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Abstract. An extractable one-way function (EOWF), introduced by
Canetti and Dakdouk (ICALP 2008) and generalized by Bitansky et al.
(SIAM Journal on Computing vol. 45), is an OWF that allows for e�cient
extraction of a preimage for the function. We study (generalized) EOWFs
that have a public image veri�cation algorithm. We call such OWFs
veri�ably-extractable and show that several previously known construc-
tions satisfy this notion. We study how such OWFs relate to subversion
zero-knowledge (Sub-ZK) NIZKs by using them to generically construct
a Sub-ZK NIZK from a NIZK satisfying certain additional properties,
and conversely show how to obtain them from any Sub-ZK NIZK. Prior
to our work, the Sub-ZK property of NIZKs was achieved using concrete
knowledge assumptions.

1 Introduction

Extractability is a way to formalize what an algorithm knows. It is a notion
essential to modern cryptography which dates back to the works of Goldwasser
et al. [34] who proposed proofs of knowledge, and later formalized for interactive
proofs by Bellare and Goldreich [10].4 For non-interactive proofs, Damgård [23]
proposed knowledge-of-exponent assumptions, which are non-falsi�able assump-
tions5 saying that any e�cient algorithm that produces group elements that
satisfy a speci�c relation must know their discrete logarithms.

Investigating extractable primitives, Canetti and Dakdouk [19] introduced
the notion of extractable one-way functions (EOWFs). These are one-way func-
tions f such that any adversary who produces an image of f must �know� its
preimage. One formalizes this by saying that for every adversary A that outputs
a value y ∈ image(f), there exists an extractor Ext that, given A's auxiliary
input and randomness, can output a preimage for y under f . In the case of
black-box (resp., non-black-box [7]) extractability, Ext is universal and has no
access (resp., has access) to A's code.
4 Extractability in interactive protocols is well-studied and involves a technique called
rewinding. In this paper we focus on extractability for non-interactive protocols.

5 Essentially, one cannot e�ciently check if an adversary breaks the assumption.
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Until the work of Bitansky et al. in [14], EOWFs were only known under very
strong knowledge-of-exponent assumptions [13], making little attempt to justify
how extraction would work. Bitansky et al. de�ned generalized extractable one-
way functions (GEOWFs) and constructed a GEOWF based on sub-exponential
learning with errors (or, alternatively, any delegation scheme) and non-black-box
extraction, given that the auxiliary input of the adversary is bounded. They also
prove that GEOWFs secure against auxiliary input of polynomially unbounded
length do not exist assuming indistinguishability obfuscation (which seems an
increasingly plausible assumption given recent progress [41,56]).

Extractability and SNARKs. Extractability assumptions are widely used in vari-
ous �avors of non-interactive zero-knowledge (NIZK) protocols, which are useful
tools in ensuring privacy and correctness of cryptographic protocols. Succinct
non-interactive zero-knowledge arguments of knowledge (zk-SNARKs, [30,36,37,
48]) are NIZKs that have sublinear-length proofs and are knowledge-sound (for
any valid proof, the prover must �know� a witness). The knowledge-soundness
property of a SNARK relies on being able to extract the witness from an ad-
versary that outputs a valid argument. SNARKs are extremely popular due
to practical applications such as veri�able computation and privacy-preserving
cryptocurrencies (e.g., Zcash [11]).

An interesting question is which assumptions are necessary for SNARKs.
Due to the impossibility result of Gentry and Wichs [32], any adaptively sound
SNARK must rely on non-falsi�able assumptions. However, while non-falsi�able
assumptions are necessary, they need not be knowledge assumptions. In fact,
Bitansky et al. [13] showed that extractable collision-resistant hash functions
(ECRHs) are necessary and su�cient to construct a SNARK that is adaptively
sound and only privately veri�able. More precisely, they construct a designated
veri�er SNARK for NP from an ECRH and (an appropriate) private information
retrieval, and construct a (speci�c variant of) ECRH from a designated veri�er
SNARK and a CRH. They also showed that ECRH implies EOWF.

Extractability and Subversion Zero-knowledge. E�cient SNARKs are typically
de�ned in the common reference string (CRS) model, where one assumes that the
prover and the veri�er have access to a CRS generated by a trusted third party.
However, in practice, such a party usually does not exist; this is important since
a malicious CRS generator may cooperate with the prover to break soundness,
or with the veri�er to break zero-knowledge. Thus, it is preferable to construct
SNARKs, and NIZKs in general, in weaker trust models than the CRS model.

The general notion of parameter subversion has been studied in [53]. Bellare
et al. [9] de�ned subversion zero-knowledge (Sub-ZK), where zero-knowledge
holds even in the case of a dishonestly generated CRS, and constructed a Sub-
ZK NIZK argument. Subsequently, [1,3,27] constructed Sub-ZK SNARKs and [2]
constructed succinct Sub-ZK quasi-adaptive NIZKs [42]. As noted in [2], Sub-ZK
in the CRS model is equivalent to zero-knowledge in the minimal bare public key
(BPK, [20]) model where the authority is only trusted to store the public key of
each party. Since auxiliary-string non-black-box NIZK is impossible in the BPK
model [33], one needs to use non-auxiliary-string non-black-box techniques to
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achieve Sub-ZK [2]. Existing Sub-ZK NIZKs extract a CRS trapdoor from the
(possibly malicious) CRS generator, and then use the CRS trapdoor to simulate
the NIZK argument. Prior to our work, extraction in Sub-ZK NIZKs was done
using a concrete knowledge-of-exponent assumption.

As previously mentioned, the work of Bitansky et al. [13] established that
extractable collision-resistant hash functions are necessary to obtain adaptive
soundness of SNARKs. A natural extension of this question is then to ask:

Which assumptions are necessary to obtain Sub-ZK for NIZKs and
SNARKs? Are those assumptions stronger than the ones required to
obtain adaptive soundness of SNARKs?

1.1 Our Contributions

Inspired by (G)EOWFs, we propose a new generic assumption6: the existence of
veri�ably-extractable (generalized) OWFs (VE(G)OWFs). We argue that VEG-
OWFs are a natural extension of GEOWFs introduced by Bitansky et al. [14],
and show that in fact their GEOWF construction can easily be turned into a
VEGOWF. Moreover, while Bitansky et al. [14] showed that a GEOWF can be
transformed into a EOWF under certain assumptions, we similarly show that
any VEGOWF can be transformed into a VEOWF with no further assump-
tions. To circumvent the impossibility result that EOWF and similar primitives
do not exist assuming indistinguishability obfuscation, our de�nitions include
non-black-box extractability as in [14] and assume a benign distribution of aux-
iliary inputs as suggested in [18].

Answering the �rst research question, we show that VEGOWFs are vital
in understanding subversion zero-knowledge. Firstly, we show that VEGOWFs
allow for the transformation of any perfect NIZK with a publicly veri�able
CRS into a Sub-ZK NIZK. Secondly, we show the necessity of VEGOWFs
by showing that the existence of a Sub-ZK NIZK with certain properties im-
plies that the NIZK's CRS generation algorithm must be a VEOWF. We also
prove that if a NIZK has perfect zero-knowledge and well-formedness of the
CRS can be e�ciently veri�ed, then we automatically obtain a statistical two-
message private-coin witness-indistinguishable argument. Obtaining statistical
two-message witness-indistinguishable arguments (either public or private coin)
was an open question until recently [6, 35, 49]. Similar observations were previ-
ously made about speci�c Sub-ZK SNARKs in [27].

We answer the second research question by showing that the assumption
corresponding to this primitive seems weaker than that of extractable collision-
resistant hash functions. In particular, we show that VEGOWFs can be built
either from knowledge assumption or knowledge-sound NIZKs, and we also pro-
pose candidate VEGOWFs from various signature schemes.

6 Generic assumptions postulate the existence of a cryptographic primitive, such as
OWFs and one-way permutations. Meanwhile, concrete assumptions are used for
concrete constructions, such as the RSA assumption [52] for the RSA cryptosystem.
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By showing connections to Sub-ZK NIZK, our work further demonstrates the
importance of extractable OWFs as an independent primitive. This tool, which
has not been thoroughly studied, seems to lead the way to protocols that are
otherwise di�cult to achieve. We encourage further study into extractable func-
tions under weaker (or di�erent) assumptions as there are signi�cant di�erences
between various non-black-box techniques.

2 Technical Overview

Extending the notions of EOWF [19] and GEOWF [14], we de�ne Veri�ably-
Extractable Generalized One-Way Functions (VEGOWFs), show several instanti-
ations of these and show how it is related to subversion resistant zero-knowledge.
Intuitively, an EOWF f is a one-way function such that for any PPT adversary
A, there exists a PPT extractor ExtA, such that if A outputs y ∈ image(f),
then ExtA (given access to A's auxiliary input) retrieves x such that f(x) = y.
Meanwhile, a GEOWF g generalizes EOWFs by introducing a relation RG such
that for every PPT A, there exists an extractor ExtA, such that if A outputs
y ∈ image(g), then ExtA (given access to A's auxiliary input) returns z such
that (y, z) ∈ RG. It is required that it is di�cult for any adversary who is only
given y to compute such z, i.e., RG is a hard relation.

2.1 Veri�ably-Extractable (Generalized) OWFs

A Veri�ably-Extractable Generalized OWF (VEGOWF) G = {ge}e is a GEOWF
which additionally allows one to e�ciently check whether extraction will succeed
for a given value y. More precisely, we de�ne a relation RGe and a set YExt ⊇
image(ge) such that
(i) given y one can e�ciently verify whether y ∈ YExt and
(ii) if y ∈ YExt then there exists an extractor ExtA that given non-black-box

access to A extracts z such that (y, z) ∈ RGe.
Note that extraction should work even if y ∈ YExt \ image(ge), and in general,
it might be hard to decide if y ∈ image(ge). We say that a VEGOWF is keyless
if e is the security parameter λ; in this case we write RG instead of RGe. The
formal de�nition of VEGOWFs can be found in Section 4.1.

We denote both properties together as RG-veri�able-extractability. The re-
quirements for RG-hardness remain the same as for GEOWFs. We introduce
veri�ably-extractable OWFs (VEOWF) as a special case of VEGOWFs where
the corresponding relation is RGe = {(ge(x), x)}.
Generic transformations. We show that any VEGOWF can be transformed
to a VEOWF with a simple technique that was �rst mentioned in [14], in a
slightly di�erent context. However, since the transformation incurs some e�-
ciency loss, we still consider VEGOWFs to be a weaker primitive and base our
subversion zero-knowledge application on VEGOWFs. We also give a construc-
tion of a VEGOWF from any GEOWF by evaluating the GEOWF on two dif-
ferent inputs and attaching a NIWI proof (in the plain model) that at least one
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of the functions was evaluated correctly. Together they give a surprising result
that any GEOWF can be transformed to a VEOWF under the relatively mild
assumptions (e.g., decisional linear assumption) required by the NIWI. We note
that similar techniques have been previously used in speci�c applications. For
example, [12] uses similar idea to obtain a 3-round zero-knowledge argument
from any (non-veri�able) EOWF. We believe it is valuable to point out that this
technique works as a general transformation. See Section 4.2 for more details.

Robust Combiners. We show that n VEGOWFs can be combined to a new
VEGOWF, which is secure if any t > n/2 of the initial functions is secure. A
robust combiner [26, 40] for VEGOWFs is useful since many of the proposed
VEGOWFs rely on strong assumptions. With combining we only need to trust
that some of those strong assumptions hold without knowing which. Details are
provided in Section 4.2.

We show several VEGOWFs and VEOWFs under various assumptions like
bounded auxiliary input size, knowledge assumptions, and the random oracle.

VEGOWF from the BCPR construction. In the �rst construction, we show
that the keyless GEOWF G from [14, Fig. 4] is, in fact, a VEGOWF against any
adversary with bounded auxiliary input if we assume that the used delegation
scheme has e�cient public CRS-veri�ability. We recall that a delegation scheme
DS [5] allows one to prove statements of the form �a machine M outputs y on
input x in time t�. A delegation proof πDS must be faster to verify than the
statement itself. The CRS-veri�ability means that one can e�ciently check if
the DS CRS crsDS is a valid CRS.

In the BCPR construction, each function ge computes a CRS crsDS for a
delegation scheme DS, and then evaluates a PRG on a random value. The relation
RG(y, z) holds for y = (crsDS, v) and z = (A, πDS, pad), if πDS is a DS-proof,
using crsDS as the CRS, for the statement that A on input 1λ outputs v. (pad is
a padding.) The proof of RG-hardness is as in [14], and follows from the security
of the PRG together with an argument about Kolmogorov complexity. The RG-
veri�able-extractability follows from the CRS-veri�ability and completeness of
the delegation scheme. See Section 4.3 for more details.

We note that even if the delegation scheme is not CRS-veri�able, one could
still make the BCPR EOWF a VEGOWF using the generic transformation pre-
sented in Section 4.2.

VEGOWFs from knowledge-of-exponent assumptions. Secondly, we show
that many knowledge-of-exponent assumptions naturally imply VEGOWFs. For
these VEGOWFs, the input key e consists of a bilinear group description and
possibly some additional information.

We �rst construct of a VEOWF based on the Bilinear Di�e�Hellman
Knowledge-of-Exponent (BDH-KE) assumption from [1] which states that if
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an adversary on input p (the asymmetric bilinear group description) outputs
([x]1, [x]2) for some x then he knows x.7 Here, e = p and gp(x) = ([x]1, [x]2).

We also construct a VEGOWF based on the Di�e�Hellman Knowledge of
Exponent (DH-KE) assumption introduced in [9]. The key is a description p of
a symmetric bilinear group, and gp(x, y) = [x, y, xy]1. The DH-KE assumption
states that is is possible to extract at least one of x and y. This results in a
VEGOWF with respect to the relation RGp([x, y, xy]1, z) = 1 i� z = x or z = y.

We discuss these and other similar VE(G)OWF constructions in Section 4.4.

VEGOWFs from knowledge sound NIZKs. Thirdly, inspired by [22, 47],
we build VEGOWFs using knowledge-sound NIZKs. Suppose that we have a
knowledge-sound NIZK Π for a relation R and that R has an e�cient sam-
pling algorithm S which produces instances that are hard on average. We de-
�ne ge(rS , rπ) such that it samples (x,w) ← S(rS), uses rπ as random coins
to generate a proof π for x, and outputs (x, π). The input e is either the CRS
or a description of a hash function (in the random oracle model). We de�ne
RGe((x, π),w) = 1 i� π satis�es NIZK veri�cation and (x,w) ∈ R. Since Π is
knowledge-sound, we obtain RG-veri�able-extractability by using Π's veri�ca-
tion on (x, π). RG-hardness is satis�ed since π is simulatable and S produces
hard instances on average.

As an interesting instantiation, if we let S output ([x] , x) for a random
x and use Schnorr's Σ-protocol together with the Fiat-Shamir heuristic as a
NIZK, we obtain a very e�cient VEOWF ge(x, r) := (x = [x] , a = [r] , z =
H([x] , [r]) ·x+r) where H is a hash function and veri�cation works by asserting
that H(x, a)x+ a = [z]. See Section 4.5 for more details.

VEGOWFs from signature schemes. Finally, we propose a novel heuristic
for coming up with new VEGOWFs and knowledge-type assumptions in general.
The intuition behind signature schemes is that only the one with (at least some)
knowledge of the signing key sk can sign a message. Thus, it gives a very simple
formula for looking for new VEGOWFs. Let Σ = (KGen,Sign,Vf) be a digital
signature scheme. Then, gp(sk) = (vk = KGen(sk), σ = Sign(sk,m = 0)) is a
candidate for a VEGOWF where p is some parameter for the signature scheme,
in particular when vk ∈ KGen can be e�ciently tested. Of course, this is just a
heuristic since at least the standard notion of existential unforgeability does not
require that the signer knows the secret key.

We then proceed by going over many concrete signatures schemes and in-
vestigate the security of the corresponding VEGOWF candidate. We see that in
some cases the VEGOWF is insecure (e.g., Lamport's one-time signature [46] and
RSA signature), in some cases it gives a VEGOWF that we already considered
before (e.g., Schnorr's signature scheme [55] and Boneh-Boyen signature [16])
and in some cases we obtain (plausibly secure) VEGOWFs that have not been
considered before. In the latter set is for example the DSA signature which gives

7 We use the additive notation for bilinear groups G1,G2,GT where [x]i denotes xgi
using the �xed generator gi of Gi described in p. A bilinear map • allows us to
compute [x]1 • [y]2 = [xy]T .
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quite a unique function in a non-pairing-based group and (and a slight modi�-
cation of) the hash-and-sign lattice based signature scheme of [31], which gives
the �rst lattice based VEGOWF candidate.

2.2 Constructing Sub-ZK NIZK from VEGOWF

We propose two generic constructions of a Sub-ZK NIZK. The �rst construction
produces a knowledge-sound Sub-ZK NIZK from any knowledge-sound Sub-WI
NIWI8 and keyless VEGOWF. The second construction produces a sound Sub-
ZK NIZK from a sound Sub-WI NIWI, a keyless extractable commitment, and
a VEGOWF.

Knowledge-sound Sub-ZK NIZK. For the �rst construction, we propose a
knowledge-sound Sub-ZK NIZK for any NP-relation R using a variant of the
well-known FLS disjunctive approach [25]. Namely, we use a knowledge-sound
Sub-WI NIWI Πwi for the composite relation R′, where ((x, ŷ), (w, ẑ)) ∈ R′ i�
either (x,w) ∈ R or (ŷ, ẑ) ∈ RG. Here G = {ge} is a keyless VEGOWF with
respect to RG and ŷ ∈ YExt being added to Πwi's CRS. Knowledge-soundness
of the new protocol will follow from the knowledge-soundness of Πwi together
with the RG-hardness of G, and subversion zero-knowledge follows from the
veri�able-extractability of G and the Sub-WI property of Πwi. This construction
preserves succinctness, and thus we obtain a Sub-ZK SNARK from a keyless VE-
GOWF and a Sub-WI SNARK. We later note that any perfectly zero-knowledge
SNARK with e�cient CRS veri�cation is automatically a Sub-WI SNARK. See
Section 5.1 for the full details of the construction.

Sub-ZK NIZK. Secondly, we construct a Sub-ZK NIZK Π for any NP-relation
R. It similarly uses the FLS approach with a keyless VEGOWF, but additionally
uses a commitment to a trapdoor. Speci�cally, Π implements a Sub-WI NIWI
Πwi for the relation R′, where ((x, c, ŷ), (w, ẑ, r̂)) ∈ R′ i� (x,w) ∈ R or c =
C.Com(ẑ, r̂) such thatRG(ŷ, ẑ) = 1, where G is a keyless VEGOWF with respect
to RG and C = (Com,Open,Vf) is a keyless extractable commitment scheme.

A proof in Π consists of a commitment c and a proof in Πwi, so this con-
struction is less e�cient than the previous one. However, this does not rely on
Πwi being knowledge-sound, so the construction is still of interest. The sound-
ness of Π follows from the soundness of Πwi together with the RG-hardness of
G and the extractability of C. Note that Πwi will already guarantee that c is
a valid commitment. Therefore, we do not need the commitment itself to have
an e�cient image veri�cation procedure and can obtain it from any (even non-
veri�able) injective EOWF. Sub-ZK follows from the veri�able-extractability of
G, the Sub-WI property of Πwi and the hiding property of C. See Section 5.2 for
the full details of the construction.

Statistical ZAPRs with adaptive soundness.We observe that if a NIZK has
perfect zero-knowledge and CRS-veri�ability, then we immediately obtain a sta-

8 Although in the literature NIWI often refers to the plain model, in this context we
allow for a CRS. A Sub-WI NIWI needs to remain witness indistinguishable even if
the CRS is subverted. We note that any CRS-less NIWI is trivially a Sub-WI NIWI.
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tistical two-message private-coin witness-indistinguishable argument. Obtaining
statistical two-message witness-indistinguishable arguments that are public-coin
(ZAP) or private-coin (ZAPR) was considered a signi�cant open problem, un-
til recent breakthroughs [6, 35, 49]. Note that existing Sub-ZK SNARKs [1, 27]
are already statistical ZAPRs with adaptive soundness. Compared to previous
statistical ZAP/ZAPR constructions, the soundness of SNARKs is based on less
standard assumptions, but they have much better e�ciency. Similar observations
about Sub-ZK SNARKs were previously made by Fuchsbauer in [27].

VEGOWF

NIWI GEOWF

KS Sub-WI NIWI Sub-WI NIWI ExtCom

Injective EOWF

KS Sub-ZK NIZK Sub-ZK NIZK VEOWF

Fig. 1. Relations between argument systems and extractable functions. Multiple arrows
pointing to the same node means that each source node is required to construct the
destination node. KS denotes knowledge-sound.

Instantiations. The relations between our primitives are summarized in Fig. 1.

Table 1 shows a selection of instantiations for our generic constructions and
compares them to previous work. We can achieve a keyless extractable commit-
ment from any keyless injective VEOWF (or even from keyless injective EOWF
if the commitment does not have to be image veri�able). In particular, this
includes a VEOWF based on the symmetric discrete logarithm (SDL) assump-
tion and the BDH-KE assumption, and a VEOWF based on the security of a
non-interactive version of Schnorr's protocol.

We can construct a Sub-ZK NIZK by combining a keyless extractable com-
mitment, a VEGOWF, and a Sub-WI NIWI. For example, we may use the
Sub-WI NIWI of [39] based on DLIN or [15] based on iO and OWF. In com-
parison, [9] proposed a Sub-ZK NIZK which is based on the DLIN and DH-KE
assumptions. We can obtain a KS Sub-ZK NIZK by combining a KS Sub-WI
NIWI with a VEGOWF. In Table 1, we consider the case where we use [28]
as the KS Sub-WI NIWI component, together with a VEGOWF which holds
under the same assumptions. In Section 5.2, we also show that existing Sub-ZK
SNARKs [1,27] can be slightly modi�ed to achieve Sub-ZK from any VEGOWF
rather than a speci�c knowledge-of-exponent assumption.

2.3 Constructing VEOWF from Sub-ZK NIZK

It turns out that not only can Sub-ZK NIZK be constructed with the help
of VEGOWF, but (under certain restrictions) Sub-ZK NIZK also implies a



VEOWFs and Their Applications to Sub-ZK 9

Soundness Knowledge Soundness Sub-ZK
[9] DH-KE + CDH x DH-KE + DLIN

Sec. 5.2 injective VEOWF x injective VEOWF + DLIN
Sec. 5.2 injective VEOWF x injective VEOWF + iO

[1] GGM GGM BDH-KE
[27, Sec. 4] q1-PDH + q2-PKE q1-PDH + q2-PKE SKE
[27, Sec. 5] q1-PDH + q2-PKE + q3-SDH q1-PDH + q2-PKE + q3-TSDH SKE
[27, Sec. 6] GGM GGM SKE
Sec. 5.1 DH-KE + DL DH-KE + DL DH-KE + DLIN

Table 1. Instantiations of our generic constructions in comparison to previous work.
SKE denotes the Square Knowledge-of-Exponent assumption, GGM denotes the
generic group model, PDH denotes the Power Di�e-Hellman assumption, PKE de-
notes the Power Knowledge-of-Exponent assumption, and TSDH denotes the Target
Strong Di�e-Hellman assumption.

VE(G)OWF. In that sense, VEGOWF is both a necessary and a su�cient con-
dition for achieving Sub-ZK NIZKs, similar to how ECRH (also, under certain
restrictions) is a necessary and a su�cient condition for achieving a SNARK.

More technically, we consider a CRS generation function KGenR,p of a Sub-
ZK NIZK that takes as an input a randomly sampled trapdoor td and outputs a
crs. We show that this function has to be one-way if the NIZK is both computa-
tionally sound and computationally zero-knowledge. Intuitively, if one-wayness
would not hold, the soundness adversary could recover td and use the simulator
to construct a proof for a false statement. We additionally require that KGenR,p
is injective to avoid the situation where one-wayness adversary computes td is
which is particularly bad for simulation among all the possible preimages of
crs. Veri�able-extractability property follows straightforwardly from the Sub-
ZK property of the NIZK since it requires that td must be extractable. However,
here we also need to make some slight restrictions. Namely, the Sub-ZK extrac-
tor should be able to extract the complete td, not only some part of it, which
might still be su�cient for simulating the proof.

3 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security pa-
rameter. All adversaries are stateful. For an algorithm A, let image(A) be the
image of A (the set of valid outputs of A), let RNDλ(A) denote the random tape
of A, and let r←$RNDλ(A) denote the random choice of values from RNDλ(A).
We write that y ∈ range(A(x)) if there is non-zero probability that the algo-
rithm A outputs a value y given the input x. We denote by negl(λ) an arbitrary
negligible function and by poly(λ) an arbitrary polynomial function. We write
a(λ) ≈λ b(λ) if |a(λ)− b(λ)| = negl(λ). For an NP-relation R = {(x,w)}, let
LR := {x : ∃w, (x,w) ∈ R} be the corresponding language.

In the pairing-based setting, we use the standard bracket notation together
with additive notation, i.e., we write [a]ι to denote agι where gι is a �xed gener-
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ator of Gι and a ∈ Zp for some prime p. Intuitively, pairings • : G1 ×G2 → GT
are e�cient (one-way) functions that map ([a]1, [b]2) to [a]1 • [b]2 = [ab]T .

Let A = {Aλ}λ∈N, B = {Bλ}λ∈N be collections of e�ciently sampleable
sets, such that |Bλ| > |Aλ| for each λ ∈ N. A polynomial-time function
PRG : Aλ → Bλ is a pseudorandom generator (PRG) if its output is compu-
tationally indistinguishable from a truly random one.

3.1 (Generalized) Extractable OWF

An extractable one-way function (EOWF, [19]) g is an OWF with the property
that if A outputs a value in the image of g, then one can extract its preim-
age. A generalized EOWF (GEOWF, [14]) is a function g with an associated
hard relation RG, such that given g(x), it is intractable to compute z such that
RG(g(x), z) = 1. However, given a machine (and its auxiliary input) that com-
putes g(x), it is possible to extract z such that RG(g(x), z) = 1. One obtains
an EOWF when RG = {(g(x), z) : g(z) = g(x)}. Unless stated otherwise, we
assume that RG is e�ciently checkable.

Bitansky et al. [14] show that, assuming the existence of indistinguishability
obfuscation, there do not exist EOWFs or GEOWFs with common auxiliary-
input of unbounded polynomial length. However, the result does not rule out
their existence when the common auxiliary input comes from some natural distri-
bution, such as the uniform distribution. Thus, nowadays zk-SNARKs explicitly
assume that the auxiliary input is benign, i.e., with overwhelming probability it
does not encode a malicious obfuscation. We also make the same assumption: if
no bound for the auxiliary input is given, then we assume that it is taken from
a benign distribution.

We present a slight modi�cation of the GEOWF de�nition of [14]. Note that
hardness is required to hold even against poly-length auxiliary inputs.

De�nition 1 (GEOWFs). Let X = {Xλ}λ, Y = {Yλ}λ, Z = {Zλ}λ and
K = {Kλ}λ be collections of sets indexed by λ ∈ N. An e�ciently computable
family of functions G = {ge : Xλ → Yλ | e ∈ Kλ, λ ∈ N} associated with an e�-
cient (probabilistic) key sampler KeySamp, is a GEOWF with respect to a rela-
tion RGe(y, z) on triples (e, y, z) ∈ Kλ × Yλ × Zλ if it is:

RG-hard: for any PPT adversary A and any aux sampled from a benign dis-
tribution of poly(λ)-bit strings

Pr
e←KeySamp(1λ)

x←$Xλ

[z ← A(e, ge(x), aux) : RGe(ge(x), z) = 1] ≤ negl(λ) .

RG-extractable: For any PPT adversary A, there exists a PPT extractor
ExtA, s.t. for any benign distribution Dλ of poly(λ)-bit strings,

Pr
e←KeySamp(1λ)

aux←Dλ

[
y ← A(e; aux), z ← ExtA(e; aux) :

y ∈ image(ge) ∧RGe(y, z) 6= 1

]
≤ negl(λ) .
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The function is publicly veri�able if there exists a polynomial-time tester T such
that for any (e, x, z), RGe(ge(x), z) = T (e, ge(x), z).

We say that a GEOWF is keyless if, for each security parameter λ, there is
only one key e = 1λ. For ease of notation, we simply write gλ and RG in this
case. A GEOWF is an EOWF if RGe(ge(x), z) = {(e, ge(x), z) : ge(x) = ge(z)}.

Bounded auxiliary input. We also consider GEOWFs where the auxiliary
input in RG-extractability holds for any aux ∈ {0, 1}b(λ) (not just for a benign
distribution) for some �xed polynomial b. We call these b-bounded GEOWFs.

3.2 BCPR GEOWF and EOWF

Bitansky et al. [14] show that if the common auxilliary string of the adversary
and the extractor has an a priori bounded length b(λ), then one can implement
extractable one-way functions (EOWF) based on a pseudorandom generator and
a universal delegation scheme [43,44]. In a universal delegation scheme, one dele-
gates computation of some circuit M on input x to a prover, who must compute
M(x) and provide a proof π that he computed it correctly; any veri�er that is
given (M,x,M(x), π) must be able to verify the proof in less time than com-
puting M(x) itself. One can construct universal delegation schemes under the
subexponential learning with errors assumption [44] and even falsi�able assump-
tions [43] for languages in BPP.

BCPR GEOWF. We brie�y describe the construction from [14] of a GEOWF
secure against an adversary with (b(λ)− ω(1))-bounded auxiliary input.

Fix a polynomial b(λ). Let PRG : {0, 1}λ → {0, 1}b(λ)+λ be a PRG. Let
DS be a universal delegation scheme that consists of a CRS generator DS.K, a
prover DS.P, and a veri�er DS.V. We assume that using DS, one can construct
a succinct proof πDS of length DS.plen(λ) that a Turing machine M on input
1λ outputs some value v in time T (λ), where T (λ) ∈ (2ω(log λ), 2poly(λ)) is some
superpolynomial function. DS must satisfy that the proof veri�cation complexity
is linear in M's size and polylogarithmic in M's execution time T .

We de�ne the function gλ : (s, r) 7→ (crsDS, v) and the corresponding relation
RG(y, z) as in Fig. 2, where y = (crsDS, v) and z = (M, πDS, pad) with |z| = l(λ).

Proposition 1 ( [14, Theorem 14]). G = {gλ}λ∈N, depicted in Fig. 2, is a
GEOWF with respect to RG, against (b(λ)− ω(1))-bounded auxiliary input.

This proposition relies on the security of DS and PRG. In addition, it uses a
Barak-type [7] extractability paradigm (namely, the machine M is the adversary
who outputs y). It is worth noting that a similar approach with a number of
extra steps [14, Theorem 14] also allows one to construct a function family
which is an EOWF against (b(λ) − ω(1))-bounded auxiliary-input. We will see
an adaptation of this approach in Section 4.2.
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gλ(s, r)

(crsDS, τ)← DS.K(1λ; r); // the generator for universal delegation

return (crsDS, v ← PRG(s));

RG(y, z)

parse y = (crsDS, v), z = (M, πDS, pad);
// |M| = b(λ), |πDS| = DS.plen(λ), |pad| = l(λ)− b(λ)− DS.plen(λ);

�nd the veri�cation state τ corresponding to the reference string crsDS;
verify the statement �M(1λ) outputs v in T (λ) steps� by using πDS (DS proof);
return 1 i� the DS veri�er accepts πDS;

Fig. 2. BCPR GEOWF G (above) and the relation RG(y, z) (below).

3.3 NIZK and NIWI Arguments

We recall the de�nition of NIZK and NIWI arguments and their security proper-
ties. We assume that R is a relation generator that output an NP relation R and
a parameter p (e.g., the group description). An argument system Ψ is a tuple
of PPT algorithms (K,P,V). The CRS generation algorithm K takes in (R, p)
and outputs a crs and a trapdoor td (which may be ⊥ if the argument does not
have zero-knowledge). The prover algorithm P takes in R, p, crs and (x,w) ∈ R
and outputs a proof π. The veri�er algorithm V takes in (R, p, crs, x, π) and out-
puts either 0 (rejecting the proof) or 1 (accepting the proof). A NIZK argument
system will additionally have a simulator Sim that takes in (R, p, crs, td, x) and
outputs a simulated proof π for the statement x. Furthermore, a subversion resis-
tant argument will have a CRS veri�cation algorithm CV that take in (R, p, crs)
and output either 0 (by rejecting the CRS) or 1 (by accepting the CRS).

De�nition 2 (Perfect Completeness [37]). A non-interactive argument Ψ is
perfectly complete for R, if for all λ, all (R, p) ∈ range(R(1λ)), and (x,w) ∈ R,

Pr [crs← K(R, p) : V(R, p, crs, x,P(R, p, crs, x,w)) = 1] = 1 .

De�nition 3 (Perfect CRS Veri�ability). A non-interactive (subversion-
resistant) argument Ψ is perfectly CRS-veri�able for R, if for all λ and all
(R, p) ∈ range(R(1λ)), Pr [(crs, td)← K(R, p) : CV(R, p, crs) = 1] = 1.

De�nition 4 (Computational Soundness). Ψ is computationally (adap-
tively) sound for R, if for every PPT A,

Pr

[
(R, p)← R(1λ), (crs, td)← K(R, p), (x, π)← A(R, p, crs) :
x 6∈ LR ∧ V(R, p, crs, x, π) = 1

]
≤ negl(λ) .

De�nition 5 (Computational Knowledge Soundness). Ψ is computation-
ally (adaptively) knowledge-sound for R, if for every PPT A, there exists a PPT
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extractor ExtA, such that

Pr

(R, p)← R(1
λ), (crs, td)← K(R, p), r←$RNDλ(A),

(x, π)← A(R, p, crs; r),w← ExtA(R, p, crs; r) :

(x,w) 6∈ R ∧ V(R, p, crs, x, π) = 1

 ≤ negl(λ) .

Above we assume that the input (R, p, crs; r) comes from a benign distribution
and thus avoids the impossibility result of [14].

De�nition 6 (Statistically Composable ZK). Ψ is statistically composable
zero-knowledge for R, if for all (R, p) ∈ range(R(1λ)), and all computationally
unbounded A, εcomp0 ≈λ εcomp1 , where εcompb =

Pr

[
(crs, td)← K(R, p), (x,w)← A(R, p, crs, td);π0 ← P(R, p, crs, x,w);

π1 ← Sim(R, p, crs, td, x) : (x,w) ∈ R ∧ A(πb) = 1

]
.

Ψ is perfectly composable ZK for R if one requires that εcomp0 = εcomp1 . In The-
orem 8 we also consider a computational version of this de�nition, that is A is
a PPT adversary and the input td is not given as input to A.

De�nition 7 (Statistically Composable Sub-ZK [1]). Ψ is statistically
composable subversion ZK (Sub-ZK) for R, if for any PPT subverter Z there
exists a PPT ExtZ , such that for all R ∈ range(R(1λ)), and all computationally
unbounded A, εcomp0 ≈λ εcomp1 , where εcompb =

Pr

r←$RNDλ(Z), (crs, auxZ)← Z(R, p; r), td← ExtZ(R, p; r)

(x,w)← A(R, p, crs, td, auxZ), π0 ← P(R, p, crs, x,w);

π1 ← Sim(R, p, crs, td, x) : (x,w) ∈ R ∧ CV(R, p, crs) = 1 ∧ A(πb, auxZ) = 1

 .
Ψ is perfectly composable Sub-ZK for R if one requires that εcomp0 = εcomp1 .

De�nition 8 (Witness Indistinguishability). Ψ is computationally witness
indistinguishable (WI) for R, if for any PPT A, εwi0 ≈λ εwi1 , where εwib =

Pr

[
(crs, td)← K(R, p), (x,w0,w1)← A(R, p, crs), πb ← P(R, p, crs, x,wb) :

(x,w0) ∈ R ∧ (x,w1) ∈ R ∧ A(πb) = 1

]
.

Ψ is perfectly WI for R if one requires that εwi0 = εwi1 for unbounded A. Note
that td above might be ⊥ if Ψ is not zero-knowledge.

De�nition 9 (Sub-WI [9]). Ψ is computationally Sub-WI for R, if for any
PPT subverter Z, εwi0 ≈λ εwi1 , where εwib =

Pr

[
(crs, x,w0,w1, auxZ)← Z(R, p), πb ← P(R, p, crs, x,wb) :

(x,w0) ∈ R ∧ (x,w1) ∈ R ∧ CV(R, p, crs) = 1 ∧ Z(πb, auxZ) = 1

]
.

Ψ is perfectly Sub-WI for R if one requires that εwi0 = εwi1 for an unbounded Z.
In case Ψ does not utilise any common string we assume CV(R, p, ε) = 1.
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4 Veri�ably-Extractable Generalized OWFs

4.1 De�nition

We study GEOWFs G = {ge} that come with an e�cient (public) algorithm that
decides whether or not extraction is going to be successful. That is, we require
that there exists an extraction veri�cation algorithm EV, such that EV(e, y) de-
cides whether y ∈ YExt ⊇ image(ge), where extraction succeeds for any y ∈ YExt.
We also require that, with overwhelming probability, extraction is successful for
any adversary which outputs a value in YExt. (Extraction may succeed even if
y 6∈ YExt.) We call GEOWFs with such properties Veri�ably-Extractable Gener-
alized OWFs (VEGOWFs).

Although for some VEGOWFs it may hold that YExt = image(ge), it is not
necessarily the case. For example in the BCPR GEOWF, one is not able to decide
if y ∈ image(gλ), because any such algorithm can be used to decide membership
in image(PRG) which contradicts the security of PRG. However, as we will show,
extraction is successful for any y = (crsDS, v), where crsDS is a valid DS CRS and
v is any string output by an adversary with bounded auxiliary input.

De�ne VEGOWFs as GEOWFs where the RG-extractability property has
been substituted with the following, stronger one. (It makes an implicit assump-
tion that EV exists.)

RG-veri�ably-extractable with respect to YExt: Let image(ge) ⊆ YExt ⊆
Yλ, and let EV be an e�cient algorithm such that EV(e; y) = 1 i� y ∈ YExt.
For any PPT adversary A, there exists a PPT extractor Ext, s.t. for any
benign distribution Dλ of poly(λ)-bit strings,

Pr
e←KeySamp(1λ)

aux←Dλ

[
y ← A(e; aux), z ← Ext(e; aux) :

y ∈ YExt ∧ (y, z) 6∈ RGe

]
≤ negl(λ) .

If this de�nition holds for adversaries with auxiliary input length bounded by
some polynomial b(λ), we say that that the GEOWF isRG-veri�ably-extractable
against b-bounded adversaries with respect to YExt.

We also require that there is a PPT algorithm t, such that for any x ∈ Xλ,
(ge(x), t(x)) ∈ RGe, that is, given x, t computes the �witness� for ge(x) in RG.

If there exists an algorithm ImV that decides membership in image(ge), then
the GEOWF is image-veri�able. Clearly, any image-veri�able GEOWF is also
veri�ably-extractable with respect to YExt = image(ge). Furthermore, for an
EOWF, RGe only consists of pairs (ge(x), x) so extraction is not possible if
one is given y 6∈ image(ge). Hence, for an EOWF, veri�able-extractability is the
same as image-veri�ability.

4.2 Generic transformations

VEGOWF ⇒ VEOWF. Surprisingly, any VEGOWF can be transformed to
a VEOWF with the transformation in Fig. 3 that adds very little overhead. The
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fe(i ∈ {0, 1}λ, x ∈ Xλ, y ∈ Yλ, z ∈ Xλ)

if i 6= 0λ then return ge(x);
elseif (y, z) ∈ RGe ∧ EVg(e; y) then return y;
else return ⊥;

ImVf(e; y)

return EVg(e; y) ∨ y = ⊥;

Fig. 3. Transformation from a VEGOWF G = {ge}e to a VEOWF F = {fe}e.

idea is to include to a VEGOWF ge a branch input i ∈ {0, 1}λ. If i 6= 0λ, which
happens with an overwhelming probability, then ge works as usual and outputs
ge(x). However, on a trapdoor branch i = 0λ, the function uses its two extra
inputs y and z. If y satis�es EVg(e; y) and (y, z) ∈ RGe, it outputs y (or ⊥ if the
condition is not met). One-wayness follows since with overwhelming probability
the function outputs y ∈ image(ge) and the preimage has to contain either x
such that ge(x) = y or z such that (y, z) ∈ RGe. By outputting either t(x) (in
the �rst case) or z (in the other case), one breaks RG-hardness. On the other
hand, the VEOWF extractor can use the VEGOWF extractor to recover z from
y when EVg(e; y) = 1 and then return a preimage (0λ,⊥, y, z).

A similar transformation was introduced in [14] to obtain EOWFs from GE-
OWFs. However, they observed that an adversary can pick as input (0λ,⊥, y, z)
with (y, z) ∈ RGe, but y 6∈ image(ge). This makes the extraction impossible.
Our construction does not run into this issue since we assume that extraction is
possible when EV(e; y) = 1.

Theorem 1. If G = {ge}e is RG-hard and RG-veri�ably-extractable, then F =
{fe}e in Fig. 3 is a VEOWF.

GEOWFs ⇒ VEGOWF. We now consider a generic transformation from a
GEOWF to a VEGOWF. One approach is to simply append a NIZK proof π
which proves that the given value was computed correctly. A problem with this
approach is that it would require a CRS computed by a trusted third party, which
might not be desirable in a number of settings. We therefore give a modi�cation
of this approach, where we instead rely on a NIWI, which are known to exist in
the plain model under various assumptions [8, 15,39].

The intuition is that we create a new function g(x, y, r) = (f(x), f(y), π)
where π is a NIWI proof (created using randomness r) showing that either f(x)
or f(y) belongs to the image of f (in which case extraction will be possible).
Veri�able-extractability follows from extractability of the GEOWF as well as
perfect soundness of the NIWI, and hardness will follow from the hardness of f
and witness-indistinguishability of the NIWI.

Consider a GEOWF F = {fe}e with an associated relation RG. Let Π =
(P,V) be a perfectly sound NIWI, and let the relation Re((y1, y2), (x

′
1, x
′
2)) hold

i� y1 = fe(x
′
1) or y2 = fe(x

′
2). We de�ne a VEGOWF G = {ge}e with an extrac-

tion veri�cation algorithm EV in Fig. 4 and de�ne the hardness relation:

RG′e((y1, y2, π), (z1, z2)) := RGe(y1, z1) ∨RGe(y2, z2).
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ge(x1, x2, r)

y1 ← fe(x1); y2 ← fe(x2);
π ← P (Re, (fe(x1), fe(x2)), (x1, x2); r) ;
else return (y1, y2, π);

EV(e; (y1, y2, π))

return V(Re, (y1, y2), π);

Fig. 4. Transformation from a GEOWF F = {fe}e to a VEGOWF G = {ge}e.

Similar techniques have been used before in conjunction with EOWFs (e.g, 3-
round ZK in [12]) but not, up to our knowledge, as a generic transformation.
The proof of the following theorem is deferred to the full version of our paper.

Theorem 2. If F is a GEOWF with respect to RG, then G in Fig. 4 is a
VEGOWF with respect to RG′.

A robust combiner. Additionally, a simple robust combiner is possible for
VEGOWFs (or even for GEOWFs). Let us suppose that G = {ge1}e1 , F =
{fe2}e2 , and H = {he3}e3 are candidate VEGOWFs for the respective relations
RGg, RGf , and RGh. We do assume that the associated extraction veri�cation
algorithm always accepts when given a value in the image of each candidate, but
we make no other assumption about the security of the candidates.

We de�ne a new VEGOWF T = {te}e by te(x, y, z) := (ge1(x), fe2(y), he3(z))
where e = (e1, e2, e3) and the relation RGe is{(

(a, b, c), (z1, z2)
)
:
(
(a, z1) ∈ RGg

e1 ∧ (b, z2) ∈ RGf
e2

)
∨(

(a, z1) ∈ RGg
e1 ∧ (c, z2) ∈ RGh

e3

)
∨
(
(b, z1) ∈ RGf

e2 ∧ (c, z2) ∈ RGh
e3

)} .
We de�ne the new extraction veri�cation algorithm to accept when all individual
extraction veri�cation algorithms accept.

If any two of the candidates are hard for their respective relations, then T is
RG-hard. Similarly, if any two are extractable, then T is RG-extractable. The
idea can be generalized to n VEGOWFs for an arbitrary constant n, where it
is su�cient that more than n/2 are secure. An interesting open question is to
construct a robust combiner where fewer functions have to be secure.

4.3 The BCPR GEOWF is Veri�ably-Extractable

We show that if a delegation scheme DS is CRS-veri�able, then the BCPR
GEOWF from Fig. 2 is veri�ably-extractable with respect to YExt =
image(DS.K(1λ)) × {0, 1}b(λ)+λ. That is, z contains the code of an adversary
and the DS argument, independently of whether or not y ∈ image(gλ).

The proof of the following theorem is very similar to the proof of Theorem
14 from [14]; we have reproduced it for the sake of completeness.

Theorem 3. Let DS be a delegation scheme that has publicly veri�able proofs
and CRS, and let PRG : {0, 1}λ → {0, 1}b(λ)+λ be a PRG. Let G = {gλ}λ∈N
and RG be as in Fig. 2. G is a VEGOWF for RG with respect to YExt =
image(DS.K(1λ))× {0, 1}b(λ)+λ and (b(λ)− ω(1))-bounded aux.
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Proof. RG-hardness. Identical to the proof of Theorem 14 in [14].
RG-veri�able-extractability. Since DS is CRS-veri�able, there exists an

algorithm CV which decides if crsDS ∈ image(DS.K(1λ)). On input y = (crsDS, v),
the new extraction veri�cation algorithm EV returns 1 if CV(crsDS) = 1 and
|v| = b(λ) + λ.

We show that there is one universal PPT extractor Ext that can handle any
PPT adversary A with advice of size at most b(λ)−ω(1). For an adversary A (a
Turing machine) and advice aux ∈ {0, 1}b(λ)−ω(1), denote by Aaux the machine
that, on input 1λ, runs A(1λ; aux). Assume that (i) Aaux has description size at
most b(λ) and that (i) on input 1λ, after at most tA < T (λ) steps, it outputs
Aaux(1

λ) := y = (crsDS, v) ∈ {0, 1}l
′(λ). (Recall YExt ⊆ {0, 1}l

′(λ).) The extractor
Ext(A, aux, 1tA) works as follows:

Ext(A, aux, 1tA)
Construct Aaux;

(crsDS, v)← Aaux(1
λ); if EV((crsDS, v)) = 0 then return ⊥;fi ;

Compute a DS-argument πDS for the fact that �Aaux(1
λ) = (crsDS, v)�;

return z ← (Aaux, πDS, pad);

It follows directly from the perfect completeness of DS that RG(y, z) = 1. Since
this holds for any (crsDS, v) ∈ YExt output by an adversary with (b(λ) − ω(1))-
bounded auxiliary input, we get RG-veri�able-extractability. By the relative
prover e�ciency of the delegation scheme, the extractor's running time is poly-
nomial in the running time tA of the adversary. ut

To instantiate the construction, we need a delegation scheme with public
CRS and proof veri�cation. Firstly, SNARKs in [1, 27, 51] satisfy both proper-
ties and have succinct proofs. All of them are based on non-falsi�able assump-
tions, however, here it is only needed that they are sound for the class P. Thus,
even a tautological security assumption (the corresponding SNARK is sound
for BPP) would be falsi�able. Secondly, some recent suggestions for delegation
schemes [43,45] with public proof-veri�cation are based on non-tautological falsi-
�able assumptions. Unfortunately, it is not immediately evident if those schemes
also have CRS-veri�ability. We leave the latter as an important open problem.

4.4 VEGOWFs from Knowledge-of-Exponent Assumptions

Next, we construct VEGOWFs based on knowledge-of-exponent (KE) assump-
tions, a logical direction partially motivated by [22, Section 3.3.1.1]. In each
case, the key is a description p of an asymmetric or symmetric (in the latter
case, we state it explicitly) bilinear group generated by a group generator algo-
rithm Pgen(1λ). Note that if the group generator Pgen is deterministic, i.e., each
security parameter corresponds to a unique group, this is a keyless EOWF.

The ABLZ VEOWF from BDH-KE. The ABLZ VEOWF is based on an
idea from Abdolmaleki et al. [1]. We de�ne gp(x) := ([x]1, [x]2). The one-way
property of the ABLZ EOWF is equivalent to the Symmetric Discrete Logarithm
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(SDL) assumption, and extractability is equivalent to the BDH-KE assumption
introduced in [1]. Finally, one can verify if ([x]1, [y]2) ∈ image(gp) by checking
that [x]1 • [1]1 = [1]1 • [y]2. We give a formal proof that this is a VEOWF in the
full version of the paper. Note that this VEOWF is injective.

VEGOWF from DH-KE. Some KE assumptions from the literature lead
to VEGOWFs rather than VEOWFs. The Di�e-Hellman KE (DH-KE) as-
sumption introduced in [9] states that any adversary which produces a DDH
triple [x, y, xy]1 must know at least one of x and y. Given a symmetric bilinear
group, this gives rise to the following VEGOWF. De�ne gp(x, y) := [x, y, xy]1
and the relation RGp([x, y, xy]1, z) = 1 i� z = x or z = y. We can verify if
[x, y, w]1 ∈ image(gp) by checking that [x]1 • [y]1 = [w]1 • [1]1. This function is
RG-hard if the discrete logarithm problem is hard and is veri�ably-extractable
if the DH-KE assumption holds.

Further examples. There are also a number of other knowledge of exponent
assumptions in the literature, and these give rise to the following veri�ably-
extractable injective OWFs:

� g(p,[1,α]1)(x) := [x, xα]1 is a OWF under the discrete logarithm assumption
and veri�ably-extractable for symmetric pairings under the knowledge-of-
exponent assumption [23].

� gp(x) = ([1, x, . . . , xq]1, [1, x, . . . , x
q]2) is a OWF under the q-PDL assump-

tion [48] and veri�ably-extractable under the q-PKE assumption [24].
� gp(x) = ([x, x2]1, [x]2) is a OWF under a well-known variant of the discrete
logarithm assumption and veri�ably-extractable under the square knowledge
of exponent assumption [27].

� gp(x) = ([x]1, [1/x]2) is a OWF under the inverse-exponent assumption [54]
and veri�ably-extractable under the tautological assumption, which we call
inverse-KE, that it is hard to compute [x]1, [1/x]2 without knowing x.

4.5 VEGOWFs from Knowledge-Sound NIZK

Dakdouk [22, Section 3.3.3.2] observed that EOWFs can be constructed from
the proof of knowledge (PoK) assumption of Lepinski [47] which states that a
speci�c non-interactive Σ-protocol described in [47] is secure. We generalize this
idea, and show how to use knowledge-sound NIZKs to build VEGOWFs.

Suppose that R is an NP relation with a sampler SR,p that outputs (x,w),
such that (i) it is e�cient to verify that (x,w) is a possible output of SR,p, and
(ii) with an overwhelming probability it is computationally hard to guess w given
x. Then we say that this relation is SR,p-hard. Such samplers (and relations) are
common in cryptography, e.g., the discrete logarithm problem (x = [x]1,w = x
for a uniformly random x) and the short integer solution problem (x = A is a
random matrix and w = ~x is a short integer vector such that A~x = 0).

Consider a knowledge-sound NIZK Π = (KGen,P,V,Sim) for a SR,p-hard
relation R, where P,V,Sim are the prover, the veri�er, and the simulator. KGen
is the �key� generation algorithm, such that KGen(R, p) produces an auxiliary
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input auxΠ , provided to P,V and Sim. If the NIZK uses a random oracle, then
auxΠ may contain the description of a hash function instantiating the random
oracle. If the NIZK is CRS-based, then auxΠ contains the CRS. The following
theorem shows how to construct a VEGOWF given a knowledge-sound NIZK.

Theorem 4. De�ne G := {gR,p,auxΠ}R∈R(1λ),p←Pgen(1λ),auxΠ∈KGen(R,p), where
gR,p,auxΠ (rS , rΠ) sets (x,w) ← SR(rS), π produced by Π's prover P for x,w,
and then outputs (x, π). De�ne the corresponding relation as RGR,p,auxΠ :=

{(ŷ, ẑ) : ŷ = (x, π) ∧ ẑ = w ∧Π.V accepts π ∧ (x,w) ∈ R} . (1)

If R is SR-hard and Π is zero-knowledge, then G is RG-hard. If Π is a proof
of knowledge, then G is RG-veri�ably-extractable.

Proof. RG-hardness: Let B be an adversary that given ŷ = (x, π), where π is a
proof for (x,w) returns ẑ, such that RGR,p,auxΠ (ŷ, ẑ) holds with non-negligible
probability. We construct an adversary B that breaks SR-hardness. On input
(R, x), B sets auxΠ ← KGen(R, p), runs the simulator Sim and gets a simulated
proof πSim. Since Π is zero-knowledge, B outputs the same ẑ = w (with over-
whelming probability) when run on ŷ = (x, π) and ŷ = (x, πSim). Thus, B breaks
the SR,p-hardness of R with non-negligible probability.

RG-veri�able-extractability: Clearly, one can verify that ŷ ∈
image(gR,p,auxΠ ) by checking that the NIZK veri�er accepts ŷ = (x, π), i.e., Π's
veri�er accepts. We use the knowledge-soundness extractor Ext from Π to build
a G extractor ExtG . Let Aext be an algorithm that on input (R, p, auxΠ) out-
puts ŷ ∈ image(gR,p,auxΠ ). Since ŷ ∈ image(gR,p,auxΠ ), then ŷ = (x, π) and Π's
veri�er accepts. ExtG runs Ext on the same input (R, p, auxΠ) given to Aext. By
knowledge-soundness, with an overwhelming probability, the Π-extractor Ext
outputs w, such that (x,w) ∈ R. ExtG sets ẑ ← w, and succeeds with the same
probability as Ext. ut

For the sake of concreteness we instantiate the above result as follows. Let
Σ be the non-interactive version (e.g., by using the Fiat-Shamir transform) of
the well-known Schnorr's protocol for proving the knowledge of the discrete
logarithm of x = [x]1. Let the VEGOWF key be e = (R, p, auxΠ = H), where
p is the system parameters (group description). De�ne ge(x, r) := ([x]1, a =
[r]1, z = cx + r) = ŷ, where c = H([x]1, [r]1). The veri�er recomputes c and
accepts if [z]1 = cx + a and c = H(x, a). Then RGe-veri�able-extractability
holds since Σ is knowledge-sound in the random oracle model and the algebraic
group model [29]. If Σ is zero-knowledge in the random oracle model and the
discrete logarithm problem is hard, ge is also RGe-hard. Moreover, Σ can be
used to get an injective VEOWF since after the extractor extracts the witness
x, it can also compute r ← z − cx.

4.6 VEGOWFs from Signature Schemes

We propose the following heuristic approach for �nding new candidates for VE-
GOWFs. Suppose that Σ = (KGen,Sign,Vf) is a digital signature scheme. If an
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adversary outputs (vk, σ) such that vk ∈ KGen and Vf(vk, σ,m = 0) = 1, then
there exists an extractor that can recover (some part of) sk. In other words,
we follow the intuition that if someone can sign a message (say m = 0 for sim-
plicity), then she must possess the secret key. Moreover, if vk ∈ KGen can be
e�ciently veri�ed, then we might be able obtain a VEGOWF.

Remark 1. Note that unforgeability of a signature scheme does not require that
the signer knows the secret key. It is only important that the adversary cannot
produce valid signatures for previously unsigned messages. A stronger notion of
knowledge has been formalized by signatures of knowledge [21], where the signer
can sign messages under any statement x ∈ L if it knows the corresponding
witness. In general this is a very strong notion and implies, e.g., simulation-
extractable NIZKs. Therefore, we will not focus on those constructions here.

There are signature schemes which do give believable VEGOWF candidates, but
there are also cases where it clearly fails. We will mention some of them here,
and defer others to the full version of our paper.

Negative example: RSA signatures. Let H be a hash function, sk = d be
the secret key and vk = (n, e) be a public key such that de ≡ 1 (mod n). A
signature of an integer m is then σ = H(m)d mod n, and a signature σ of a
messagem is valid if σe ≡ H(m) (mod n). However, RSA signatures are also not
good candidates for a VEGOWF. The adversary could easily compute vk = (n, 3)
such that H(0) mod n is a perfect cube, then output (vk, (H(0) mod n)1/3).

Positive example: Boneh-Boyen signatures. Boneh-Boyen [16] is a pairing-
based signature scheme where vk = [x]2 and sk = x←$Zp and Sign(sk,m) =
[1/(x + m)]1. In fact, gp(x) = (vk,Sign(0)) = ([x]2, [1/x]1) is an asymmetric
version of a VEOWF candidate mentioned in Section 4.4. In particular, it is
veri�ably-extractable under a similar tautological assumption.

Positive example: BLS signatures. BLS [17] is another pairing-based signa-
ture scheme where vk = [x]2, sk = x←$Zp, and Sign(sk,m) = xH(m) = [σ]1
where H hashes into G1. Veri�cation is done by checking that [σ]1[1]2 =
H(m)[x]2. This gives us a VEOWF candidate gp(x) = ([x]2, xH(0)).

Positive example: DSA. In the DSA signature scheme,9 we again have some
discrete logarithm secure group p = (G, p, g). The veri�cation key is vk = gx

for sk = x←$Zp, σ = Sign(sk,M ∈ {0, 1}∗; r) = (u = gr mod p, v =
r−1(HK(m) + xu) mod p), and the veri�er checks that 0 < u, v < p and

u = (gHK(M)vku)v
−1

mod p. DSA results in a candidate VEOWF gp,K(x, r) =
(gx, gr mod p, r−1(HK(m) + xu) mod p).

Hash-and-sign lattice signatures. We recall hash-and-sign lattice-based sig-
natures introduced by Gentry et al. [31], which relies on the hardness of the short
integer solution problem. Let p be a prime, H be a hash function, and let A ∈
Zm×np be a randomly generated matrix. De�ne L⊥p (A) := {y|Ay = 0 mod p},
and let T be a basis of L⊥p (A) with short vectors. The trapdoor can be used to
compute short vectors s s.t. As = b, for any vector b. Set vk = A and sk = T .

9 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
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To sign a message m, one �rst computes b = H(m), then outputs a short
s = σA(b) such that As = b. A signature σ of a message m is valid if it is short
and if Aσ = H(m). However, this does not work as a VEGOWF. The adversary
could easily compute s with a nice structure (e.g., a unit vector), then choose A
such that As = H(~0). An easy �x is to set b = H(A,m) to prevent choosing A
after setting s. This results in a candidate VEOWF gp(x) = (A, σA(H(A,~0))),
where x is a short basis of L⊥p (A).

5 Sub-ZK NIZKs Based on VEGOWFs

We give a generic construction of a knowledge-sound Sub-ZK NIZK from any
VEGOWF and any knowledge-sound Sub-WI NIWI in the CRS model. We also
give a generic construction of a sound Sub-ZK NIZK from any VEGOWF, any
keyless extractable commitment and any Sub-WI NIWI in the CRS model. Later,
we show some interesting instantiations of these constructions.

5.1 Constructing Knowledge-sound Sub-ZK NIZK

Let G = {gλ : Xλ → Yλ | λ ∈ N} be a keyless VEGOWF with
respect to a publicly testable relation RG on triples (1λ, ŷ, ẑ). We con-
struct a knowledge-sound Sub-ZK NIZK Π by using a knowledge-sound Sub-
WI NIWI Πwi and G. To prove that x ∈ L, we use Πwi to prove that
(x, ŷ) ∈ L′, where ŷ ∈ YExt is a new element in the CRS for Π, and
R′ := {(xR′ = (x, ŷ),wR′ = (w, ẑ)) : (x,w) ∈ R ∨ (ŷ, ẑ) ∈ RG} where L =
{x | ∃w : (x,w) ∈ R} and L′ = {xR′ | ∃wR′ : (xR′ ,wR′) ∈ R′}. We assume that
R is generated by a relation generator R(1λ). The full construction of Π can be
found in Fig. 5.

The construction yields a knowledge-sound Sub-ZK NIZK, where knowledge-
soundness follows from the RG-hardness of G and the knowledge-soundness
of Πwi, and subversion zero-knowledge is achieved by the RG-veri�able-
extractability of G as well as the subversion witness-indistinguishability of Πwi.

Note that if R is implemented by a circuit of size k and RG is implemented
by a circuit of size l, then the e�ciency of Π is the same as the e�ciency of Π ′

for the modi�ed circuit of size k + l. Note also that l is independent of R. The
proof of the following theorem is deferred to the full version of our paper.

Theorem 5 (Knowledge-sound Sub-WI NIWI + VEGOWF =⇒
Knowledge-sound Sub-ZK NIZK). Let Πwi be a non-interactive argument
for R′ and let G = {gλ}λ∈N be a keyless function family with a corresponding
publicly testable relation RG.
(1) If Πwi is complete then Π is complete.
(2) If Πwi is knowledge-sound for R′ and G is RG-hard then Π is knowledge-

sound for R.
(3) If Πwi is Sub-WI for R′ and G is RG-veri�ably-extractable, then Π is Sub-

ZK for R.
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K(R)

x̂←$Xλ;
ŷ ← gλ(x̂)
crs′ ← K′(R)
crs← (crs′, ŷ)
td← t(x̂)
return (crs, td)

CV(R, crs)

parse crs = (crs′, ŷ);
if CV(R′, crs′) = 1 ∧ ŷ ∈ YExt

then return 1
else return 0

Sim(R, crs, x, td)

parse crs = (crs′, ŷ);
return P′(R′, crs′, (x, ŷ), (⊥, td))

P(R, crs, x,w)

parse crs = (crs′, ŷ)
return π ← P′(R′, crs′, (x, ŷ), (w,⊥));

V(R, crs, x, π)

parse crs = (crs′, ŷ);
return V′(R′, crs′, (x, ŷ), π)

Fig. 5. The Sub-ZK KS NIZK Π = (K,CV,P,V,Sim), where Πwi = (K′,CV′,P′,V′) is
a Sub-WI KS argument, and G = {gλ}λ∈N is a VEGOWF. Recall that t computes the
�witness� for gλ(x̂) in RG.

(4) If Πwi is a Sub-WI SNARK and G is a VEGOWF with respect to a relation
RG which takes inputs of polynomial size, then Π is a Sub-ZK SNARK.

5.2 Constructing Sub-ZK NIZK

Next, we propose a Sub-ZK NIZK Π which only relies on Πwi being sound,
not knowledge-sound, but Π will also not be knowledge-sound. As part of this
construction, we rely on a keyless extractable commitment scheme. We now give
the de�nition of a keyless extractable commitment scheme, and in the full version
of our paper we show how this can be constructed based on injective EOWFs.

De�nition 10. We say that Comλ : Mλ × Rλ → Cλ is a keyless extractable
commitment if it satis�es the following properties.

Computational hiding: For any PPT adversary A, ε0 ≈λ ε1, where

εb := Pr

[
(m1,m2)← A(1λ), r←$Rλ, c← Comλ(mb; r) :

m1,m2 ∈Mλ ∧ A(c) = 1

]
.

Perfect binding: For any adversary A and λ ∈ N,

Pr

[
(m1, r1,m2, r2)← A(1λ) :
Comλ(m1; r1) = Comλ(m2; r2) ∧m1 6= m2

]
= 0 .

Non-black-box extractability: Let D be a family {Dλ}λ of e�ciently sam-
pleable distributions. We say that Comλ :Mλ × Rλ → Cλ is non-black-box
extractable with respect to auxiliary distribution D if for any PPT adversary
A, there exists a PPT extractor ExtA such that,

Pr

[
aux←$Dλ, c← A(1λ, aux),m← ExtA(1

λ, aux),

c ∈ image(Comλ) : c = Comλ(m; r) for some r ∈ Rλ;

]
≥ 1− negl(λ) .
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K(R)

x̂←$Xλ;
ŷ ← gλ(x̂);
crs′ ← K′(R′);
crs← (crs′, ŷ);
td← t(x̂);
return (crs, td);

CV(R, crs)

parse crs = (crs′, ŷ);
if CV′(R′, crs′) = 1 ∧ y ∈ YExt;

then return 1
else return 0

Sim(R, crs, td = ẑ, x)

parse crs = (crs′, ŷ);
r←$RNDλ(Com);
c← Com(ẑ; r);
π′ ← P(R′, crs′, (x, c, ŷ), (⊥, ẑ, r));
return π ← (c, π′)

P(R, crs, x,w)

parse crs = (crs′, ŷ);
r ← RNDλ(Com);
c← Com(xλ; r) where xλ ←$Xλ;
π′ ← P′(R′, crs′, (x, c, ŷ), (w, xλ, r));
return π ← (c, π′);

V(R, crs, x, π)

parse π = (c, π′);
parse crs = (crs′, ŷ);
return V′(R′, crs′, (x, c, ŷ), π′);

Fig. 6. The Sub-ZK NIZK Π = (K,CV,P,V, Sim), where Πwi = (K′,CV′,P′,V′) is a
Sub-WI NIWI, C is an extractable commitment scheme, and G = {gλ}λ∈N is a GEOWF.

In some cases, we may have an e�cient commitment veri�cation function
ComVλ that outputs 1 on input c if and only if c ∈ image(Comλ).

Let G = {gλ}λ∈N be a function family with associated relation RG. Let
C = (Com,Open,Vf) be an extractable commitment scheme. Let Πwi be a NIWI
argument for the relation We set crs = (crs′, ŷ), where crs′ is the CRS of
the underlying NIWI Πwi for R′ and crs is the CRS of the NIZK for R. The
argument consists of the commitment c and the Πwi-argument π; see Fig. 6. The
proof of the following theorem is deferred to the full version of our paper.

Theorem 6 (Sub-WI NIWI + VEGOWF + ExtCom =⇒ Sub-ZK
NIZK). Let Πwi be a non-interactive argument, C be a commitment scheme,
and G be a function family with associated publicly testable relation RG.

(1) If Πwi is perfectly complete then Π is perfectly complete.
(2) If Πwi is sound, C is keyless and extractable, and G is RG-hard then Π is

sound.
(3) If Πwi is Sub-WI, G is RG-veri�ably-extractable, and C is keyless and hid-

ing, then Π is Sub-ZK.

5.3 Instantiations and Statistical ZAPR

We show some interesting instantiations of the above construction and also make
a simple, but signi�cant, connection between Sub-ZK NIZK and ZAPs with
private random coin (ZAPRs).

Firstly, we argue that there is a knowledge-sound Sub-ZK NIZK based on
the DLin and DH-KE assumptions. To the best of our knowledge, the only
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known knowledge-sound Sub-ZK NIZKs are Sub-ZK SNARKs. Our construction
therefore relies arguably on weaker assumptions.

Proposition 2. There exists a knowledge-sound Sub-ZK NIZK based on the
DLin and DH-KE assumptions with 3 group elements as the CRS and with a
proof size of O(λ(k + l)) where k is the circuit size and l is size of a circuit
verifying the image of the DH-KE GEOWF.

Proof. In [28] it is proven that there exists a knowledge-sound NIWI in the plain
model based on the DLin and DH-KE assumptions. Since it has no CRS, it is
also Sub-WI. From Section 4.4, there exists a VEGOWF based on the DH-KE
and discrete logarithm (DL) assumptions (note that DLIN implies DL). We now
apply our construction in Fig. 5 using the knowledge-sound NIWI from [28]
and the VEGOWF from Section 4.4. It then follows from Theorem 5 that the
resulting protocol is a knowledge-sound Sub-ZK NIZK. ut

Let us next prove a helpful lemma that shows when NIWI is Sub-WI. The
corollary follows since perfect zero knowledge implies perfect WI.

Lemma 1. Suppose Ψ is perfectly WI for relation R and there exists an e�cient
CRS validation algorithm CV. Then Ψ is Sub-WI.

Proof. De�nition 8 for perfect WI states that for all honestly generated CRS
crs (i.e., CRS in the image of K(R)), instances x, and corresponding witnesses
w0,w1, no unbounded adversary can distinguish a proof generated using either
(crs, x,w0) or (crs, x,w1). Note that if a subverter can create a valid crs such that
A breaks Sub-WI with probability at least ε > 0, the same A can break WI with
probability at least ε/(|crs|+ |auxZ |) > 0 by simply guessing crs and auxZ . Hence
assuming perfect WI, verifying that a subverter-generated CRS crs is in fact in
the image of K(R) is enough to assure that perfect subversion WI holds. ut

Corollary 1. If Ψ is perfectly zero-knowledge and there exist an e�cient CRS
validation algorithm, then Ψ is Sub-WI.

Therefore, the e�cient SNARK constructions in [1, 27], the updatable
SNARKs in [38, 50], and the shu�e argument in [4] are all Sub-WI. The same
observation about Sub-ZK SNARKs was already made by Fuchsbauer in [27].
These arguments have a CRS validation algorithm and were already known to
be Sub-ZK under a knowledge assumption. However, the above result shows that
they are perfect Sub-WI without any assumptions. Moreover, any NIWI without
a CRS is trivially Sub-WI.

Firstly, it means that [1, 27] are statistical ZAPRs with adaptive soundness.
The only other pairing-based ZAPR is [49] which is less e�cient and uses much
more advanced tools, but relies on weaker assumptions for soundness. Secondly,
if we use the SNARKs of [1, 27] in Fig. 5, we have Sub-ZK SNARKs from any
VEGOWF rather than from a speci�c knowledge assumption.

Proposition 3. Suppose there exists a perfectly zero-knowledge SNARK with
an e�cient CRS validation algorithm CV and there exists a VEGOWF. Then
there exists a Sub-ZK SNARK.
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Proof. Since the given SNARK Π is perfectly ZK and has a CV algorithm, it
follows from Corollary 1 that it is perfectly Sub-WI. Applying our construction
in Section 5.1 to Π and the VEGOWF G to construct a new SNARK Π ′, it then
follows from part (4) of Theorem 5 that Π ′ is a Sub-ZK SNARK, as desired. ut

6 Characterising Sub-ZK NIZKs

We show that the CRS generation algorithm K of a NIZK is a VEOWF if
and only if the NIZK is Sub-ZK. Let R be a relation generator, and let
Π = (K,P,V,Sim) be a NIZK argument for R. We de�ne a family of func-
tions GK =

{
KR,p : {td} → {crs} | (R, p) ∈ R(1λ), λ ∈ N

}
where KR,p takes in

a uniformly sampled trapdoor td and maps it deterministically to a crs. We
assume that the distribution (crs, td) ← KGen(R, p) is the same as (crs ←
KR,p(td), td←$ {td}). We use both notations interchangeably in this section.

Let us start by establishing the following straightforward connection.

Theorem 7 (VEOWF GK =⇒ Sub-ZK). Suppose Π = (K,P,V,Sim) is a
perfect NIZK argument. If GK is a VEOWF with image veri�cation algorithm
ImV, then Π is statistically composable Sub-ZK with respect to the CRS veri�-
cation algorithm CV = ImV.

Proof. Consider a subverter Z which outputs a CRS crs. We only need to con-
sider the case where CV(crs) = 1 and thus crs ∈ image(KR,p). Since KR,p is a
VEOWF and the subverter Z outputs an image of KR,p, we know that there ex-
ists an extractor ExtZ which with overwhelming probability outputs a simulation
trapdoor td. Since Π is perfect zero-knowledge, proofs π0 ← Sim(R, p, td, crs, x)
and π1 ← P(R, p, crs, x,w) are identically distributed. ut

Remark 2. The same result does not hold for statistical (or computational)
NIZK since there might be a negligible number of CRSs where td does not
allow simulation, which the subverter could output.

Following [37], we say that the relation generator R has a εS-
hard decisional problem if there exist two samplers S and S ′ such that
for (R, p) ← R(1λ) (1) sampler S(R, p) produces (x,w) ∈ R, and
(2) S ′(R, p) produces x 6∈ LR. Furthermore, for some negligible εS ,
it holds for all PPT adversaries A that |ε0 − ε1| ≤ εS , where εb =
Pr
[
(R, p)← R(1λ), (x0,w0)← S(R, p), x1 ← S ′(R, p) : A(R, p, xb) = 1

]
.

A simple example of this is the language of Di�e-Hellman tuples where p =
(G, g, p) ← R(1λ) is a group description, S outputs (x = (gx, gy, gxy),w =
(x, y)) for random x, y←$Zp, and S ′ outputs gx, gy, gz for random x, y←$Zp
and z←$Zp \ {xy}.

Now let us establish the opposite connection between VEOWF and Sub-ZK.
In general, the extractor in subversion zero-knowledge de�nition does not need
to extract the whole preimage of the CRS function. It just needs to extract
something which allows for simulation of proofs. For example, this could be only
a small part of the full trapdoor. Due to this, we restrict ourselves slightly and
lend the following notion from [3].
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De�nition 11 (Trapdoor-Extractability [3]). A subversion-resistant argu-
ment Ψ for a relation R has trapdoor-extractability if for any PPT subverter Z
there exists a PPT extractor ExtZ , s.t. for all λ and (R, p) ∈ R(1λ),

Pr

[
r←$RNDλ(Z), crs← Z(R, p; r), td← ExtZ(R, p; r) :

CV(R, p, crs) = 1 ∧ KR,p(td) 6= crs

]
≤ negl(λ) .

Theorem 8 (Sub-ZK =⇒ VEOWF GK). Assume Π is a NIZK argument
for R, which has εS-hard decisional problems. Let GK be as de�ned above. Assume
the distribution Dλ is benign. Then

1. if (i) Π = (K,P,V,Sim) is perfectly complete, computationally sound, and
computationally zero-knowledge, and (ii) KR,p is injective, then GK is a one-
way function;

2. if Π = (K,P,V,Sim,CV) is a statistically composable Sub-ZK argument with
trapdoor extractability, then GK is veri�ably-extractable with GK.ImV = Π.CV
respect to auxiliary inputs (R, p, r) where (R, p)← R(1λ), r←$ {0, 1}poly(λ).

Proof. Soundness + ZK =⇒ One-Wayness. Suppose there exists a PPT
adversary A that breaks one-wayness of GK with probability εowf . That is, for
a random (R, p) ← KeySampG(1

λ), td←$ {td}, aux←$Dλ, the A(R, p, crs =
KR,p(td), aux) outputs td

′ such that KR,p(td
′) = crs with probability εowf .

We are going to construct a PPT adversary B that internally runs A together
with an auxiliary input aux. We build the soundness adversary B as follows:

1. B gets (R, p, crs) as an input;
2. B samples aux′←$Dλ and computes td′ ← A(R, p, crs, aux′);
3. B outputs x such that x ← S ′(R, p) (i.e. x 6∈ LR) along with a simulated

proof π ← Sim(R, p, crs, td′, x).

Since x 6∈ LR by de�nition, it means that B wins the soundness game if
V(R, p, crs, x, π) = 1. We use games in Fig. 7 to quantify the probability that
V(R, p, crs, x, π) = 1 in the soundness game.

Game 0: This is the original soundness game without the condition x 6∈ LR with
the adversary B inlined. The winning condition is just V(R, p, crs, x, π) = 1.

Game 1: We change Game 0 such that B samples a true statement-witness pair
(x,w)← S(R, p) instead.
Game 2: We modify Game 1 such that the simulator gets the real trapdoor td
as an input rather than the trapdoor td′ extracted by A.
Game 3: Finally, instead of simulating the proof π, we use the witness w to
create an honest proof.

Let us denote the probability of Game i outputting 1 by εi. Firstly, it is clear
that ε0 is the probability of B winning (that is, outputting 1) in the soundness
game since, although, we do not check the condition x 6∈ LR, it always holds for
the adversary B. We now prove that distinguishing Game 0 and Game 1 succeeds
with probability at most εS .

Lemma 2. For the probabilities ε0 and ε1 de�ned as above, |ε0 − ε1| ≤ εS .
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Game 0:

(R, p)←R(1λ);
(crs, td)← K(R, p); aux′ ←$Dλ;
td′ ← A(R, p, crs, aux′);
x← S ′(R, p);
π ← Sim(R, p, crs, td′, x);
return V(R, p, crs, x, π);

Game 1:

(R, p)←R(1λ);
(crs, td)← K(R, p); aux′ ←$Dλ;
td′ ← A(R, p, crs, aux′);
(x,w)← S(R, p);
π ← Sim(R, p, crs, td′, x);
return V(R, p, crs, x, π);

Game 2:

(R, p)←R(1λ);
(crs, td)← K(R, p); aux′ ←$Dλ;
td′ ← A(R, p, crs, aux′);
(x,w)← S(R, p);
π ← Sim(R, p, crs, td , x);
return V(R, p, crs, x, π);

Game 3:

(R, p)←R(1λ);
(crs, td)← K(R, p); aux′ ←$Dλ;
td′ ← A(R, p, crs, aux′);
(x,w)← S(R, p);
π ← P(R, p, crs, x,w);

return V(R, p, crs, x, π);

Fig. 7. Security games for Theorem 8.

Proof. Consider the following adversary C against the εS -hardness. Firstly, C gets
as an input (R, p, xb) where x1 is generated by S and x0 is generated by S ′. Then,
C samples (crs, td)← K(R, p) and aux′←$Dλ, computes td′ ← A(R, p, crs, aux′),
and simulates the proof π ← Sim(R, p, crs, td′, x). It returns the answer of
V(R, p, crs, x, π).

By construction, the probability that C outputs 1 given x0 is ε0 and given x1
is ε1. It thus follows that |ε0 − ε1| ≤ εS . ut

Lemma 3. Assuming that KR,p is injective, |ε1 − ε2| ≤ 1− εowf .

Proof. The only di�erence between Game 1 and Game 2 is that one uses td′ for
simulation and the other uses td. If A is successful in breaking one-wayness, then
td = td′ (since KR,p is injective) and output distributions of both games are the
same. That happens with probability εowf . Outputs distributions of games can
di�er only when A fails in breaking one-wayness, which happens at most with
the probability 1− εowf . We conclude that |ε1 − ε2| ≤ 1− εowf . ut

Lemma 4. Let εzk denote the maximum advantage that any PPT adversary
wins in the zero-knowledge game. Then, |ε2 − ε3| ≤ εzk.

Proof. Consider the veri�er V as the adversary in the zero-knowledge game.
From this perspective Game 2 is the zero-knowledge game with the simulator
and Game 3 is the zero-knowledge game with the honest prover given that we
ignore the line td′ ← A(R, p, crs, aux). It follows that |ε2 − ε3| ≤ εzk. ut

Using the triangle inequality, we now get that |ε0−ε3| ≤ εS+(1−εowf )+εzk.
Since the argument system is perfectly complete, ε3 = 1 and therefore |ε0−ε3| =
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|ε0−1| = 1−ε0. Putting equations together, we get 1−ε0 ≤ εS+(1−εowf )+εzk,
which can be simpli�ed to εowf ≤ ε0 + εS + εzk, which is negligible. ut

Sub-ZK =⇒ veri�able-extractability. This part of the proof is essen-
tially tautological. Let A be an adversary in the veri�able extractability game
and let aux = (R, p, r) where (R, p)← R(1λ) and r←$ {0, 1}poly(λ). Suppose that
A is Sub-ZK subverter that outputs crs such that CV(R, p, crs) = 1. Then accord-
ing to the trapdoor extractability property, there exists a PPT extractor ExtA
that on input aux, outputs with an overwhelming td such that KR,p(td) = crs.
Thus, veri�able extractability holds. ut
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