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Abstract. Encrypted multi-maps enable outsourcing the storage of a
multi-map to an untrusted server while maintaining the ability to query
privately. We focus on encrypted Boolean multi-maps that support ar-
bitrary Boolean queries over the multi-map. Kamara and Moataz [Euro-
crypt’17] presented the first encrypted multi-map, BIEX, that supports
CNF queries with optimal communication, worst-case sublinear search
time and non-trivial leakage.

We improve on previous work by presenting a new construction CNFFilter
for CNF queries with significantly less leakage than BIEX, while main-
taining both optimal communication and worst-case sublinear search
time. As a direct consequence our construction shows additional resis-
tance to leakage-abuse attacks in comparison to prior works. For most
CNF queries, CNFFilter avoids leaking the result sets for any singleton
queries for labels appearing in the CNF query. As an example, for the
CNF query of the form (`1 ∨ `2) ∧ `3, our scheme does not leak the re-
sult sizes of queries to `1, `2 or `3 individually. On the other hand, BIEX
does leak some of this information. This is just an example of the reduced
leakage obtained by CNFFilter. The core of CNFFilter is a new filtering
algorithm that performs set intersections with significantly less leakage
compared to prior works.

We implement CNFFilter and show that CNFFilter achieves faster search
times and similar communication overhead compared to BIEX at the cost
of a small increase in server storage.

1 Introduction

In this work, we study the notion of structured encryption that was introduced by
Chase and Kamara [17]. Structured encryption (STE) is a general cryptographic
primitive that considers the scenario where a data owner (commonly referred to
as the client) wishes to store a data structure on a potentially untrusted server
such as a cloud storage provider. STE schemes should ensure that clients are
able to perform all necessary data structure operations correctly over the server-
stored encrypted data while ensuring that the adversarial server learns as little
information as possible.

For the full version of this paper, please see [38].



The privacy goal of a STE scheme is to reveal little information about the
contents of the outsourced data structure as well as the operations that are
performed on the data structure. In an ideal world, these schemes would leak
no information about either the underlying data or the executed algorithms.
However, the only known ways to achieve this desired privacy is through the
use of extremely expensive cryptographic primitives such as oblivious RAM [24]
and/or fully homomorphic encryption [23]. In contrast, structured encryption
considers a more relaxed privacy requirement with the hope of achieving the
small overhead necessary for practical applications. In more detail, structured
encryption are defined by a leakage function that is an upper bound on the
information that may be learned by the adversarial server. As a result, some
schemes have larger than ideal leakage, but avoid using heavy cryptographic
primitives. However, we note that caution is necessary when picking leakage
functions as there have been many works (see [27, 13, 33, 44, 35, 26, 25, 8] as some
examples) showing that various leakage profiles may be utilized by intelligent
adversaries to compromise privacy in certain settings.

In our work, we will focus on an important type of STE scheme called
encrypted multi-maps. An encrypted multi-map EMM structurally encrypts a
multi-map MM consisting of pairs (`, ~v) of labels ` and tuples ~v of values. We
use the writing MM[`] to denote the tuple associated to label ` by MM. We
focus on encrypted multi-maps due to its significance in a wide range of im-
portant real-world applications. Encrypted multi-maps have been the basis of
many searchable encryption (or encrypted search) constructions. Searchable en-
cryption was introduced by Song et al. [42] and enables a client to perform
keyword searches over a corpus of documents outsourced to a server. There has
been a long line of work (see [9, 18, 7] and references therein as examples) that
considers single keyword search to determine a list of documents containing a
single queried keyword. There have been many subsequent works for improving
efficiency [14, 21], dynamicity [43, 32, 36], forward and/or backward privacy [10,
12],suppressing leakage [31, 30, 40] and improving locality [16, 20, 5, 19] to list
some examples. Faber et al. [22] build on [15] to obtain more complex queries
such as range, substring, and wildcard queries. There also has been work for effi-
ciency lower bounds for searchable encryption/structured encryption [39, 11]. We
note that many of the above searchable encryption schemes are also encrypted
multi-map schemes. Chase and Kamara [17] introduced structured encryption,
which is an extension of encryption for general data structures beyond search
indices. Encrypted multi-maps are also used in encrypted relational databases
where clients wish to perform SQL queries over encrypted databases [29].

Many previous works consider the simplest setting of encrypted multi-map
schemes that enable clients to perform exact queries for a label ` and return
the associated value tuple MM[`] if it exists. More recently, there has been work
on improving the utility of encrypted multi-map schemes by supporting more
complex and expressive queries. In our work, we focus on encrypted Boolean
multi-maps where the client queries a Boolean formula Φ over labels and the
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result should be the set of values satisfying the formula Φ. For example, a query
for formula Φ = `1∧`2 asks for all values v such that (v ∈ MM[`1])∧(v ∈ MM[`2]).

This problem has been studied in several works such as [15, 37]. Kamara
and Moataz [28] presented BIEX3, the first non-interactive, encrypted Boolean
multi-map scheme with non-trivial leakage, optimal communication and worst-
case sublinear search time. In our work, we will present new constructions with
strictly smaller leakage and similar or better efficiency than all prior works.

1.1 Background and Goals

In this section, we present naive solutions and identify their shortcomings that
we address in our work. Before we begin, we denote the notion of volume as the
number of results that are associated with a specific query. We will also denote
this as the query volume. We will also utilize the notions of response-revealing
and response-hiding. Response-revealing encrypted multi-maps mean that the
responses to queries are revealed to the server in plaintext. Response-hiding
schemes ensure that the servers see responses in encrypted form and may only
infer the size of the response.

Naive Solutions. A simple construction to enable Boolean queries is to utilize
any response-hiding encrypted multi-map that can handle exact queries. For
any Boolean formula Φ over labels `1, . . . , `q, the client issues q queries, one for
each of `1, . . . , `q. The client receives all q result sets MM[`1], . . . ,MM[`q] and
evaluates Φ locally. The scheme is sub-optimal in terms of communication. For
example, if Φ is a conjunction, the size of the result set |MM[`1] ∩ . . . ∩MM[`q]|
will be much smaller than the size of all q result sets, |MM[`1]|+ . . .+ |MM[`q]|.
Therefore, the server’s response is larger than necessary.

To obtain optimal communication, we consider another simple encrypted
Boolean multi-map that utilizes a response-revealing encrypted multi-map sup-
porting exact queries. The client once again issues q queries, one for each of the q
labels `1, . . . , `q. The server learns the responses of all q queries and applies Φ be-
fore returning the result set to the client. The above construction obtains optimal
communication as the server response consists of exactly the result set. Unfor-
tunately, the leakage is horrible as the server learns all sets MM[`1], . . . ,MM[`q]
in plaintext.

The above solution can be extended to hide the plaintext values in a stan-
dard manner. Each value appearing in the multi-map will be stored as a tag
(a PRF evaluation) as well as an encryption under private keys held by the
client. All tags are computed under the same private key. The client issues q
queries for `1, . . . , `q and the server learns the tags and encryptions of all val-
ues in MM[`1], . . . ,MM[`q]. The tags suffice to perform arbitrary set operations
to apply the Boolean formula Φ since they are computed under the same key.
Communication remains optimal since the server will only return encryptions of
values that satisfy Φ. While the server does not learn the plaintext values in each

3 While BIEX considers Boolean searchable encryption, the basic construction is an
encrypted Boolean multi-map.
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of MM[`1], . . . ,MM[`q], the server learns the volumes of the singleton queries for
each of the labels `1, . . . , `q. Using the tags, the server can perform arbitrary set
intersections and unions over the q results MM[`1], . . . ,MM[`q] and not just the
ones needed for Φ. As a consequence, the server may also learn the volumes (i.e.,
result sizes) for any arbitrary Boolean queries over the q labels, `1, . . . , `q. Going
forward, we will refer to this last solution as the canonical naive solution.

Leakage. Given the above naive solutions, an important privacy goal of en-
crypted Boolean multi-maps is to reduce the volume leakage for arbitrary Boolean
queries. Note that optimal communication schemes must leak the volume of the
query Φ(`1, . . . , `q), and the goal is to limit the leakage of any additional volumes
for queries that are related to the original query. Mapping this back to the canon-
ical naive solution, we note that, since the volumes of all singleton queries for
labels `1, . . . , `q are revealed, an adversary can compute the volume for queries
Ψ(`1, . . . , `q) for any Boolean formula Ψ . For convenience, we define the base
query set of leakage for the canonical naive construction as B = {`1, . . . , `q} and
call the span Span(B), the set of all queries for which an adversary can construct
the volume from the volumes of the queries in the set B. We will formally de-
fine the notion of the base query set of leakage later. In our work, we improve
the state-of-the-art by presenting non-interactive and efficient schemes with the
smallest volume leakage to our knowledge.

Beyond volume leakage, we note that many encrypted multi-map schemes
have non-trivial leakage about queries themselves. This leakage could include
whether two Boolean queries are identical, whether a label appears in two dif-
ferent Boolean queries, the structure of the Boolean query, etc. For simplicity,
we split off our analysis into the leakage of query volumes and all other leakage
unrelated to query volumes. In our work, we ensure that our constructions have
the same query leakage as prior works [15, 28].

Efficiency Goals. Finally, we discuss our efficiency goals. We will aim for our
constructions to be non-interactive with optimal communication and worst-case
sublinear search times, while only incurring small additional storage overhead
compared to prior works. To obtain optimal communication, the response of the
server should be exactly the size of the query’s result and the client’s request
size should be independent of the server-stored multi-map. Worst-case sublinear
search time implies that the scheme should not unnecessarily process the en-
tire encrypted multi-map when answering queries. Finally, the storage overhead
should be small enough for practical usage.

1.2 Related Works

We survey existing constructions of encrypted Boolean multi-maps with smaller
leakage compared to the canonical naive solution discussed in Section 1.1.

OXT. Cash et al. [15] present the oblivious cross-tag (OXT) protocol that is
a non-interactive encrypted Boolean multi-map. OXT is able to handle all con-
junctive queries and Boolean queries in Searchable Normal Form (that is, of the
form `1 ∧ Φ(`2, . . . , `q)) with worst-case sublinear search times. Unfortunately,
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queries for many Boolean formulae may end up having linear search times. We
note that Faber et al. [22] extend OXT for more (but not all) Boolean queries in-
cluding range, substring and wildcard queries. The core cryptographic operation
in OXT are expensive public-key operations (exponentiation in a Diffie-Hellman
group). As a result, queries may end up being computationally expensive even
for formulae for which the algorithm operates on a sublinear portion of the
database.

BlindSeer. Pappas et al. [37] present BlindSeer that handles all arbitrary Boolean
queries with worst-case sublinear search time unlike OXT. BlindSeer encodes
the underlying multi-map using a search tree combined with Bloom filters. To
traverse the tree during query time, BlindSeer utilizes secure computation to
determine the next node in the search tree to visit. By using secure compu-
tation, the majority of the core cryptographic operations in BlindSeer end up
being symmetric key operations. However, the search algorithm in BlindSeer still
ends up being slower than OXT as the secure computation techniques require
multiple rounds of client-server interactions (even if the majority of operations
are symmetric-key). Given this knowledge, it is clear that reducing interaction
is necessary for constructing efficient query algorithms.

BIEX. Kamara and Moataz [28] present BIEX that combines several good prop-
erties of both OXT and BlindSeer. In particular, BIEX is the first non-interactive
encrypted Boolean multi-map that is able to handle arbitrary Boolean queries
with worst-case sublinear search times and non-trivial leakage smaller than the
canonical naive solution. Furthermore, the search algorithms of BIEX utilize
only symmetric-key primitives. As a result, the search algorithm of BIEX is
more efficient than both OXT and BlindSeer.

For the leakage of BIEX, consider a CNF query Φ = D1 ∧ . . . ∧ Dm where
each clause Di is a disjunction (`i,1 ∨ . . . ∨ `i,qi). The base query set of leakage
(see discussion in Section 1.3) consists of all singleton labels appearing in the
first clause and all 2-conjunctions of labels with the first appearing in the first
clause and the second label appearing in the second clause onward:

{`1,i | i ∈ [q1]} ∪ {(`1,i ∧ `j,k) | i ∈ [q1], 2 ≤ j ≤ m, k ∈ [qj ]}.

While this is significantly smaller leakage than the canonical naive solution, it
includes all q1 singleton labels appearing in the first clause. In other words, the
leakage from querying Φ is at least as large as performing q1 exact queries for
all labels in the first clause, which is not ideal.

In our work, we present the first constructions with no singleton labels in
the base query set of leakage for all Boolean queries except for disjunctions (i.e.,
single-term CNF). Our constructions enjoy all the good properties of BIEX in-
cluding non-interaction, optimal response size, sublinear search time, and exclu-
sive use of symmetric-key primitives.

Relation to Leakage-Abuse Attacks. Finally, we discuss prior works on
leakage-abuse attacks on encrypted multi-maps (or encrypted search). The SPAR
final report [4] describes data sets and query distributions that arise from real
life applications. Most prior works mainly consider either exact [27, 13, 8] or
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range [33, 35, 26, 25] queries. Given the lack of attacks, it may seem that reducing
leakage for Boolean queries is not important at first. However, it turns out that
the attacks for exact or range queries may also be applied in the Boolean query
setting.

Consider the leakage of BIEX as an example. For a CNF query, the adversary
learns the volumes of each of q1 labels in the first clause. In other words, the
adversary could simulate and obtain leakage of q1 exact queries using a single
Boolean query to BIEX. This means that exact query attacks may be applied to
encrypted Boolean multi-maps using fewer Boolean queries if we do not reduce
leakage. The same idea may be applied for range query attacks. Suppose that
labels come from an ordered set (such as the integers). i A single Boolean query
to BIEX with q1 labels means leakage for q1 ranges of length 1. In the worst
case when all q1 labels are consecutive in the ordered set (such as {1, . . . , q1}), a
single Boolean query to BIEX would end up leaking the volumes of O(q21) ranges
([i, j] where 1 ≤ i ≤ j ≤ q1).

With the above in mind, an important goal is to design encrypted Boolean
multi-maps that reduce leakage. By reducing leakage, we improve the chance of
our constructions resisting leakage-abuse attacks (both ones that are currently
known and ones that will be developed in the future). In this work, we present
constructions that avoid leaking volumes corresponding to either exact or range
queries for most Boolean queries. Therefore, our construction shows additional
resistance to leakage-abuse attacks in comparison to prior works.

1.3 Our Contributions

In our work, we present new encrypted Boolean multi-maps with reduced leakage
and similar or better efficiency compared to prior works. As our main technical
tool, we present a new filtering algorithm that uses only private-key primitives
and performs set intersections with small leakage. By utilizing this filtering algo-
rithm, we obtain new constructions for handling conjunctions and CNF queries
with reduced leakage and optimal communication complexity as the response
to a query contains exactly one ciphertext per each item in the response set. In
addition, our constructions are non-interactive and require sub-linear work.

To compare leakage, we will utilize the notion of a base query set of leakage.
Let B be the base query set of leakage for any construction. Then, the adversary
may recover volumes for any Boolean query Ψ in the span Span(B) of the base
query set of leakage B; that is, Span(B) consists of all formulae Ψ(x1, . . . , xt)
with xi ∈ B, for i = 1, . . . , t.

The worst leakage is obtained when B contains all singleton labels B =
{`1, . . . , `q} in which case Span(B) includes all Boolean formulae over the la-
bels `1, . . . , `q. This is the leakage obtained by the canonical naive solution.

Throughout our work, we will only consider constructions that satisfy all
the good properties of BIEX. Our constructions will be non-interactive, handle
arbitrary Boolean queries with worst-case sublinear computation and only utilize
symmetric key primitives.
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Our first construction ConjFilter supports conjunctive queries `1∧ . . .∧`q. We
will use ConjFilter as a building block when constructing an encrypted multi-map
for CNF queries. Even though it is only a building block, ConjFilter has smaller
leakage compared to all previous efficient solutions that support conjunctions.
Specifically, the base query set of leakage for ConjFilter is

{(`1 ∧ `2), (`1 ∧ `2 ∧ `3), (`1 ∧ `2 ∧ `4), . . . , (`1 ∧ `2 ∧ `q)}.

Theorem 1 (Informal). ConjFilter is a non-interactive scheme supporting con-
junctive queries that is adaptively-secure with optimal communication and worst-
case sub-linear search time. For a conjunctive query Φ = `1 ∧ . . . ∧ `q, the ad-
versary may recover the volumes of all queries of the form Ψ(x1, . . . , xt) where
each xi ∈ {(`1 ∧ `2), (`1 ∧ `2 ∧ `3), . . . , (`1 ∧ `2 ∧ `q)} and Ψ is any Boolean query.

In particular, the queries whose volumes are leaked by ConjFilter is a subset of
those leaked by prior works. As an example of the reduced leakage of ConjFilter,
note that the adversary cannot recover the volume for any 2-conjunctive queries
beyond (`1 ∧ `2). In contrast, the base query set of leakage for prior non-
interactive constructions OXT [15] and BIEX [28] consists of {(`1∧`2), . . . , (`1∧
`q)} that enables recovering volumes for many 2-conjunctions. By playing with
the base sets, one can find many queries whose volumes are leaked by prior
works, but not by ConjFilter.

Next, we present an encrypted Boolean multi-map CNFFilter that supports
CNF queries using ConjFilter as a building block. CNF queries are of the form
D1 ∧ . . . ∧ Dm where each clause Di is a disjunction (`i,1 ∨ . . . ∨ `i,qi) with qi
unique labels. The base query set of leakage for CNFFilter may be broken down
into two parts. The first part consists of all 2-conjunctions of labels from the
first and second clause:

B′ = {(`1,i ∧ `2,j) | i ∈ [q1], j ∈ [q2]}.

The second part consists of all 3-conjunctions of labels from the first clause,
second clause and the last label appearing in the third clause onward:

B′′ = {(b′ ∧ `k,l) | b′ ∈ B′, 3 ≤ k ≤ m, l ∈ [qk]}.

The base query set of leakage B of CNFFilter is equal to B = B′ ∪ B′′.

Theorem 2 (Informal). CNFFilter is a non-interactive scheme supporting CNF
queries that is adaptively-secure with optimal communication and worst-case sub-
linear search time. For a CNF query Φ = D1 ∧ . . . ∧Dm where each clause Di

is a disjunction (`i,1 ∨ . . . ∨ `i,qi), the adversary may recover the volumes of all
queries of the form Ψ(x1, . . . , xt) where each xi ∈ B′ ∪ B′′ and Ψ is a Boolean
query.

For comparison, note that the base query set of leakage for BIEX consists of
all singleton labels appearing in the first clause and all 2-conjunctions of labels
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with the first appearing in the first clause and the second label appearing in the
second clause onward:

{`1,i | i ∈ [q1]} ∪ {(`1,i ∧ `j,k) | i ∈ [q1], 2 ≤ j ≤ m, k ∈ [qj ]}.

Note that for any CNF query Φ, the span of the base query set of leakage
of CNFFilter is a subset of the one of BIEX. As a simple example of reduced
leakage, unless the query is a disjunction, CNFFilter does not leak volumes for any
singleton queries unlike BIEX. Many more examples of queries whose volumes
are leaked by BIEX and not by CNFFilter may be found.

The above comparison only considered leakage resulting from one conjunc-
tive/CNF query. In practice, these constructions will answer and leak infor-
mation about multiple conjunctive/CNF queries. Consider the example of two
queries resulting in the base query sets of leakage B1 and B2. In the worst case,
the adversary may recover volumes of any queries of the form Φ(x1, . . . , xt),
where xi ∈ B1 ∪ B2. In other words, leakage may explode as more queries are
performed. Therefore, it is integral to minimize the base query set leakage for
individual queries.

Referring back to leakage-abuse attacks, CNFFilter does not leak volumes
about exact queries except when querying disjunctions. Furthermore, the base
query set of leakage for CNFFilter consists of only intersections ignoring dis-
junction queries. So, there is no leakage about range queries either as ranges
correspond to unions of one or more consecutive labels. As a result, CNFFilter
seems to be more resistant to known leakage-abuse attacks compared to BIEX.

Finally, we present a comparison of efficiency with our solution and BIEX. We
obtain all the same properties including non-interaction, sublinear search times
and only using symmetric-key primitives. From our implementation, we show
that CNFFilter obtains faster search times than BIEX. For storage, CNFFilter
only incurs 20% additional storage overhead compared to BIEX in exchange for
reduced leakage and faster search times.

Both ConjFilter and CNFFilter are proved adaptively secure in the ROM.
Note that the assumption of random oracles as well as their programmability
are required for adaptive security by previous works [15, 28] as well. Non-adaptive
security for both constructions can instead be proved in the standard model.

1.4 Our Techniques

We present our new techniques used to construct ConjFilter and CNFFilter. The
core of our new technique is an improved filtering algorithm for conjunctions.

Conjunctions. We start by presenting the approach to handling conjunctive
queries used in previous works [15, 28]4. Consider the conjunctive query `1 ∧
. . . ∧ `q. The main idea of prior works is to decompose the query into (q − 1)
2-conjunctions: (`1∧`2)∧(`1∧`3)∧. . .∧(`1∧`q). Each of the (q−1) 2-conjunction

4 In [28], the authors only present a construction for CNF queries. To derive a con-
junction scheme, we consider the case where each disjunction clause is a single label.
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queries are computed independently such that the resulting response sets are all
PRF evaluations under the key solely depending on label `1. Then, the server
returns the intersection of all q − 1 sets. In this way, the size of the server’s
response is proportional to the result of the query and thus optimal.

There are several drawbacks to using this approach. The scheme leaks the
volumes of the (q − 1) 2-conjunctions. As all response sets are PRF evaluations
under the same key, the adversary may learn volumes of more complex queries.
For example, the intersections of any two response sets yields the volume of
a 3-conjunction. In general, the adversary can compute any Boolean function
over the response sets. That is, the base query set of leakage is {(`1 ∧ `2), (`1 ∧
`3), . . . , (`1 ∧ `q)}. In terms of computation cost, the server must perform com-
putation on the order of |MM[`1∧ `2]|+ . . .+ |MM[`1∧ `q]|. This is quite wasteful
as the response set MM[`1∧`2] is already a superset of the final response. Ideally,
the server’s computation should not need to be much larger than |MM[`1 ∧ `2]|.

To address these drawbacks, while keeping the size of the server’s response
optimal, we present a new filtering algorithm that will be utilized by ConjFilter.
First, we compute the response set S2 := MM[`1 ∧ `2] such that each value in S2

is a PRF evaluation under a key depending solely on label `1. Next, we compute
the intersection S3 := S2 ∩ MM[`1 ∧ `3] by directly filtering S2 and removing
elements of S2 that do not appear in MM[`1 ∧ `3]. To do this, we maintain an
additional data structure X that allows the server to check whether a value
v ∈ S2 belongs to MM[`1 ∧ `3] without retrieving the entire MM[`1 ∧ `3], thereby
avoiding volume leakage for the query `1∧`3. We repeat this filtering to compute
each Si = Si−1 ∩MM[`1 ∧ `i] until we compute the set Sq that is the result for
the original query.

At a high level, the data structure X is constructed as follows. For each label
pair (`a, `b) and for each value v ∈ MM[`a ∧ `b], X stores a double tag of v. A
double tag of v is computed by applying two successive PRF evaluations, where
the first evaluation is under the key solely depending on `a, say Kt

`a
, and the

second evaluation is under the key depending on `a and `b, say Kx
`a,`b

. Thus,
given a tag of v ∈ MM[`a ∧ `b] under the key Kt

`a
, the server can determine

whether v belongs to MM[`a ∧ `c] by simply applying PRF under the key Kx
`a,`c

and checking whether the resulting evaluation belongs to X . In particular, note
that the volume of MM[`a ∧ `c] is never revealed.

We note that the above filtering algorithm leaks volumes for only a subset of
queries whose volumes are leaked by prior works. In particular, the base query set
of leakage is {(`1∧ `2), (`1∧ `2∧ `3), . . . , (`1∧ `2∧ `q)}. As an example of reduced
leakage, note that the only 2-conjunction whose volume may be recovered in
ConjFilter is `1 ∧ `2 whereas the volume of (q − 1) 2-conjunctions of the form
(`1 ∧ `2), . . . , (`1 ∧ `q) are leaked by prior works.

We note our filtering algorithm is reminiscent but starkly different from
the cross-tag protocols presented by Cash et al. [15]. In particular, our new
filtering algorithm only use symmetric key primitives (PRFs) while the cross-tag
protocols in [15] require public-key operations (i.e., exponentiation in a Diffie-
Hellman group).
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CNFs. Next, we show how to support CNF queries using the filtering algorithm
of ConjFilter as a building block. We start by reviewing the BIEX construc-
tion [28] for CNF queries. Consider a CNF query of the form D1∧ . . .∧D` where
Di = (`i,1∨ . . .∨`i,qi). In the first step, BIEX computes MM[D1]. The scheme for
computing disjunction D1 ends up leaking the volumes for q1 singleton queries
for labels `1,1, . . . , `1,q1 . The main problem is that there is no known scheme
supporting disjunctions that do not reveal singleton query volumes.

To avoid this leakage, CNFFilter combines the first two clauses D1 ∧D2 that
may be rewritten as:

D1 ∧D2 = (`1,1 ∨ . . . ∨ `1,q1) ∧ (`2,1 ∨ . . . ∨ `2,q2) = ∨
i∈[q1],j∈[q2]

(`1,i ∧ `2,j).

In other words, D1 ∧D2 becomes a disjunction over q1q2 2-conjunction queries.
Next, we can apply the algorithm for computing disjunctions over the q1q2 2-
conjunction result sets to obtain S2 := MM[D1 ∧D2]. While the volumes of all
2-conjunction sets are revealed, no volumes for singleton queries are leaked.

We apply the filtering algorithm again to incorporate the remaining clauses
D3, . . . , Dm, while keeping the server’s response, and thus communication, op-
timal in size. If D3 = `3,1 ∨ . . . ∨ `3,q3 , then S2 ∩MM[D3] = (S2 ∩MM[`3,1]) ∪
. . .∪ (S2 ∩MM[`3,q3 ]). At a high level, the filtering algorithm may be applied on
S2 for each of the labels `3,1, . . . , `3,q3 . By repeating this for each of the clauses
D3, . . . , Dm, the server successfully computes the set MM[D1 ∧ . . . ∧Dm]. The
filtering scheme allows CNFFilter to avoid volume leakage for many queries.

CNFFilter also improves search times compared to BIEX. Recall that BIEX
initially computes the set MM[D1]. Instead, CNFFilter first computes the set
MM[D1 ∧D2] that will later be filtered. As MM[D1 ∧D2] is a subset of MM[D1]
and typically smaller, searching in CNFFilter ends up being faster than BIEX.

2 Preliminaries

2.1 Boolean Encrypted Multi-Maps

A multi-map data structure maintains a set of m label to value tuple pairs
MM = {(`t, ~vt)}t∈[m], where each `i comes from the label universe U and ~vi is
a tuple of values where each value comes from the value universe V. Different
labels may be associated with tuples of different length. We assume that all m
labels are unique. If any two labels are equal, then the two associated value
tuples may be combined into a single value tuple.

The multi-map data structure supports the query operation that receives a
multi-map MM = {(`t, ~vt)}t∈[m] and a label ` ∈ U as arguments. If there exists
t ∈ [m] such that `t = `, then the query returns ~vt. Otherwise, the query returns
⊥. For convenience, if (`, ~v) ∈ MM then we denote MM[`] = ~v. If ` does not
appear in MM, then MM[`] =⊥.

We consider the extended Boolean multi-map that enables more complex
query operations beyond simply retrieving the value tuple associated with a
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label. More formally, a Boolean multi-map is associated with a supported class of
Boolean formulae queries B over labels. We consider query classes: conjunctions
and CNFs. For the set of conjunctions of the form Φ = `1 ∧ . . . `q, the query for
Φ returns the intersection MM[`1] ∩ . . . ∩MM[`q]. For the set of CNF queries of
the form Φ = (`1,1∨ . . .∨ `1,q1)∧ . . .∧ (`m,1∨ . . .∨ `m,qm), the query for Φ returns
the set of values (MM[`1,1]∪ . . .∪MM[`1,q1 ])∩ . . .∩(MM[`m,1]∪ . . .∪MM[`m,qm ]).
For convenience, we denote the result set for any query Φ by MM[Φ].

Next, we define the notion of an encrypted Boolean multi-map, which is the
structured encryption (STE) for Boolean multi-maps. Our STE definition of
encrypted Boolean multi-map will be non-interactive. That is, the query consists
of a single client request followed by the server’s reply.

Definition 1. Let B be a class of Boolean formulae. A non-interactive encrypted
Boolean multi-map Σ = (Setup,Token,Search,Resolve) for the class B consists
of the following four algorithms:

1. (msk, eBMM) ← Σ.Setup(1λ,MM): The setup algorithm is executed by the
client and takes as input the security parameter 1λ and a multi-map MM. It
outputs the master secret key msk and the encrypted multi-map eBMM. The
client keeps the master secret key msk while the encrypted multi-map eBMM
is sent to the server.

2. tokΦ ← Σ.Token(msk, Φ): The token generation algorithm is executed by the
client and receives the master secret key msk and a Boolean formula Φ ∈ B
as input. It returns the token tokΦ that is sent to the server.

3. ans← Σ.Search(eBMM, tok): The search algorithm is executed by the server
and takes as input the token tok sent by the client and the encrypted multi-
map eBMM. It returns the encrypted answer ans that is sent to the client.

4. MM[Φ] ← Σ.Resolve(msk, ans): The resolve algorithm is executed by the
client and takes the encrypted answer ans sent by the server and the master
secret key msk. It computes the answer MM[Φ].

We impose the following natural correctness condition. For every MM and for ev-
ery Φ ∈ B, it holds that Σ.Resolve(msk,Search(eBMM, tok)) = MM[Φ], provided
that (msk, eBMM)← Σ.Setup(1λ,MM) and tok = Σ.Token(msk, Φ).

2.2 Security Notions

For encrypted Boolean multi-maps, we utilize the same security notions as typ-
ically done in structured encryption using leakage functions. The adversary’s
leakage is upper bounded by a pair L = (LSetup,LQuery) of leakage functions.
The leakage function LSetup provides an upper bound on the knowledge gained
by the adversarial server when given eBMM. LQuery is an upper bound on the
knowledge gained by the adversary when receiving a token from the client gen-
erated using the Token algorithm and when applying the token on the encrypted
multi-map in the Search algorithm.

To formalize the security notion, we use the simulation-based approach. We
present definitions for adaptive adversaries. We define the following real and
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ideal experiments with a stateful, honest-but-curious adaptive PPT adversary
A and a stateful, PPT simulator S for an encrypted Boolean multi-map Σ =
(Σ.Setup, Σ.Token, Σ.Search, Σ.Resolve) for a class B of Boolean formulae and
for leakage function L = (LSetup,LQuery).

RealaΣ,A(1λ):

1. The adversary A generates multi-map MM and passes it to the challenger C.
2. The challenger C executes (msk, eBMM) ← Σ.Setup(1λ,MM) and passes

eBMM to the adversary A.

3. For i = 1, . . . , poly(λ), the adversary A adaptively picks Boolean formula
query Φi ∈ B and sends it to the challenger C. Using Φi, the challenger C
executes toki ← Σ.Token(msk, Φi) and sends toki to the adversary A.

4. The adversary A outputs a bit b ∈ {0, 1}.

IdealaΣ,A,L,S(1λ):

1. The adversary A generates multi-map MM and passes it to the challenger C.
2. The simulator S receives LSetup(MM) and returns an encrypted multi-map

eBMM to the adversary A.

3. For i = 1, . . . , poly(λ), the adversary A adaptively picks Boolean formula
query Φi ∈ B and sends it to the challenger C. The simulator receives
LQuery(MM, Φ1, . . . , Φi−1) from C and computes toki which is returned to
the adversary A.

4. The adversary A outputs a bit b ∈ {0, 1}.

Definition 2. The non-interactive encrypted Boolean multi-map Σ is adap-
tively L-secure if there exists a stateful, PPT simulator S such that for all
adaptive, PPT adversaries A:∣∣Pr[RealaΣ,A(1λ) = 1]− Pr[IdealaΣ,A,L,S(1λ) = 1]

∣∣ ≤ negl(λ).

For presentation, we split up query leakage LQuery into token leakage LToken

and search leakage LSearch. LToken encompasses all leakage derived by the adver-
sary viewing only the search token. LSearch contains all leakage from the adversary
applying the search token onto the encrypted multi-map. At a high level, LToken

reveals information about the query on its own such as the number of unique la-
bels, number of CNF clauses, etc. On the other hand, LSearch reveals information
about the underlying multi-map. In particular, the majority of LSearch consists
of volume leakage for a set of queries. Suppose Q is the set of all queries whose
volumes are leaked in LSearch. We denote the base query set of leakage S such
that all queries q ∈ Q may be written as a Boolean function f(x1, . . . , xt) where
each xi ∈ S. In other words, using the volumes of queries in S, one can recover
the volumes for all queries in Q.
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2.3 Encrypted Multi-Maps

In our work, we will utilize response-revealing encrypted multi-maps sEMM in a
blackbox manner. As the name implies, response-revealing means that the val-
ues in the response are revealed to the server in plaintext. In contrast, response-
hiding encrypted multi-maps ensure that the server sees each value in an en-
crypted manner. At a high level, response-hiding schemes will reveal only the
number of values in a response as opposed to the response itself.

There are several non-interactive, adaptively-secure encrypted multi-maps
with minimal leakage such as 2Lev [15] or ZMF [28] that are response-revealing.
We now describe the efficiency and leakage properties of these schemes. For
an MM of size n, the sEMM output by the Setup algorithm uses storage of
Θ(n) ciphertexts. The Token algorithm results in a single ciphertext while the
resulting answer for a keyword ` computed by the server using Search consists
of exactly the set MM[`] in plaintext. In terms of leakage, the setup leakage of
sEMM consists of the multi-set of all values that appear in the underlying multi-
map; we denote this leakage LSetup = vals(MM). As all values will be encryptions
in our constructions, the setup leakage of sEMM would only consists of the
number of values. The leakage during querying consists of the query repetition
pattern, qeq, describing which two queries are performed on the same label. For
a query sequence Q = (q1, q2, . . .), qeq(Q) is a |Q| × |Q| matrix M such that
M [i][j] = 1 if and only if i-th and j-th query in Q are equal. As the scheme is
response-revealing, the plaintext response, resp(MM, Q) = (MM[q1],MM[q2], . . .).
So, LQuery = (qeq, resp).

Theorem 3. If one-way functions exist, there exists a non-interactive, response-
revealing sEMM that is adaptively (LSetup,LQuery)-secure, uses Θ(n) storage and
O(|MM[`]|) ciphertexts of communication for a query to label `.

3 Conjunctive Queries

In this section, we present our new construction ConjFilter of an encrypted
Boolean multi-map supporting the class of conjunctive queries. ConjFilter is non-
interactive with optimal communication and sublinear search time. A formal
description of ConjFilter is found in Figure 1.

3.1 Construction ConjFilter

ConjFilter follows BIEX [28] by pre-computing answers to all possible 2-conjunction
queries, but diverges from BIEX in the method used to compute conjunctions.
We start by describing the setup algorithm of ConjFilter.

Given an input multi-map MM = {(`i, ~vi)}i∈[m], the setup of ConjFilter con-
structs a multi-map MMp in the following way. The multi-map MMp will store
a tuple of values for each pair of labels (a, b) that appear in MM. The val-
ues in MMp will consists of pairs of an encrypted tag and an encrypted value.
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• (msk, eBMM)← ConjFilter.Setup(1λ,MM = {(`i, ~vi)}i∈[m]):
1. Randomly select PRF seeds Kp,Kt,Kx ← {0, 1}λ.
2. Randomly select encryption key Kenc ← {0, 1}λ.
3. Set MMp ← { }.
4. For all pairs (a, b) of labels appearing in MM:

(a) Compute tag seed Kt
a ← F (Kt, a).

(b) Compute encryption key Kenc
a,b ← F (Kp, a || b).

(c) Set MMp[(a, b)]← ∅.
(d) For all v ∈ MM[a] ∩MM[b]:

i. Compute tag taga,v ← F (Kt
a, v) and encrypted tag

etaga,b,v = Enc(Kenc
a,b , taga,v).

ii. Compute encrypted value evv = Enc(Kenc, v).
iii. Add (etaga,v, evv) to MMp[(a, b)].

5. Execute (mskp,EMMp)← sEMM.Setup(1λ,MMp).
6. Initialize X = ∅.
7. For all pairs (a, b) of labels appearing in MM:

(a) Compute double-tag seed Kx
a,b = F (Kx, a || b).

(b) For all v ∈ MM[a] ∩MM[b]:
i. Compute double tag F (Kx

a,b, taga,v) and add it to X .
8. Randomly permute X .
9. Return (msk = (Kp,Kx,Kenc, mskp),EMM = (EMMp,X )).

• tokΦ ← ConjFilter.Token(msk = (Kp,Kx,Kenc, mskp), Φ = (`1∧`2∧ . . .∧
`q)):
1. Compute tokp ← sEMM.Token(mskp, (`1, `2)).
2. Compute encryption key Kenc

`1,`2
← F (Kp, `1 || `2).

3. For d = 3, . . . , q:
(a) Compute double-tag seed Kx

d = F (Kx, `1 || `d).
4. Return tokΦ = (tokp,Kenc

`1,`2
,Kx

3, . . . ,K
x
q).

• ans ← ConjFilter.Search(tokΦ = (tokp,Kenc
`1,`2

,Kx
3, . . . ,K

x
q),EMM =

(EMMp,X )):
1. Retrieve {(etagl, evl)}l∈[L] ← sEMM.Search(tokp,EMMp).
2. For l = 1, . . . , L:

(a) Compute tagl ← Dec(Kenc
`1,`2

, etagl).
3. Set ans← ∅.
4. For l = 1, . . . , L:

(a) For d = 3, . . . , q:
i. Compute double tag dtagl,d ← F (Kx

l , tagd).
(b) If all dtagl,3, . . . , dtagl,q ∈ X , then add evl to ans.

5. Return ans.
• ans← ConjFilter.Resolve((ev1, . . . , evr), msk = (Kp,Kx,Kenc, mskp)):

1. Return {Dec(Kenc, ev1), . . . ,Dec(Kenc, evr)}.

Fig. 1: Pseudocode for Construction ConjFilter.
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For each v ∈ MM[a] ∩ MM[b], the tuple MMp[(a, b)] will store a pair of en-
crypted tags and encrypted value for v. The tag for v stored in MMp[(a, b)]
is computed as taga,v = F (Kt

a, v) where F is a PRF. Both the tag and value
are encrypted using an IND-CPA encryption scheme Enc to obtain the pair
(etaga,b,v, evv) := (Enc(Kenc

a,b , taga,v),Enc(K
enc, v)) that will be added to tuple

MMp[(a, b)]. Note that the seed Kt
a used to compute the tag depends solely on

the first label of the pair a, whereas the encryption key Kenc
a,b depends on both

labels. Kenc is a system-wide encryption key. Both Kt
a and Kenc

a,b are pseudoran-
domly generated to ensure that the client storage remains small. The multi-map
MMp is then encrypted using a response-revealing encrypted multi-map (see Sec-
tion 2.3) to construct EMMp that is sent to the server. In addition to EMMp,
ConjFilter will also construct a set X of double tags that will also be stored by
the server. For each pair of labels (a, b) and for each value v ∈ MM[a]∩MM[b], X
will store the double tag dtaga,b,v = F (Kx

a,b, taga,v), which is essentially a PRF
evaluation of the tag taga,v that was stored in the encrypted multi-map EMMp.
The PRF seed Kx

a,b will be pseudorandomly generated from a secret master key
and the labels a and b. X is the new structure of ConjFilter that enables filtering
in a way that reduces volume leakage.

To answer a query for conjunction `1∧ . . .∧`q, the client issues a query token
to EMMp for (`1, `2). As EMMp is response-revealing, the server will learn the
entry MMp[(`1, `2)] in plaintext. In addition, the client also sends the encryption
key Kenc

`1,`2
that enables the server to decrypt all encrypted tags that appear in

MMp[(`1, `2)]. As a result, the server may decrypt the encrypted tags in MM[`1∧
`2] to obtain set S2 = {(tag1, ev1), (tag2, ev2), . . .} of pairs of tags and encrypted
values. Note, the server may only decrypt encrypted tags but may not decrypt
the encrypted values. Next, we want to filter S2 to only keep pairs of tags and
encrypted values that correspond to values that appear in MM[`3]. To do this,
we utilize the set of double tags X . In the request, the client issues the PRF
seed Kx

`1,`3
for filtering S2 with MM[`3]. For each tagi in S2, the server computes

F (Kx
`1,`3

, tagi) and checks whether the PRF evaluation appears in X . The server
computes the set S3 ⊆ S2 such that S3 contains the pair (tagi, evi) from S2 if
and only if F (Kx

`1,`3
, tagi) ∈ X . We note that S3 consists only of the tag and

encrypted value pairs corresponding to values that appear in MM[`1 ∧ `2 ∧ `3].
As a result, the server successfully filters S2 to keep elements that also appear in
MM[`3]. By repeating the filtering algorithm for each `3, . . . , `q, the server will
exactly compute an encrypted version of MM[`1 ∧ . . . ∧ `q].

We note that handling singleton queries (1-conjunctions) of the form ` is
a special case where only a single query to EMMp for entry ` is issued by the
client. The server returns the response set that may be decrypted by the client
to obtain MM[`]. For convenience, we do not add this special case of Figure 1 to
focus the pseudocode on the new techniques.

3.2 Efficiency

The encrypted multi-map of ConjFilter consists of two structures: EMMp and
X . Altogether, both structures store three objects for each value appearing in
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MM[a]∩MM[b] for each pair of labels (a, b). Therefore, the encrypted multi-map
ConjFilter requires server storage O(

∑
a,b∈U |MM[a] ∩ MM[b]|). The client only

stores O(1) PRF seeds and encryption keys.
For communication, consider a conjunctive query Φ over q labels. The token

tok for Φ contains a token for EMMp, a decryption key and q − 2 double-tag
seeds. As the token size of EMMp is O(1), we get that the total size of tokens
for ConjFilter is O(q). In particular, the token size is independent on the size of
the underlying multi-map. The server response size is optimal as there is exactly
one ciphertext returned for each value that appears in the response MM[Φ].

Finally, we consider the computational cost of the server performing the
query. Note, the server first computes a response set for the query MM[`1 ∧ `2].
Afterwards, the server filters the set for each of the other labels `3, . . . , `q. As
a result, the server computation becomes O(q · |MM[`1 ∧ `2]|). In the natural
setting that |MM[`1] ∩MM[`2]| is sublinear in the size of the input multi-map,
ConjFilter performs sublinear work in the input multi-map.

3.3 Formal Description of Leakage for ConjFilter

In this section, we give a formal description of the leakage function for ConjFilter.
For our leakage descriptions, we consider an input multi-map MM and a sequence
Q = (Φ1, Φ2, . . .) of conjunctive queries, where the i-th query is the conjunction
Φi = (`i1 ∧ . . . ∧ `iqi). We split the information leaked by ConjFilter for an input
multi-map MM and a query sequence Q into three leakages:

1. The setup leakage, LSetup, learned by the adversary from viewing the en-
crypted Boolean multi-map (EMMp,X );

2. The token leakage, LToken, learned by the adversary from viewing the tokens;
3. The search leakage, LSearch, learned by the adversary when applying the

tokens to the encrypted Boolean multi-map (EMMp,X ).

Query leakage, LQuery = (LToken,LSearch), is the union of token and search leakage.
Before presenting our leakage, we define the notion of repetition patterns.

Note that ConjFilter makes extensive use of PRFs to compute various cryp-
tographic objects. As PRF functions are deterministic, this means that these
objects might repeatedly appear several times in query tokens or during server
processing. In the description of the leakage of our constructions we will make
use of repetition patterns to encode information about the appearances of an
object. In general, suppose we have T occurrences of an object. For a fixed or-
dering of the T occurrences, the repetition pattern will consist of a sequence of
T integers, one for each occurrence of the object. Each integer will correspond
to the first index of this object was encountered. Two entries of the sequence are
equal if and only if they correspond to the same instance of the object. An ex-
ample of the repetition pattern is the query equality pattern appearing in many
encrypted multi-map schemes (such as [31, 40]) that reveals whether two queries
are the same as well as the first time this query was previously seen. We will
utilize repetition patterns for tags, double tags, decryption keys and PRF seeds
used to compute double tags.
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Setup Leakage. The setup leakage LSetup is the information learned by the ad-
versary from the encrypted multi-map EMMp and set X of double tags computed
by ConjFilter.Setup. We utilize a response-revealing encrypted multi-map from
Section 2.3. Recall that the setup leakage of EMMp is the set of values appearing
in the underlying input multi-map MMp. As all values are pairs of encryptions,
the leakage is simply the size of MMp. Each element of X is a PRF evaluation.
Therefore, the adversary learns no information beyond the size of X , that is
identical to the size of MMp. To complete the description, the setup leakage is
Lst
ConjFilter(MM) = N =

∑
`,`′∈U |MM[`] ∩MM[`′]|, which is the size of MMp and

X .

Token Leakage. The token leakage consists of the information learned by the
adversary from tokens. First of all, note that the number of double tags in the
i-th token leaks the number of labels appearing in i-th query. We denote this
leakage function by #labels(Q) = (q1, . . . , q|Q|).

Next, we note that the encryption key in the token of the i-th query is pseudo-
randomly generated using the first two labels, `i1 and `i2, of the query. Therefore
if two queries share the first two labels, the corresponding tokens contain the
same encryption key. Thus EMMp leaks the encryption key repetition pattern de-
noted by encryptionKeyRP. Formally, encryptionKeyRP is an array whose length
is the number of queries and encryptionKeyRP[i] is the smallest j ≤ i such that
the i-th and the j-th tokens contain the same encryption key.

Similarly, the leakage also consists of double tag PRF seed repetition patterns
denoted by doubleTagSeedRP. Similarly, doubleTagSeedRP is an array whose
length is the number of double-tag PRF seeds seen and each entry is an in-
dex of when the corresponding double-tag PRF seed was first encountered.

A similar leakage is obtained from double tags. Consider two queries Φi and
Φj with the same first label such that the s-th label of Φi is equal to the t-th
label of Φj . That is,

`i1 = `j1 and `is = `jt .

Then double-tag PRF seed Kx
i,s in the query token for Φi is equal to double-tag

PRF seed Kx
j,t in the query token for Φj . We encode these repetitions in array

doubleTagSeedRP where, for each (i, s), doubleTagSeedRP[i, s] = (j, t) where j ≤
i is the smallest index such that the j-th query has the same t-th label as
the s-th label of the i-th query. The token leakage is thus set to Lt

ConjFilter =
(#labels, encryptionKeyRP, doubleTagSeedRP).

Search Leakage. For search leakage, we note that the server sees in the plain-
text both tags and double tags. As a result, the search leakage consists of the
tag and double tag repetition patterns tagRP and doubleTagRP. The leakage
tagRP is an array whose length is equal to the number of tags seen. Each entry
corresponds to the index that the tag was first seen. The function doubleTagRP
is defined similarly for double tags.

When the tokens are applied to the Boolean encrypted multi-map, the ad-
versary sees tags (obtained by decrypting the encrypted tags from MMp) and
the double tags and which of them belongs to X . Thus the execution of search
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leaks the number and the repetition pattern tagRP of tags, and the number, the
repetition pattern doubleTagRP and the membership in X of the double tags.

Let us discuss what this tells us about MM and Q, starting from the tags.
The number Li of tags obtained from EMMp in the i-th search invocation

corresponds to the size of MM[`i1∧`i2]. To understand the tag repetition pattern,
note that the tag is a function of the first label of a query and of the actual
value v. Thus if the l1-th tag of query i1 is the same as the l2-th tag of query
i2, the two queries have the same first label, that is `i11 = `i21 , and there exists
v ∈ MM[`i11 ∧ `

i2
1 ]. Therefore, by counting the number of common tags between

query i1 and query i2, it is possible to compute the size of

MM[`i11 ∧ `
i1
2 ∧ `

i2
1 ∧ `

i2
2 ] = MM[`i11 ∧ `

i1
2 ∧ `

i2
2 ].

This can be extended to compute the size of conjunction of four or more labels
that come from queries with the same first label.

For the double tags, observe that a double tag is obtained from a tag and
a double-tag seed and thus associated repetition pattern doubleTagRP can be
obtained from the tag repetition pattern tagRP and the double-tag seed repe-
tition pattern doubleTagSeedRP. We include it in the leakage for convenience.
Membership in X of double tags can be encoded by q matrices MX1, . . . ,MXq,
one for each query, defined as follows:

MXi[l][d] =

{
1, if dtagl,d ∈ X for the i-th query;

0, otherwise.

By counting the number of 1’s in column d of MXi, one obtains the size of MM[`i1∧
`i2 ∧ `id]. This can be extended to the computation of the size of conjunctions of
four or more labels, by counting the number of common rows that contain 1 in
two or more columns.

Finally, we note that the server learns whether a double tag appears in the
set X or not. For each query Φi, we denote the leakage MXi as an array of length
|MMp[(`i1, `

2
i )]| · (q− 2) with one entry for each double tag seen when processing

Φi. An entry of MXi is 1 if and only if the corresponding double tag appears in
X or not. Recall that a double tag is pseudorandomly generated based on two
labels (a, b) and a value v. If the corresponding MXi entry is 1, it means that
the value appears in the intersection of MM[a]∩MM[b]. Therefore, we have that
LSearch = (tagRP, doubleTagRP, {MXi}i∈[|Q|]).

We can re-interpret the volume leakage of LSearch to determine the base query
set of leakage with respect to a single conjunctive query `1 ∧ . . . ∧ `q. Note the
query to MM[`1 ∧ `2] reveals the volume of (`1 ∧ `2). The double tags reveal the
volumes of (`1∧`2∧`i) for all i ≥ 3. As all the sets of PRF evaluations are under
the same key, the adversary may perform arbitrary set intersections and unions
over the responses. Therefore, the adversary learns the volume of any query of
the form Ψ(x1, . . . , xt) where xi ∈ B = {(`1 ∧ `2), (`1 ∧ `2 ∧ `3), . . . , (`1 ∧ `2 ∧ `q)}
where B is the base query set of leakage. The above analysis works when the
query is a conjunction of two or more labels. For singleton label queries, the
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volume of the single queried label is leaked, which is unavoidable when insisting
on optimal download sizes.

The query leakage consists of both the token and search leakage, LQuery =
(LToken, LSearch). We prove the following theorem in the full version.

Theorem 4. ConjFilter is an adaptively (LSetup,LQuery)-secure encrypted Boolean
multi-map scheme that supports conjunctive queries in the random oracle model.

3.4 Comparison with BIEX [28]

For completeness, we present a comprehensive overview of the techniques used in
BIEX in our full version. These similar ideas were also used in prior works such
as [15]. In terms of setup and token leakage, it turns out that both ConjFilter
and BIEX have identical leakage. The main difference in leakage occurs during
search time. To exhibit the differences, we start by comparing the set of plaintext
tags that are revealed to the server. For a query Φ = `1 ∧ . . . `q, ConjFilter
only reveals the tags appearing in the multi-map entry MMp[`1 ∧ `2]. On the
other hand, BIEX reveals all plaintext tags appearing in q−1 multi-map entries
MMp[`1 ∧ `2], . . . ,MMp[`1 ∧ `q]. As an immediate consequence, ConjFilter only
leaks volumes for a single 2-conjunction (`1 ∧ `2) while BIEX leaks volumes for
q − 1 2-conjunctions (`1 ∧ `2), . . . , (`1 ∧ `q).

Note that ConjFilter reveals double tags that do not exist in BIEX. The
leakage reveals whether the double tag corresponding to labels (`1, `i) and a value
v ∈ MM[`1∧`2] appears in X . Note this is true if and only if v ∈ MM[`1∧`2∧`i].
Therefore, ConjFilter ends up leaking the volumes of 3-conjunctions of the form
`1 ∧ `2 ∧ `i where i ∈ {3, . . . , q}. These are the only sets of PRF evaluations that
are leaked by ConjFilter on top of the 2-conjunction result `1 ∧ `2. As these sets
are evaluated under the same PRF key, the adversary may perform arbitrary
set operations over them to derive volumes of other queries. Therefore, the base
query set of leakage is {(`1 ∧ `2), (`1 ∧ `2 ∧ `3), . . . , (`1 ∧ `2 ∧ `q)}.

Going back to BIEX, the only sets of PRF evaluations leaked consist of 2-
conjunctions from the set {(`1∧`2), . . . , (`1∧`q)}. This ends up being the base set
of query leakage as all PRF evaluations are under the same key. It is easy to see
that the span of the base query set of leakage of ConjFilter is a subset of the span
of the base query set of leakage of BIEX. This means that BIEX ends up leaking
volumes of more queries. To see some concrete reduced leakage, BIEX already
leaks volumes of more 2-conjunctions than ConjFilter. Looking at 3-conjunctions,
ConjFilter leaks only 3-conjunctions of the form (`1 ∧ `2 ∧ `3), . . . , (`1 ∧ `2 ∧ `q).
On the other hand, BIEX leaks volumes for 3-conjunctions of the form `1∧`i∧`j
where i < j ∈ {2, . . . , q}. Therefore, it is clear ConjFilter leaks volumes for less
3-conjunctions than BIEX. One can find many more queries for which volumes
are leaked by BIEX and not ConjFilter using the base sets. As leakage explodes
as more conjunctive queries are handled by BIEX and ConjFilter, the leakage
reduction on ConjFilter only gets better when considering leakage of multiple
conjunctive queries.
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As a caveat, we note that ConjFilter and BIEX leak volumes for identical
query sets in only two cases. The first case is singleton label queries where it is
necessary to leak the response size due to optimal communication requirements.
The other case is 2-conjunctions where both schemes leak only the volume of the
2-conjunctive query. For conjunctions with 3 or more labels, the set of queries
for which volumes are leaked for ConjFilter is always a strict subset of BIEX.

4 CNF Queries

In this section, we present CNFFilter, a construction supporting general CNF
queries that extends the filtering techniques of ConjFilter. The formal description
of CNFFilter may be found in Figure 2.

4.1 Construction CNFFilter

The CNFFilter.Setup algorithm is identical to ConjFilter.Setup that computes the
encrypted multi-map EMMp and set X .

Next, we show how CNFFilter handles CNF queries using EMMp and X . We
start with the simple case of a CNF formulae Φ = D1∧D2 with only two clauses
where each clause Dd = `d,1 ∨ . . . ∨ `d,qd , for d = 1, 2. For all i ∈ {1, . . . , q1}, we
define the set Si as

Si := (MM[`1,i] ∩MM[D2]) \

(
MM[`1,i] ∩MM[D2] ∩

(
q1⋃

r=i+1

MM[`1,r]

))
.

Note that any two sets, Si and Sj , are disjoint as long as i 6= j. Furthermore,
the union of all q1 sets is exactly MM[D1 ∧D2]. In other words, S1, . . . , Sq1 is a
partition of MM[D1 ∧D2] and this is crucial to obtain optimal communication.
Let us show how the search algorithm will compute the sets S1, . . . , Sq1 . Its
output will consists of the union of the q1 sets.

The client will issue tokens tok1, . . . , tokq1 to compute each of the sets
S1, . . . , Sq1 . The first part of toki corresponding to Si will be the q2 tokens
to query entries (`1,i, `2,j), for all j ∈ {1, . . . , q2}, in EMMp. Additionally, toki
will contain the encryption keys to decrypt all tags that appear in the tuples
MMp[(`1,i, `2,j)], for all j ∈ {1, . . . , q2}. As a result, the server will be able to
obtain the tags in the tuples MM[`1,i ∧ `2,1], . . . ,MM[`1,i ∧ `2,q2 ]. Using the tags,
the server may also compute the union of all q2 sets, which we denote as Si,
that is a superset of the final answer. Note, that Si is currently equal to the set
MM[`1,i] ∩MM[D2]. Two different parts Si and Sj might not be disjoint at the
moment. For example, there might be a value v ∈ MM[`1,i]∩MM[`1,j ]∩MM[D2]
that appears in both Si and Sj . To ensure all parts are disjoint, and thus guar-
antee optimal communication, we filter each Si and remove all values that will
appear in sets Si+1, Si+2, . . . , Sq1 . If any value v appears in Si ∩ Sj , it must
appear in MM[`1,i ∧ `1,j ]. Therefore, we can use X to filter any values in Si that
also will also appear in Sj . To do this for any i < j, the client sends the PRF
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seed Kx
`1,i,`1,j

. The server computes the PRF evaluation of every tag in Si using

Kx
`1,i,`1,j

(i.e. the double tag). Every pair whose double tag appears in X may be
safely removed from Si as it will appear in Sj . After filtering all sets S1, . . . , Sq1 ,
the server obtains a partitioning of MM[D1 ∧D2].

Next, we explain the extension to CNF queries with any number of clauses.
As described above, we have successfully retrieved the q1 sets S1, . . . , Sq1 whose
union is the answer to the query D1 ∧D2. Given a new clause D3 = (`3,1 ∨ . . .∨
`3,q3), we show how to compute the filtered sets S1∩MM[D3], . . . , Sq1 ∩MM[D3]
whose union corresponds to the response to the query D1 ∧ D2 ∧ D3. Recall
that all tags in each set Si are computed using a PRF seed depending solely on
label `1,i. It suffices to remove all items in Si that do not appear in any of the
sets MM[`1,i ∧ `3,1], . . . ,MM[`1,i ∧ `3,q3 ]. To do this, we once again use filtering
via the set X . The client will send the PRF seeds Kx

`1,i,`3,1
, . . . ,Kx

`1,i,`3,q3
and

applies each of them to each tag in Si and checks whether the resulting double
tag appears in X or not. If any value in Si whose corresponding q3 double tags
do not appear in X , the value will be removed from Si as it does not appear in
MM[D1 ∧D2 ∧D3]. By removing all these tags, the server successfully computes
Si ∧D3 for all q1 sets. For a CNF query of the form D1 ∧D2 ∧ . . . ∧D`, we can
repeat the above filtering for all D3, . . . , D` to compute the final response.

We note the above description considers CNF queries with at least two
clauses. For the special case of a CNF query with a single clause, the query will
be a disjunction. In this case, we revert to the same algorithms for BIEX [28]. No
additional storage is necessary as BIEX only requires EMMp. To our knowledge,
there is no way to serve disjunctions without leaking volumes of singleton labels.
We leave it as an important open question to answer whether it is possible to
compute disjunctions without leaking volumes of singleton labels. We omit the
special case from the pseudocode in Fig. 2 to focus on our new techniques.

4.2 Efficiency

The storage of CNFFilter is identical to ConjFilter as they store the same struc-
tures EMMp and X . So, CNFFilter stores O(

∑
a,b∈U |MM[a]∩MM[b]|) ciphertexts.

Moving on, we consider the costs of computing CNF queries of the form
Φ = D1 ∧ . . . ∧D` where each Di is a disjunction over qi keys. For convenience,
we denote q = q1 + . . . + q`. The token for Φ contains a EMMp token and an
encryption key for each pair of keys (a, b) where a appears in the first clause D1

and b appears in the second clause D2. As a result, there are O(q1q2) such keys
and tokens. Additionally, for each key appearing in any of the clauses D3, . . . , D`

and each key appearing in the first D1, the token for Φ contains a PRF key. This
results in an additional O(q1 · (q − q1 − q2)) PRF keys. So, the token size of
CNFFilter is O(q1 · q) = O(q2), which is independent of the stored multi-map.
The server response size is optimal as there is exactly one ciphertext returned
for each value in the response MM[Φ].

In terms of server computation, the server computes response sets for all
queries of the form MM[a ∧ b] where a is a label from the clause D1 and b

is a label from the clause D2. We may upper bound the size of all these q1 · q2
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• (msk,EMM)← CNFFilter.Setup(1λ,MM = {(`t, ~vt)}t∈[m]):
1. Compute (msk,EMM)← ConjFilter.Setup(1λ,MM).
2. Return (msk,EMM).

• tokΦ ← CNFFilter.Token(msk = (Kp,Kx,Kenc, mskp), Φ = D1∧. . .∧D`):
1. For d = 1, . . . , `, parse Dd as (`d,1 ∨ . . . ∨ `d,qd).
2. For i = 1, . . . , q1:

(a) For j = 1, . . . , q2:
i. Compute Kenc

i,j ← F (K, `1,i || `2,j).
ii. Compute tok

p
i,j ← sEMM.Token(mskp, (`1,i, `2,j)).

3. For i = 1, . . . , q1:
(a) For r = i+ 1 . . . , q1:

i. Compute Kx
`1,i,`1,r

= F (Kx, `1,i || `1,r).
4. For d = 3, . . . , `:

(a) For i = 1, . . . , q1:
i. For r = 1, . . . , qd:

A. Compute Kx
`1,i,`d,r

= F (Kx, `1,i || `d,r).
5. Return ({(Kenc

i,j , tok
p
i,j)}(i,j)∈[q1]×[q2], {K

x
`1,i,`1,r

}i<r∈[q1]×[q1],
{Kx

`1,i,`3,j
}(i,j)∈[q1]×[q3], . . . , {K

x
`1,i,``,j

}(i,j)∈[q1]×[q`]).
• ans← CNFFilter.Search(tokΦ,EMM = (EMMp,X )).

1. Parse tokΦ = ({(Kenc
i,j , tok

p
i,j)}(i,j)∈[q1]×[q2], {K

x
`1,i,`1,r

}i<r∈[q1]×[q1],
{Kx

`1,i,`3,j
}(i,j)∈[q1]×[q3], . . . , {K

x
`1,i,``,j

}(i,j)∈[q1]×[q`]).
2. For i = 1, . . . , q1: # Compute partition of D1 ∧ D2

(a) Set Si ← ∅.
(b) For j = 1, . . . , q2:

i. Set Si ← Si ∪ sEMM.Search(tokpi,j ,EMMp).
(c) Use decryption keyKenc

i,j to decrypt the first component of every
pair of Si and remove pairs from Si until all pairs have distinct
first component.

(d) Parse Si as {(tag1, ev1), . . . , (tag|Si|, ev|Si|)}.
(e) For each (tag, ev) ∈ Si:

i. Compute double tag dtagr ← F (Kx
`1,i,`1,r

, tag), for r =
i+ 1, . . . , q1.

ii. If one of the double tags belongs to X , then remove the
pairs containing tag from Si.

3. For d = 3, . . . , `: # Filtering using clause Dd
(a) For i = 1, . . . , q1:

i. For each (tag, ev) ∈ Si:
A. Compute dtagj ← F (Kx

`1,i,`d,j
, tag), for j = 1, . . . , qd.

B. If one of dtag1, . . . dtagqd belongs to X then, set S ←
S \ {(tag, ev)}.

4. Return all second components appearing in S = S1∪S2∪ . . .∪Sq1 .
That is, parse S as S = {(tag1, ev1), . . . , (tag|S|, ev|S|)} and return
ans = {ev1, . . . , ev|S|}.

• ans ← CNFFilter.Resolve(ans = {ev1, . . . , ev|ans|}, msk =
(Kp,Kx,Kenc, mskp))
1. Return Dec(Kenc, ev1), . . . ,Dec(Kenc, ev|ans|).

Fig. 2: Pseudocode for Construction CNFFilter
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responses by O(q1 ·q2 · |MM[D1∧D2]|). Each tag that appears in the response set
is hashed using an additional PRF key depending on another label that appears
in any of the clauses D3, . . . , D`. This incurs an additional O((q − q1 − q2) ·
|MM[D1 ∧ D2]|) server computation. Altogether, the total server computation
is O(q · q1 · |MM[D1 ∧ D2]|) = O(q2 · |MM[D1 ∧ D2]). This is sublinear in the
input multi-map size as long as MM[D1∧D2] is sublinear in the input multi-map
size. On average, our scheme has smaller server computation as it depends only
on |MM[D1 ∧D2] compared to BIEX whose server computation depends on the
size |MM[D1]| that is most likely larger. We show that our scheme has better
concrete server computation in our experiments in Section 5.

4.3 Formal Description of Leakage of CNFFilter

In this section, we give a formal description of the leakage for CNFFilter. We
will utilize the partitioning of leakage into setup LSetup, token LToken and search
LSearch leakage as done in ConjFilter.

Consider a multi-map MM = {(`t, ~vt)}t∈[m] and a CNF query sequence Q =

(Φ1, . . . , Φ|Q|), where Φp = (Dp
1 ∧ . . . ∧ D

p
mp) consists of mp clauses. The d-th

clause Dp
d of Φp consists of qpd labels, Dp

d = (`pd,1 ∨ . . . ∨ `
p
d,qpd

).

Setup Leakage. As ConjFilter and CNFFilter have identical setup algorithms,
the setup leakages are also identical. Thus, LSetup(MM, Q) = N =

∑
`,`′∈U |MM[`]∩

MM[`′]|.
Token Leakage. The token leakage consists of repetition patterns for both the
decryption keys and PRF seeds for double tags. denoted by encryptionKeyRP
and doubleTagSeedRP defined as follows. Each entry of encryptionKeyRP and
doubleTagSeedRP will correspond to the decryption key or PRF seeds unique
identifier. The token for the p-th query Φp contains one decryption key for each
pair consisting of a label from the first clause and a label from the second clause.
Therefore, for query Φp, encryptionKeyRPp contains an entry encryptionKeyRPp[i, j]
for each 1 ≤ i ≤ qp1 and 1 ≤ j ≤ qp2 . A repetition encryptionKeyRPp[i, j] =
encryptionKeyRPp′ [i

′, j′] occurs if and only if

`p1,i = `p
′

1,i′ and `p2,j = `p
′

2,j′ .

In other words, the encryptionKeyRP tells us whether the first two clauses of two
queries share two labels.

The token for the p-th query Φp contains one double-tag seed for each pair
consisting of a label from the first clause and a label from a clause following
the second clause. Therefore, for query Φp, doubleTagSeedRPp contains an entry
doubleTagSeedRPp[i, d, j] for each 1 ≤ i ≤ qp1 , 1 ≤ d ≤ lp, and 1 ≤ j ≤ qpd. A
repetition doubleTagSeedRPp[i, d, j] = doubleTagSeedRPp′ [i

′, d′, j′] occurs if and
only if

`p1,i = `p
′

1,i′ and `pd,j = `p
′

d,j′ .

In other words, the doubleTagSeedRP tells us whether the first clauses and the
d-th and d′-th clause of two queries share two labels.
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Search Leakage. The execution of the Search algorithm reveals both tags and
double tags. The tags are revealed after decrypting the response to the queries
MMp. The double tags are computed during filtering with the set X . As both
tags and double tags are pseudorandomly generated, they also leak repetition
patterns.

In addition, double tags leak membership in X which is encoded in the ma-
trices MX. Therefore, we have that

Lsr
CNFFilter(MM, Q) = (tagRP, doubleTagRP,MX).

Let us now see what Lsr
CNFFilter tells us about MM. In computing the response to

Φp, the number of tags obtained from each query to the underlying MMp gives the
volume of the 2-conjunction `p1,i ∧ `

p
2,j . In addition, observe that if the responses

to 2-conjunction (`p1,i∧`
p
2,j) and to 2-conjunction (`p

′

1,i′ ∧`
p
2,j′) share a tag then it

must be the case that `p1,i = `p
′

1,i′ and that there exists v ∈ MM[`p1,i ∧ `
p
2,j ∧ `

p
2,j′ ].

Therefore, by counting the number of common tags between the responses to
the two 2-conjunction one can obtain the volume of the 3-conjunction(

`p1,i ∧ `
p
2,j

)
∧
(
`p

′

1,i′ ∧ `
p
2,j′

)
=
(
`p1,i ∧ `

p
2,j ∧ `

p
2,j′

)
.

Clearly, tags appearing in the results of three or more 2-conjunctions give the
volume of conjunctions with four or more labels.

In sums, we can say that the tag repetition pattern leaks the volume of 2-
conjunctions, one for each query to MMp, that can be combined to compute the
volume of larger conjunctions.

The double-tag repetition pattern doubleTagRP can be computed from tagRP
and doubleTagSeedRP. Indeed, two double tags are equal iff they are obtained
by applying the same double-tag seed to the same tag (except with negligible in
λ probability). Therefore no further information is leaked by doubleTagRP.

Finally, let us look at the double-tag membership in X pattern. For each
query, the membership information MXp for query Φp has a matrix MXpi,j for
each pair of label `p1,i of the first clause and label `p2,j of the second clause. Matrix
MXpi,j has a row for each tag tag that is obtained by decrypting the response to
the query for MMp[`p1,i ∧ `

p
2,j ] and a column for each double-tag seed dstag and

MXpi,j [tag, dstag] = 1 iff the corresponding double tag is found in X . It is easy to
see that the number of 1 in the column of double-tag seed for `p1,i and `p1,r gives
the volume of 3-conjunction (`p1,i∧`

p
2,j∧`

p
1,r). Similarly the columns of the double-

tag seed for `p1,i and `pd,r gives the volume of 3-conjunction (`p1,i∧`
p
2,j∧`

p
d,r). And,

as before, the volume of 3-conjunctions can be combined together to obtain the
volume of conjunction of size 4 or larger. In sums the membership in X gives
the volume of conjunctions of size 3 or larger.

We denote the query leakage as the combination of token and search leakage
LQuery = (LToken,LSearch). We prove the following theorem in the full version.

Theorem 5. CNFFilter is an adaptively (LSetup,LQuery)-secure encrypted Boolean
multi-map scheme that supports CNF queries in the random oracle model.
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4.4 Comparing the leakage

We now compare the leakage of our construction with the one of BIEX (a de-
scription of BIEX may be found in the full version).

We start by considering the tags that are revealed by CNFFilter. Consider a
CNF query with m clauses of the form (`1,1∨ . . .∨`1,q1)∧ . . .∧(`m,1∨ . . .∨`m,qm).
CNFFilter reveals the tags for all values in MM[`1,i∧ `2,j ] for all label pairs of the
form (`1,i, `2,j). On the other hand, BIEX reveals all plaintext tags appearing in
MM[`1,i] for all labels `1,i. Additionally, it reveals all plaintext tags appearing in
MM[`1,i ∧ `j,k] for all label pairs of the form (`1,i, `j,k) where j ≥ 2.

Note that CNFFilter reveals double tags that do not exist in BIEX. The
leakage reveals whether the double tag corresponding to label pair (`1,i, `k,l)
and a value v ∈ MM[`1,i ∧ `2,j ] appears in X . Note that this is true if and only
if v ∈ MM[`1,i ∧ `2,j ∧ `k,l]. Therefore, CNFFilter ends up leaking the volumes
of 3-conjunctions of the form `1,i ∧ `2,j ∧ `k,l where k ≥ 3. These are the only
sets of PRF evaluations that are leaked by CNFFilter on top of the 2-conjunction
results `1,i∧ `2,j . Therefore, the base query set of leakage is B′∪{(b′∧ `k,l) | b′ ∈
B′, 3 ≤ k ≤ m, l ∈ [qk]} where B′ = {(`1,i ∧ `2,j) | i ∈ [q1], j ∈ [q2]}.

On the other hand, the sets of PRF evaluations leaked by BIEX consist of
queries from the set {`1,i | i ∈ [q1]} ∪ {(`1,i ∧ `j,k) | i ∈ [q1], 2 ≤ j ≤ m, k ∈ [qj ]}.
This also turns out to be the base set of query leakage for BIEX.

It is easy to verify that the span of the base set of query leakage of CNFFilter
is a subset of the span of the base set of query leakage of BIEX. First, BIEX
leaks volumes for all singleton labels `1,i which CNFFilter doesn’t leak, unless
the query is a disjunction (recall that CNFFilter falls back to using BIEX in
this case). Additionally, while CNFFilter only leaks 2-conjunctions of the form
`1,i ∧ `2,j , BIEX leaks 2-conjunctions of the form `1,i ∧ `j,k for all j ≥ 2. Note
that the 3-conjunctions `1,i ∧ `2,j ∧ `k,l leaked by CNFFilter are also leaked by
BIEX since the server can compute this from the response sets of 2-conjunctions
`1,i ∧ `2,j and `1,i ∧ `k,l. Thus, it follows that CNFFilter does not leak more than
BIEX.

As a caveat, we note that CNFFilter and BIEX leak volumes for the same
set of queries in only two cases. The first case happens when the query is a
disjunction of the form `1 ∨ . . . ∨ `q, in which case CNFFilter falls back to the
default implementation of BIEX. The other case happens when the query is a
2-conjunction of the form `1 ∧ `2. In every other case, CNFFilter leaks strictly
less than BIEX.

5 Experiments

In this section, we present our experimental evaluation for our main construction,
CNFFilter, that supports CNF queries with reduced volume leakage. We start
by describing our experimental setup as well as the choice of parameters and
primitives for our construction. Afterwards, we compare with the construction
of BIEX described in [28].
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Using the results of these experiments, we will try to answer the following
question: how do the concrete efficiency costs of our construction CNFFilter com-
pare to the previous, state-of-the-art BIEX [28]?

Note that we will use multipliers to describe efficiency improvements. If con-
struction A is a 2x improvement over construction in B in computation, we mean
that construction A uses half the computation compared to construction B.

5.1 Setup of Experiments

Our experiments are conducted using the identical machines for both the client
and the server. The machines are Ubuntu PCs with 12 cores, 3.65 GHz Intel
Xeon E5-1650 and 32 GB of RAM. All experimental results that are reported
have standard deviations less than 10% of their average over 50 executions. All
network costs are measured at the application layer. Both our client and server
are implemented in C++ using the gRPC library [2].

Input Dataset. For our experiments, we utilize the Enron email dataset [34].
We parse the Enron email dataset using the Natural Language Toolkit (NLTK)
in Python [3]. Before indexing the dataset, we perform canonicalization and
stemming [41] using NLTK. Afterwards, we create a multi-map over the Enron
email dataset mapping keywords to email identifiers. In our experiments, we will
consider executing schemes over an input multi-map with a target number of
values n. To obtain an input multi-map of size n from the Enron email dataset,
we perform sampling in the following way. Pick emails uniformly at random and
add them to the multi-map until there are at least n total keyword-identifier
pairs in the multi-map.

Primitives. In all our experiments, we will utilize HMAC-SHA256 as our PRF
with 16 byte keys. For our symmetric encryption scheme, we utilize AES in
CTR mode with 16 byte keys. For the case of when encrypting pseudorandom
values that will never repeat, we will utilize AES in CTR mode with a fixed
IV. Our implementations utilize OpenSSL for both HMAC-SHA256 and AES.
For the underlying standard encrypted multi-map of Section 2.3, we utilize the
response-revealing 2Lev construction from [14] with parameters big block size
B = 100 and small block size b = 8.

Selectivity of Clauses. In our experiments, we vary the selectivity of the
first and second clauses in the CNF queries while fixing the selectivities of the
remaining clauses. This is a reasonable setup as the search times of BIEX and
CNFFilter depend mainly on the selectivity of the first and second clauses.

5.2 Implementation of BIEX [28]

The BIEX construction was presented in [28] along with an implementation
in Java [1]. To provide a fair comparison with our C++ implementation of
CNFFilter, we re-implement BIEX in C++ with the same underlying primitives
as CNFFilter. All our reported results for BIEX will be using our C++ implemen-
tation. We note that the tags stored in the encrypted multi-map of BIEX will be
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100 500 1,000 5,000 10,000

CNFFilter BIEX CNFFilter BIEX CNFFilter BIEX CNFFilter BIEX CNFFilter BIEX

100 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

500 < 0.01 0.24 < 0.01 0.16 < 0.01 0.08 < 0.01 0.16 0.04 0.18

1000 < 0.01 1.28 < 0.01 1.22 < 0.01 1.24 0.32 1.30 0.82 1.36

5000 < 0.01 9.80 < 0.01 9.98 0.64 10.18 3.01 10.72 5.01 11.30

10000 < 0.01 21.84 0.46 20.34 1.16 21.98 5.44 22.36 9.46 22.76

Table 1: Microbenchmarks for the search time of CNFFilter and BIEX [28] on randomly
chosen queries of the form D1 ∧D2 ∧D3 where each Di is a four label disjunction. The
leftmost column and the topmost row denote the number of values associated with each
label in the first and the second clause, respectively. The number of values associated
with labels in D3 are fixed to 10000. All search times are measured in milliseconds.

the first 8 bytes of the HMAC-SHA256 output. As tags are pseudorandom and
won’t collide (except with small probability), we encrypt tags using AES-CTR
mode with a fixed IV. All encryption and PRF keys used are 16 bytes long.
We did not implement their new underlying encrypted multi-map ZMF, filtering
optimization or online cipher HBC1 [6], as they mainly improve the underlying
encrypted multi-map which are used by both schemes in similar ways.

Compared to the Java implementation of BIEX [1], our C++ implementation
of BIEX runs 20x faster than results reported in [28]. Recall that the server
computation time depends on the selectivity of the first clause in the CNF query.
For a query of the form D1 ∧ . . . ∧ D` over q distinct labels and each Di is a
disjunction, then BIEX search algorithm runs in time O(q2 · |MM[D1]|). As the
size of MM[D1] grows, the server running time also grows as seen in Table 1.

5.3 Cost of CNFFilter

We also implement our construction CNFFilter in C++. The tags stored in the
encrypted multi-map and the double tags stored in X will be the first 8 bytes
of the HMAC-SHA256 output. As tags are pseudorandom and do not repeat
(except with small probability), we encrypt tags using AES-CTR mode with a
fixed IV. All encryption and PRF keys used in CNFFilter are 16 bytes long.

Recall that search computation time of CNFFilter depends on the selectivity
of the conjunction of the first two clauses of a CNF query. For a CNF query of the
form D1∧ . . .∧D` over q distinct labels, the running time of the search algorithm
of CNFFilter grows in the size of MM[D1 ∧D2]. As MM[D1 ∧D2] is a subset of
MM[D1], the running time of CNFFilter is expected to be faster than BIEX. Our
experimental results in Table 1 confirm these expectations by showing that the
search time of CNFFilter is at least 2x faster and may be more than 40x faster
compared to BIEX for the same queries and the same input multi-map.

For communication, both CNFFilter and BIEX obtain optimal download com-
munication complexity. In terms of upload communication costs (i.e. token size),
CNFFilter requires smaller tokens compared to BIEX as shown in Figure 3. Re-
call that if the CNF query has q1 labels in the first clause and q total labels
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Fig. 3: Search token sizes of CNFFilter and BIEX [28] for 3-clause CNFs D1 ∧D2 ∧D3

where the D1 and D2 contain 5 labels and the x-axis indicates the number of labels in
D3.

Input Multi-Map Size in Number of Key-Value Pairs (n)

10,000 50,000 100,000 500,000 1,000,000

CNFFilter BIEX CNFFilter BIEX CNFFilter BIEX CNFFilter BIEX CNFFilter BIEX

Storage Size (MB) 115 95 480 401 941 773 4,661 3,702 16,408 13,173

Setup Time (seconds) 3 2 13 8 24 13 137 72 662 308

Table 2: Storage and setup time of CNFFilter and BIEX [28].

overall, then BIEX executes q1 · (q − q1) queries to 2Lev. On the other hand,
CNFFilter performs only q1 · q2 2Lev queries where q2 is the number of labels in
the second clause. The remaining operations in CNFFilter involve hashing and
checking membership in X . These operations only require the client to send a
PRF key of 16 byte size. This is around 60% of the token size of performing a
query to 2Lev. Therefore, CNFFilter obtains smaller token sizes.

Finally, we consider the storage costs of CNFFilter and BIEX. Both schemes
store an identical encrypted multi-map for all 2-conjunctions. In addition, CNFFilter
must also store the set of hashes X that does not exist in BIEX. As a result,
CNFFilter will have larger storage costs. However, the set X only consists of
double tags of 8 byte length. As a result, X occupies much smaller space com-
pared to the storage of the encrypted multi-map. This is observed in Table 2
that shows CNFFilter only incurs a 20-25% increase in storage over BIEX, which
seems reasonable given the leakage, communication and server computation im-
provements.

6 Conclusions

In this work, we continue work on designing encrypted Boolean multi-maps.
Our new construction CNFFilter mitigates volume leakage better than all previ-
ous works while simultaneously achieving optimal communication and worst-case
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sublinear search times. In terms of volume leakage reduction, CNFFilter substan-
tially improves upon the previous constructions.
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