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Abstract. Indifferentiability is used to analyze the security of construc-
tions of idealized objects, such as random oracles or ideal ciphers. Reset
indifferentiability is a strengthening of plain indifferentiability which is
applicable in far more scenarios, but has largely been abandoned due to
significant impossibility results and a lack of positive results. Our main
results are:
– Under weak reset indifferentiability, ideal ciphers imply (fixed size)

random oracles, and domain shrinkage is possible. We thus show
reset indifferentiability is more useful than previously thought.

– We lift our analysis to the quantum setting, showing that ideal ciphers
imply random oracles under quantum indifferentiability.

– Despite Shor’s algorithm, we observe that generic groups are still
meaningful quantumly, showing that they are quantumly (reset)
indifferentiable from ideal ciphers; combined with the above, crypto-
graphic groups yield post-quantum symmetric key cryptography. In
particular, we obtain a plausible post-quantum random oracle that
is a subset-product followed by two modular reductions.

1 Introduction

The random oracle model [BR93] (ROM) has become a critical tool for justifying
the security cryptosystems, both real-world and theoretical. In the ROM, all
parties, including the cryptosystem and adversary, are given oracle access to a
function H sampled uniformly from the set of all functions. To actually implement
the cryptosystem, H is replaced with a concrete cryptographic hash function,
with the hope that there is no way to exploit the structure of a well-designed H
to attack the cryptosystem. For many of the most efficient cryptosystems, the
random oracle model is the only known justification for security, and constructions
in the random oracle model tend to be simpler and require milder computational
assumptions than those without random oracles.

Random oracles are members of a larger class of “idealized” objects, where
an adversary is modeled as only having black box access. Ideal ciphers are ide-
alizations of block ciphers, modeled as random keyed permutations. Generic
groups are idealizations of cryptographic groups, modeled as random embeddings
of Zp into strings. Idealized objects have been used to design numerous cryp-
tosystems (e.g. [RST01, Des00, BSW07, AY20, CLMQ20]) or justify the security



of new computational assumptions (e.g. Diffie-Hellman [Sho97] and its many
variants [BBG05, BFF+14, DHZ14, BMZ19]). Ideal objects simplify the task of
protocol design and analysis while providing meaningful heuristics for security.

1.1 Indifferentiability

Hash functions and other objects are usually built from lower-level building blocks.
If one is not careful, such structure can be exploited in attacks [CDMP05], thus
violating the random oracle assumption, even if the lower-level building block
is treated ideally. The resolution is the indifferentiability framework of Maurer,
Renner, and Holenstein [MRH04], a composable simulation-based definition which
captures what it means for a construction to be “as good as” an ideal object,
despite its structure, provided the underlying building block is treated ideally.
Here, “as good as” applies to a wide array of settings called “single-stage games”,
capturing most standard cryptographic definitions. Indifferentiability has become
a gold standard for analyzing hash function constructions, and numerous positive
results are known such as domain extension and the equivalence of random oracles
and ideal ciphers [CPS08, HKT11, DS16].

Two Motivations for Reset Indifferentiability. In the more general setting of
“multi-stage” games, which capture cases where there are multiple distinct ad-
versary parties, indifferentiability is insufficient [RSS11]. Such games include
leakage resilience, deterministic encryption, key-dependent message security, and
non-malleability, among others. In order to generically guarantee composition for
multi-stage games including these critical applications, one needs a much stronger
notion called reset indifferentiability, which is equivalent to requiring that the
simulator be stateless. Given the limitations of plain indifferentiability, reset
indifferentiability should be the gold standard, rather than plain indifferentiability.

Unfortunately, reset indifferentiability is subject to significant impossibility
results [RSS11, LAMP12, DGHM13, BBM13]; in particular, any sort of domain
extension is known to be impossible. Most prior work on reset indifferentiability
focuses on a “strong” variant, which requires a single universal simulator to work
for any distinguisher; under this variant, even stronger impossibilities are known.
In particular, domain shrinkage is even impossible, which can in turn be used
to prove other impossibilities such as constructing constant-sized ideal ciphers
from infinite-sized random oracles, or vice versa [BBM13]. These are surprising
and counter-intuitive results, and seem to have been interpreted as implying that
reset indifferentiability is too strong to be useful. As such, reset indifferentiability
seems to have been largely abandoned, with authors instead proposing milder
notions of indifferentiability and showing that they apply to restricted classes
of games [RSS11, DGHM13, Mit14]. However, reset indifferentiability is exactly
characterized by general multi-stage games, meaning there will necessarily be
applications where such restricted notions cannot be applied. Thus, under these
weaker notions, security for a particular game has to be carefully analyzed.

However, we note that, beyond the impossibility of domain extension, not
much is actually known about the “weak” variant of reset indifferentiability,
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where the stateless simulator can depend on the distinguisher. This variant still
captures general multi-stage games, meaning any weak reset indifferentiability
result implies full applicability of the construction. Even though domain extension
is still not possible, the notion may still be useful in many applications. For
example, if one is considering public key encryption with fixed-sized messages,
then domain extension may not be necessary.

An independent, perhaps unexpected, motivation for reset indifferentiability
comes from the threat of quantum computing. The ability of a quantum algorithm
to query the idealized object in superposition invalidates most classical results,
and certain impossibilities are known [BDF+11, YZ20]. The difficulty is that even
a single superposition query “views” the entire oracle; in order to ensure that the
simulation of the ideal object is consistent and “looks like” the true ideal object,
the approach employed by most works (e.g. [BDF+11, Zha12b, Unr15, TU16])
has been to simulate essentially statelessly, with the simulator usually depending
on the distinguisher. In the context of indifferentiability, such an approach
would correspond exactly to weak reset indifferentiability. We note that some
recent techniques [Zha19, LZ19, CMSZ19, DFMS19, DFM20, KSS+20, YZ20]
utilize stateful quantum simulators, and in particular [Zha19] proves the (non-
reset) indifferentiability of domain extension for random oracles. However, these
techniques are far more complex and require comparatively heavy quantum
machinery, making the techniques more difficult to use.

We highlight the specific case of random permutations, which has been
particularly challenging with few quantum results and techniques known for
the setting where inverse queries are allowed. In fact, we are only aware of
two such prior results: [AR16] considers the Even-Mansour cipher, but only
considers adversaries with perfect success probability. [Zha16] constructs (non-
indifferentiable) quantum-secure PRPs in such a model, but side-steps the issue
of quantum queries entirely by having the entire oracle truth table be statistically
close to a random permutation.

Questions. The prior discussion raises the following natural questions:

– Can weak reset indifferentiability be used to achieve any non-trivial result,
even domain shrinkage?

– If so, how can one make non-black box use of the distinguisher to design an
indifferentiability simulator?

– Can fixed-size random oracles be built from ideal ciphers, or vice versa?
– Can random oracles (fixed-size or infinite size) be built from ideal ciphers
quantumly, even in the single-stage setting? In particular, can anything be
said about the Sponge construction?

Making progress on these questions will be the focus of our work.

1.2 Our Results

On Prior Impossibilities. Essentially the main prior impossibility for weak reset
indifferentiability is that of domain extension [RSS11, LAMP12, DGHM13,
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BBM13], with other impossibilities [BBM13] relying crucially on the strong reset
variant. We first observe that the techniques yielding the impossibility of domain
extension apply even in the setting of query-unbounded simulators.

In contrast, we prove weak reset indifferentiability for random oracle domain
shrinkage, ideal ciphers from random oracles, and vice versa, in such an unbounded
simulator setting. More generally, we demonstrate that indistinguishability against
query-unbounded attackers can usually be lifted to reset indifferentiability using
query-unbounded simulators. The inefficient simulator makes these results rather
un-useful for positive results. Nevertheless, it shows that the known techniques
for negative results are unlikely to extend to a variety of interesting problems,
in the weak reset setting. Combined with the lack of prior positive results for
reset indifferentiability, this shows that weak reset indifferentiability is essentially
completely open for any application that does not require domain extension. The
question then is: how can we achieve an efficient simulator in these settings?

Positive Results for Weak Reset Indifferentiability. We first show that domain
shrinking is possible, under weak reset indifferentiability with an efficient simula-
tor. We thus see that random oracles with larger domain are strictly stronger that
random oracles with smaller domain. This is in sharp contrast to the “duality”
of strong reset indifferentiability, where any two objects are either equivalent or
incomparable, with most examples being incomparable [BBM13].

We also show how to construct a (fixed-size) random oracle from an ideal
cipher under weak reset indifferentiability, again with an efficient simulator.
Specifically, we show that a natural pad-and-truncation of an ideal cipher—that
is, the Sponge construction for a single-block message—gives a random oracle,
for sufficient padding and truncation. An interesting feature of our analysis of
pad-and-truncate is that the sum of the input and output sizes must be less than
the width of the cipher. We show that this is tight: any larger input/output size
will not be weakly reset indifferentiable, thus giving (to the best of our knowledge)
the first negative result for weak reset indifferentiability that does not rely on
domain extension. This is in contrast to the plain (non-reset) indifferentiability
setting, where any non-trivial truncation gives indifferentiability [DRRS09]. Our
result may help guide the design of Sponge-based hash functions.

These positive results are obtained by first proving reset indifferentiability in
certain shared randomness models, which allows the simulator access to some
consistent randomness, while still being stateless. We show that, for weak reset
indifferentiability and for certain classes of “nice” ideal objects (including random
oracles and ideal ciphers), the shared randomness can be removed to get a
standard reset indifferentiability result.

Quantum. All of our results extend to the quantum setting. The simulators are
identical to their classical counterparts. However, very few prior quantum results
handle inverse queries, meaning a handful of new ideas are needed to lift our
ideal cipher results to the quantum setting. We thus obtain the first proof of
quantum indifferentiability (reset or otherwise) for a random oracle from an ideal
cipher—and in particular the sponge construction for single-block messages. This
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may give some evidence for the post-quantum (non-reset) indifferentiability of
SHA3, which is based on the full sponge construction. While we cannot prove
indifferentiability for the full Sponge construction1, we can plug pad-and-truncate
into the domain extension result of Zhandry [Zha19], obtaining the first quantum
indifferentiability proof of an arbitrary-size random oracle from an ideal cipher,
under (plain) indifferentiability.

The Post-Quantum Generic Group Model. We observe that Shor’s algorithm, by
virtue of being generic, is captured by the generic group model [Sho97] (GGM),
albeit the quantum variant allowing quantum access to the group. Thus, despite
Shor’s algorithm, the GGM may remain a plausible heuristic in the quantum
setting. Shor’s algorithm, however, shows that the discrete-logarithm problem is
easy in the quantum accessible GGM, so the question is then: what use is it?

We demonstrate that the quantum accessible GGM is equivalent to an ideal
publicly-invertible injective function under (reset) indifferentiability. Our above
positive results for ideal ciphers extend to the injective function case. In particular,
by plugging in the above results, we obtain a quantum indifferentiable random
oracle from the generic group model2. When instantiating with the multiplicative
group over finite fields, the result is a plausible post-quantum hash function that
is simply a subset-product, followed by two modular reductions.

1.3 Discussion

We significantly expand the set of techniques and results for reset indifferentia-
bility, both classically and quantumly. We thus show that reset indifferentiability
is more useful than suggested by prior works. Perhaps the main open question in
the classical setting is whether ideal ciphers can be built from random oracles
under reset indifferentiability.

We in particular expand the set of techniques available for analyzing quantum
queries to permutation inverses, and in doing so expand the applicability of
“old school” quantum simulation techniques, showing for the first time that
stateless simulation is capable of achieving non-trivial indifferentiability results.
Our hope is that our techniques can be combined with the sophisticated “new
school” quantum techniques to aid in additional positive results. For example,
can quantum indifferentiable ideal ciphers be built from random oracles?

Our results also show that cryptographic groups remain potentially useful
in the quantum setting, just that they are limited to the symmetric key setting.
While existing symmetric cryptography appears somewhat resilient to quantum
attacks, we believe it is nevertheless important to study alternative techniques
for building quantum-resistant symmetric cryptography.
1 Our techniques work within the framework of reset indifferentiability, which cannot
achieve domain extension, and therefore our techniques cannot apply to the full
Sponge construction.

2 [ZZ21] previously suggest building a random oracle from generic groups. Their result
however is in the classical setting using stateful simulators, which does not translate
to quantum. Our results are required to get a quantum indifferentiability proof.
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1.4 Concurrent and Independent Work

Currently and independently of our work, Czajkowski [Cza21] prove the (plain)
indifferentiability of the full Sponge construction in the quantum setting, necessar-
ily using a stateful quantum simulation technique. In particular, this also justifies
the plain quantum indifferentiability of the pad-and-truncate construction. The
results and techniques are largely incomparable to ours, as we focus on reset
indifferentiability.

2 Technical Overview and Discussion

Indifferentiability. Recall the usual notion of indistinguishability between two
distributions over functions F,G, which says that the functions cannot be distin-
guished by oracle access. We will denote such indistinguishability as

F ≈ G .

Indistinguishability is sufficient for settings like constructing a PRP from a PRF,
as the underlying PRF building block is private and not directly accessible to
the adversary. In the settings of length extension for hash functions, building
ideal ciphers from random oracles, etc, indistinguishability is not sufficient since
the adversary additionally can query the underlying building block, and indiffer-
entiability [MRH04] is required instead. A construction C making oracle queries
to an ideal object A (denoted CA), is indifferentiable from an ideal object B if
there exists a simulator S making queries to B (denoted SB) such that

(CA, A) ≈ (B,SB) .

The above says that an adversary with two query interfaces—an “honest” interface
to B and “adversarial” interface to A—cannot distinguish the “Real Word” where
B is set to CA for ideal object A from the “Ideal World” where B is ideal and
A is simulated as SB. For building an ideal cipher from a random oracle, A
represents a random oracle and B an ideal cipher, with CA being a construction
of a cipher from a hash function.

Note that, while the expression above appears symmetric between A and B, for
plain indifferentiability the notation hides the fact that S can keep state between
queries, whereas C is usually considered to be stateless. Reset indifferentiability
is a strengthening of indifferentiability to require S to be stateless as well.
As discussed above, reset indifferentiability is required in settings known as
“multi-stage games.” We disambiguate between strong and weak security, were
strong requires a universal simulator that works for any potential distinguisher
between (CA, A) and (B,SB), whereas weak allows for a distinguisher-dependent
simulator. Weak reset indifferentiability is sufficient for composition and multi-
stage games [RSS11]. Strong reset indifferentiability turns out to fully symmetric,
with the roles of C and S being interchangeable [BBM13]. This means that any
construction (resp. impossibility) of B from A immediately gives a construct
(resp. impossibility) of constructing A from B.
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2.1 On Prior Impossibilities

We show that if one relaxes to query-unbounded simulation, then indistinguisha-
bility can be upgraded to weak reset indifferentiability, provided the indistin-
guishability holds against query-unbounded distinguishers. The idea is that the
simulator can query the entire object B, and then sample A conditioned on CA
being functionally identical to B; such sampling is guaranteed by plain indis-
tinguishability against unbounded queries. The difficulty is that there may be
many A such that CA is equivalent to B, and we must ensure that the simulator
can consistently choose the same A each time. For this, we show the simulator
can basically have a choice of A hard-coded for each separate B. The details are
given in Section 4.

Query-unbounded indistinguishability follows from known results in various
settings. For example, perfect shuffles [GP07] allow for constructing PRPs from
random oracles. Indistinguishable domain shrinkage is also trivial. Our general
theorem lifts these results to weak reset indifferentiability, albeit with inefficient
simulators. Due to the above inefficient simulator, the result is not immediately
useful. However, we observe that the impossibility of domain extension holds
even under such inefficient simulators; for completeness, we give the result in
the full version [Zha21]. Since domain extension is the main impossibility known
to hold for weak reset indifferentiability, this shows that new techniques would
be required to rule efficient simulation in settings where inefficient simulation is
possible. We thus demonstrate that weak reset indifferentiability is largely open
for settings that do not involve domain extension.

2.2 Shared Randomness Indifferentiability

We next discuss a model of indifferentiability, which we call shared randomness
reset indifferentiability, that we will use as a stepping-stone to full reset indif-
ferentiability. Here, the simulator S is still stateless, but is allowed to query a
random oracle R—independent from A and B—in addition to querying B; we
require that:

(CA, A) ≈ (B,SB,R) .

Note that the random oracle breaks the symmetry between A and B. In particular,
we note that domain shrinking is trivial in this setting, as the simulator can use
R to simulate the parts of A that are ignored by CA.

In Section 6, we also show that shared randomness is sufficient for constructing
a fixed-size random oracle h from a (keyless) ideal cipher P, P−1. The construction
is the natural one based on truncation:

PadTruncP,P
−1

c,d (x) = P (x||0(1−c)n)|[dn] .

Here, c, d ∈ (0, 1) are constants, P is an ideal cipher on n-bit inputs, x is cn bits
and y|[r] is the first r bits of y. Interestingly, we show that if c+ d > 1, then the
truncation-based construction is actually not reset indifferentiable:
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Theorem 1 (Informal). If c + d > 1, PadTruncc,d is not shared-randomness
weakly reset indifferentiable from a random oracle.

The proof of this theorem is as follows. Consider a distinguisher D with query
access to a function H and permutation P, P−1. It first chooses a random
x ∈ {0, 1}cn and queries w||z ← P (x||0(1−c)n). It also queries w′ ← H(x),
and checks that w′ = w. Then it queries x′||y′ ← P−1(w||z), and checks that
x′ = x, y′ = 0(1−c)n. D outputs 1 if and only if all checks pass. Note that in the
“Real world” where H = PadTruncP,P

−1

c,d , D outputs 1 always. However, in the
“Ideal world” with P, P−1 being supposedly simulated by a stateless simulator
SH , we argue that D outputs 0 almost always. Indeed, a stateless simulator must
have w = w′ to pass the distinguisher’s first check. But then to answer the query
P−1(w||z), it must somehow come up with the original pre-image x of w. Since
the simulator is stateless, it cannot remember x, and so computing x would seem
to require inverting H on w, which is impossible for a random oracle H.

This intuition is not quite correct, as the simulator is also given z as input,
which can be seen as some side-information about x. However, for c + d > 1,
z is shorter than x, and therefore there must be some entropy left in x. Since
random oracles remain hard to invert even for entropic sources, the inability for
the simulator to output x follows.

On the other hand, for c+ d ≤ 1, we show that PadTruncc,d actually is reset
indifferentiable:

Theorem 2 (Informal). If c+ d ≤ 1, PadTruncc,d is (strongly) reset indiffer-
entiable from a random oracle in the shared randomness model.

Inspired by the impossibility above, we devise a simulator that statelessly encodes
x into z so that x can be recovered from z alone. It does this by setting z to be
the result of a random injection I applied to x, in the case that y = 0(1−c)n. For
I to indeed be a random injection, we must have c+ d ≤ 1. The problem is that
I represents state, which is not allowed in reset indifferentiability. Fortunately,
for shared randomness reset indifferentiability, S has access to a random oracle
R; it can use this single random oracle to build I. Essentially, it follows typical
approaches to building block ciphers from pseudorandom random functions, but
instantiating the pseudorandom function using R.

In Section 5, we show that shared randomness reset security actually implies
standard weak reset security, in many settings:

Theorem 3 (Informal). Suppose a construction CA is shared randomness
weakly reset indifferentiable from B, and that B has certain nice “extraction”
properties. Then CA is also weakly reset indifferentiable from B, without shared
randomness.

Combining with the above results shows that the ideal cipher model implies
random oracles under weak reset indifferentiability.

The theorem is proved in two steps. First, we replace the shared randomness
R with a q-wise independent hash function Rq, where q is set sufficiently large
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relative to the number of queries made by the adversary. The result is perfectly
indistinguishable from a truly random R. Next, we use a trick from [BBM13]
to compute Rq from the oracle B itself, in a way such that Rq is random and
independent from the adversary’s view.

We note that our simulator is almost black box, but requires knowledge of
the number of queries made by the distinguisher, both to select q and to apply
the trick from [BBM13].

2.3 Quantum Distinguishers and Generic Groups

Reset indifferentiability is conveniently amenable to quantum proof techniques,
and we show how to upgrade our positive results to the quantum setting. This is
not trivial, but we show how to structure the classical proofs in such a way that
they can be lifted to the quantum setting by plugging in known quantum query
lower bounds in key steps. This requires care, since existing techniques mostly
prohibit inverse queries to random permutations, whereas our results require such
inverse queries. We thus must carefully embed prior inverse-query-less results into
our setting to achieve our results. As a result, we obtain fixed-size random oracles
from ideal ciphers quantumly. Generically plugging into the domain extension
result of Zhandry [Zha19], we obtain the first proof of quantum indifferentiability
of an (arbitrary) size random oracle from an ideal cipher:
Corollary 1. There exists a construction C of an (arbitrary-size) random oracle
from an ideal cipher that is quantum (non-reset) indifferentiable.

We note that our lower bound on the necessary truncation of ideal ciphers
also trivially extend to the quantum setting, since a classical distinguisher is in
particular a quantum distinguisher3.

We next investigate the generic group model, quantumly. It is well known that
Shor’s quantum discrete log algorithm [Sho94] works on any cryptographic group;
another interpretation is that Shor’s algorithm works in the quantum-accessible
generic group model. This interpretation of the generality of Shor’s algorithm is
usually seen as a negative, since it means that there is no hope of circumventing
the algorithm by using alternate groups. But we interpret this as showing that
Shor’s algorithm does not fundamentally alter the validity of the generic group
model quantumly. It just shows that discrete logarithms are now tractable.

The ability of Shor’s algorithm to solve discrete log essentially shows that
the generic group gives a random injection, quantumly, which we prove formally
under reset indifferentiability. Our positive results from above readily apply to
publicly invertible injections, and therefore give an quantum indifferentiable hash
function from generic groups.

If we in particular focus on the case of finite fields, what we get is the
hash function H(x) = (gx mod p) mod 2n, where x ∈ {0, 1}n for 2n ≤ log p. By
3 There is a slight subtlety here, as quantum (reset) indifferentiability allows for a
quantum simulator, whereas classical indifferentiability does not. Thus, quantum and
classical indifferentiability are technically incomparable. Nevertheless, our impossibility
results trivially adapt to the quantum simulator case.
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pre-computing the various powers of 2, gx becomes a modular subset-product
computation. The overall hash function is then a modular subset product followed
by an additional modular reduction that can plausibly be used as a (quantum
immune) random oracle.

3 Preliminaries

Unless otherwise noted, all functions, sets, algorithms, adversaries, distinguishers,
simulators, and distributions are functions of a security parameter λ. We will
often omit the security parameter; for example, when we say that X is a set, we
mean that X is a family of sets {Xλ}λ. When we say that a function is polynomial
or negligible, we mean polynomial or negligible in λ. When there are multiple
functions of λ, we assume all functions use the same λ.

For an algorithm A making queries to another (potentially stateful) algorithm
B, we will denote their interaction by AB .

Ideal Objects. For sets X ,Y, a ideal object is a distribution over functions from
X to Y. Some idealized objects we will consider:
– Random oracles. A random oracle is just the uniform distribution over all

functions RO from X to Y. We denote this distribution by YX . Note that
we will usually think of X ,Y as finite exponential size. It is also possible to
consider an infinite random oracle, in which case X is infinite.

– Ideal ciphers. Let X = {0, 1} × K × Y for exponential-size Y, and K
be another set. An ideal cipher is sampled by choosing a function P :
K × Y → Y, where for each k, the function P (k, ·) is a uniformly ran-
dom permutation. Let P−1(k, ·) be the inverse of P (k, ·). The oracle is then

IC(b, k, x) =
{
P (k, x) if b = 0
P−1(k, x) if b = 1

. We note that ideal ciphers are typically

modeled as being keyed, which corresponds to an exponential-sized family
of independent ideal permutations. It is also possible to consider the keyless
setting, where K = {1}, and can be omitted.

– (Keyed) Random Injections. Let Y = Y ′ ∪ {⊥}, Z an exponential-sized
set such that |Z| ≤ |Y ′|, and K be another set. Then let X = ({0}×K×Z)∪
({1} × K × Y ′). A keyed random injection is sampled by choosing a function
I : K ×Z → Y ′ where for each k, the function I(k, ·) is a uniformly random
injection. Let I−1(k, y) be the function that outputs x such that I(k, x) = y if

it exists, and otherwise outputs ⊥. Then RI(b, k, x) =
{
I(k, x) if b = 0
I−1(k, x) if b = 1

.

– Generic groups. Let p be an exponentially-large prime such that |Y| ≥ p,
and let L be a random injection from Zp to Y. The function GG then maps
x 7→ L(x), and also (`1, `2) 7→ L( L−1(`1) + L−1(`2) ). Here, if L−1 is
undefined on an input `, the entire expression outputs ⊥. Note that the
generic group model usually also allows for subtraction, but this is redundant
since p is known, and −1 ≡ p − 1 mod p can be computed using just the
addition operation.
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Quantum. We will not need much quantum background in this work. In particular,
all of our quantum results basically follow the classical proofs, but with key parts
replaced with quantum equivalents.

3.1 Indifferentiability

Let A,B be two distributions over functions, and C a polynomial-time oracle-
aided circuit. We write CA to be the distribution over CA where A← A.

Definition 1. CA is (strong statistical classical plain) indifferentiable from B if
there exists a polynomial-size, potentially stateful, oracle-aided simulator S such
that, for any probabilistic potentially unbounded oracle-added Turing machine D
making at most a polynomial number of queries, there is a negligible ε such that∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B

[
DB,SB

() = 1
]∣∣∣ ≤ ε .

Variants. We now discuss some variants of the indifferentiability definition:

– Weak vs strong. Weak indifferentiability allows for S to depend on D,
flipping the order of quantifiers.

– Computational vs statistical vs perfect. Computational indifferentia-
bility only requires security to hold for polynomial-sized D. Note that in
the statistical case, we still bound the number of queries made by D to be
polynomial. On the other hand, perfect indifferentiability requires security to
hold for unbounded Turing machines, and for ε to be 0.

– Quantum vs classical. Quantum indifferentiability requires security to
hold for quantum distinguishers D which can make quantum queries to their
oracles, but potentially allows for quantum simulators S which can make
quantum queries as well.

– Reset vs plain. Reset indifferentiability requires S to be stateless. We note
that [RSS11] define reset indifferentiability differently, allowing the simulator
to be stateful but allowing the distinguisher to “reset” the simulator to its
initial state at any point. The two versions are readily seen to be equivalent,
and we prefer the stateless simulator definition for its simplicity.

We note that the four variants above are all orthogonal and any subset can
be considered, giving a total of 24 possible notions of indifferentiability. Note
that strong implies weak, reset implies plain, and perfect implies statistical
implies computational, for any settings of the other variants. Quantum does not
necessarily imply classical since it could be the case that a quantum simulator
can fool a classical distinguisher, but no classical simulator can. However, in all
cases we will consider in this work, if the scheme is quantum indifferentiable for
some setting of the other variants, it will also be classical indifferentiable for the
same variants. Thus, for our purposes, we will treat quantum indifferentiability
as being stronger.
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4 Lifting Indistinguishability to Indifferentiability in the
Unbounded Setting

Here, we show how to lift query-unbounded indistinguishability into weak reset
indifferentiability, albeit with query-unbounded simulation.

Theorem 4. Let A,B be distributions and C a construction. Suppose the dis-
tributions of truth tables B and CA for A ← A, B ← B are statistically
close. Suppose further that B has super-logarithmic min-entropy H∞(B) :=
minB log 1/Pr[B ← B]. Then for any (potentially query unbounded, classical
or quantum) distinguisher D, there exists a query unbounded classical simulator
S and a negligible ε such that:∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B

[
DB,SB

() = 1
]∣∣∣ ≤ ε .

In other words, if CA is indistinguishable from B against unbounded distinguishers,
then CA is also indifferentiable from B, albeit using a query unbounded simulator.

Proof. Fix any distinguisherD. For any B, letQB be the distribution over A← A,
conditioned on CA being identical to B. Then, by the statistical closeness of CA
and B, we have that there exists a negligible δ such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B,A←QB

[
DB,A() = 1

]∣∣∣∣ ≤ δ
Now consider the following distribution J over functions J : for each B, J(B) is
sampled from QB , independently from all other inputs. Then we have that

Pr
B←B,J←J

[
DB,J(B)() = 1

]
= Pr
B←B,A←QB

[
DB,A() = 1

]
We now describe our simulator S. S will have a J hard-coded. For every query,
it will compute the truth table for B in its entirety by making exponentially
many queries, and then set A = J(B). It will then answer the query using
A. It remains to show how to select J . What we show is that, for any D, a
random J drawn from J will do. Concretely, consider the random variable
p := PrB←B

[
DB,J(B)() = 1

]
, which depends on J . We observe that p is identical

to the random variable
∑
B Pr[B ← B]pB , where the pB ∈ [0, 1] are independent

random variables obtained by sampling A← QB and outputting Pr[DB,A() = 1],
where the last probability is over any random coins of D. Each pB is in [0, 1],
and the expectation of p is exactly q := PrB←B,A←QB

[
DB,A() = 1

]
.

We apply Hoeffding’s inequality to the random variables Pr[B ← B]pB , giving:

Pr[|p− q| ≥ γ] ≤ 2e−2γ2/
∑

B
Pr[B←B]2

≤ 2e−2γ22H∞(B)/
∑

B
Pr[B←B] = 2e−2γ22H∞(B)

(1)

Since 2H∞(B) is super-polynomial, we can choose γ negligible while still having
Line 1 be less than 1. Thus, there is some value of pB for each B (and hence
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choice of J) such that |PrB←B
[
DB,J(B)() = 1

]
− p| ≤ γ. The simulator therefore

uses this choice of J , and we have∣∣∣ Pr
A←A

[
DCA,A() = 1

]
− Pr
B←B

[
DB,SB

() = 1
]∣∣∣ ≤ δ + γ

which is negligible. ut

5 Shared Randomness Indifferentiability

In this section, we present shared randomness models of reset indifferentiability.
In this model, the simulator has access to a source of randomness, and the same
randomness is used in every invocation of the simulator. We will actually consider
two variants, one where the shared randomness is simply a random string, and
the other where the shared randomness is a random oracle.

Shared Random String (SRS). This model is equivalent to read-only indifferen-
tiability [BDG20]. The simulator has access to an arbitrary-size random string.

Definition 2. CA is (strong statistical classical) reset indifferentiable from B in
the SRS model if there exists set R and a polynomial-sized stateless oracle-aided
simulator S such that, for any probabilistic potentially unbounded oracle-added
Turing machine D making at most a polynomial number of queries, there exists a
negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B,r←R

[
DB,SB(· ; r)() = 1

]∣∣∣∣ ≤ ε .
Above, SB(· ; r) means that queries x to S are answered as SB(x ; r).

Remark 1. [DGHM13] consider a notion of resource restricted indifferentiability,
where the simulator’s space is bounded but potentially non-zero. While the SRS
model can be seen as a form of storage, the model is incomparable: SRS allows
for unbounded length random string, but the string must be read-only.

Shared Random Oracle (SRO). Here, the simulator has access to an arbitrary-
sized random oracle.

Definition 3. CA is (strong statistical classical) reset indifferentiable from B in
the SRO model if there exists sets X ,Y and a polynomial-sized stateless oracle-
aided simulator S such that, for any oracle-aided Turing machine D making at
most a polynomial number of queries, there exists a negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B,H←YX

[
DB,SB,H

() = 1
]∣∣∣∣ ≤ ε .

Above, YX is the uniform distribution over the set of all functions from X to Y.
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When contrasting SRS or SRO indifferentiability from Definition 1, we call
Definition 1 the standard model. Strong vs weak, computational vs statistical vs
perfect, and quantum vs classical are defined analogously to the setting without
shared randomness. Note that the definitions also makes sense in the plain (non-
reset) setting. However, the SRS and SRO models are redundant in the plain
setting, as shown in the following:

Lemma 1. Let Φ ∈ {strong,weak}, Γ ∈ {computational, statistical, perfectly}
and ∆ ∈ {classical, quantum}. If CA is Φ Γ ∆ plain indifferentiable from B in
either the of the SRS or SRO models, then it is also Φ Γ ∆ plain indifferentiable
from B in the standard model.

Proof. All 12 settings of Φ, Γ,∆ are essentially identical. We first show the SRS
case. Given a simulator S for SRS indifferentiability, we can simply create a new
simulator which chooses a random string r at the first query, and answers all
queries using S(· ; r). For the SRO case, we can simulate the shared random
oracle on the fly. In the classical case, this is done via lazy sampling; in the
quantum case, this is done using Zhandry’s compressed oracles [Zha19]. ut

We note that shared randomness is not necessarily redundant in the reset setting
since there is no explicit ability to store r in order to maintain consistency
between the different executions. Looking forward, our results imply that shared
randomness is an extra resource in the strong reset setting (in the sense that it
makes the notion weaker), but it is usually redundant in the weak reset setting.

5.1 Domain Shrinkage

To illustrate the utility of the shared randomness models, we show that the
SRO model is sufficient for domain shrinkage, even with reset indifferentiability.
This is in contrast to strong reset indifferentiability without shared randomness,
where [BBM13] show that domain extension and shrinkage are impossible.

Our domain shrinker is the obvious one, which just ignores part of the domain.
Let X ,Y be sets with A : X → Y . Let X ′ ⊂ X . Then ShrinkA : X ′ → Y is simply
defined as ShrinkA(x) = A(x).

Theorem 5. ShrinkRO is strong perfectly quantum and classical reset indifferen-
tiable from a random oracle, in the SRO model.

Proof. Let B : X ′ → Y and H : X → Y. Let

SB,H(x) =
{
B(x) if x ∈ X ′

H(x) if x /∈ X ′
.

First, note that ShrinkS
B,H

(x) = B(x). Also note that if B,H are random func-
tions, then SB,H(·) is a random function. Thus, for any distinguisher D (quantum
or classical, computationally unbounded), we have that Pr

[
DShrinkA,A() = 1

]
=

Pr
[
DB,SB,H () = 1

]
. ut
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In the next few subsections, we will show how to remove the SRO model in the
setting of weak reset indifferentiability, ultimately achieving domain shrinkage in
the standard model with weak reset indifferentiability.

5.2 SRO Implies Weak SRS

Here, we show that indifferentiability with shared random oracles implies indif-
ferentiability with shared random strings, in the weak indifferentiability setting.
The idea is to simulate the random oracle using a k-wise independent hash
function, which can be set as the shared random string. We note that [BDG20]
employ a similar technique, but use a PRF instead, meaning their results require
computational assumptions. Our Theorem 6 shows that such computational
assumptions are unnecessary.

Theorem 6. Let Γ ∈ {comp., stat., perfect}, ∆ ∈ {classical, quantum}. If CA is
weak Γ ∆ reset indifferentiable from B in the SRO model, then it is also weak Γ
∆ reset indifferentiable from B in the SRS model.

Proof. The computational, statistical, and perfect settings are identical, and will
be proved together. We first prove the classical case, the quantum case being a
small modification that we describe at the end.

Let D be a supposed distinguisher for reset indifferentiability, which we will
interpret as a potential distinguisher in both the SRS and SRO models. By
SRO indifferentiability, there exists sets X , Y and a simulator SB,H satisfying
Definition 3, meaning there exists a negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B,H←YX

[
DB,SB,H

() = 1
]∣∣∣∣ ≤ ε .

Now, let q0 be an upper bound on the number of queries D makes, and q1
an upper bound on the number of queries S makes to H on any call to S. Then
DB,SB,H () makes at most k = q0q1 calls to H. Let F be a family of k-wise
independent functions. Then

Pr
B←B,H←YX

[
DB,SB,H

() = 1
]

= Pr
B←B,f←F

[
DB,SB,f

() = 1
]

Our new simulator therefore sets F as the space of random strings, and f
the shared randomness. SRS security immediately follows.

For the quantum case, we just set F to be a family of 2k-wise independent
functions, and security follows from the following Lemma of Zhandry [Zha12b]:

Lemma 2 ([Zha12b]). Let F to be a family of 2q-wise independent functions
from X to Y. Then for any algorithm D making at most q quantum queries,
Prf←F [Df () = 1] = Prf←YX [Df () = 1].

This completes the proof of Theorem 6. ut
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5.3 SRS Often Implies Standard Weak Indifferentiability

Here, we show that SRS (and therefore SRO) indifferentiability often gives weak
indifferentiability in the standard model. The intuition is to use the idealized
object A itself to simulate the random string.

Extractable Distributions. Here, we define a notion of extractability for a distri-
bution, which captures the ability to extract randomness from the function.

Definition 4. A distribution A over functions A : X → Y is statistically clas-
sically extractable if, for any polynomial ` and any computationally unbounded
distinguisher D making a polynomial number of classical queries, there exists a
deterministic polynomial time oracle-aided Turing machine ExtA() which outputs
` bit strings, and a negligible function ε such that:∣∣∣∣ Pr

A←A,r←{0,1}`

[
DA(r) = 1

]
− Pr
A←A

[
DA(ExtA()) = 1

]∣∣∣∣ ≤ ε .
In other words, D cannot distinguish the output of ExtA from random. We define
computational, perfect, and quantum extractability analogously.

We expect most idealized models of interest to be extractable. In particular,
we demonstrate that random oracles are extractable, as is any idealized model
that can build random oracles under plain (non-reset) indifferentiability.

Theorem 7. Random oracles are perfectly classically and quantumly extractable.

Proof. Our proof follows ideas from [BBM13], who show how to remove ephemeral
(per query) randomness from “pseudo-deterministic” simulators. We generate
randomness in the same way, but with a different application and additionally
prove the quantum case. First, we will assume for simplicity that A has `-bit
outputs, which is without loss of generality since we can always trade off input
and output length in a random oracle, the result potentially multiplying the
number of queries by up to ` while being perfectly indifferentiable.

Then we have ExtA() work as follows. For a parameter k to be chosen latter,
Ext arbitrarily (but deterministically) chooses k distinct points (xi)i∈[k], and
outputs r = ⊕i∈[k]A(xi). Since we require random oracles to have exponential-
sized domains, there will always exist k distinct points. To prove extractability,
we first consider the classical case. We set k = q+ 1. Then any q-query algorithm
D cannot possibly query all the xi. As such, at least one of the A(xi) values
will be information-theoretically hidden from D, meaning r = ⊕i∈[k]A(xi) is
information-theoretically hidden. As such, D cannot distinguish r from random.

For the quantum case, more care is required since the distinguisher can query
on superpositions of potentially all xi, meaning we cannot argue any particular
A(xi) is hidden. Instead, we use the following result of Zhandry [Zha15b]:

Lemma 3 ([Zha15b], Theorem 5.1). Let Q be a q-quantum query algorithm
to A. Then Pr[QA() = ⊕i∈[k]A(xi)] ≤ bk/(k − q)c/2`. In particular, if q < k/2,
then the probability is at most 2−`.
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We now turn the very strong intractability of computing r into the desired
indistinguishability. Let k = 2q + 1 and let D be a q-query distinguisher. Let
p0 be the probability D outputs 1 when given ⊕i∈[k]A(xi), and let p1 be the
probability D outputs 1 when given a random r 6= ⊕i∈[k]A(xi) as input. Suppose
p0 6= p1. In this case, assume without loss of generality that p0 > p1, by flipping
the output bit of D if necessary.

We construct Q as follows: QA() chooses a random r, and runs b← DA(r).
If b = 1, it outputs r; otherwise it chooses a new random r′ and outputs r′.

We now compute the probability QA() outputs ⊕i∈[k]A(xi). Conditioned on
r = ⊕i∈[k]A(xi), then QA() outputs r (and is hence correct) with probability
p0; otherwise it outputs a random r′, which is correct with probability 2−`.
Conditioned on r 6= ⊕i∈[k]A(xi), QA() is only correct if it outputs r′ (which
happens with probability 1− p1) and r′ is correct (which has probability 2−`).
Over, the probability QA() is correct is then

Pr[QA() = ⊕i∈[k]A(xi)] = 1
2`

(
p0 + (1− p0) 1

2`

)
+ 2` − 1

2` (1− p1) 1
2`

>
1
2`

(
p0 + (1− p0) 1

2`

)
+ 2` − 1

2` (1− p0) 1
2`

= 1
2` p0 + 1

2` (1− p0) = 1
2`

thus contradicting Lemma 3. ut

Though not needed for our main results, we would also like to show that ideal
ciphers are extractable. Classically, the same Ext from the proof of Theorem 7 also
works for ideal ciphers. Quantumly, however, the situation is more difficult, in
particular because do not know a suitable analog of Lemma 3 for the ideal cipher
setting. While it is possible to directly prove that ideal ciphers are quantum
extractable by carefully adapting known techniques, we will prove a more general
theorem which shows that any ideal model which implies random oracles under
indifferentiability is also extractable.

Theorem 8. Let Γ ∈ {comp., stat., perfect}, ∆ ∈ {classical, quantum}. Suppose
A is a distribution over functions such that there exists a construction CA that
is strong Γ ∆ plain indifferentiable from a random oracle. Then A is Γ ∆
extractable.

Proof. We prove the classical statistical case, the quantum, perfect, and com-
putational cases being essentially identical. Let ` be a polynomial and D a
potential distinguisher for the extractability of A. Let S be the universal simu-
lator guaranteed by the strong (plain) indifferentiability of CA. Then consider
the distinguisher DB0 = DSB for the extractability of the random oracle B. By
Theorem 7, there must exist an extraction procedure ExtB0 and negligible ε with∣∣∣∣ Pr

B←B,r←{0,1}`

[
DB

0 (r) = 1
]
− Pr
B←B

[
DB

0 (ExtB0 ()) = 1
]∣∣∣∣ = 0 .
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Remembering that DB0 = DSB , we interpret DA(ExtB0 ) and DA(r) as indifferen-
tiability distinguishers for CA, meaning there exists a negligible ε, ε′ and∣∣∣ Pr

B←B

[
DB

0 (ExtB0 ()) = 1
]
− Pr
A←A

[
DA(ExtC

A

0 ()) = 1
]∣∣∣ ≤ ε∣∣∣∣ Pr

B←B,r←X

[
DB

0 (r) = 1
]
− Pr
A←A,r←X

[
DA(r) = 1

]∣∣∣∣ ≤ ε′ .
We now let ExtA() = ExtC

A
(), and we conclude that∣∣∣∣ Pr

A←A,r←{0,1}`

[
DA(r) = 1

]
− Pr
A←A

[
DA(ExtA()) = 1

]∣∣∣∣ < ε+ ε′ .

Thus Ext satisfies Definition 4. ut

Looking ahead, in Section 6, we will prove that ideal ciphers can be used to
construct random oracles that are sufficiently indifferentiable to apply Theorem 8.
This means that ideal ciphers are extractable.

Removing shared randomness for extractable sources. We now show that, if the
source is extractable, we can remove shared randomness in the weak indifferen-
tiability setting.

Theorem 9. Let Γ ∈ {comp., stat., perfect}, ∆ ∈ {classical, quantum}. If CA
is weak Γ ∆ reset indifferentiable from B in the SRS model, and if B is Γ
∆ extractable, then CA is also weak Γ ∆ reset indifferentiable from B in the
standard model.

Proof. All six settings are essentially identical, so we prove the statistical classical
case. Let D be a supposed distinguisher for reset indifferentiability, which we will
interpret as both a potential distinguisher in both the SRS and standard models.
By SRS indifferentiability, there exists a set X and a simulator SB satisfying
Definition 2, meaning there exists a negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B,r←X

[
DB,SB(· ; r)() = 1

]∣∣∣∣ ≤ ε .
Consider the extractability distinguisher EB(r) := DB,SB(· ; r)() for B. By

the assumed extractability of B, there exists an extraction procedure Ext and
negligible δ such that∣∣∣∣ Pr

B←B,r←X

[
DB,SB(· ; r)() = 1

]
− Pr
B←B

[
DB,SB(· ; r)() = 1 : r = ExtB()

]∣∣∣∣ ≤ δ .

We therefore define a new standard-model simulator TB(x) = SB(x ; ExtB()).
The result is that∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
A←A

[
DB,TB

() = 1
]∣∣∣ ≤ ε+ δ

Thus establishing reset indifferentiability in the standard model. ut
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As an immediate corollary, we have:
Corollary 2. For any X ′ ⊆ X , ShrinkRO is weak statistical (classical and quan-
tum) reset indifferentiable from a random oracle, in the standard model.

Remark 2. It may seem odd that we can use extractability to prove reset in-
differentiability, when Theorem 8 only needs plain indifferentiability to justify
extractability. Note, however, that the actual indifferentiability simulator uses
Ext, which is indeed stateless. The simulator used to justify extractability only
comes up as a hybrid in the security analysis, where it is okay to keep state.

5.4 Extensions

Here, we consider shared randomness beyond random oracles, namely a general-
ization to oracle distributions are constructible from random oracles.

Definition 5. We say a distribution F is statistically classically constructible
from G if there is a deterministic polynomial-time oracle-aided Turing machine
C such that, for any computationally unbounded distinguisher D making a poly-
nomial number of classical queries, there exists a negligible ε such that

| Pr
F←F

[DF () = 1]− Pr
G←G

[DCG

() = 1]| ≤ ε

We analogously define computational, perfect, and quantum constructibility.

Note that constructibility does not give the distinguisher access to G, meaning
plain indistinguishability suffices. Let Γ ∈ {computational, statistical,perfectly}
and ∆ ∈ {classical, quantum}. We note that constructibility has some basic
composition properties:
– If F is Γ ∆ constructible from G, and G is Γ ∆ constructible from H, then
F is Γ ∆ constructible from H.

– Let F1, . . . ,Fn be distributions, and denote (F1, . . . ,Fn) denote the dis-
tribution on functions (i, x) → Fi(x) where Fi ← Fi. If each Fi is Γ ∆
constructible from Gi for i = 1, . . . , n, then (F1, . . . ,Fn) is Γ ∆ constructible
from (G1, . . . ,Gn)

– Let RO1, . . . ,ROn be independent random oracles. Then (RO1, . . . ,ROn)
is perfectly classical and quantum constructible from appropriately-sized
random oracles, by simple domain separation.

Next, we observe that existing results imply the constructibility of ideal ciphers
from random oracles:
Lemma 4. Ideal ciphers are perfectly quantumly and classically constructible
from appropriately-sized random oracles.

Proof. In the classical statistical case, we can use Luby-Rackoff [LR86]. Quantum
Luby-Rackoff unfortunately is unknown since we need to handle inversion queries.
Instead, we follow [Zha16], and use perfect shuffles. In particular, [GP07] shows
the existence of a perfect random permutation from a random oracle, which
therefore achieves perfect constructibility, even under quantum queries. ut

19



Corollary 3. Keyed random injections are perfectly quantumly and classically
constructible from appropriately-sized random oracles.

Proof. Keyed random injections are perfectly classically and quantumly con-
structible from keyed ideal ciphers, by simply padding the input. Then composi-
tion gives the desired result. ut

Generalizing Shared Randomness. We now give our general definition.

Definition 6. Let F be a distribution over functions. CA is (strong statistical
classical) reset indifferentiable from B in the Shared-F model if there exists a
polynomial-time stateless oracle-aided simulator S such that, for any oracle-aided
Turing machine D making at most a polynomial number of queries, there exists a
negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B,f←F

[
DB,SB,f

() = 1
]∣∣∣∣ ≤ ε .

We similarly define weak, computational, perfect, and quantum Shared-F models.

Lemma 5. Let Φ ∈ {strong,weak}, Γ ∈ {computational, statistical, perfectly}
and ∆ ∈ {classical, quantum}. If CA is Φ Γ ∆ reset indifferentiable from B in
the Shared-F model, and F is Γ ∆ constructible from G, then CA is also Φ Γ ∆
reset indifferentiable from B in the Shared-G model.

6 Random Oracles from Ideal Ciphers

Here, we show how to build random oracles from ideal ciphers using weak reset
indifferentiability. Concretely, we prove that an ideal cipher gives a random oracle
with strong reset indifferentiability in the shared random oracle (SRO) model:

Theorem 10. Let A be an ideal cipher. There exists a construction CA that is
strong statistical (classical and quantum) reset indifferentiable from a random
oracle in the SRO model.

We prove Theorem 10 in Section 6.1, but first show two corollaries:

Corollary 4. Ideal ciphers are statistical (classical and quantum) extractable.

Proof. By Lemma 1, CA is strong statistical quantum plain indifferentiable in
the standard model. The result then follows from Theorem 8. ut

Corollary 5. Let A be an ideal cipher. There exists a construction CA that is
weak statistical (classical and quantum) reset indifferentiable from a random
oracle in the standard model.

Proof. We apply Theorem 6 to Theorem 10 to get that CA is weak statistical
(classical and quantum) reset indifferentiable in the SRS model. Then we use
the extractability of random oracles and Theorem 9 to conclude weak statistical
(classical and quantum) reset indifferentiability in the standard model. ut
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6.1 The Pad-and-Truncate Construction

Our construction can be seen as the Sponge construction for 1-block messages. Fix
real numbers c, d ∈ (0, 1). Let A : K ×X → Y be a keyed injection with inverse
A−1. Let X ′ ⊆ X and Y ′ ⊆ Y such that |X ′| ≤ |Y|c and |Y ′| ≤ |Y|d. Assume for
simplicity that |Y ′| divides |Y|, interpret Y = Y ′ ×Z, and define Proj(y, z) = y.
Then define PadTruncA,A

−1

c,d : K × X ′ → Y ′ as PadTruncA,A
−1

c,d (x) = Proj(A(x)).
We now restate Theorem 10, using PadTrunc:
Theorem 10. For any constants c, d ∈ (0, 1) such that c+ d ≤ 1, PadTruncIC

c,d

is strongly shared randomness statistically (classically and quantumly) reset
indifferentiable from a random oracle.

6.2 The Simulator

In order to be consistent with PadTruncc,d, our simulator needs to answer queries
to A(k, x) with (B(k, x), z) for some z. At the same time, it needs to be able to
answer queries to A−1(k, (B(k, x), z) ) with x ∈ X ′. For all other queries, the
simulator needs to answer in a way that “looks like” a random keyed injection.

The central difficulty is that, by virtue of having a stateless simulator, we
cannot answer these queries lazily, and we cannot “remember” how previous
queries were answered. This particularly represents a problem for answering
A−1(k, (B(k, x), z) ) queries, since we somehow have to recover x, even though
B is a random oracle which would hide x. Our solution is to do the following.
Following Lemma 5, it suffices to have our simulator work in the Shared-(RI,RI)
model, having access to random keyed injections I : K×X ′ → Z, Q : K×X → Y ,
and their inverses I−1, Q−1. The simulator SB,I,Q answers A and A−1 queries
as P and P−1 respectively, where:

P (k, x) =
{

(B(k, x), I(k, x)) if x ∈ X ′

Q(k, x) otherwise
(2)

P−1(k, (w, z)) =
{
x if w = B(k, x) where x = I−1(k, z)
Q−1(k, (w, z)) otherwise

(3)

6.3 Indifferentiability Proof

We now need to prove that this simulator is indistinguishable from the case where
A,A−1 are uniformly random permutations, and B = PadTruncA,A

−1

c,d .
First, we show that without loss of generality we can focus on the key-less

case (|K| = 1). This follows immediately from a generalization of a result of
Zhandry [Zha12a], which we prove in the full version [Zha21]:
Lemma 6. Let D0, D1 be distributions over oracles from X to Y. Let O1, O2 be
distributions on oracles from K ×X to Y, where for each k, Ob(k, ·) is sampled
from Db. Suppose there exists a q quantum query algorithm A with access to an
oracle O0 or O1 such that |Pr[AO0() = 1]− Pr[AO1() = 1]| = ε. Then there is a
quantum algorithm B such that |Pr[BD0 = 1]− Pr[BD1 = 1]| ≥ Ω(ε2/q3).
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Now let D be a (potentially quantum) distinguisher making polynomially-
many queries in the keyless case, and define several hybrid experiments:

– Hybrid 0. This is the “Ideal World” where B is a random oracle and A,A−1

are set to P, P−1 as defined in our simulator in Lines 2 and 3, with I,Q being
random (key-less) injections. Let p0 be the probability D outputs 1.

– Hybrid 1. This is the same as Hybrid 0, except that we replace D’s queries
to B(x) with PadTruncP,P

−1

c,d (x). Let p1 be the probability D outputs 1. Note
that PadTrunc only makes A queries on inputs x ∈ X ′, which S answers as
(B(x), I(x)). Thus PadTruncP,P

−1

c,d (x) = B(x), and therefore the distribution
of oracles seen by D is identical in Hybrids 0 and 1. Thus p0 = p1.

– Hybrid 2. This is the “Real World”, where A,A−1 are a random (keyed)
injection and its inverse, and B(k, x) = PadTruncA,A

−1

c,d (x). Equivalently,
Hybrid 2 is the same as Hybrid 1, except that P, P−1 in Equations 2 and 3
are replaced by a random keyed injection A and its inverse A−1. Let p2 be
the probability D outputs 1.

It remains to show that |p2 − p1| is negligible, which constitutes the bulk of the
indifferentiability proof. For this, the following claim suffices:

Lemma 7. For any distinguisher E making at most a polynomial number of
classical or quantum queries, we have that |Pr[EP,P−1() = 1]−Pr[EA,A−1() = 1]|
is negligible, where A,A−1 are a random (keyless) injection and its inverse, and
P, P−1 are as in Equations 2 and 3, with I,Q are random keyed injections.

Lemma 7 proves Theorem 10 by letting EA,A−1() = DPadTruncA,A−1
c,d

,A,A−1
(). We

now prove Lemma 7.

Proof. Classically, proving this is possible using lazy sampling. However, ulti-
mately we will also want to prove the indistinguishability under quantum queries.
This is somewhat more challenging, and requires a more careful proof, given
limitations of known techniques. We will therefore structure the proof in a way
that allows us to prove both classical and quantum indistinguishability.

Let E be a potential distinguisher. We prove the indistinguishability through
another sequence of hybrids:

– Hybrid α. Here we give E the oracles A,A−1 that are a uniformly random
(keyless) injection and its inverse. Define pα as the probability E outputs 1.

– Hybrid β. Here, we sample a uniformly random injection J : X ′ → Y. We
give E the oracles Aβ , A−1

β , where

Aβ(x) =
{
A( J−1( A(x) ) ) if A(x) ∈ Img(J), x /∈ X ′

A(x) otherwise

A−1
β (y) =

{
A−1(J−1(A−1(y))) if y ∈ Img(J), A−1(y) /∈ X ′

A−1(y) otherwise
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Here, Img(J) is the set of images of J . Note the J−1 in both the definition
of Aβ and A−1

β . Let pβ be the probability E outputs 1.
Note that Aβ , A−1

β are identical to A,A−1, except on points determined by
the sparse image of J . Since J is random, these points should be hidden from
the view of E. Indeed, it is straightforward that, in the classical case, such
points will only be queried with negligible probability, and in the absence of
querying these points the distributions are identical.
In the quantum case, we have to work slightly harder. We prove the following
in the full version [Zha21], which follows from known quantum techniques:
Lemma 8. Let D be a distribution over subsets V of X such that each
element in X is placed in V with probability ε (not necessarily independently).
Consider any quantum algorithm E making q queries to an oracle O with
domain X , and let p0 be the probability EO() outputs 1. Let O′ that is identical
to O, except that on a set V sampled from D, O′ is changed arbitrarily. Let
p1 be the probability EO′() outputs 1. Then |p0 − p1| < O(q

√
ε).

The random injection J defines such a set V where each input to A or A−1

is placed in the changed set with probability |X ′|/|Y| = |Y|−(1−c). Therefore
|pβ − pα| < O(q|Y|−(1−c)/2), which is negligible.

– Hybrid γ. Here, we sample J,A,A−1, Aβ , A
−1
β as in Hybrid β. Let K :

X ′ → Y be the restriction of A to X ′:K(x) = A(x). Also define Q(x) = Aβ(x)
for x /∈ X ′. The values Q(k, x) for x ∈ X ′ are random and distinct values
from the set Y \ {Aβ(x) : x /∈ X ′}. Plugging in the definition of Aβ ,K, this
gives

Q(x) =
{
K(J−1(A(x))) if A(x) ∈ Img(J), x /∈ X ′

A(x) if A(x) /∈ Img(J), x /∈ X ′
.

We then give the adversary the oracles Aγ , A−1
γ defined as

Aγ(x) =
{
K(x) if x ∈ X ′

Q(x) otherwise

A−1
γ (y) =

{
K−1(y) if y ∈ Img(K(·))
Q−1(y) otherwise

Let pγ be the probability E outputs 1. Plugging in the definitions of Q,K,
we see that Aγ = Aβ , A

−1
γ = A−1

β . Therefore, pγ = pβ .
Note that in Hybrid γ, Q is a uniformly random keyless permutation, and
K is a uniformly random keyless injection.

– Hybrid δ. Now give E the oracles Aγ , A−1
γ , except where K is chosen as

K(x) = (B(x), I(x)), B is a random function, and I(x) is a random keyless
injection. Note that the result is equivalent to the oracles P, P−1 defined as
in Equations 2 and 3. Let pδ be the probability E outputs 1.

It remains to show that pγ is close to pδ. Since Q is identically distributed in
both hybrids, it suffices to prove that the distribution over K in the two hybrids
is indistinguishable:
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Lemma 9. Fix c, d ∈ (0, 1), and let X ′,Y ′,Z,Y, Y = Y ′ × Z, be sets such
that |X | ≤ |Y|c and |Y ′| ≤ |Y|d. Write K : X ′ → Y as K(x) = (B(x), I(x))
for B : X ′ → Y ′ and I : X ′ → Z. Then for any adversary making q classical
or quantum queries to K and its inverse, the following two distributions are
indistinguishable:

– K is chosen as a random keyless injection
– I is a random keyless injection, and B is a random function.

Proof. In the classical case, this is straightforward: the only way an adversary can
distinguish is by finding x0, x1 such that I(x0) = I(x1), which cannot happen in
the case where I is injective. To prove that such tuples are infeasible to find, we
rely on the fact that the adversary cannot make inverse queries on valid images
(whp), except on values that were the result of prior forward queries.

In the quantum setting, what makes proving this non-trivial is that the
attacker has query access to both K and K−1, whereas the vast majority of the
quantum literature does not consider inversion queries. In order to prove security,
then, we carefully embed an instance of a problem that does not use inversion
queries, and then rely on known quantum complexity techniques to prove the
hardness of the inversion-less problem.

We first consider the case where c < d. The reason this case is easier is that
we can switch from using I(x) to recover x to using B(x) to recover x. Then
since we do not need to query I−1, we can rely on known quantum query lower
bound techniques to switch to I being random.

To prove indistinguishability in the c < d case, we define a few more hybrids.

– Hybrid i. This hybrid sets K : X ′ → Y to be a uniformly random (keyless)
injection. Let pi be the probability of outputting 1.

– Hybrid ii. This hybrid sets K to be a random function. The problem with K
being a uniformly random function is that there might be collisions, meaning
the inverse is not well defined. We define K−1(y) to be x is there is a unique
x such that K(x) = y. Otherwise, if there are 0 or ≥ 2 solutions, K−1(y) = ⊥.
Let pii be the probability of outputting 1.
Since c < d and c + d ≤ 1, we have that 2c < 1. As such, a random
function is an injection with overwhelming probability by a union bound.
Thus |pi − pii| ≤ O(|Y|−(1−2c)).
Note here that if we write K(x) = (B(x), I(x)), then B, I are independent
uniform random functions.

– Hybrid iii. Here, we change how we answer K−1(w, z) queries. Rather than
directly computing the inverse (supposing it exists and is unique), we instead
compute Lw := {x : B(x) = w}, and then for each x ∈ Lw, we check if
I(x) = z by querying I. To bound the number of queries to I, we abort if
|Lw| > r, for some parameter r. Let piii be the probability of outputting 1.
By standard balls-and-bins arguments, for each w ∈ Y ′, Lw is at most r,
except with probability

(|X ′|
r

)
|Y ′|−r ≤ |Y|−(d−c). Union bounding over all

w gives that maxw |Lw| ≤ r except with probability ≤ |Y|d−(d−c)r. Setting
r = O(1), this bound becomes |Y|−1. In the case all Lw have size at most
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r, there are no aborts and inverse procedure outputs the same value as in
Hybrid ii. Thus |pii − piii| ≤ |Y|−1. Moreover, the number of queries made
to I for each K−1 query is at most a polynomial.

– Hybrid iv. Here, we change I to be a keyless injection, and let piv be the
probability of outputting 1. If the adversary makes q queries, we ultimately
make O(q) queries to I (and no queries to I−1). We can use the indistin-
guishability of random functions from random injections [AS04, Zha15a] to
bound |piii − piv| ≤ O(q3/|Z|) = O(q3/|Y|1−d), which is negligible.

This completes the case c < d. We now extend to all c, d > 0 such that
c+ d ≤ 1. The problem with the above proof is that the output of B is no longer
large enough to uniquely decode x. Nevertheless, we show how to embed an
instance of the problem for c′ < d′ into the general case, thereby proving security.

Let c′, d′ ∈ (0, 1) be constants to be chosen later. Write X ′ = W × X ′′
and Z = W ×Z ′ for |X ′′| = |Y|c′d/d′ , |W| = |Y|c−c′d/d′ , |Z ′| = |Y|d/d′−d. Since
Z =W ×Z ′, we must have d′ = d(1− c′)/(1− c). Moreover, for the sizes of the
sets involved to be non-negative, we must have c′ ≤ c, which implies d′ ≥ d.

We will sample K as follows:

– First choose random keyless permutations W,W ′ : (W ×Z ′)→ (W ×Z ′).
– Next, choose a keyed function K ′ :W ×X ′′ → Y ′ ×Z ′
– Set K(x) to be the following: Let x′ = W ′(x) and write x′ = (η, µ) ∈ W×X ′′.

Then compute (ζ, τ)← K ′(η, µ) ∈ Y ′ ×Z ′. Then output (ζ,W (η, τ).

It is straightforward that, if K ′ is a random keyed injection, then K is a random
keyed injection. On the other hand, suppose for any η, the mapping under K ′
of µ 7→ τ was a random injection whereas the mapping µ 7→ ζ was a random
function. Then it is straightforward that K satisfies the distribution for Hybrid
iv. Thus, proving the indistinguishability for the two cases of K reduces to
proving the indistinguishability for the two cases of K ′. By applying Lemma 6,
we can further reduce to the keyless case and ignore η. Since the range of K ′
has size |Y|d/d′ , we have that K ′ is an instance of Lemma 9 with parameters
c′, d′. Choose an arbitrary c′ ≤ c such that d′ = d(1− c′)/(1− c) > c′, which is
equivalent to c′ < d/(1 + d− c). We can then invoke the c < d case of Lemma 9
as proved above on K ′, obtaining the indistinguishability of the two settings. ut

This completes the proof of Lemma 7. Putting everything together, this completes
the proof of Theorem 10. ut

6.4 On Necessary Shrinkage

Our positive result works for any c+ d ≤ 1. Here, we show that this is tight.

Theorem 11. For any constants c, d > 0 such that c+ d > 1, if A is a random
permutation, then PadTruncA,A

−1

c,d is not even weak computational (classical or
quantum) reset indifferentiable from a random oracle.
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Proof. For simplicity, we focus on the keyless case (s = 0), which is without
loss of generality. The intuition behind the proof is that the simulator, when
answering queries of the form A−1(B(x), z), cannot invert B to recover x. It
must therefore recover x from z. But this is only possible if |z| ≥ |x|.

Consider the distinguisher D, which chooses a random x ∈ X ′, and runs
(w, z)← A(x) ∈ Y ′×Z. Then it runs x′ ← A−1(w, z) and w′ ← B(x′) (assuming
x′ ∈ X ′), and outputs 1 if and only if w′ = w, x′ = x. Consider a supposed
simulator SB for D, where we write SB0 , SB1 for the simulator’s responses to A
and A−1 queries, respectively. We have that there exists a negligible ε such that

Pr
[
DB,SB

0 ,S
B
1 () = 1

]
≥ 1− ε .

We turn SB into an algorithm UB(w), which finds an x such that B(x) = w.
UB(w) works as follows: choose a random z∗ ∈ Z, and output x← SB1 (w, z∗).

Claim. For a random x ∈ X ′, Pr[UB(B(x)) = x] ≥ (1− ε)/|Y|1−max(c,d).

Proof. Imagine running D on a random x ∈ X ′. We therefore know that, with
probability at least 1− ε, the following are both true: (1) SB0 (x) outputs (B(x), z)
for some z, and (2) SB1 (z, w) = x ∈ X ′. We will therefore say that x is “good”
if the above both hold; there are at least (1− ε)|X ′| good x. In the case c ≤ d,
suppose that x is good. Then UB(B(x)) will successfully invert provided z∗ = z,
which occurs with probability |Y|−(1−d).

In the case c > d, then there will be multiple good x for each w. Consider
the set of good x′ ∈ X ′ such that B(x′) = w, and let z′ be the associated value
outputted by SB0 (x′). Let pw be the number of such x′. Then as long as z∗ is
equal to any z′ for a good x′, UB(w) will output x′, a pre-image of w. Thus, the
probability of success for a given w is at least pw|Y|−(1−d). Since the total number
of good x′ is (1− ε)|X ′|, the expectation of pw is (1− ε)|X ′|/|Y ′| = (1− ε)|Y|c−d,
meaning B succeeds with probability (1− ε)|Y|−(1−c). ut

We now contrast Claim 6.4 with the (quantum) hardness of pre-image search:

Lemma 10 ([BBBV97]). For any q quantum query algorithm A making queries
to a random function O : |X | → |Y|, Prx←X [O( AO( O(x) ) ) = O(x)] ≤
O(q2/min(|X |, |Y|)). In other words, a random oracle is quantum one-way 4.

This shows that no q-query (quantum) algorithm can invert B except with prob-
ability at most O(q2|Y|−min(c,d)). We thus have q2 ≥ Ω(|Y|min(c,d)+max(c,d)−1) =
Ω(|Y|c+d−1) = |Y|Ω(1) (since c+ d > 1), which is exponential. ut

7 Post-Quantum Groups

Here, we demonstrate that generic groups are strongly reset indifferentiability
from random injections in the quantum setting.
4 Note that [BBBV97] phrase their result as finding a marked item in a list. Nevertheless,
the statement of their result and its proof can be rephrased as in Lemma 10.
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Theorem 12. Let GG be a generic group of order p and label space {0, 1}n.
Then the labeling function for GG, namely L, is strongly statistical quantum reset
indifferentiable from a (keyless) random injection I : {0, 1}log p → {0, 1}n.

Proof. We use Shor’s algorithm [Sho94] to invert the labeling function. We can
simulate the group operations by inverting the labeling function, performing the
group operation in Zp, and then re-applying the labeling function. ut

7.1 Instantiations and Applications

We can instantiate the generic group using either subgroups of the multiplicative
group of finite fields, or over elliptic curves. Then, applying the pad-and-truncate
construction, we obtain a plausible post-quantum random oracle. We briefly
discuss the case of finite fields. Let q be a prime and g an element generating
a large subgroup of Z∗q . As we do not need discrete logarithms to be hard, the
order of g does not seem to matter, and g can even be a generator of Z∗q . Let
gi = g2i mod q. Then ga mod q =

∏n−1
i=0 g

ai
i , where ai is the ith binary bit of

a. Our pad-and-truncate construction is then a 7→ (
∏n−1
i=0 g

ai
i mod q) mod r, for

some sufficiently small r, giving a simple plausible a post-quantum random oracle.

Key-less classical permutations. One limitation of the above is that the generic
group is only quantumly equivalent to a key-less injection, requiring Shor’s
algorithm to perform inverses. However, an easy fix is to make the discrete log
classically easy, by having the group order be smooth. Let q be such that q − 1
has all small prime factors. Then computing discrete logs in Z∗q is even classically
easy by solving discrete log mod each of the factors of q − 1, and then Chinese
Remaindering. Our labeling function maps Zq−1 → Z∗q ; this can be turned into a
permutation by simply subtracting 1 from the final result.
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