 2 logm GT
MIPPk 2m G2 2 logm GT + 1 G1 + 2 G2 m G1 + 3m G2 + 2m P 4 P + 2 logm GT + logm F

Table 2: Efficiency table for TIPP, MIPPk, and MIPPu. The verifier keys are succinct.

the recursive argument requires 6 log(m) exponentiations in GT . The verifier also
computes f(z) in the final commitment key argument which costs 2` = 2 log2(m)
field multiplications and additions.

Security. Here we prove soundness for TIPP in the algebraic group model.

Theorem 3 (Computational knowledge-soundness TIPP). The protocol
defined in Section 5.3 for the NP relation RTIPP has computational knowledge-
soundness against algebraic adversaries under the q-ASDBP and 2q-SDH assump-
tions.

Proof. The commitment scheme CM((v′,w, 1), (A′,B, Z)) = (A′ ∗ v′, w ∗
B, Z) = (T,U, Z) is doubly homomorphic: the key space Gm2 ×Gm1 × F is homo-
morphic under G2 multiplication, G1 multiplication, and F addition. The message
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space Gm1 ×Gm2 ×GT is homomorphic under the respective group multiplications.
The commitment space GT ×GT ×GT is homomorphic under GT multiplication.
All groups have prime order p for p > 2λ. The commitment scheme is also binding
by the q-ASDBP assumption. This means that the commitment scheme is an
inner product commitment. Thus either the adversary convinces the verifier of
incorrect w, v, or by Theorem 1 an adversary that breaks knowledge-soundness
can extract a valid m-ASDBP instance. An algebraic adversary that convinces a
verifier of incorrect w, v can extract a valid 2m-SDH instance by the security of
Rck (Equation 5.2).

5.4 MIPPu: Multiexponentiation with unknown field vector

In the MIPPu protocol, a prover demonstrates knowledge for pairing commitment
T ∈ GT and KZG commitment B ∈ G2 of A ∈ Gm1 as the opening of T and

b ∈ Fm as the opening of B where U =
∏m−1
i=0 Ar

2ibi
i for a public field element r.

The public field element r, as in Section 5.3, allows the argument to be used for
random linear combinations. The MIPPu relation is captured formally as follows:

RMIPP-u =


 〈group〉, gβ ∈ G1, h

α ∈ G2, T ∈ GT , B, U ∈ G1, r ∈ F ;

w = [gα
2i

]m−1
i=0 ,A ∈ Gm1 ,v = [hβ

2i

]m−1
i=0 , b ∈ Fm,

r = [r2i]m−1
i=0 ∈ Fm

 :

T = A ∗ v ∧ B = wb ∧ U = Ar◦b

 .

The MIPPu argument proceeds analogously to TIPP if using the inner product
commitment CMMIPP-u where kU is initialized to 1GT :

CMMIPP-u((v,w, kU ); A, b, U) := (A ∗ v,wb, kUU)

However, we make a small optimization by replacing the above commitment
scheme with a modified scheme CM′MIPP-u with a commitment size consisting
only of one element in GT (concretely ∼25% reduction in size). Recall, the proof
includes a logarithmic number of commitments, so cutting the commitment size
by 25% more or less cuts the proof size by the same proportion.

Using CM′MIPP-u adds two additional random group elements ĥ1, ĥ2
$←− G2 to

the prover key and verifier key (pk, vk) during setup. After setting (T,B,U, r),

the verifier samples values (c1, c2)
$←− F and sends them to the prover. The prover

and verifier then each set ĥ′1 = ĥc11 and ĥ′2 = ĥc22 . The values ĥ′1 and ĥ′2 become
part of the commitment key for the following inner product commitment:

CM′MIPP-u((v,w, (ĥ′1, ĥ
′
2)); A, b, U) := (A||wb||U) ∗ (v||ĥ′1||ĥ′2)

The prover then proceeds analogously to TIPP. First, running GIPA with CM′MIPP-u

with the identity collapsing function over message (Ar, b, U = Ar◦b) and

commitment key (v′ = vr−1

,w, (ĥ′1, ĥ
′
2)). The verifier runs with commitment

C = T · e(B, ĥ′1) · e(U, ĥ′2. The final commitment keys w and v are proved with
respect to the same polynomials fw(X) and f ′v(X).

A full description of the protocol is given in the full version [BMM+19].
Soundness follows for algebraic adversaries from the q-ASDBP and the q-SDH
assumptions and the algorithm is proven secure in the full version [BMM+19].
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5.5 MIPPk: Multiexponentiation with known field vector

In the MIPPk protocol a prover demonstrates knowledge of A ∈ Gm1 such that
A commits to pairing commitment T under v and U = Ab for a public vector
b = [bi]m−1

i=0 for b ∈ F. The MIPPk relation is captured formally as follows:

RMIPP-k =


(
〈group〉, gβ ∈ G1, T ∈ GT , U ∈ G1, b ∈ F ;

A ∈ Gm1 ,v = [hβ
2i

]m−1
i=0 , b

)
:

T = A ∗ v ∧ U = Ab ∧ b = [bi]m−1
i=0

 .

For the known vector multiexponentiation inner product, we use an inner product
commitment that commits to the vector b as itself using a key kb initialized to
1F. Since the commitment is no longer compact, we use a collapsing function
that collapses the vector by adding the first and second halves. This provides the
required homomorphic properties of Definition 3.

CMMIPP-k((v,kb, 1GT ); A, b, U) := (A ∗ v, [kb,ibi]m−1
i=0 , U)

CollapseMIPP-k(C = (CA,Cb, CU )) = (CA, [Cb,i + Cb,(i+m
2 )]

m
2 −1
i=0 , CU )

If we were to run GIPA naively with this commitment, the proof size would be
linear in the length of b. However, we can use a similar to trick to how we calculate
the final commitment keys (Section 5.2). Instead of sending the commitment to
the rescaled message b at each recursive round, we observe that rescaling the
structured vector b leads to a closed-form expression of the final b′ message using

recursive challenges x = [xj ]
logm
j=0 : b′ =

∏`
j=0

(
1 + x−1

`−jb
2j
)

. This value b′ can

be computed in logm time by the verifier and allows for the prover to omit the
commitment to b, bringing the proof size back to logarithmic in m.

In addition, as in Section 5.4 for MIPPu, we provide an optimized inner product
commitment scheme CM′MIPP-k with commitment size equal to one element of
GT (when using the above trick to omit b). The commitment CM′MIPP-u adds

one additional random group element ĥ
$←− G2 to the prover key and verifier key

(pk, vk) during setup. After setting (T,U, b), the verifier samples value c
$←− F

and sends it to the prover. The prover and verifier then each set ĥ′ = ĥc. The
value ĥ′ becomes part of the commitment key for the following inner product
commitment:

CM′MIPP-k((v,kb, ĥ
′); A, b, U) := ((A||U) ∗ (v||ĥ′), [kb,ibi]m−1

i=0 )

Collapse′MIPP-k(C = (CA||U , b = [bi]m−1
i=0 )) = (CA||U , [Cb,i + Cb,(i+m

2 )]
m
2 −1
i=0 )

A full description of the protocol is given in the full version [BMM+19]. Soundness
follows for algebraic adversaries from the q-ASDBP and the q-SDH assumptions
and the algorithm is proven secure in the full version [BMM+19].

6 Log-time verifier polynomial commitments with square
root SRS

In this section we introduce a polynomial commitment (PC) scheme with a
square root sized SRS and opening time, and logarithmic proof sizes and verifier
time. We use a two-tiered homomorphic commitment algorithm similar to the
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one from [Gro11] but with structured keys. We first describe how our PC can
be used for bivariate polynomials, and then present a simple way to use it for
univariate polynomials as well. In the full version [BMM+19], we show how these
polynomial commitments can be made hiding for zero-knowledge applications.

Two-tiered inner product commitment. We describe a two-tiered inner
product commitment for bivariate polynomials. It is based on the [Gro11] two
tiered commitment. We use the structured-key variant of the [AFG+16] commit-
ment introduced in Section 5.1 to commit to the KZG commitments [KZG10]. A
brief description of KZG commitments was also given in Section 5.1. We describe
our polynomial commitment in Figure 4.

To commit to a polynomial f(X,Y ) =
∑m−1
j=0 fj(Y )Xj given commitment

key ck = (g,v, ĥ), the committer computes m KZG polynomial commitments
A = [Aj ]

m−1
j=0 to y-polynomials f = [fj(Y )]m−1

j=0 where say fj(Y ) has coefficients

aj = [ai,j ]
`−1
i=0 : Aj = KZG.CM(g,aj) = gaj = g

∑`−1
i=0 ai,jα

i

. The committer then
computes the pairing commitment [AFG+16] to the KZG commitments

T = A ∗ v =

m−1∏
j=0

e(Aj , vi) =

m−1∏
j=0

e(Aj , h
β2j

) .

Thus, T = e(g, h)
∑`−1,m−1
i,j=0 ai,jα

iβ2j

, and this commitment is binding under the
q-ASDBP assumption and the q-SDH assumption.

Two-tiered opening. Our opening algorithm proves a commitment T to
a polynomial f(X,Y ) evaluates to ν at a point (x, y) ∈ F2. We proceed in
three steps. First the prover produces an opening for an outer tier partial
evaluation U = f(x, Y ) =

∏m−1
i=0 Ax

i

i for a point x ∈ F. Observe that U is a

KZG commitment to the univariate polynomial f(x, Y ) =
∑`−1
j=0(

∑m−1
i=0 ai,jx

i)Y j .
Second the prover produces a MIPPk proof (see Section 5.5) that U is the inner
product of the opening to T and the vector x = (1, x, . . . , xm−1). Third the
prover produce a KZG proof that ν is the evaluation of U at y. The prover
returns U and the two proofs. The verifier simply checks the two proofs.

Theorem 4. If there exists a bilinear group sampler SampleGrp3 that satisfies
the q-ASDBP assumption in G2 and the q-SDH assumption, then the protocol
in Fig. 4 is a polynomial commitment scheme with computational extractability
against algebraic adversaries.

Note that computing the partial opening U takes m` G1 exponentiations if
computing from scratch. Instead, if the KZG commitments to the y-polynomials
A are given as input, U can be computed with only m G1 exponentiations. Thus,
we pass A, which was already computed during commitment, as auxiliary data
to the opening algorithm to facilitate our square root degree opening time.

Supporting univariate polynomials. If we have a univariate polynomial,
then we set `m = d for d the degree of f(X) and fi(Y ) = ai` + ai`+1Y + . . .+

a(i+1)`−1Y
`−1 =

∑`−1
j=0 ai`+jY

j . Observe now that p(X,Y ) =
∑m−1
i=0 fi(Y )Xi is

such that p(X`, X) = f(X) Thus we commit to f(X) by committing to p(X,Y ).
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Setup(1λ, `,m) :

〈group〉 ← SampleGrp3(1
λ)

ĥ
$←− G2; α, β

$←− F
g ← [gα

i

]`−1
i=0

v ← [hβ
2i

]m−1
i=0

ck← (〈group〉, g,v, ĥ)

ek← (〈group〉, g, [hβi ]2m−2
i=0 , ĥ)

vk← (〈group〉, gβ , hα, ĥ)
Return (ck, vk)

Open(ek, T, (x, y), ν, f(X,Y ), [Aj ]
m−1
j=0 )

(〈group〉, g, pk, ĥ)← ek

U ←
∏m−1
j=0 Ax

i

j

π1 ← MIPPk.Prove(〈group〉, (pk, ĥ), (T,U, x), (A,v,x))
π2 ← KZG.Open(〈group〉, g, f(x, Y ), ν)
Return (U, π1, π2)

CM(ck, f(X,Y )) :

[Aj ]
m−1
j=0 ←

∏`−1
i=0 g

ai,j
i

T ←
∏m−1
j=0 e(Aj , vj)

Return T

Check(vk, (T, (x, y), ν), (U, π1, π2))

b1 ← MIPPk.Verify(〈group〉, (gβ , ĥ), (T,U, x), π1))
b2 ← KZG.Verify(〈group〉, hα, U, π2, y)
Return b1 ∧ b2

Fig. 4: A two-tiered inner product commitment.

101

103

105

107

se
tu

p 
siz

e 
(K

B)

0

2

4

op
en

in
g 

siz
e 

(K
B)

20

40

ve
rif

y 
tim

e 
(m

s)

28 216 224

102

104

106

se
tu

p 
tim

e 
(m

s)

28 216 224

102

104

106

co
m

m
it 

tim
e 

(m
s)

28 216 224

102

104

106

op
en

 ti
m

e 
(m

s)

KZG10 This work
0.0 0.2 0.4 0.6 0.8 1.0

polynomial degree

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5: Measured performance of the IPA polynomial commitment.

To evaluate f(X) at x the prover evaluates the first tier at x` and the second
at x. If ` ≈ m then we have square root values fi(X) which each have degree
square root in d. Hence our IPP arguments are ran over a square root number of
commitments, which is what makes our verifier complexity and SRS size square
root.

Evaluation. In Figure 5, we compare the performance of our polynomial
commitment scheme against the state-of-the-art KZG commitment scheme. In
optimizing the IPA commitment scheme, we found that the MIPPk proof was
more expensive than the KZG proof. Therefore, it makes sense to skew the split
of the polynomial so the MIPPk proof is over a smaller vector than the KZG

proof. We found a skew of κ = 16 to be optimal, leading to a split of m =
√
d
κ

and ` = κ
√
d; this explains the hitch in the plots until the optimal tradeoff is

able to be made at d = 210.
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Both KZG and our IPA produce commitments of constant size (a single G1

element for KZG and a single GT element for IPA). The differences are that
KZG allows for constant opening proof sizes and constant verifier time (versus
our logarithmic opening sizes and verifier time), whereas IPA allows for square
root opening time and SRS size (compared to the linear complexity of KZG).

These asymptotic differences result in significant concrete tradeoffs between
the two schemes. As expected, the IPA commitment, while expensive for low
degree polynomials due to overhead of the inner product argument, quickly
becomes much faster to compute opening proofs with breakeven degree being
d ≈ 2000; at d = 106, IPA is 14× faster, and at d = 250 × 106 is 80× faster.
Similar savings are made with respect to prover SRS size. For degree 106, IPA
requires an SRS of size 800KB, 60× smaller than the 50MB SRS required by
KZG. In contrast, the IPA verifier time and opening size grow logarithmically and
thus do not get too large; verifier time remains below 50ms even for polynomials
of degree d = 250× 106, and opening proof size remains below 4KB.

7 Aggregating SNARK proofs

We now discuss how the inner pairing product can be used to verify that n
independently generated SNARK proofs on independent instances can be aggre-
gated to a O(log(n)) sized proof. While zk-SNARKs have constant-sized proofs
and verifiers, in many settings, such as blockchains, a verifier needs to read and
verify many proofs created by independent provers. We show how an untrusted
aggregator can use inner product arguments to aggregate these proofs into a
small logarithmic sized proof. The verifiers only need to check the aggregated
proof to be convinced of the existence of the underlying pairing-based SNARKs.
We show our approach is concretely much faster than existing approaches relying
on recursive composition and expensive pairing-friendly cycles of elliptic curves.

To date the most efficient zkSNARK is due to Groth [Gro16]; it consists of 3
group elements and requires checking a single pairing product equation to verify.
We thus choose to describe our methods with respect to [Gro16], but note that
they apply more generally to pairing-based SNARKs that do not use random
oracles [GM17; PGHR13]. We first provide some background on the [Gro16]
SNARK, focusing on the verifier and not the prover, for it is the verification
equations that we aim to prove are satisfied.

[Gro16] Background. We recall the following facts about the [Gro16] SNARK:
The verification key is of the form:

vk := (p = gρ, q = hτ , [sj = g(βuj(x)+αvj(x)−wj(x))]`j=1, d = hδ) .

Here ρ, τ, δ, x ∈ F are secrets generated (and discarded) during the generation of
the proving and verification keys, ` is the statement size, and uj(X), vj(X), wj(X)
are public polynomials that together with δ define a circuit representation of the
computation being checked. The proof is of the form π := (A,B,C) ∈ G1×G2×G1.
On input a verification key vk, an NP instance x := (a1, . . . , a`) ∈ F`, and a proof

π = (A,B,C), the verifier checks that e(A,B) = e(p, q) · e(
∏`
j=1 s

aj
j , h) · e(C, d).

A part of the [Gro16] trusted setup is circuit-specific, i.e., the sj values
constructed from uj(X), vj(X), wj(X) polynomials and d. Our protocol supports
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Setup(〈group〉, [vki]n−1
i=0 ):

1. Construct commitment keys and prover and verifier keys. Note commitment keys

w =
[
gα

2i
]m−1

i=0
and v =

[
hβ

2i
]m−1

i=0
are included in pkIPP. Sample α, β

$←− F:

(pkIPP = (
[
gα

i
]2m−2

i=0
,
[
hβ

i
]2m−2

i=0
), vkIPP = (gβ , hα))

$←− IPP.Setup(m;α, β)

2. Commit to circuit-specific elements of verification keys, vki = (p, q, [si,j ]
`
j=1, di):

(a) Commit to d = [di]
n−1
i=0 : Cd ← CM(w,d) = w ∗ d.

(b) For each j ∈ [`], commit to sj : Cs,j ← CM(v, sj = [si,j ]
n−1
i=0 ) = sj ∗ v.

3. Return (pkagg = (pkIPP, [vki]
n−1
i=0 , [Cs,j ]

`
j=1, Cd,d), vkagg = (vkIPP, p, q, [Cs,j ]

`
j=1, Cd)).

Agg(pkagg, [(xi = [ai,j ]
`
j , πi)]

n−1

i=0
):

(π, r)← AggHelper(pkagg, [(xi, πi)]
n−1
i=0 ,⊥)

Return π

Verify(vkagg, [xi = [ai,j ]
`
j ]
n−1

i=0
, πagg):

[Zs,j ]
`
j=1 ← [

∏n−1
i=0 s

ai,jr
2i

i,j ]`j
(b, r)← VerHelper(vkagg, [Zs,j ]

`
j , πagg,⊥)

Return b

Fig. 6: Aggregation of Groth16 SNARKs. The helper subprotocols for aggregation
and verification are given in the full version [BMM+19].

aggregating proofs over different circuits that share the non-circuit-specific part
of their trusted setup, i.e., the p, q elements in the verification key.

Our aggregation protocol. Our aggregation protocol is described in Fig. 6.
Given n instances [[ai,j ]

n−1
i=0 ]`j=1, proofs [πi = (Ai, Bi, Ci)]

n−1
i=0 , and circuit-specific

verification keys [[si,j ]
`
j , di]

n−1
i=0 , verifying the pairing product equation for each

proof πi individually requires performing 3n pairings and n` exponentiations. To
reduce this computation to a single pairing product equation, the verifier can
take a random linear combination between all equations. That is, the verifier

samples r
$←− F, sets r = (1, r2, . . . , r2n−2) and then checks whether

n−1∏
i=0

e((Ai)
r2i , Bi) = e(p, q)

∑n−1
i r2i · e(

∏̀
j=1

n−1∏
i=0

s
ai,jr

2i

i,j , h) · e(
n−1∏
i=0

Cr
2i

i , di) .

If this equation holds, then with overwhelming probability each individual veri-
fication holds. It therefore suffices to check this one pairing product instead of
checking all SNARKs individually.

We make use of two inner products arguments to prove that the above check
succeeds. At a high level, the prover commits to A, B and C. First, the TIPP
protocol is used to prove the evaluation of Ar ∗B = ZAB. The verifier must
check ZAB against the expected evaluation of the right-hand side of the above
pairing product equation. To further help the verifier, a second evaluation of
TIPP is used to prove the evaluation of Cr ∗ d = ZCd, where d is derived from
the circuit-specific verification keys. The verifier then completes by evaluating
and checking:

ZAB = e(p, q)
r2n−1

r2−1 · e(
∏̀
j=1

n−1∏
i=0

s
ai,jr

2i

i,j , h) · ZCd ,
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Fig. 7: Measured performance of TIPP aggregation of SNARK proofs compared to
the cost of proving a one layer of recursion inside a SNARK.

which requires only two pairings, `+2 exponentiations, and O(`·n) field operations.
If aggregating over the same circuit, the circuit-specific setup of d is not needed
and the protocol can be simplified to use MIPPk instead of TIPP to derive ZCd.

Evaluation. In Figure 7, we compare the performance for aggregating SNARK
proofs using (a) our aggregation protocol, (b) using recursive SNARKs over
a 2-chain [BCG+20], and (c) not aggregating at all (i.e., sending all proofs
individually). The 2-chain approach proves inside another SNARK that each
of the aggregated SNARKs is valid. The verification time for no aggregation
consists of a single batched pairing check.

While our protocol does not produce constant-sized proofs, it does reduce
setup size and aggregation time greatly. For example, when aggregating 64 proofs,
our protocol is 900× faster than the 2-chain approach. Furthermore, the 2-chain
approach is unable to scale further as it consumed too much memory. In fact,
in the time it takes 2-chain approach to aggregate 64 proofs, our protocol can
aggregate 65, 000 proofs into a 35 kB proof that takes 300 ms to verify.

8 Low-memory SNARKs for machine computations

We now show how to leverage our aggregation protocol in Section 7 to construct a
low-memory SNARK for (non-deterministic) machine computations. A machine
computation M consists of applying a sequence of operations M = (op0, . . . , opT )
(from some operation set OpSet) over a fixed number of registers. We model that
M can read and write to an external memory (of size S) using techniques for
online memory checking [BCCT13; BCGT13; BEG+91] in which the memory
is represented as a Merkle tree. In this case, an arithmetic circuit Pi for each
operation opi can be built such that |Pi| = polylog(S), given that opi itself has
complexity polylog(S) and makes at most polylog(S) reads or writes to memory.
Taking this approach, we provide Theorem 5, which states that if a machine
computation M executes using memory S over T operation steps, then our
SNARK prover takes time Õ(maxi(|Pi|) · T ) and space Õ(maxi(|Pi|) + T + S)
to produce a proof for that execution.

In comparison, constructing a monolithic proof for the entire computation
at once requires the same time, but incurs a space usage of Õ(

∑
i(|Pi|) · T + S).
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The only other solution for constructing low-memory SNARKs for machine
computations requires recursive composition of proofs [BCCT13]. Recursive
composition achieves a further improved space usage of Õ(maxi(|Pi|) + S), but
the time to prove, while asymptotically equivalent to the previous solutions, is
concretely very expensive.

Definition 4 (Machine relation). For a machine M with step operations
[opi]

T−1
i=0 , the NP relation RM is the set of of instance-witness pairs (x, [ω]T−1

i ),
such that M accepts (x, [ω]T−1

i ) after the T step operations are applied.

Theorem 5. Let RM be a machine relation for some machine M with step
operations [opi]

T−1
i=0 that can be represented with arithmetic circuits [Pi]

T−1
i , and

opi ∈ OpSet for all i. Then there exists a SNARK for RM where

(1) Setup takes time O(T +
∑

op∈OpSet(|Pop|)).
(2) Proving takes time Õ(maxi(|Pi|) · T ) and uses space Õ(maxi(|Pi|) + T +S),

where S is the space required to compute M .

(3) Proof size is O(log(T )) and verification takes time O(log(T )).

Overview of solution. We first introduce some notation. The full details of
our protocol are given in the full version [BMM+19]. Machine M operates over
a fixed set of ` registers. The statement for each operation circuit Pi consists
of 2` elements: ` input registers [ai,j ]

`
j=1 and ` output registers [bi,j ]

`
j=1. The

circuit verifies that the output registers are valid with respect to applying the
operation on the input registers. Importantly, the output registers of an operation
are passed as the input registers to the next operation in sequence:

[bi,j ]
`
j=1 = [ai+1,j ]

`
j=1 .

The verifier does not need to be aware of all of the values the registers take on
during intermediate steps of execution. Instead, it need only verify that the above
“sequential” pattern of registers is present in the proofs for each operation step.
This is the key observation we take advantage of to produce a log-time verifier.

As a strawman, consider the solution of proving an individual Groth16
SNARK for each operation step and aggregating using the protocol of Section 7.
To verify, the verifier must receive and perform scalar computations over all of
the intermediate statements, incurring linear proof size and verification time.

Instead, in our solution, the prover commits to all of the intermediate state-
ments and proves to the verifier that they follow the sequential structure, i.e., the
second half of the statement for proof i is the first half of the statement for proof
i + 1. The verifier can verify this in time ` with knowledge of only the initial
register state [a0,j ]

`
j and the final register state [bT−1,j ]

`
j . The prover commits to

the inputs and outputs of all statements, aj , bj , to Ca,j , Cb,j . The prover then
proves the sequential pattern between aj and bj holds, namely that the vectors
are offset by one: a0,j a1,j . . . aT−1,j

b0,j . . . bT−2,j bT−1,j

The prover does this by homomorphically shifting the commitment to bj
using challenge r and taking the difference between the two vector commit-
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ments Ca,jC
−1/r2

b,j , then providing a KZG opening proof that it opens to a0,j −
bn−1,jr

2T−2 when evaluated on r. Lastly, the prover uses the commitments to
precompute a part of the final pairing product verification check to help the veri-
fier avoid the linear scalar computations. The prover computes and proves using

MIPPu the multiexponentiation inner products, Zs,j = s
aj◦r
j and Zs,`+j = s

bj◦r
`+j

for sj derived from circuit-specific verification keys. The verifier then completes
the verification by checking the following pairing product equation:

ZAB = e(p, q)
r2n−1

r2−1 · e(
2∏̀
j=1

Zs,j , h) · ZCd ,

which requires only two pairings and O(`) group operations. Our solution may
be adapted to provide greater efficiency in the case of repeated application of a
single step operation.
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