
The One-More Discrete Logarithm Assumption
in the Generic Group Model

Balthazar Bauer1, Georg Fuchsbauer2, and Antoine Plouviez3

1 Université de Paris, France
2 TU Wien, Austria

3 Inria, ENS, CNRS, PSL, Paris, France
first.last@{ens.fr,tuwien.ac.at}

Abstract. The one more-discrete logarithm assumption (OMDL) under-
lies the security analysis of identification protocols, blind signature and
multi-signature schemes, such as blind Schnorr signatures and the recent
MuSig2 multi-signatures. As these schemes produce standard Schnorr
signatures, they are compatible with existing systems, e.g. in the context
of blockchains. OMDL is moreover assumed for many results on the
impossibility of certain security reductions.
Despite its wide use, surprisingly, OMDL is lacking any rigorous analysis;
there is not even a proof that it holds in the generic group model (GGM).
(We show that a claimed proof is flawed.) In this work we give a formal
proof of OMDL in the GGM. We also prove a related assumption, the one-
more computational Diffie-Hellman assumption, in the GGM. Our proofs
deviate from prior GGM proofs and replace the use of the Schwartz-Zippel
Lemma by a new argument.

Keywords: One-more discrete logarithm, generic group model, blind
signatures, multi-signatures

1 Introduction

Provable security is the prevailing paradigm in present-day cryptography. To
analyze the security of a cryptographic scheme, one first formally defines what it
means to break it and then gives a rigorous proof that this is infeasible assuming
that certain computational problems are hard.

Classical hardness assumption like RSA and the discrete logarithm assumption
in various groups have received much scrutiny over the years, but there are now
myriads of less studied assumptions. This has attracted criticism [35, 34], as
the value of a security proof is unclear when it is by reduction from an (often
newly introduced) assumption that is not well understood. A sanity check that
is considered a minimum requirement for assumptions in cyclic groups is a proof
in the generic group model (GGM), which guarantees that there are no efficient
solvers that work for any group.

In this work we give the first proof that the one-more discrete logarithm
assumption, a widely used hardness assumption, holds in the GGM. While prior
proofs in the GGM have followed a common blueprint, the nature of OMDL

differs from that of other assumptions and its proof requires a new approach,
which we propose in this paper. We then extend our proof so that it also covers
the one-more Diffie-Hellman assumption.

GGM. The generic group model [43, 55] is an idealized model for the security
analysis of hardness assumptions (as well as cryptographic schemes themselves)
that are defined over cyclic groups. It models a “generic group” by not giving
the adversary any group elements, but instead abstract “handles” (or encodings)
for them. To compute the group operation, the adversary has access to an oracle
which given handles for group elements X and Y returns the handle of the group
element X + Y (we denote groups additively).

OMDL. The one-more discrete logarithm problem, introduced by Bellare et
al. [6], is an extension of the discrete logarithm (DL) problem. Instead of being
given one group element X of which the adversary must compute the discrete
logarithm w.r.t. some basis G, for OMDL the adversary can ask for arbitrarily
many challenges Xi, all sampled independently and uniformly from the group.
In addition, it has access to an oracle that returns the discrete logarithm of any
group element submitted by the adversary. The adversary’s goal is to compute
the DL of all challenges Xi, of which there must be (at least) one more than the
number of calls made to the DL oracle.

Applications of OMDL

Blind signatures. Blind signature schemes [19] let a user obtain a signature
from a signer without the latter learning the message it signed. Their security
is formalized by one-more unforgeability, which requires that after q signing
interactions with the signer, the user should not be able to compute signatures
on more than q messages.

The signatures in the blind Schnorr signature scheme [20] are standard Schnorr
signatures [51], which, in the form of EdDSA [11] are increasingly used in practice
and considered for standardization by NIST [46]. They are now used in OpenSSL,
OpenSSH, GnuPG and considered to be supported by Bitcoin [58], which will
enable drastic scalability improvements due to signature aggregation [15, 41] (see
below). Blind Schnorr signatures will moreover enable new privacy-preserving
applications such as blind coin swaps and trustless tumbler services [44].

One-more unforgeability of blind Schnorr signatures was proven by Schnorr
and Jakobsson [53, 52] directly in the GGM, also assuming the random-oracle
model (ROM) and that the so-called ROS problem is hard. While unforgeability
of blind Schnorr signatures cannot, even in the ROM, be proved from standard
assumptions [24, 49, 2], Fuchsbauer et al. [27] give a proof in the algebraic group
model (AGM) [26], a model between the standard model and the GGM.

In the AGM, adversaries are assumed to be algebraic, meaning that for every
group element Z they output, they must know a “representation” ~z = (z1, . . . , zn)
such that Z =

∑n
i=1 ziXi, where X1, . . . , Xn are the group elements received

2

so far. The authors prove unforgeability of blind Schnorr in the AGM+ROM
assuming ROS and OMDL [27].

While there has been evidence [57] that the ROS problem was easier than
initially assumed, Benhamouda et al. [10] recently presented a polynomial-time
solver for ROS. This leads to forgeries of blind Schnorr signatures when the
attacker is allowed to run concurrent executions of the signing protocol. To
overcome these issues, Fuchsbauer et al. [27] define a new signing protocol
and introduce a modified ROS assumption, against which there are no known
attacks. Their Clause blind Schnorr signature scheme is proven unforgeable in
the AGM+ROM assuming hardness of their modified ROS problem and OMDL.

Multi-signatures. Multi-signature schemes [32] allow a group of signers, each
having individual verification and signing keys, to sign a message on behalf of
all of them via a single signature. In recent work, Nick et al. [45] present a
(concurrently secure) two-round multi-signature scheme called MuSig2 (a variant
of the MuSig scheme [41]), which they prove secure under the OMDL assumption.
The resulting signatures are ordinary Schnorr signatures (under an aggregated
verification key, which is of the same form as a key for Schnorr); they are thus fully
compatible with blockchain systems already using Schnorr. This will help ease
scalability issues, as a single aggregate signature can replace a set of individual
signatures to be stored on the blockchain.

Earlier, Bellare and Neven [7] instantiated another signature primitive called
transitive signatures [42] assuming OMDL.

Identification schemes. Bellare and Palacio [8] assume OMDL to prove
that the Schnorr identification protocol is secure against active and concurrent
attacks, and Gennaro et al. [30] use it for a batched version of the scheme.
Bellare and Shoup [9] prove that the Schnorr identification scheme verifies special
soundness under concurrent attack from OMDL. Bellare et al. [5] assume OMDL
to prove their ID-based identification protocol secure against impersonation under
concurrent attacks.

Negative results. OMDL has also been assumed in numerous proofs of im-
possibility results. Paillier and Vergnaud [48] prove that unforgeability of Schnorr
signatures cannot be proven under the discrete logarithm assumption. Specifically,
they show that there is no algebraic reduction to DL in the standard model
if OMDL holds. Seurin [54] shows that, assuming OMDL, the security bound
for Schnorr signatures by Pointcheval and Stern [50] using the forking lemma
is optimal in the ROM under the DL assumption. More precisely, the paper
shows that if the OMDL assumption holds, then any algebraic reduction of
Schnorr signatures must lose the same factor as a proof via the forking lemma.
Fischlin and Fleischhacker [23] generalize this impossibility result to a large class
of reductions they call single-instance reductions, again assuming OMDL. There
are further negative results on the security of Schnorr signatures that assume
OMDL [29, 25, 28].

3

Finally, Drijvers et al. [22] show under the OMDL assumption that many
multi-signature schemes, such as CoSi [56], MuSig [41], BCJ [1] and MWLD [37],
cannot be proven secure from DL or OMDL.

The Generic Security of OMDL

Despite its wide use, surprisingly, OMDL is lacking any rigorous analysis, apart
from a comparison to DL in certain groups: while clearly the OMDL problem
is not harder than DL, it is strictly easier in any group for which the index
calculus algorithm is the best way to solve both problems [33, 31]. This does
thus not apply to elliptic-curve groups, which typically underlie contemporary
instantiations of schemes relying on OMDL.

The only analysis of OMDL in the GGM is a more recent proof sketch by
Coretti, Dodis, and Guo [21, eprint version], which we show is flawed.4 (The
authors confirmed this in personal communication.)

Their analysis follows the blueprint of earlier GGM proofs, which goes back
to Shoup’s [55] proof of the hardness of DL in the GGM. However, as we explain
below, the adversary can easily make their simulation of the GGM OMDL game
fail. The particularity of OMDL compared to other assumptions, which lend
themselves more easily to a GGM proof, is that via its DL oracle, the adversary
can obtain information about the secret values chosen by the experiment.

Bauer et al. [3] gave further evidence that the analysis of the generic security
of OMDL must differ from that of other assumptions. They show that, in the
algebraic group model, a large class of assumptions, captured by an extension of
the uber assumption framework [14, 16], is implied by the hardness of q-DLog. In
this problem the adversary is given (xG, x2G, . . . , xqG) and must find x. While
in the AGM q-DLog implies assumptions as diverse as the strong Diffie-Hellman
[13], the gap Diffie-Hellman [47], and the LRSW assumption [36], this is not the
case for OMDL. Using the meta-reduction technique, Bauer et al. [3] show that
it is impossible to prove OMDL from q-DLog, for any q, in the AGM.

This extends earlier results on q-OMDL, a parametrized variant where the
adversary receives exactly q challenges. For different values of q, these assumptions
are not equivalent under black-box reductions [18] or algebraic reductions [17] (a
separation under standard white-box reductions appears to be open).

Proofs in the GGM. To explain the challenges in proving OMDL in the
GGM, we start by recalling how GGM proofs typically proceed. In the GGM
the adversary does not see actual group elements of the form xG, with x ∈ Zp
and G a fixed generator; instead it gets encodings Ξ(x) of them, where Ξ is a
random injective function. As the adversary cannot compute the encoding of
4 The authors study assumptions (including OMDL) and schemes in an extension of
the GGM that models preprocessing attacks. They give a proof sketch for the security
of OMDL with preprocessing. While we show that their sketch is flawed (see p. 5),
their preprocessing techniques can be adapted to our proof. Their result for OMDL in
the preprocessing GGM thus still holds, except for a change of the security bounds.

4

(x + y)G from encodings of xG and yG, it is provided with an oracle that on
input (Ξ(x), Ξ(y)) returns Ξ(x+ y).

When analyzing hardness assumptions in the GGM, instead of choosing secret
values in the security game, the challenger represents them by indeterminates.
For concreteness, consider the GGM game for the DL assumption: the adversary
is given the challenge Ξ(x) and must compute the discrete logarithm x ∈ Zp. In
the proof, the challenger simulates this game by using the variable X instead of x
and encodes the polynomial X instead of x. That is, the challenger gives Ξ(X)
to the adversary, who is oblivious to this change. If then the adversary asks, for
example, for the addition of Ξ(1) and Ξ(X), the challenger replies Ξ(X + 1), that
is, the encoding of a polynomial of degree 1.

This allows the challenger to simulate the game without actually defining a
challenge. After the adversary output its answer, the challenger picks a value
x uniformly at random, which the adversary can only guess with negligible
probability. This shows generic hardness of the DL problem.

There is however a caveat: Ξ(X) represents Ξ(x), and, more generally, for any
polynomial P that the adversary constructed via its queries, Ξ(P) represents
Ξ(P (x)). So the simulation would be inconsistent if for some polynomials P 6= Q
computed by the adversary we had P (x) = Q(x). Indeed, if such a collision
occurs, then the simulated game gives the adversary Ξ(P) 6= Ξ(Q) instead of
Ξ(P (x)) = Ξ(Q(x)).

In order to bound the probability that the simulation fails due to such
collisions, the standard technique is to apply the Schwartz-Zippel Lemma, which
states that for a non-zero degree-d (multivariate) polynomial P ∈ Zp[X1, . . . ,Xn]
the probability that P (x1, . . . , xn) = 0 for a uniformly chosen ~x $← Znp is d

p .
Since x is picked uniformly after the adversary has defined the polynomials P

and Q, the probability that P (x)−Q(x) = 0 is bounded by 1
p . Applying this to

all pairs of polynomials generated by the adversary via its group-operation oracle
during the game then yields the final bound. This was precisely how Shoup [55]
proved the security of DL in the GGM and it was followed by many subsequent
GGM proofs. The technique easily extends to games where there are several
secrets x1, . . . , xn.

Challenges in the GGM proof of OMDL. We follow Shoup [55] in that
we replace all challenges xi in the OMDL game by corresponding polynomials
Xi ∈ Zp[X1, . . . ,Xn]. It seems tempting to then deduce, like for DL, that the
probability that P (x1, . . . , xn) = Q(x1, . . . , xn) for any P 6= Q generated during
the game is at most 1

p by Schwartz-Zippel. (This is what Coretti et al. [21] do in
their proof sketch.) This argument however ignores the fact that, via the discrete
logarithm oracle DLog(·), the adversary can obtain (a lot of) information on
the challenges xi and can thereby easily cause collisions. In more detail, such a
straightforward proof has the following issues:

First, in the game simulated via polynomials, the adversary’s oracle DLog(·)
must be simulated carefully. For example, suppose the adversary asks for the
discrete logarithm of the first challenge by querying DLog(Ξ(X1)). Since x1 is

5

not defined yet, the challenger samples it uniformly and gives it to the adversary.
Now if the adversary later asks for Ξ(X1 + 1) (via its group-operation oracle)
and queries DLog on it, it expects the answer x1 + 1. (In [21], the DLog oracle
always returns random values; the adversary can thus easily detect that it is not
playing the OMDL game in the GGM.)

Second, there is a more subtle issue. Again suppose that the adversary queried
DLog(Ξ(X1)) and was given x1. Let P := X1. Using the group-operation oracle,
the adversary can compute (an encoding of) the constant polynomial Q := x1,
that is, it can obtain Ξ(Q). Since P (x1) = Q(x1) = x1, this means that the
adversary can in fact construct polynomials P and Q such that P (x1, . . . , xn) =
Q(x1, . . . , xn) and P 6= Q.

Note that this situation cannot occur in prior GGM proofs for other assump-
tions, because as long as there is no simulation failure, the adversary’s polynomials
are independent of ~x, which is a prerequisite for applying Schwartz-Zippel (SZ)
in the end. This standard use of SZ (followed by [21]) is thus not possible for
OMDL, as the adversary can, via its DLog oracle, obtain information on the
challenge (x1, . . . , xn) even when there is no simulation failure.

All these issues persist if instead of Shoup’s GGM model [55], one uses
Maurer’s model [39], which is an abstraction of the former. In his model, all
(logarithms of) group elements remain in a “black box”, and the adversary can
ask for the creation of new entries in the box that are either the sum of existing
entries or values of its choice. To capture the DLog oracle in OMDL one would
have to extend the model and allow the adversary to ask for values from the
box to be revealed. Moreover, in proofs in this model [39] the adversary wins as
soon as it creates a collision between values in the box, which is why one can
assume non-adaptive adversaries. However, an OMDL adversary is adaptive and
can easily create collisions (e.g., get x1 from the DLog oracle, then insert the
constant x1 into the black box). A new approach would thus be required.

Our GGM proof of OMDL. In our proof we simulate the OMDL game in the
GGM using polynomials, but we take into account all the issues just described.
That is, the challenger monitors what the adversary has learned about the
challenge and defines the simulation considering this knowledge, thus preventing
the adversary from trivially distinguishing the real game from the simulation.

Still, there might be simulation failures due to “bad luck”, which corresponds
precisely to the event whose probability previous proofs bound via Schwartz-
Zippel. As OMDL requires a different approach, we propose a new lemma that
bounds the probability that our simulation of the OMDL game fails. After
modifying the game by aborting in case of a simulation failure, we give a formally
defined sequence of game hops showing that the game is equivalent to a game
that the adversary cannot win. Given the pitfalls in previous approaches and the
intricacies outlined so far (and the importance of OMDL), we believe that such a
rigorous approach is justified for OMDL.

Our first step is comparable to how Yun [59] analyzed the generic security
of the multiple discrete logarithm assumption, where the adversary must solve
multiple DL challenges (but is not given a DLog oracle, which is what makes

6

OMDL so different from other assumptions). Like Yun, we formalize the knowledge
about the challenge that the adversary accumulates by affine hyperplanes in Znp .

Possible alternative approaches. One might wonder if it was possible to
nonetheless rely on the Schwartz-Zippel lemma (SZ) for proving OMDL. We have
already argued that applying it once and at the end of the game, as in previous
proofs, is not possible. But can SZ be used earlier in the game?

A first idea could be to apply SZ at each DLog call. Consider a call
DLog(Ξ(X1 + X2)), answered with a uniform v ← Zp. One could now for-
mally replace the indeterminate X1 by the expression X2− v in all polynomials P
generated so far and use SZ to bound the probability that this creates a collision.
A first issue is that since P is a multivariate polynomial, SZ does not directly
imply a bound on Pr[P (X2 − v,X2, . . . ,Xn) = 0]. Indeed, P (X2 − v,X2, . . . ,Xn)
is the evaluation of the polynomial P̂ (X1) := P (X1,X2, . . . ,Xn) for X1 = X2 − v,
so we need to bound Pr[P̂ (X2 − v) = 0] for a polynomial P̂ with coefficients in
the ring Zp[X2, . . . ,Xn], whereas SZ is defined for polynomials over fields.

Moreover, when the query DLog(Ξ(P (X1, . . . ,Xn)) involves a more complex
polynomial than P = X1 +X2 then the substitution of one variable by a linear
expression of the others is even cumbersome to describe notationally. We avoid
these problems in our proof by using our lemma instead of (a variant of) SZ,
which also lets us keep notation simple.

Another idea would be to apply SZ each time a new encoding is computed.
Indeed, assuming no collisions have occurred so far, one could use SZ to bound
the probability that the new encoding introduces a collision and then proceed by
induction. But the resulting proof would require one game hop for every newly
computed encoding: In the j-th hybrid of this game the first j encodings are
chosen all different independently of the real value of the challenge; the challenge
~x is picked by the game just before the (j + 1)-th encoding, when Pj+1 is defined.
Using SZ, we can show that the probability that Pj+1(~x) = Pi(~x) for all i ≤ j is
negligible.

However, we need to be more cautious. To prevent the attack in which the
adversary queries DLog(Ξ(X1)), obtains x1 and then generates the constant
polynomial Pj+1 = x1, we need to adapt all polynomials defined so far to reflect
the information revealed by DLog(·). In this example, this is easy to formalize:
update every polynomial by evaluating X1 on x1 and replace Pk(x1,X2, . . . ,Xn)
by some P ′k(X2, . . . ,Xn); the updated challenge ~x would be of size n − 1. To
generalize this, we would have to apply an affine transformation to all variables
of the polynomials at each call to DLog(·). After as many game hops as there
are queries by the adversary, we would arrive at a game in which all encodings
are random and the challenge is defined after the adversary output its solution.

We believe that both approaches just sketched lead to more complicated (and
error-prone) proofs than the one we propose. In our proof, in the first game
hop we abort if our simulation fails and we bound this probability by our new
lemma. The remaining 3 game hops are purely syntactical and do not change the
adversary’s winning probability.

7

One-More CDH

Another “one-more” assumption is the one-more computational Diffie-Hellman
assumption [5], also known as 1-MDHP [33, 34], which is similar to the chosen-
target CDH assumption [12]. Here, the adversary receives q pairs of group elements
(X,Yi), all with the same first component X = xG, and its task is to compute
xYi for all i. It is given an oracle CDH1(·), which on input Y returns xY , and
which it can query fewer than q times.

It turns out that this assumption can be proved to hold in the generic group
model using standard techniques. Following the original GGM proof of DL
[55], we modify the simulation for the adversary from encoding logarithms to
encoding polynomials in Zp[X,Y1, . . . ,Yn]. The challenges that the adversary
receives are the monomials X,Y1, . . . ,Yn, and when the adversary queries its
oracle CDH1(·) on an encoding of a polynomial P , it receives an encoding of
XP , i.e., its polynomial multiplied by the indeterminate X. To win this “ideal”
game, the adversary must construct encodings of (XY1, . . . ,XYn). Making q calls
to its CDH1(·) oracle and using its group-operation oracle, it can only construct
(encodings of) polynomials from Span(1,X,Y1, . . . ,Yn,XP1, . . . ,XPq).

Ignoring polynomials of degree less than 2, the adversary wins the game if
Span(XY1, . . . ,XYn) ⊆ Span(XP1, . . . ,XPq). But it must also solve more chal-
lenges than it makes CDH1(·) oracle queries; that is q < n. Using a dimension
argument, we deduce that the above condition cannot be satisfied, and thus the
adversary cannot win this game.

This “ideal” game is indistinguishable from the real game if the adversary does
not create two distinct polynomials that agree on x, y1, . . . , yn, the secret values
of the real game. Because the degree of all polynomials is upper-bounded by q+1,
we can use the Schwartz-Zippel Lemma (as, e.g., done in [16]) to upper-bound
the statistical distance between the two games by O

(
(q+1)(m+q)2

p

)
, where m is

the number of group operations made by the adversary. This establishes the
generic security of this assumption. (An alternative is to cast the assumption as
an uber-assumption in the algebraic group model and apply [3, Theorem 4.1].)

The situation is quite different for a variant of the above problem, in which
the first component of the challenge pairs is not fixed. That is, the adversary
can request challenges, which are random pairs (Xi, Yi) and is provided with an
oracle CDH(·), which on input any pair (X = xG, Y) returns the CDH solution
of X and Y , that is xY . The adversary must compute the CDH solutions of the
challenge pairs while making fewer queries to CDH(·). In this paper we will refer
to this assumption as OMCDH.

For this problem the standard proof methodology in the GGM fails for the
following reason. Providing the adversary with an oracle CDH1(·), as in the
one-more Diffie-Hellman assumption with one component fixed (or a DLog oracle
in OMDL) lets the adversary only construct polynomials of degree at most q + 1.
In contrast, the CDH(·) oracle in OMCDH leads to a multiplication of the degrees,
which enables the adversary to “explode” the degrees and makes arguments à la
Schwartz-Zippel impossible, since they rely on low-degree polynomials.

8

To get around this problem, we prove the following, stronger assumption: as
in OMCDH, the adversary still has to compute CDH solutions, but now it is
given a discrete-logarithm oracle. This hybrid assumption implies both OMDL
(for which the goal is harder) and OMCDH (in which the oracle is less powerful)
and we prove it in the GGM by extending our proof of OMDL.

2 Preliminaries

General Notation. We denote the (closed) integer interval from a to b by
[a, b]. A function µ : N→ [0, 1] is negligible (denoted µ = negl) if for all c ∈ N there
exists λc ∈ N such that µ(λ) ≤ λ−c for all λ ≥ λc. A function ν is overwhelming
if 1− ν = negl. Given a non-empty finite set S, we let x $← S denote sampling
an element x from S uniformly at random. A list ~z = (z1, . . . , zn), also denoted
(zi)i∈[n], is a finite sequence. The length of a list ~z is denoted |~z|. The empty list
is denoted ().

All algorithms are probabilistic unless stated otherwise. By y ← A(x1, . . . , xn)
we denote running algorithmA on inputs (x1, . . . , xn) and uniformly random coins
and letting y denote the output. If A has oracle access to some algorithm Oracle,
we write y ← AOracle(x1, . . . , xn). A security game GAMEpar(λ) indexed by a
set of parameters par consists of a main procedure and a collection of oracle
procedures. The main procedure, on input the security parameter λ, generates
input on which an adversary A is run. The adversary interacts with the game
by calling oracles provided by the game and returns some output, based on
which the game computes its own output bit b, which we write b← GAMEApar(λ).
We identify false with 0 and true with 1. As all games in this paper are
computational, we define the advantage of A in GAMEpar(λ) as AdvGAME

par,A :=
Pr[1← GAMEApar(λ)]. We say that GAMEpar is hard if AdvGAME

par,A = negl for any
probabilistic polynomial-time (p.p.t.) adversary A.

Algebraic Notation. A group description is a tuple Γ = (p,G, G) where p is
an odd prime, G is an abelian group of order p, and G is a generator of G. We use
additive notation for the group law and denote group elements with uppercase
letters. We assume the existence of a p.p.t. algorithm GrGen which, on input the
security parameter 1λ in unary, outputs a group description Γ = (p,G, G) where
p is of bit-length λ. For X ∈ G, we let logG(X) denote the discrete logarithm of
X with respect to the generator G, i.e., the unique x ∈ Zp such that X = xG.

For multivariate polynomials P ∈ Zp[X1, . . . ,Xn] we write ~X := (X1, . . . ,Xn)
and P (~x) := P (x1, . . . , xn) for ~x ∈ Znp . We consider subspaces of Zp[X1, . . . ,Xn]:
for a set L = {P1, . . . , Pq} of polynomials, Span(L) :=

{∑
i∈[1,q] αiPi | ~α ∈ Zqp

}
is

the smallest vector space containing the elements of L. If L = ∅ then Span(L) =
{0}. By dim(A) we denote the dimension of vector spaces or affine spaces.

By 〈~x, ~y〉 =
∑
i∈[1,n] xiyi we denote the scalar product of vectors ~x and ~y of

length n. In this work, polynomials are typically of degree 1, so we can write
P = ρ0 +

∑n
i=1 ρiXi as a scalar product: P (~X) = ρ0 + 〈~P , ~X〉, where we define

~P := (ρi)i∈[1,n], that is the vector of non-constant coefficients of P .

9

Game DLAGrGen(λ)

(p,G, G)←GrGen(1λ)

x
$← Zp ; X := xG

y ← A(p,G, G,X)
return (y = x)

Game OMDLAGrGen(λ)

(p,G, G)←GrGen(1λ)
~x := () ; q := 0

~y ← AChal,DLog(p,G, G)

return
(
~y = ~x ∧ q < |~x|

)

Oracle Chal()

x
$← Zp ; X := xG

~x := ~x ‖ (x)
return X

Oracle DLog(X)

q := q + 1 ; x := logG(X)
return x

Fig. 1. The DL and the OMDL problem

Game CDHAGrGen(λ)

(p,G, G)←GrGen(1λ)

x, y
$← Zp

X := xG ; Y := yG

V ← A(p,G, G,X, Y)
return (V = xyG)

Game OMCDHAGrGen(λ)

(p,G, G)←GrGen(1λ)
−→
Z := () ; q := 0
−→
V ← AChal,CDH(p,G, G)

return
(−→
Z = −→V ∧ q < |−→Z |

)

Oracle Chal()

x, y
$← Zp

(X,Y) := (xG, yG)
−→
Z := −→Z ‖ (xyG)
return (X,Y)

Oracle CDH(X,Y)

q := q + 1
x := logG(X) ; y := logG(Y)
return xyG

Fig. 2. The CDH and the OMCDH problem

Discrete Logarithm and Diffie-Hellman problems. In Figures 1 and 2
we recall the discrete logarithm (DL) problem and the computational Diffie-
Hellman (CDH) problem and define the one-more discrete logarithm (OMDL)
problem and the one-more computational Diffie-Hellman (OMCDH) problem.

3 OMDL in the GGM

3.1 A Technical Lemma

While a standard argument in GGM proofs uses the Schwartz-Zippel lemma,
it does not work for OMDL, where the adversary obtains information on the
challenge ~x not only when the simulation fails. So we cannot argue that ~x looks

10

uniformly random to the adversary, which is a precondition for applying Schwartz-
Zippel. We therefore use a different lemma, which bounds the probability that
for a given polynomial P , we have P (~x) = 0 when ~x is chosen uniformly from a
set C. This set C ⊆ Znp represents the knowledge the adversary has gained on the
challenge ~x during the OMDL game.

The Schwartz-Zippel lemma applies when C = Sn with S a subset of Zp,
whereas our lemma is for the case that P has degree 1 and C is defined by
an intersection of affine hyperplanes Qj from which we remove other affine
hyperplanes Di, that is C :=

(⋂
j∈[1,q]Qj

)
\
(⋃

i∈[1,m]Di
)
.

We start with some notations. Consider m polynomials Di ∈ Zp[X1, . . . ,Xn]
of degree 1, and q + 1 polynomials Qj ∈ Zp[X1, . . . ,Xn] also of degree 1. We can
write them as

Di(~X) = Di,0 +
n∑
k=1

Di,kXk = Di,0 +
〈
~Di, ~X

〉
(1)

with ~Di := (Di,k)1≤k≤n, and similarly for Qj . We define the sets of roots of these
polynomials, which are hyperplanes of Znp :

∀i ∈ [1,m] : Di := {~x ∈ Znp |Di(~x) = 0}
∀j ∈ [1, q + 1] : Qj := {~x ∈ Znp |Qj(~x) = 0} .

(2)

From (1), we see that the vector ~Di of non-constant coefficients defines the
direction of the hyperplane Di. It contains the coefficients of the polynomial
Di −Di(0) =

∑n
k=1 Di,kXk.

We define the set

C :=
(⋂
j∈[1,q]

Qj
)
\
(⋃
i∈[1,m]

Di
)
, (3)

that is, the set of points at which all Qi’s vanish but none of the Di’s do. The
following lemma will be the heart of our proofs of one-more assumptions in the
GGM.

Lemma 1. Let D1, . . . , Dm, Q1, . . . , Qq+1 ∈ Zp[X1, . . . ,Xn] be of degree 1; let
C be as defined in (2) and (3). Assume Qq+1 ∩ C 6= ∅ and ~Qq+1 is linearly
independent of (~Qj)j∈[1,q]. If ~x is picked uniformly at random from C then

p−m
p2 ≤ Pr

[
Qq+1(~x) = 0

]
≤ 1
p−m

.

Proof. Since ~x is picked uniformly in C, we have Pr[~x ∈ Qq+1] = |Qq+1 ∩ C|/|C|.
We first bound |C|. We define Q :=

⋂
j∈[1,q]Qj , which is thus an affine space,

and let d := dim(Q) denote its dimension. Thus, Q contains pd elements. We
rewrite C:

C = Q \
(⋃
i∈[1,m]

(Di ∩Q)
)
.

11

Now for a fixed i ∈ [1,m] we bound the size of Di ∩ Q. Since the polynomial
Di has degree 1 by definition, Di is a hyperplane. There are three cases: either
Q ⊆ Di, which means C = ∅. This contradicts the premise of the lemma, namely
Qq+1 ∩ C 6= ∅. Since Di is an hyperplane, the remaining cases are Q ∩ Di = ∅
and Q∩Di has dimension dim(Q)− 1 = d− 1. In both cases Di ∩Q contains at
most pd−1 elements.

When we remove the sets (Di)i∈[1,m] from Q, we remove at most mpd−1

elements, which yields
pd −mpd−1 ≤ |C| ≤ pd . (4)

We now use the same method to bound |C ∩Qq+1|. We define Q′ = Qq+1 ∩Q.
Since ~Qq+1 is linearly independent of (~Qj)j∈[1,m], we get dim(Q′) = d− 1.

For a fixed i ∈ [1,m], since by assumption Qq+1 ∩ C 6= ∅, we can proceed as
with Q above: either Q′ ∩ Di = ∅ or Q′ ∩ Di has dimension d− 2, which yields

pd−1 −mpd−2 ≤ |Qq+1 ∩ C| ≤ pd−1 . (5)

Combining equations (4) and (5) we obtain the following, which concludes
the proof:

pd−1 −mpd−2

pd
≤ |Qq+1 ∩ C|

|C|
≤ pd−1

pd −mpd−1 .

3.2 Proof Overview

The generic game. We prove a lower bound on the computational complexity
of the OMDL game in generic groups in the sense of Shoup [55]. We follow the
notation developed by Boneh and Boyen [13] for this proof.

In the generic group model, elements of G are encoded as arbitrary unique
strings, so that no property other than equality can be directly tested by the
adversary. The adversary performs operations on group elements by interacting
with an oracle called GCmp.

To represent and simulate the working of the oracles, we model the opaque
encoding of the elements of G using an injective function Ξ : Zp → {0, 1}dlog2(p)e

where p is the group order. Internally, the simulator represents the elements of G
by their discrete logarithms relative to a fixed generator G. This is captured by
Ξ, which maps any integer a to the string ξ := Ξ(a) representing a ·G. In the
game we will use an encoding procedure Enc to implement Ξ.

We specify the game OMDL in the GGM in Fig. 3. In contrast to Fig. 1 there
are no more group elements. The game instead maintains discrete logarithms
a ∈ Zp and gives the adversary their encodings Ξ(a), which are computed by
the procedure Enc. The challenger uses the variable j to represent the number
of created group elements, which is incremented before each call to Enc. The
procedure Enc then encodes the latest scalar aj . If aj has already been assigned
a string ξ, then Enc() outputs ξ, else it outputs a random string different from
all previous ones. For this, the game maintains a list (ai, ξi)0≤i≤j of logarithms
and their corresponding encodings.

12

Game OMDLGGMAGrGen(λ)

~x := () ; a0 := 1
j := 0 ; q := 0 ; n := 0

~y ← AChal,DLog,GCmp(Enc())

return
(
~y = ~x ∧ q < n

)

Oracle Chal()

n := n+ 1

xn
$← Zp

j := j + 1
aj := xn

return Enc()

Oracle DLog(ξ)

if ξ /∈ {ξi}i∈[0,j]

then return ⊥
q := q + 1
i := min{k ∈ [0, j] | ξ = ξk}
return ai

Enc()

if ∃ i ∈ [0, j − 1] : aj = ai

then ξj := ξi

else

ξj
$← {0, 1}log(p) \ {ξi}i∈[0,j−1]

return ξj

Oracle GCmp(ξ, ξ′, b)

if ξ /∈ {ξi}i∈[0,j] or ξ′ /∈ {ξi}i∈[0,j]

then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}
i′ := min{k ∈ [0, j] | ξ′ = ξk}

j := j + 1 ; aj := ai + (−1)bai′
return Enc()

Fig. 3. The OMDL game in the GGM

OMDLGGM initializes j = 0 and a0 = 1, and runs the adversary on input
ξ0 ← Enc() (ξ0 is thus the encoding of the group generator). The oracle Chal
increments a counter of challenges n, samples a new value xn and returns its
encoding by calling Enc(). Since it creates a new element, it first increments j
and defines the aj := xn. The oracle DLog is called with a string ξ and returns ⊥
if the string is not in the set of assigned strings {ξi}i∈[0,j]. Else, it picks an index i
(concretely: the smallest such index) such that ξi = ξ and returns ai, which is the
Ξ-preimage of ξ (and thus the logarithm of the group element encoded by ξ).

The adversary also has access to the oracle GCmp for group operations,
which takes as input two strings ξ and ξ′ and a bit b, which indicates whether to
compute the addition or the subtraction of the group elements. The oracle gets
the (smallest) indexes i and i′ such that ξ = ξi and ξ′ = ξi′ , it increments j, sets
aj := ai + (−1)bai′ and returns Enc(), which computes the encoding of aj .

Proof overview. The goal of our proof is to simulate the game without ever
computing scalars ai by replacing them with polynomials Pi and show that
with overwhelming probability this does not affect the game. Game0 (defined by
ignoring all the boxes, except the dashed ones, in Fig. 4) is the same game as
OMDLGGM, except for two syntactical changes, which will be useful in the proof.
The main modification is that we now make n calls to the oracle DLog after
A outputs its answer ~y: for i ∈ [1, n] we set xi := DLog(ξji

), where indices ji
are defined in the oracle Chal so that aji

= xi; thus DLog(ξji
) always outputs

13

aji
= xi, meaning this does not affect the game. Second, as calls to DLog

increase q, we put the condition “if q < n then return 0” before those calls.

Introducing polynomials. Game1, defined in Fig. 4 by only ignoring the gray
boxes, introduces the polynomials Pi, where P0 = 1 represents a0 = 1. In the
n-th call to Chal, the game defines a new polynomial Pj = Xn, which represents
the value xn. We thus have

Pi(~x) = ai , (6)

and in this sense the polynomial Pi represents the scalar ai (and thus implicitly
the group element aiG). The group-operation oracle maintains this invariant;
when computing aj := ai + (−1)bai′ , it also sets Pj := Pi + (−1)bPi′ .

Note that there are many ways to represent a group element aG by a polyno-
mial. E.g., the first challenge x1G is represented by both the polynomial X1 and
the constant polynomial x1. Intuitively, since x1 is a challenge, it is unknown to A,
and as long as A does not query DLog(ξ), with ξ := Ξ(x1), it does not know that
the polynomials X1 and x1 represent the same group element. Game1 introduces
a list L that represents this knowledge of A. E.g., when A calls DLog(Ξ(x1)),
the game will append the polynomial X1−x1 to the list L. More generally, on call
DLog(ξi) it appends Pi − Pi(~x) to L, which represents the fact that A knows
that the polynomial Pi − Pi(~x) represents the scalar 0 and the group element
0G. The list L will be used to ensure consistency when we replace scalars by
polynomials in the game.

Recall that our goal is to have the challenger only deal with polynomials when
simulating the game for A. As this can be done without actually defining the
challenge ~x, the challenger could then select ~x after A gave its output, making it
impossible for A to predict the right answer.

This is done in the final game Game4, defined in Fig. 6, where the challenger is
in the same position as A: it does not know that x1 is the answer to the challenge
represented by the polynomial X1 until DLog(ξ) is called with ξ := Ξ(x1). In
fact, x1 is not even defined before this call, and, more generally, ~x does not exist
until the proper DLog queries are made.

To get to Game4, we define two intermediate games. We will modify procedure
Enc so that it later deals with polynomials only (instead of their evaluations, as
~x will not exist). Because of this, it will be unknown whether Pj(~x) = Pi(~x) for
some i ∈ [0, j − 1], unless Pj − Pi ∈ Span(L), since both the challenger and the
adversary are aware that all polynomials in L evaluate to 0 at ~x.

However, it can happen that, when ~x is defined later, Pj(~x) = Pi(~x). That is,
in the original game, we would have had aj = ai, but in the final game, Enc is
not aware of this. This is precisely when the simulation fails, and we abort the
game. We will then bound the probability of this event, using Lemma 1.

In “typical” GGM proofs an abort happens when Pj(~x) = Pi(~x) and Pj 6= Pi.
For OMDL, because the adversary might have information on the ~x (and the
challenger is aware of this), we allow that there are Pj 6= Pi for which the current
knowledge on ~x lets us deduce Pj(~x) = Pi(~x). With the formalism introduced
above this corresponds exactly to the situation that Pi − Pj ∈ Span(L). We

14

Game0, Game1 , Game2

~x := () ; a0 := 1

j := 0 ; q := 0 ; n := 0

P0 := 1 ; L := ∅

~y ← AChal,DLog,GCmp(Enc())
if q ≥ n then return 0
for i ∈ [1, n]
xi := DLog(ξji)

return ~y = ~x

Oracle Chal()

n := n+ 1

xn
$← Zp

jn := j

j := j + 1
aj := xn

Pj := Xn

return Enc()

Oracle DLog(ξ)

if ξ /∈ {ξi}i∈[0,j]

then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}
q := q + 1

v := ai v := Pi(~x)

if Pi ∈ Span(1, L) then

Let (αk)q−1
k=0 ∈ Zqp s.t.

Pi = α0 +
∑q−1

k=1 αkQk

v := α0

Qq := Pi − v

L = L ∪ {Pi − v}

return v

Enc() // outputs ξj := Ξ(aj)

// Only in Game0 and Game1

if ∃i ∈ [0, j − 1] : aj = ai

then ξj := ξi

if ∃i ∈ [0, j − 1] : Pj(~x) = Pi(~x)
and Pj − Pi /∈ Span(L)

then abort game

if ∃i ∈ [0, j − 1] : Pj − Pi ∈ Span(L)
then ξj := ξi

else ξj
$← {0, 1}log(p) \ {ξi}i∈[0,j−1]

return ξj

Oracle GCmp(ξ, ξ′, b)

if ξ /∈ {ξi}i∈[0,j] or ξ′ /∈ {ξi}i∈[0,j]

then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}
i′ := min{k ∈ [0, j] | ξ′ = ξk}

j := j + 1 ; aj := ai + (−1)bai′

Pj := Pi + (−1)bPi′

return Enc()

Fig. 4. Game0 (which only includes the dashed boxes) is the GGM version of OMDL.
Game1 (including all but the gray boxes) introduces the polynomials that represent
the information that A obtains, and aborts when Game0 cannot be simulated with
polynomials. In Game2 (including all but the dashed boxes) we eliminate the use of
scalars (except for the abort condition) in oracles Enc and DLog.

introduce this abort condition in the procedure Enc in Game1 (Fig. 4). Because
in the “ideal” game Game4 (Fig. 6), there are no more values ai, we will express
the abort condition differently (namely in oracle DLog) and argue that the two
conditions are equivalent.

15

Eliminating uses of scalars. Using the abort condition in Game1, we can
replace some uses of the scalars ai by their representations as polynomials Pi.
This is what we do in Game2, (Fig. 4, including all boxes except the dashed box),
which eliminates all occurrences of ai’s. In Enc, since the game aborts when
Pj(~x) = Pi(~x) and Pj −Pi /∈ Span(L), and because when Pj −Pi ∈ Span(L) then
Pj(~x) = Pi(~x), we can replace the event Pj(~x) = Pi(~x) by Pj − Pi ∈ Span(L).
Intuitively, we can now think of Enc() as encoding the polynomial Pj instead of
the scalar aj .

We next modify the oracle DLog. The first change is that instead of returning
ai the oracle uses Pi(~x), which is equivalent by (6). The second change is that on
input ξ, oracle DLog checks if A already knows the answer to its query, in which
case it computes the answer without using ~x. E.g., assume A has only made
one query Chal(), and thus q = 0 and L = ∅: if A now queries DLog(ξ) with
ξ := Ξ(x1), the oracle first checks if Pi = X1 ∈ Span(1, L), (where i is the current
number of group elements seen by the adversary), which is not the case, and so it
computes v := Pi(~x) = x1. It then adds the polynomial Q1 := X1 − x1 to L and
returns x1. If for example A makes another call DLog(ξ′) with ξ′ := Ξ(2x1 + 2),
then it knows that the answer should be 2x1 + 2. And indeed, the oracle DLog
checks if 2X1 +2 ∈ Span(1, L), and since this is the case, it gets the decomposition

2X1 + 2 = (2x1 + 2) + 2Q1 = α0 + α1Q1

with α0 = 2x1 + 2 and α1 = 2. The oracle uses this decomposition to compute
its answer v := α0 = 2x1 + 2.

More generally, on input ξi, the oracle DLog checks if Pi ∈ Span(1, L). If so,
it computes the answer using the decomposition of Pi in Span(1, L); else it uses
~x and outputs ai = Pi(~x).

We have now arrived at a situation close to the “ideal” game, where the
challenger only uses polynomials. The only uses of scalars are the abort condition
in Enc (since it compares Pj(~x) and Pi(~x)) and in DLog, when computing the
logarithm of an element that is not already known to A. Towards our goal of
simulating the game without defining ~x, we modify those two parts next.

Changing the abort condition. The aim of Game3 is precisely to modify the
abort condition so that it does not use ~x anymore. Fig. 5 recalls Game2 and defines
Game3 by not including the dashed and the gray box. In Game3 the challenger
does not abort in the procedure Enc. This means that if Pj − Pi /∈ Span(L) for
some i, the challenger creates a string ξj 6= ξi even when Pj(~x) = Pi(~x). This
means that the simulation of the game is not correct anymore; but we will catch
these inconsistencies and abort in the oracle DLog.

For concreteness consider the following example: let ~x = (x1) and suppose A
built the polynomials Pi1 = x1 using the oracle GCmp and Pi2 = X1 using the
oracle Chal; suppose also thatA has not queried DLog yet, thus L = ∅. If i1 < i2
then Game2 aborts on the call Enc() which encodes Pi2 , since Pi1(~x) = Pi2(~x)
and Pi2 − Pi1 /∈ Span(L). In contrast, in Game3 the challenger defines ξi1 6= ξi2 ,
which is inconsistent. But the abort will now happen during a call to DLog.

16

Suppose A queries DLog(ξi3), with ξi3 = Ξ(2X1 + 2). Game3 now adds the
polynomial Q1 = 2X1 + 2 − (2x1 + 2) = 2(X1 − x1) to L and checks for an
inconsistency of this answer with all the polynomials that A computed. Since
it finds that Pi1 − Pi2 = x1 − X1 ∈ Span(L) but ξi1 6= ξi2 , the game aborts. But
Game3 should also abort even if A does not query the oracle DLog. This was
precisely the reason for adding the final calls of the game to the oracle DLog in
Game0. Since Pji

= Xi and the challenger calls xi ← DLog(ξji
) for i ∈ [1, n] at

the end, the challenger makes the query DLog(ξj1), which adds X1 − x1 to L,
after which we have Pi1 − Pi2 ∈ Span(L) and therefore an abort.

More generally, in Game3 the oracle DLog aborts if there exists (i1, i2) ∈
[0, j]2 such that Pi1 −Pi2 ∈ Span(L) and ξi1 6= ξi2 . In the proof of Theorem 1 we
show that this abort condition is equivalent to the abort condition in Game2.

Eliminating all uses of ~x. In Game3 the only remaining part that uses ~x is
the operation v := Pi(~x) in oracle DLog. Our final game hop will replace this
by an equivalent operation. In Game4, also presented in Fig. 5, the challenger
samples v uniformly from Zp instead of evaluating Pi on the challenge. In the
proof of Theorem 1, we will show that since the distribution of Pi(~x) is uniform
for a fixed Pi, this change does not affect the game.

This is the only difference between Game4 and Game3, but since this modi-
fication removes all uses of ~x for the challenger, we rewrite Game4 explicitly in
Fig. 6, where we define ~x only after A outputs ~y. Game4 is thus easily seen to be
impossible (except with negligible probability) to win for A. The reason is that
A cannot make enough queries to DLog to constrain the construction of ~x at
the end of the game and therefore cannot predict the challenge ~x. We now make
the intuition given above formal in the following theorem.

3.3 Formal Proof

Theorem 1. Let A be an adversary that solves OMDL in a generic group of
prime order p, making at most m oracle queries. Then

AdvOMDLGGM
A ≤ m2

p−m2 + 1
p
.

Proof of Theorem 1. The proof will proceed as follows: we first compute the
statistical distance between Game0, which is OMDLGGM, and Game1 (Fig. 4);
we then show that Game1, Game2, Game3 and Game4 (Figures 4 and 5) are
equivalently distributed; and finally we upper-bound the probability of winning
Game4 (Fig. 6).

Preliminary results. We start with proving three useful invariants of the
polynomials Pi and the set L which are introduced in Game1. The first one is:

∀ i ∈ [0, j] : Pi(~x) = ai . (7)

17

Game2, Game3 , Game4

~x := ()
j := 0 ; q := 0 ; n := 0
P0 := 1 ; L := ∅

~y ← AChal,DLog,GCmp(Enc())
if q ≥ n then return 0
for i ∈ [1, n]
xi := DLog(ξji)

return ~y = ~x

Oracle Chal()

j := j + 1 ; n := n+ 1

xn
$← Zp ; jn := j

Pj := Xn
return Enc()

Oracle DLog(ξ)

if ξ /∈ {ξi}i∈[0,j] then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}
q := q + 1

v := Pi(~x) ; v $← Zp

if Pi ∈ Span(1, L) then
let (αk)q−1

k=0 ∈ Zqp s.t. Pi = α0 +
∑q−1

k=1 αkQk

v := α0

Qq := Pi − v ; L = L ∪ {Pi − v}

// Abort condition in Game3 and Game4 only

if ∃(i1, i2) ∈ [0, j]2 : Pi1 − Pi2 ∈ Span(L)
and ξi1 6= ξi2

then abort game

return v

Enc() // outputs ξj which encodes Pj

// Abort condition in Game2 only

if ∃i ∈ [0, j − 1] : Pj(~x) = Pi(~x)
and Pj − Pi /∈ Span(L)

then abort game

if ∃i ∈ [0, j − 1] : Pj − Pi ∈ Span(L)
then ξj := ξi

else

ξj
$← {0, 1}log(p) \ {ξi}i∈[0,j−1]

return ξj

Oracle GCmp(ξ, ξ′, b)

if ξ /∈ {ξi}i∈[0,j] or ξ′ /∈ {ξi}i∈[0,j]

then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}
i′ := min{k ∈ [0, j] | ξ′ = ξk}
j := j + 1

Pj := Pi + (−1)bPi′
return Enc()

Fig. 5. In Game3 we move the abort condition from Enc to the oracle DLog, so it can
be checked without using scalars. The only remaining use is then “v := Pi(~x)” in oracle
DLog. Game4 instead pick the output x uniformly at random.

This holds in Game1 and justifies replacing all occurrences of ai by Pi(~x) in
Game2 in Fig. 5. To prove this, we show that each time the games introduce a
new polynomial Pj , we have Pj(~x) = aj .

We prove this by induction. Initially, P0 = 1 and a0 = 1 so the statement
holds for j = 0. Now suppose it is true for all i ∈ [0, j − 1]. We show it is true
for j. Polynomial Pj can be built either by oracle Chal or by oracle GCmp:

18

Game4

j := 0 ; q := 0 ; n := 0
P0 := 1 ; L := ∅

~y ← AChal,DLog,GCmp(Enc())
if q ≥ n then return 0
for i ∈ [1, n]
xi := DLog(ξji)

return ~y = ~x

Oracle Chal()

j := j + 1 ; n := n+ 1
Pj := Xn ; jn := j

return Enc()

Oracle DLog(ξ)

if ξ /∈ {ξi}i∈[0,j] then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}

q := q + 1 ; v $← Zp
if Pi ∈ Span(1, L) then

let (αk)q−1
k=0 ∈ Zqp s.t. Pi = α0 +

∑q−1
k=1 αkQk

v := α0

Qq := Pi − v ; L = L ∪ {Pi − v}

if ∃(i1, i2) ∈ [0, j]2 : Pi1 − Pi2 ∈ Span(L)
and ξi1 6= ξi2

then abort game
return v

Enc() // outputs ξj which encodes Pj

if ∃i ∈ [0, j − 1] : Pj − Pi ∈ Span(L)
then ξj := ξi

else

ξj
$← {0, 1}log(p) \ {ξi}i∈[0,j−1]

return ξj

Oracle GCmp(ξ, ξ′, b)

if ξ /∈ {ξi}i∈[0,j] or ξ′ /∈ {ξi}i∈[0,j]

then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}
i′ := min{k ∈ [0, j] | ξ′ = ξk}
j := j + 1

Pj := Pi + (−1)bPi′
return Enc()

Fig. 6. Final game Game4 does not use ~x in the oracles anymore. It defines the challenge
~x after A gave its output and this is what makes it simple for us to prove it is hard to
win for A.

– In oracle Chal, Pj := Xn and aj := xn so we have Pj(~x) = xn = aj .
– In oracle GCmp, Pj := Pi + (−1)bPi′ and aj := ai + (−1)bai′ so we have
Pj(~x) := Pi(~x) + (−1)bPi′(~x) = ai + (−1)bai′ = aj .

This proves (7).
We next show that the following holds in Game1, Game2 and Game3:

∀Q ∈ Span(L), Q(~x) = 0 (8)

(in the other games either L or ~x are not defined). For L = {Q1, . . . , Qq} if
Q ∈ Span(L) then Q =

∑q
k=1 αkQk. To show (8), it suffices to show that for all

k ∈ [1, q] we have Qk(~x) = 0.
For k ∈ [0, q], Qk is defined during the k-th call to DLog on some input ξ. In

Game1, the oracle finds i such that ξi = ξ and sets v := ai and Qk := Pi−v, so we

19

get Qk(~x) = Pi(~x)−ai. Using the first result (7), we get that (8) holds. In Game2
and Game3 the oracle sets v := Pi(~x) so we directly get Qk(~x) = Pi(~x)−Pi(~x) = 0

The third result we will use holds (assuming the game did not abort) in
Game1, Game2, Game3 and Game4:

∀j ≥ 1 ∀i ∈ [0, j − 1] : ξj = ξi ⇔ Pj − Pi ∈ Span(L) . (9)

We first prove

∀j ≥ 1 ∀i ∈ [0, j − 1] : ξj = ξi ⇒ Pj − Pi ∈ Span(L)

by induction. We show that this holds for j = 1 and all other j > 0 and suppose
that for some i∗ ∈ [0, j − 1], ξj = ξi∗ . We show that Pj − Pi∗ ∈ Span(L).

– In Game2, Game3 and Game4, since ξj is not a new random string when it is
defined, thus for some i1 ∈ [0, j − 1] we had Pj − Pi1 ∈ Span(L) and so the
game defined ξj := ξi1 . This implies that ξi1 = ξi∗ , and since i1 < j, using
the induction hypothesis, we get that Pi1 − Pi∗ ∈ Span(L) and furthermore

Pj − Pi∗ = (Pj − Pi1)− (Pi1 − Pi∗) ∈ Span(L) .

Now the situation is simpler when j = 1: we must have i1 = i∗ = 0 so

Pj − Pi1 = Pj − Pi∗ = P1 − P0 ∈ Span(L) .

– In Game1 the proof is almost the same: since ξj is not a new random string,
thus for some i1 ∈ [0, j− 1] we had Pj(~x) = Pi1(~x), so the game defined ξj :=
ξi1 . Since the game did not abort, “Pj(~x) = Pi1(~x) and Pj − Pi1 /∈ Span(L)”
does not hold, and thus Pj − Pi1 ∈ Span(L). From here the proof proceeds
as for the other games above, and thus Pj − Pi∗ ∈ Span(L). When j = 1, we
have i∗ = 0 and P1 − P0 ∈ Span(L), as otherwise the game aborts.

We now prove the other implication:

∀j ≥ 1 ∀i ∈ [0, j − 1] : Pj − Pi ∈ Span(L)⇒ ξj = ξi ,

again by induction. Using the same method as before we can argue that this is
true for j = 1. For j > 1, when Enc() defines ξj , if for some i∗ ∈ [0, j − 1] we
have Pj − Pi∗ ∈ Span(L) then we show that ξj is assigned ξj = ξi∗ .

– In Game2, Game3 and Game4, since for some i1 ∈ [0, j−1] : Pj−Pi1 ∈ Span(L),
the game defines ξj := ξi1 . And since

Pi∗ − Pi1 = (Pi∗ − Pj) + (Pj − Pi1) ∈ Span(L) ,

by induction we get ξi1 = ξi∗ which yields ξj = ξi∗ .
– In Game1, since we know that (Pj −Pi∗)(~x) = 0 from the (8), we get that for

some i1 ∈ [0, j − 1] : Pj(~x) = Pi1(~x). Since the game did not abort, we know
that Pj − Pi1 ∈ Span(L), so by the same argument as before, we get ξj = ξi∗ .

20

Game0 to Game1. We now compare Game0 to Game1. The only difference be-
tween the two is when Game1 aborts in the procedure Enc() on event

∃i ∈ [0, j − 1] such that Pj(~x) = Pi(~x) and Pj − Pi /∈ Span(L) . (10)

We call this event F . Since Enc is called at most m times, we get:

AdvGame0
A ≤ AdvGame1

A +m · Pr[F] . (11)

We now upper-bound Pr[F]. Before a call to Enc, the oracle defines Pj .
Consider a fixed i ∈ [0, j − 1] and define P := Pj − Pi. We will upper-bound the
probability that

Pj(~x)− Pi(~x) = P (~x) = 0

with P := Pj − Pi /∈ Span(L).
Since A does not know ~x one might consider applying the Schwartz-Zippel

lemma. But we cannot, since A knows information on ~x. From A’s point of view,
~x is not uniformly chosen from Znp , since it satisfies Q(~x) = 0 for all Q ∈ L
(using (8)). We write L = {Q1, . . . , Qq}, and using the notation from Lemma 1
Qq+1 := P .
A also knows that if for some indexes i1, i2 it was given ξi1 6= ξi2 then

Pi1(~x) 6= Pi2(~x). We can reformulate this by writing D~ı = Pi1 − Pi2 for ~ı ∈ I :=
{(i1, i2) ∈ [0, j − 1]2 | ξi1 6= ξi2}. A knows that D~ı(~x) 6= 0. Using the notation of
Lemma 1 we get that

~x ∈ C :=
(⋂
j∈[1,q]

Qj
)
\
(⋃
i∈I
Di
)
.

Our goal is to apply Lemma 1 to upper-bound Pr~x←C [P (~x) = 0]. We need to
verify that the three premises of the lemma are satisfied, which are: from A’s
point of view, ~x ∈ C is picked uniformly at random, Qq+1 ∩ C 6= ∅ and ~Qq+1 is
independent of (~Qi)i∈[1,q].

~x is chosen uniformly in C. To show this, we fix the randomness (of the
challenger and the adversary) of the game (which means the order in which the
ξi are picked is deterministic) and we consider the transcript π(~x) of what A sees
during the game when the secret is chosen as ~x: π(~x) = (ξ0, . . . , ξj−1, v1, . . . , vq)
(In this transcript, the strings ξi are ordered and so are the vi, but we implicitly
suppose that before the query vk there was a query vk−1 or ξik and after the
query vk there was either a query vk+1 or ξi′

k
. We do not formalize this.)

The transcript π corresponds to all the output of the oracles that were
given to A: The ξi are the outputs of GCmp and Chal, and the vi are the
outputs of DLog. The transcript π(~x) only depends on the challenge ~x. What
is important to notice is that for all ~y ∈ C: π(~y) = π(~x). Indeed, if we call
π(~y) = (ξ′0, . . . , ξ′j−1, v

′
1, . . . , v

′
q) we can show by induction that ξ′i = ξi and

v′k = vk for all i ∈ [1, j − 1] and k ∈ [1, q].

21

– Let k ∈ [1, q]; we show that vk = v′k: in both challenges ~x and ~y, since the
transcript A received is the same by the induction hypothesis, it behaves
the same way and calls DLog on input ξ. The oracle DLog then picks i =
min{j | ξj = ξ} which is the same in both cases by the induction hypothesis.
DLog computes vk = Pi(~x) and defines Qi := Pi − vk for the challenge ~x
while it computes v′k = Pi(~y) and Q′i := Pi−v′k for the challenge ~y. Now Since
~y ∈ C, we have in particular ~y ∈ Qi, so we know that Qk(~y) = Pi(~y)− vk = 0.
This gives Pi(~y) = v′k = vk and Q′k = Qk.

– Let k ∈ [1, j − 1]; we show that ξk = ξ′k: for both challenges ~x and ~y, since
the transcript A received is the same by induction hypothesis, it behaves
the same way and calls either Chal or GCmp. In both cases the the game
creates a polynomial Pk and calls the procedure Enc(), for which there are
two cases:
1: ∀ i ∈ [0, k − 1] : Pk(~x) 6= Pi(~x). The game with challenge ~x outputs a new

random ξk, which means ξk 6= ξi for i ∈ [1, k − 1]. Since ~y ∈ C, we know
that for all i ∈ [0, k− 1], ~y /∈ Di,k = {~z : (Pi −Pk)(~z) = 0 and ξi 6= ξk}
This means that for all i ∈ [0, k−1], since ξi 6= ξk, we have Pi(~y) 6= Pk(~y),
so the game also chooses ξ′k as a new random string. Since we fixed the
randomness of the game, we get ξk = ξ′k.

2: ∃ i∗ ∈ [0, k − 1] : Pk(~x) = Pi∗(~x). The game defines ξk := ξi for the
challenge ~x. Since the game did not abort for k < j, we know that
Pk − Pi∗ ∈ Span(L). Now since L = (Qi)i and ~y ∈

⋂
i∈[1,q]Qi, we also

get (Pk − Pi∗)(~y) = 0. So the game defines ξ′k := ξ′i = ξi = ξk, by the
induction hypothesis and the preliminary result (9).

In both cases we get that ξk = ξ′k.

Since the transcript that A sees is the same for all elements in C, A can only
make a uniform guess on which element of C is the challenge. Thus from A’s
point of view, ~x is chosen uniformly at random in C.

Qq+1 ∩ C 6= ∅. Since Qq+1 = {~x ∈ Zp : P (~x) = 0}, if we had C ∩ Qq+1 = ∅, then
P (~x) 6= 0 for all ~x ∈ C, and thus Pr

~x
$←C

[P (~x) = 0] = 0. In this case, there is no
need to upper-bound the probability, which is why we assume that Qq+1∩C 6= ∅.

~Qq+1 is independent of (~Qi)i∈[1,q]. Recall that ~P = (pk)k∈[1,n] is the vector
representing the polynomial P − P (~0) =

∑n
k=1 pkXk. We assume that ~Qq+1 is

dependent of (~Qi)i∈[1,q] and then show that this contradicts the previous premise
Qq+1 ∩ C 6= ∅. Assume thus that for some α:

Qq+1 −Qq+1(~0) =
q∑

k=1
αk
(
Qk −Qk(~0)

)
.

With α := Qq+1(~0) +
∑q
k=1 αkQk(~0) and Q :=

∑q
k=1 αkQk, we can write this

as Qq+1 = α+Q with α ∈ Zp and Q ∈ Span(L). Now since we are in event F ,
defined in (10), we have Qq+1 = P /∈ Span(L), which implies α 6= 0 (otherwise

22

P = Q ∈ Span(L)). Since C ⊂ Qi we have that for all i ∈ [1, q] and all ~x ∈ C:
Qi(~x) = 0, and thus Q(~x) = 0. From this, we have Qq+1(~x) = α + Q(~x) = α.
Thus, Qq+1(~x) 6= 0 for all ~x ∈ C, which implies C ∩ Qq+1 = ∅, which contradicts
the previous assumption. We thus proved that ~Qq+1 is independent of (~Qi)i∈[1,q].

Applying Lemma 1. Since all its premises are satisfied, we can apply Lemma 1
and obtain:

Pr
~x←C

[
P (~x) = 0

]
= Pr
~x←C

[
Qq+1(~x) = 0

]
≤ 1
p− |I|

,

with |I| ≤ j2 ≤ m2. Since we need to test this with P = Pj−Pi for all i ∈ [0, j−1],
we get Pr[F] ≤ m

p−m2 and from (11):

AdvGame0
A ≤ AdvGame1

A + m2

p−m2 . (12)

Game1 to Game2. There are three changes in Game2, which we show do not
affect the distributions of the game. First, we replace ai by Pi(~x) in oracle DLog,
which is equivalent by (7).

Second, in Enc, we replace the condition

if ∃i ∈ [0, j − 1] : Pj(~x) = Pi(~x) then ξj := ξi

by
if ∃i ∈ [0, j − 1] : Pj − Pi ∈ Span(L) then ξj := ξi .

We show that this new condition does not affect the output of Enc(). There are
two cases for Pj(~x):

Case 1: ∃i∗ ∈ [0, j − 1] : Pj(~x) = Pi∗(~x). We have either
◦ Pj −Pi∗ ∈ Span(L), and in this case Game1 and Game2 both set ξj = ξi∗

and output ξj using (9); or
◦ Pj − Pi∗ /∈ Span(L), meaning that both Game1 and Game2 abort since

“Pj − Pi∗ /∈ Span(L) and Pj(~x) = Pi∗(~x)” is the abort condition.
Case 2: ∀i ∈ [0, j − 1] Pj(~x) 6= Pi(~x). Since, by 8, all polynomials in Span(L)

vanish at ~x, this implies ∀i ∈ [0, j − 1] : Pj − Pi /∈ Span(L). In this case both
Game1 and Game2 output a random new string ξj .

The third change in Game2, in the oracle DLog, does not change the output
either: in Game1 the DLog oracle always outputs ai = Pi(~x). In Game2, when
Pi ∈ Span(L), the game uses the decomposition Pi = α0 +

∑q−1
k=1 αkQk, and since

Qk(~x) = 0 by (8), it outputs Pi(~x) = α0.
Together this yields:

AdvGame1
A = AdvGame2

A . (13)

Game2 to Game3. In this game hop we move the abort condition from the
procedure Enc to the oracle DLog. We show that the two abort conditions are
equivalent, by showing the two implications of the equivalence:

23

If Game2 aborts then Game3 also aborts. If Game2 aborts, it means that
for a fixed index j∗ the game found i∗ ∈ [0, j∗− 1] such that Pj∗ −Pi∗ /∈ Span(L)
and Pj∗(~x) = Pi∗(~x). We show that Game3 also aborts in this situation. Let
P := Pj∗ − Pi∗ . At the end of Game3 the challenger makes calls to DLog on
each challenge Pji

= Xi. This adds the corresponding polynomials Xi − xi to L
for all i ∈ [1, n]. With P = P (~0) +

∑n
k=1 pkXk, we can write

P =
n∑
k=1

pk(Xk − xk) + P (~0) +
n∑
k=1

pkxk .

Since P (~x) = Pj∗(~x) − Pi∗(~x), we have P (~x) = 0. On the other hand, by
the equation above, we have P (~x) = P (~0) +

∑n
k=1 pkxk. Together, this yields

P =
∑n
k=1 pk(Xk−xk), which means P ∈ Span(L) at the end of the game. At the

time when Game2 would have aborted, we had P /∈ Span(L) and thus the game
attributed two different strings ξi∗ 6= ξj∗ to Pi∗ and Pj∗ , respectively. But at the
end of Game3, when L contains all Xi − xi for i ∈ [1, n], we have P ∈ Span(L).
This means that one call to DLog updated L so that P ∈ Span(L) and when
this happened, since ξi∗ 6= ξj∗ , the abort condition in DLog was satisfied and
the game aborted

If Game3 aborts then Game2 also aborts. If Game3 aborts, then on a call
to DLog we have ∃(i1, i2) ∈ [0, j]2 such that Pi1 − Pi2 ∈ Span(L) and ξi1 6= ξi2 .
From Pi1 − Pi2 ∈ Span(L), using (8) we get Pi1(~x) = Pi2(~x). Suppose i1 < i2.
The challenger in Game2 used the procedure Enc() when the counter j was
equal to i2 to compute ξi2 6= ξi1 . This means that at that moment, L contained
fewer elements and we had Pi2 − Pi1 /∈ Span(L). Since Game2 aborts when
Pi1(~x) = Pi2(~x) and Pi2 − Pi1 /∈ Span(L), thus Game2 aborts in this case.

Combining both implications yields

AdvGame2
A = AdvGame3

A . (14)

Game3 to Game4. The only difference between these games is in the oracle
DLog. Instead of computing v := Pi(~x), Game4 picks a random v

$← Zp. We
prove that after this modification, the distribution of the outputs of oracle
DLog remains the same. The difference between the two games occurs only
when Pi /∈ Span(1, L). Let us bound Pr~x←C

[
Pi(~x) = v in Game3

]
, where ~x ∈ C

represents the information that A knows about ~x, which we previously used in
the first game hop.

We apply Lemma 1 again to bound this probability. Now since the game does
not abort immediately when the inconsistency Pi1(~x) = Pi2(~x) and ξi1 6= ξi2
occurs, the inequalities on the strings level do not give A any information on
what the evaluation Pi(~x) cannot be. This means that C is simpler than in the
first game hop, namely

C =
⋂

i∈[1,q]

Qi .

24

We define Qq+1 := Pi − v and show that once again the three premises of
Lemma 1 hold: ~x ∈ C is picked uniformly at random, Qq+1 ∩ C 6= ∅ and ~Qq+1 is
independent of (~Qi)i∈[1,q].

~x is chosen uniformly in C. To show this, we again fix the randomness of the
game and consider the transcript π that A sees during the game if a particular
~x is chosen: π(~x) = (ξ0, . . . , ξj−1, v1, . . . , vq), which contains all oracle outputs
given to A. We show that for all ~y ∈ C : π(~y) = π(~x). Indeed, for π(~y) =:
(ξ′0, . . . , ξ′j−1, v

′
1, . . . , v

′
q) we show by induction that ξ′i = ξi and v′k = vk for all

i ∈ [1, j − 1] and k ∈ [1, q].

– Let k ∈ [1, q]; then vk = v′k is showed exactly as in the first game hop (on
page 22).

– Let k ∈ [1, j − 1]; we show that ξk = ξ′k: for both challenges ~x and ~y, since
the transcript A received is the same by induction hypothesis, A behaves the
same way and calls either Chal or GCmp. In both cases the game creates a
polynomial Pk and calls Enc(), for which there are two cases:
1: ∀ i ∈ [0, k − 1] : Pk − Pi /∈ Span(L). Since this condition is independent

of ~x and ~y, for both the game outputs a new random string ξk and ξ′k.
Since we fixed the randomness of the game, we get ξk = ξ′k.

2: ∃i∗ ∈ [0, k− 1] : Pk−Pi∗ ∈ Span(L). In this case the game defines ξk := ξi
and ξ′k := ξ′i for both challenge ~x and ~y. We get ξ′k := ξ′i = ξi = ξk by the
induction hypothesis and (9).

In both cases we thus have ξk = ξ′k.

As in first game hop, we conclude that A cannot distinguish between two different
values ~x ∈ C and so we can consider ~x to be chosen uniformly at random in C.

~Qq+1 is linearly independent of (~Qi)i∈[1,q]. Recall that Pi /∈ Span(1, L)
and Qq+1 := Pi − v. If ~Qq+1 were linearly dependent of (~Qi)i∈[0,j], then (using
the same method as in the first game hop) we would have Qq+1 = Pi−v = α+Q
with α ∈ Zp and Q ∈ Span(L). As this contradicts Pi /∈ Span(1, L), we conclude
that ~Qq+1 is linearly independent of (~Qi)i∈[1,q].

Qq+1 ∩ C 6= ∅. C =
⋃
i∈[1,q]Qi is an affine space and ~Qq+1 is linearly independent

of (~Qi)i∈[0,j]. This implies that Qq+1 ∩ C has dimension dim(C) − 1 and thus
Qq+1 ∩ C 6= ∅.

Applying Lemma 1. Since its three premises are satisfied, Lemma 1 with
M := 0 yields:

Pr[Qq+1(~x) = 0]~x←C = Pr
~x←C

[
Pi(~x) = v in Game3

]
= 1
p
.

This means that in Game3 the distribution of Pi(~x) is uniform, so the change
we make does not affect the overall distribution of the game. We thus have

AdvGame3
A = AdvGame4

A . (15)

25

Analysis of Game4. We prove that A wins Game4 at most with negligible prob-

ability 1
p . To do this, we prove that at least one component of the vector ~x is

picked uniformly at random after A outputs ~y.
When A outputs ~y, L contains q elements, so dim(Span(L)) ≤ q. Since

q < n, Span(1, L) has dimension at most q + 1 and therefore at most n when
the adversary outputs the vector ~y. Since the dimension of Span(X1, . . . ,Xn)
is n and 1 /∈ Span(X1, . . . ,Xn), we get that Span(X1, . . . ,Xn) is not contained
in Span(1, L). This means that there will be at least one index i ∈ [1, n] such
that Xi /∈ Span(1, L). We choose the smallest index i that verifies this. Then the
oracle DLog outputs a randomly sampled value xi when called on ξji . This xi
is sampled randomly after the i-th coefficient of vector ~y output by A and we
obtain: Pr[~x = ~y] ≤ 1

p . This yields:

AdvGame4
A ≤ 1

p
. (16)

The theorem now follows from Equations (12), (13), (14), (15), and (16)

4 OMCDH in the GGM

The OMCDH assumption (defined in Fig. 2), though similar to OMDL, is slightly
more complex. In OMDL the adversary has access to a DLog oracle and must
solve DLog challenges; in OMCDH the adversary has access to a CDH oracle and
must solve CDH challenges. This CDH oracle enables the adversary to construct
(encodings of) group elements corresponding to high-degree polynomials: on input
(Ξ(x), Ξ(y)), the oracle returns Ξ(xy), which in the “ideal” game is encoded as
the product of the polynomials representing x and y. This makes using known
proof techniques in the GGM impossible, since if their degree is not linearly
bounded, A can build non-zero polynomials that evaluate to zero on the challenge
with non-negligible probability. (E.g., Xp − X evaluates to 0 everywhere in Zp.)

Given this, we can neither use the Schwartz-Zippel lemma (as it would only
yield a non-negligible bound on the adversary’s advantage) nor Lemma 1 (since
it only applies to polynomials of degree 1). In fact, existing cryptanalysis, such as
the attacks by Maurer and Wolf [40, 38]), precisely uses high-degree polynomials
to break DL in groups of order p (when p − 1 is smooth) when given a CDH
oracle.

Since the GGM does not handle high-degree polynomials well, we will analyze
the hardness of OMCDH by considering a stronger assumption instead, which
we call OMCDHDL and define in Fig. 7. This problem is analogous to OMCDH,
except that the CDH oracle is replaced by a DLog oracle. As the adversary has
access to the same oracles as in the OMDL game, it can only build polynomials
of degree at most 1, as seen in our proof of OMDL. In the full version [4] we
show that OMCDHDL implies OMDL and that (modulo a polynomial number of
group operations) OMCDHDL implies OMCDH.

26

Game OMCDHDLAGrGen(λ)

(p,G, G)←GrGen(1λ)
~Z := () ; q := 0
~Z′ ← AChal,DLog(p,G, G)

return
(
~Z = ~Z′ ∧ q < |~Z|

)

Oracle Chal()

x
$← Zp ; X := xG

y
$← Zp ; Y := yG

~Z := ~Z ‖ (xyG)
return (X,Y)

Oracle DLog(X)

q := q + 1
x := logG(X)
return x

Fig. 7. The OMCDHDL problem

In the full version [4] we formally prove the hardness of OMCDHDL in the
generic group model. This is done following the same strategy as for OMDL
in Theorem 1; the games hops are the same, only the final analysis of the last
game is different, since the winning condition is different, which yields a different
winning probability at the end. This is summarized in Theorem 2 below.

Proposition 1 (OMCDHDL implies OMCDH). In a cyclic group of order p,
let A be an adversary that solves OMCDH using at most m group operations and
q calls to DLog. Then there exists an adversary B that solves OMCDHDL using
at most m+ 2qdlog(p)e group operations.

The proof is straightforward; the reduction answers CDH oracle queries by
making queries to its DLog oracle.

Theorem 2. Let A be an adversary that solves OMCDHDL in a generic group
of order p, making at most m oracle queries. Then

AdvOMCDH-GGM
A ≤ 1

p− 1 + 2m
p

+ m2

p−m2 .

A formal proof can be found in the full version [4]. Combining this with
Proposition 1, we obtain the following corollary, which proves the security of
OMCDH in the generic group model.

Corollary 1. Let A be an adversary that solves OMCDHDL in a generic group
of order p, making at most m oracle queries and q CDH oracle queries. Then

AdvOMCDH-GGM
A ≤ 1

p− 1 + 2(m+ 2qdlog(p)e)
p

+ (m+ 2qdlog(p)e)2

p− (m+ 2qdlog(p)e)2 .

Acknowledgements. We would like to thank the reviewers for their valuable
feedback. The second author is supported by the Vienna Science and Technology
Fund (WWTF) through project VRG18-002. This work is funded in part by the
MSR–Inria Joint Centre.

27

References

[1] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure
under the discrete logarithm assumption and a generalized forking lemma. In Peng
Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 449–458.
ACM Press, October 2008.

[2] Foteini Baldimtsi and Anna Lysyanskaya. On the security of one-witness blind
signature schemes. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 82–99. Springer, Heidelberg, December 2013.

[3] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of compu-
tational assumptions in the algebraic group model. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS,
pages 121–151. Springer, Heidelberg, August 2020.

[4] Balthazar Bauer, Georg Fuchsbauer, and Antoine Plouviez. The one-more discrete
logarithm assumption in the generic group model. Cryptology ePrint Archive,
Report 2021/866, 2021. https://ia.cr/2021/866.

[5] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for
identity-based identification and signature schemes. In Christian Cachin and Jan
Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 268–286.
Springer, Heidelberg, May 2004.

[6] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.
The one-more-RSA-inversion problems and the security of Chaum’s blind signature
scheme. Journal of Cryptology, 16(3):185–215, June 2003.

[7] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina
De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399. ACM Press,
October / November 2006.

[8] Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes: Proofs
of security against impersonation under active and concurrent attacks. In Moti
Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 162–177. Springer,
Heidelberg, August 2002.

[9] Mihir Bellare and Sarah Shoup. Two-tier signatures, strongly unforgeable sig-
natures, and Fiat-Shamir without random oracles. In Tatsuaki Okamoto and
Xiaoyun Wang, editors, PKC 2007, volume 4450 of LNCS, pages 201–216. Springer,
Heidelberg, April 2007.

[10] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana
Raykova. On the (in)security of ROS. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages
33–53. Springer, Heidelberg, October 2021.

[11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. Journal of Cryptographic Engineering, 2(2):77–
89, September 2012.

[12] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor,
PKC 2003, volume 2567 of LNCS, pages 31–46. Springer, Heidelberg, January
2003.

[13] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, April
2008.

28

https://ia.cr/2021/866

[14] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 440–456. Springer, Heidelberg, May 2005.

[15] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for
smaller blockchains. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 435–464. Springer, Heidel-
berg, December 2018.

[16] Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith
and Kenneth G. Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages
39–56. Springer, Heidelberg, September 2008.

[17] Emmanuel Bresson, Jean Monnerat, and Damien Vergnaud. Separation results on
the “one-more” computational problems. In Tal Malkin, editor, CT-RSA 2008,
volume 4964 of LNCS, pages 71–87. Springer, Heidelberg, April 2008.

[18] Daniel R. L. Brown. Irreducibility to the one-more evaluation problems: More
may be less. Cryptology ePrint Archive, Report 2007/435, 2007. https://eprint.
iacr.org/2007/435.

[19] David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199–203.
Plenum Press, New York, USA, 1982.

[20] David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 89–105.
Springer, Heidelberg, August 1993.

[21] Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in the
random-permutation, ideal-cipher, and generic-group models. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS,
pages 693–721. Springer, Heidelberg, August 2018.

[22] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory
Neven, and Igors Stepanovs. On the security of two-round multi-signatures. IEEE
Symposium on Security and Privacy, pages 1084–110, 2019.

[23] Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction technique:
The case of Schnorr signatures. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 444–460. Springer,
Heidelberg, May 2013.

[24] Marc Fischlin and Dominique Schröder. On the impossibility of three-move blind
signature schemes. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 197–215. Springer, Heidelberg, May / June 2010.

[25] Nils Fleischhacker, Tibor Jager, and Dominique Schröder. On tight security
proofs for Schnorr signatures. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part I, volume 8873 of LNCS, pages 512–531. Springer, Heidelberg,
December 2014.

[26] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its
applications. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

[27] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures
and signed ElGamal encryption in the algebraic group model. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS,
pages 63–95. Springer, Heidelberg, May 2020.

[28] Masayuki Fukumitsu and Shingo Hasegawa. Impossibility of the provable security of
the Schnorr signature from the one-more DL assumption in the non-programmable
random oracle model. In Tatsuaki Okamoto, Yong Yu, Man Ho Au, and Yannan Li,

29

https://eprint.iacr.org/2007/435
https://eprint.iacr.org/2007/435

editors, ProvSec 2017, volume 10592 of LNCS, pages 201–218. Springer, Heidelberg,
October 2017.

[29] Sanjam Garg, Raghav Bhaskar, and Satyanarayana V. Lokam. Improved bounds
on security reductions for discrete log based signatures. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 93–107. Springer, Heidelberg, August
2008.

[30] Rosario Gennaro, Darren Leigh, R. Sundaram, and William S. Yerazunis. Batch-
ing Schnorr identification scheme with applications to privacy-preserving autho-
rization and low-bandwidth communication devices. In Pil Joong Lee, editor,
ASIACRYPT 2004, volume 3329 of LNCS, pages 276–292. Springer, Heidelberg,
December 2004.

[31] Robert Granger. On the static Diffie-Hellman problem on elliptic curves over
extension fields. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of
LNCS, pages 283–302. Springer, Heidelberg, December 2010.

[32] K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC Research and Development, 71:1–8, 1983.

[33] Neal Koblitz and Alfred Menezes. Another look at non-standard discrete log and
Diffie-Hellman problems. J. Math. Cryptol., 2(4):311–326, 2008.

[34] Neal Koblitz and Alfred Menezes. The brave new world of bodacious assumptions
in cryptography. Notices of the American Mathematical Society, 57(3):357–365,
2010.

[35] Neal Koblitz and Alfred J. Menezes. Another look at “provable security”. Journal
of Cryptology, 20(1):3–37, January 2007.

[36] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In Howard M. Heys and Carlisle M. Adams, editors, SAC 1999, volume
1758 of LNCS, pages 184–199. Springer, Heidelberg, August 1999.

[37] Changshe Ma, Jian Weng, Yingjiu Li, and Robert H. Den. Efficient discrete
logarithm based multi-signature scheme in the plain public key mode. Des. Codes
Cryptography, 54(2):121–133, 2010.

[38] Ueli M. Maurer. Information-theoretic cryptography (invited lecture). In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 47–64. Springer, Hei-
delberg, August 1999.

[39] Ueli M. Maurer. Abstract models of computation in cryptography (invited paper).
In Nigel P. Smart, editor, 10th IMA International Conference on Cryptography
and Coding, volume 3796 of LNCS, pages 1–12. Springer, Heidelberg, December
2005.

[40] Ueli M. Maurer and Stefan Wolf. Diffie-Hellman oracles. In Neal Koblitz, editor,
CRYPTO’96, volume 1109 of LNCS, pages 268–282. Springer, Heidelberg, August
1996.

[41] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple
Schnorr multi-signatures with applications to Bitcoin. Des. Codes Cryptogr.,
87(9):2139–2164, 2019.

[42] Silvio Micali and Ronald L. Rivest. Transitive signature schemes. In Bart Preneel,
editor, CT-RSA 2002, volume 2271 of LNCS, pages 236–243. Springer, Heidelberg,
February 2002.

[43] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes, 55(2):165–172, 1994.

[44] Jonas Nick. Blind signatures in scriptless scripts. Presentation given at Building
on Bitcoin 2019, 2019. Slides and video available at https://jonasnick.github.io/
blog/2018/07/31/blind-signatures-in-scriptless-scripts/.

30

https://jonasnick.github.io/blog/2018/07/31/blind-signatures-in-scriptless-scripts/
https://jonasnick.github.io/blog/2018/07/31/blind-signatures-in-scriptless-scripts/

[45] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr
multi-signatures. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 189–221, Virtual Event, August 2021. Springer,
Heidelberg.

[46] NIST. Digital signature standard (DSS), FIPS PUB 186-5 (draft), 2019. https:
//csrc.nist.gov/publications/detail/fips/186/5/draft.

[47] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of
problems for the security of cryptographic schemes. In Kwangjo Kim, editor,
PKC 2001, volume 1992 of LNCS, pages 104–118. Springer, Heidelberg, February
2001.

[48] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be
equivalent to discrete log. In Bimal K. Roy, editor, ASIACRYPT 2005, volume
3788 of LNCS, pages 1–20. Springer, Heidelberg, December 2005.

[49] Rafael Pass. Limits of provable security from standard assumptions. In Lance
Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 109–118. ACM
Press, June 2011.

[50] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398.
Springer, Heidelberg, May 1996.

[51] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, January 1991.

[52] Claus-Peter Schnorr. Security of blind discrete log signatures against interactive
attacks. In Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou, editors, ICICS 01,
volume 2229 of LNCS, pages 1–12. Springer, Heidelberg, November 2001.

[53] Claus-Peter Schnorr and Markus Jakobsson. Security of discrete log cryptosystems
in the random oracle and the generic model, 1999. Available at https://core.ac.
uk/download/pdf/14504220.pdf.

[54] Yannick Seurin. On the exact security of Schnorr-type signatures in the random
oracle model. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 554–571. Springer, Heidelberg, April
2012.

[55] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266.
Springer, Heidelberg, May 1997.

[56] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,
Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. Keeping authorities
“honest or bust” with decentralized witness cosigning. In 2016 IEEE Symposium
on Security and Privacy, pages 526–545. IEEE Computer Society Press, May 2016.

[57] David Wagner. A generalized birthday problem. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 288–303. Springer, Heidelberg,
August 2002.

[58] Pieter Wuille, Jonas Nick, and Tim Ruffing. Schnorr signatures for secp256k1.
Bitcoin Improvement Proposal 340, 2020. See https://github.com/bitcoin/bips/
blob/master/bip-0340.mediawiki.

[59] Aaram Yun. Generic hardness of the multiple discrete logarithm problem. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 817–836. Springer, Heidelberg, April 2015.

31

https://csrc.nist.gov/publications/detail/fips/186/5/draft
https://csrc.nist.gov/publications/detail/fips/186/5/draft
https://core.ac.uk/download/pdf/14504220.pdf
https://core.ac.uk/download/pdf/14504220.pdf
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

	 The One-More Discrete Logarithm Assumption in the Generic Group Model
	Introduction
	Preliminaries
	OMDL in the GGM
	A Technical Lemma
	Proof Overview
	Formal Proof

	OMCDH in the GGM

