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Abstract. This paper presents the first adaptively simulation secure
functional encryption (FE) schemes for attribute-weighted sums. In such
an FE scheme, encryption takes as inputN pairs of attribute {(xi, zi)}i∈[N ]

for some N ∈ N where the attributes {xi}i∈[N ] are public while the at-
tributes {zi}i∈[N ] are private. The indices i ∈ [N ] are referred to as
the slots. A secret key corresponds to some weight function f , and de-
cryption recovers the weighted sum

∑N
i=1 f(xi)zi. This is an important

functionality with a wide range of potential real life applications. In the
proposed FE schemes attributes are viewed as vectors and weight func-
tions are arithmetic branching programs (ABP). We present two schemes
with varying parameters and levels of adaptive security.
(a) We first present a one-slot scheme that achieves adaptive security in

the simulation-based security model against a bounded number of
ciphertext queries and an arbitrary polynomial number of secret key
queries both before and after the ciphertext queries. This is the best
possible level of security one can achieve in the adaptive simulation-
based framework. From the relations between the simulation-based
and indistinguishability-based security frameworks for FE, it fol-
lows that the proposed FE scheme also achieves indistinguishability-
based adaptive security against an a-priori unbounded number of
ciphertext queries and an arbitrary polynomial number of secret key
queries both before and after the ciphertext queries. Moreover, the
scheme enjoys compact ciphertexts that do not grow with the num-
ber of appearances of the attributes within the weight functions.

(b) Next, bootstrapping from the one-slot scheme, we present an unbounded-
slot scheme that achieves simulation-based adaptive security against
a bounded number of ciphertext and pre-ciphertext secret key queries
while supporting an a-priori unbounded number of post-ciphertext
secret key queries. The scheme achieves public parameters and secret
key sizes independent of the number of slots N and a secret key can
decrypt a ciphertext for any a-priori unbounded N . Further, just like
the one-slot scheme, this scheme also has the ciphertext size inde-
pendent of the number of appearances of the attributes within the
weight functions. However, all the parameters of the scheme, namely,
the master public key, ciphertexts, and secret keys scale linearly with
the bound on the number of pre-ciphertext secret key queries.

Our schemes are built upon asymmetric bilinear groups of prime order
and the security is derived under the standard (bilateral) k-Linear (k-Lin)
assumption. Our work resolves an open problem posed by Abdalla, Gong,
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and Wee in CRYPTO 2020, where they presented an unbounded-slot FE
scheme for attribute-weighted sum achieving only semi-adaptive simula-
tion security. At a technical level, our work extends the recent adaptive
security framework of Lin and Luo [EUROCRYPT 2020], devised to
achieve compact ciphertexts in the context of indistinguishability-based
payload-hiding security, into the setting of simulation-based adaptive
attribute-hiding security.

Keywords: functional encryption, attribute-weighted sums, adaptive simula-
tion security

1 Introduction

Functional Encryption: Functional encryption (FE), formally introduced by
Boneh et al. [9] and O’Neill [26], redefines the classical encryption procedure
with the motivation to overcome the limitation of the “all-or-nothing” paradigm
of decryption. In a traditional encryption system, there is a single secret key
such that a user given a ciphertext can either recover the whole message or
learns nothing about it, depending on the availability of the secret key. FE in
contrast provides fine grained access control over encrypted data by generating
artistic secret keys according to the desired functions of the encrypted data to
be disclosed. More specifically, in a public-key FE scheme for a function class F ,
there is a setup authority which produces a master secret key and publishes a
master public key. Using the master secret key, the setup authority can derive
secret keys or functional decryption keys SKf associated to functions f ∈ F .
Anyone can encrypt messages msg belonging to a specified message space M
using the master public key to produce a ciphertext CT. The ciphertext CT
along with a secret key SKf recovers the function of the message f(msg) at the
time of decryption, while unable to extract any other information about msg.
More specifically, the security of FE requires collusion resistance meaning that
any polynomial number of secret keys together cannot gather more information
about an encrypted message except the union of what each of the secret keys
can learn individually.

FE for Attribute-Weighted Sum: Recently, Abdalla, Gong and Wee [3] pro-
posed an FE scheme for a new class of functionalities which they termed as
“attribute-weighted sums”. This is a generalization of the inner product func-
tional encryption (IPFE) [1,7]. In such a scheme, a database of N attribute-value
pairs (xi, zi)i=1,...,N are encrypted using the master public key of the scheme,
where xi is a public attribute (e.g., demographic data) and zi is a private at-
tribute containing sensitive information (e.g., salary, medical condition, loans,
college admission outcomes). The indices i ∈ [N ] are referred to as the slots.
A recipient having a secret key corresponding to a weight function f can learn
the attribute-weighted sum of the database, i.e.,

∑N
i=1 f(xi)zi. The attribute-

weighted sum functionality appears naturally in several real life applications. For
instance, as discussed by Abdalla et al. [3] if we consider the weight function f as

a boolean predicate, then the attribute-weighted sum functionality
∑N
i=1 f(xi)zi

would correspond to the average zi over all users whose attribute xi satisfies the
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predicate f . Important practical scenarios include average salaries of minority
groups holding a particular job (zi = salary) and approval ratings of an elec-
tion candidate amongst specific demographic groups in a particular state (zi =
rating). Similarly, if zi is boolean, then the attribute-weighted sum becomes∑
i:zi=1 f(xi). This could capture for instance the number of and average age of

smokers with lung cancer (zi = lung cancer, f = numbers/age).

The work of [3] considered a more general case of the notion where the do-
main and range of the weight functions are vectors over some finite field Zp.
In particular, the database consists of N pairs of public/private attribute vec-
tors (xi, zi)i=1,...,N which is encrypted to a ciphertext CT. A secret key SKf
generated for a weight function f allows a recipient to learn

∑N
i=1 f(xi)

>zi
from CT without revealing any information about the private attribute vectors
(zi)i=1,...,N . To handle a large database where the number of users are not a-
priori bounded, Abdalla et al. further considered the notion of unbounded-slot
FE scheme for attribute-weighted sum where the number of slots N is not fixed
while generating the system parameters and any secret key SKf can decrypt an
encrypted database having an arbitrary number of slots. Another advantage of
unbounded-slot FE is that the same system parameters and secret keys can be
reused for different databases with variable lengths, which saves storage space
and reduces communication cost significantly.

The unbounded-slot FE of [3] supports expressive function class of arithmetic
branching programs (ABPs) which is capable of capturing boolean formulas,
boolean span programs, combinatorial computations, and arithmetic span pro-
grams. The FE scheme of [3] is built in asymmetric bilinear groups of prime order
and is proven secure in the simulation-based security model, which is known to
be the desirable security model for FE [26,9], under the k-Linear (k-Lin)/Matrix
Diffie-Hellman (MDDH) assumption. Moreover, their scheme enjoys ciphertext
size that grows with the number of slots and the size of the private attribute
vectors but is independent of the size of the public attribute vectors. Towards
constructing their unbounded-slot scheme, Abdalla et al. first constructed a one-
slot scheme and then bootstrap to the unbounded-slot scheme via a semi-generic
transformation

However, one significant limitation of the FE scheme of [3] is that the scheme
only achieves semi-adaptive security. While semi-adaptive security, where the
adversary is restricted to making secret key queries only after making the ci-
phertext queries, may be sufficient for certain applications, it is much weaker
compared to the strongest and most natural notion of adaptive security which
lets the adversary request secret keys both before and after making the cipher-
text queries. Thus it is desirable to have an adaptively secure scheme for this
important functionality possibly supporting an unbounded number of slots.

One artifact of the standard techniques for proving adaptive security of FE
schemes based on the so called dual system encryption methodology [28,18,17]
is the use of a core information theoretic transition limiting the appearance of
an attribute in the description of the associated functions at most once (or an
a-priori bounded number of times at the expense of ciphertext and key sizes scal-
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ing with that upper bound [24,27]). Recently Kowalczyk and Wee [16] and Lin
and Luo [19] presented advanced techniques to overcome the one-use restriction.
However, their techniques were designed in the context of attribute-based encryp-
tion (ABE) where attributes are totally public. Currently, it is not known how
to remove the one-use restriction in the context of adaptively secure FE schemes
where attributes are not fully public as is the case for the attribute-weighted
sum functionality. This leads us to the following open problem explicitly posed
by Abdalla et al. [3]:
Open Problem Can we construct adaptively simulation-secure one-slot/unbounded-
slot FE scheme for the attribute-weighted sum functionality with the weight func-
tions expressed as arithmetic branching programs featuring compact ciphertexts,
that is, having ciphertexts that do not grow with the number of appearances of
the attributes within the weight functions, from the k-Lin assumption?

Our Contributions: In this work, we resolve the above open problem. More
precisely, we make the following contributions.

(a) We start by presenting the first one-slot FE scheme for the attribute-weighted
sum functionality with the weight functions represented as ABPs that achieves
adaptive simulation-based security and compact ciphertexts, that is, the ci-
phertext size is independent of the number of appearances of the attributes
within the weight functions. The scheme is secure against an adversary who
is allowed to make an a-priori bounded number of ciphertext queries and
an unbounded (polynomial) number of secret key queries both before and
after the ciphertext queries, which is the best possible level of security one
could hope to achieve in adaptive simulation-based framework [9]. Since
simulation-based security also implies indistinguishability-based security and
indistinguishability-based security against single and multiple ciphertexts
are equivalent [9,26], the proposed FE scheme is also adaptively secure in
the indistinguishability-based model against adversaries making unbounded
number of ciphertext and secret key queries in any arbitrary order.

(b) We next bootstrap our one-slot scheme to an unbounded-slot scheme that
also achieves simulation-based adaptive security against a bounded number
of ciphertext queries and an unbounded polynomial number of secret key
queries. Just like our one-slot scheme, the ciphertexts of our unbounded-slot
scheme also do not depend on the number of appearances of the attributes
within the weight functions. However, the caveat here is that the number of
pre-ciphertext secret key queries is a priori bounded and all parameters of
the scheme, namely, the master public key, ciphertexts, and secret keys scale
linearly with that upper bound.

Like Abdalla et al. [3], our FE schemes are build upon asymmetric bilinear groups
of prime order. We prove the security of our FE schemes based on the standard
(bilateral) k-Lin/ (bilateral) MDDH assumption(s) [12]. Thus our results can be
summarized as follows.
Theorem 1 (Informal) Under the (bilateral) k-Lin/MDDH assumption(s), there
exist adaptively simulation secure one-slot/unbounded-slot FE scheme for attribute-
weighted sums against a bounded number of ciphertext and an unbounded number
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of secret-key queries, and having compact ciphertexts, that is, without the one-use
restriction, in bilinear groups of prime order.

The bilateral MDDH assumption is the plain MDDH assumption except that the
elements are available in the exponents of both source groups of a bilinear group
simultaneously. This assumption has recently been utilized in the context of
achieving FE for quadratic functions in the standard model [5,30]. Unlike [3], our
one-slot construction is semi-generic and is built upon two cryptographic build-
ing blocks, namely a slotted inner product functional encryption (IPFE) [20,19],
which is a hybrid of a public-key IPFE and a private-key function-hiding IPFE,
and an information theoretic primitive called arithmetic key garbling scheme
(AKGS) [14,19]. For bootstrapping from one-slot to unbounded-slot construc-
tion we make use of the same semi-generic transformation proposed in [3], but
analyze its security in the adaptive simulation-based setting as opposed to the
semi-adaptive setting. Table 1 shows the current state of the art in the devel-
opment of efficient attribute-hiding3 FE schemes under standard computational
assumptions.

On the technical side, our contributions lie in extending the recent frame-
work of Lin and Luo [19]. The techniques of [19] are developed to achieve
compact ciphertexts, that is, without the one-use restriction in the context of
indistinguishability-based adaptively secure ABE (that is, for payload-hiding se-
curity and not attribute-hiding). In this work, we extend their techniques to
overcome the one-use restriction into the context of adaptive simulation-based
attribute-hiding security for the first time. The high level approach of [19] to
mitigate the one-use restriction is to replace the core information theoretic step
of the dual system technique with a computational step. However the application
of this strategy in their framework crucially rely on the payload hiding security
requirement, that is, the adversaries are not allowed to query secret keys that
enable a successful decryption. In contrast, in the setting of attribute-hiding,
adversaries are allowed to request secret keys enabling successful decryption and
extending the technique of [19] into this context appears to be non-trivial. We
resolve this by developing a three-slot variant of their framework, integrating the
pre-image sampleability of the inner product functionality [26,10], and carefully
exploiting the structures of the underlying building blocks, namely AKGS and
slotted IPFE.

Paper Organization: We discuss detailed technical overview of our results in
Section 2. The preliminaries, definitions and tools are provided in Section 3. We
present our 1-key 1-ciphertext secure 1-slot FE and unbounded-key secure 1-slot
FE for attribute-weighted sums in Sections 4 and 5 respectively. The details of
security reductions are given in the full version. Next, in Section 6, we provide
an extended version of our 1-slot FE scheme, on which we apply the bootstrap-
ping transformation from [3] leading to our unbounded-slot scheme. The formal
security analysis of the scheme is deferred to the full version as well. Further,

3 In this paper, by attribute-hiding, we mean the so-called “strong” attribute-hiding,
as stipulated by the security definitions of FE, meaning that private attributes must
remain hidden even to decryptors who are able to perform a successful decryption.
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Table 1: Current State of the Art in Attribute-Hiding FE

Scheme Functionality
Number of

Slots
IND Security SIM Security |CT| Assumption

KSW08 [15]

φy∈Znp : Zn
p →

{0, 1}, φy(z) =

(z>y
?
= 0)

1 (−, poly, poly)-AD × O(|z|)
2

non-standard
assumptions

OT12 [22]

φy∈Znp : Zn
p →

{0, 1}, φy(z) =

(z>y
?
= 0)

1
(poly, poly, poly)-

AD
× O(|z|) DLIN

ABDCP15 [1]
φy∈Znp : Zn

p →
Zp, φy(z) = z>y

1 (−, poly, poly)-Sel × O(|z|) DDH, LWE

ALS16, ALMT20
[7,6]

φy∈Znp : Zn
p →

Zp, φy(z) = z>y
1

(poly, poly, poly)-
AD

(poly, bdd, poly)-
Sel

O(|z|) DDH, DCR,
LWE

Agr17 [4]

φ
f∈GC(n,n′) :

Zn
p × Zn′

p →
{0, 1}, φf (x,z) =

(f(x)>z
?
= 0)

1
(−, poly, bdd)-S-

AD
(−, 1, bdd)-S-AD O(|x|+ |z|) LWE

Wee17 [29]

φ
f∈F(n,n′)

ABP

:

Zn
p × Zn′

p →
{0, 1}, φf (x,z) =

(f(x)>z
?
= 0)

1
(−, poly, poly)-S-

AD
(−, 1, poly)-S-AD O(|x|+ |z|) k-Lin

DOT18 [10]

φ
f∈F(n,n′)

ABP

:

Zn
p × Zn′

p → {0, 1},
φf (x,z) =

(f(x)>z
?
= 0)

1
(poly, poly, poly)-

AD
(poly, bdd, poly)-

AD
O(|x|+ |z|) SXDLIN

ACGU20 [2]

φ(f∈(NC1)(n),y∈Zn′p ) :

Zn
p × Zn′

p →
Zp, φ(f,y)(x,z) =

(f(x)
?
= 0) · z>y

1
(poly, poly, poly)-

AD
× O(|x|+ |z|) SXDH

AGW20 [3]

φ
f∈F(n,n′)

ABP

:

Zn
p × Zn′

p →
Zp, φf (x,z) =

f(x)>z

unbounded (−, poly, poly)-AD
(−, bdd, poly)-S-

AD
O(|z|) k-Lin

Wee20 [30]

φ
f∈F(n,n1n2)

ABP

:

Zn
p × (Zn1

p × Zn2
p )→

Zp, φf (x, (z1,z2)) =
f(x)>(z1 ⊗ z2)

1
(−, poly, poly)-S-

AD
(−, bdd, poly)-S-

AD
O(|z1|+ |z2|)

bilateral k-Lin
and k-Lin

This Work

φ
f∈F(n,n′)

ABP

:

Zn
p × Zn′

p →
Zp, φf (x,z) =

f(x)>z

1
(poly, poly, poly)-

AD
(poly, bdd, poly)-

AD
O(|x|+ |z|) k-Lin

This Work

φ
f∈F(n,n′)

ABP

:

Zn
p × Zn′

p →
Zp, φf (x,z) =

f(x)>z

unbounded
(bdd, poly, poly)-

AD
(bdd, bdd, poly)-

AD
O(|x|+ |z|+B)

bilateral k-Lin
and k-Lin

The notations used in this table have the following meanings:
– GC: General polynomial-size circuits
– ABP: Arithmetic branching programs
– IND: Indistinguishability-based security
– SIM: Simulation-based security
– AD: Adaptive security
– SA: Semi-adaptive security
– Sel: Selective security
– poly: Arbitrary polynomial in the security parameter
– bdd: A-priori bounded by the public parameters
– |x|: Size of x
– B: A bound on the number of pre-ciphertext decryption key queries

In this table, (U, V,W ) signifies that the adversary is allowed to make V number
of ciphertext queries in the relevant security experiment, while U and W number of
decryption key queries in the pre- and post-ciphertext phases respectively.
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the formal definition of bilinear maps, related hardness assumptions, syntax and
security definition of slotted IPFE, and the details of special piecewise security
of AKGS are provided in the full version. For security analysis of our 1-slot ex-
tended FE, we construct a 1-key 1-ciphertext secure 1-slot extended FE scheme
which is also available in the full version. Finally, in the full version, we present
our formal analysis of the bootstrapping transformation from [3].

2 Technical Overview
In this section, we present our main technical ideas. Let G = (G1,G2,GT , g1, g2, e)
be a bilinear group of prime order p and [[a]]i denotes gai for any a ∈ Zp and
i ∈ {1, 2, T}, which notation can also be extended in case of vectors and matri-
ces. At the top most level of strategy, we follow [3] to first design an adaptively
simulation-secure one-slot FE scheme and then apply a compiler to bootstrap
to an unbounded-slot scheme. For the later part, we use the same compiler as
the one presented in [3]. However, [3] only showed that the compiler works in
the context of semi-adaptive security, that is, they show that their compiler can
bootstrap a semi-adaptively secure one-slot FE scheme to a semi-adaptively se-
cure unbounded-slot scheme. In contrast, we analyze the security of the same
transformation in the context of the simulation-based adaptive security frame-
work. We observe that in order to prove the adaptive security for the compiler,
the (bilateral) k-Lin/(bilateral) MDDH assumption is needed whereas for semi-
adaptive security, the plain k-Lin/MDDH was sufficient [3]. Moreover, we are only
able to establish the simulation-based adaptive security for the transformation
for settings where only a bounded number of secret-key queries are allowed prior
to making the ciphertext queries.

The majority of our technical ideas in this paper lies in the design and analysis
of our one-slot scheme which we describe first in this technical overview. Next,
we would briefly explain the modifications to our one-slot scheme leading to
our extended one-slot scheme, followed by explaining our analysis of the one-
slot to unbounded-slot bootstrapping compiler from [3] applied on our one-slot
extended FE scheme.

Recall that the adaptive simulation security of an FE scheme is proven by
showing the indistinguishability between a real game with all the real algorithms
and an ideal game where a simulator simulates all the ciphertexts and secret keys
queried by the adversary. When an adversary makes a pre-ciphertext query for
some function f , the simulator provides the secret key to the adversary. When
the adversary makes a challenge ciphertext query for an attribute vector pair
(x, z), the simulator receives the information of x but not z. Instead it receives
the functional values f(x)>z for all the pre-ciphertext secret keys. Based on
this information, the simulator must simulate the challenge ciphertext. Finally,
when an adversary makes a secret-key query for some function f after making a
ciphertext query, the simulator receives f along with the functional value f(x)>z
for that key and simulates the key based on this information.

2.1 Designing Adaptively Simulation Secure One-slot FE Scheme
Abdalla et al. [3] built their one-slot FE scheme for attribute-weighted sums by
extending the techniques devised by Wee [29] in the context of partially hiding
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predicate encryptions for predicates expressed as ABPs over public attributes
followed by inner product evaluations over private attributes. The proof strategy
of [3,29] is designed to achieve selective type security where during the security
reduction, the challenge ciphertext is made completely random and then the
secret keys are simulated using the functional value and the randomness used in
the challenge ciphertext. In particular, its simulated secret key is divided into
two parts — the first part is computed similar to the original key generation
algorithm and is used for decrypting the honestly computed ciphertext whereas
the second part contains the functional value and is used for decrypting the
simulated ciphertext correctly. However, in the adaptive setting, we must embed
the correct functional values for the functions associated with the pre-ciphertext
secret keys into the challenge ciphertext and therefore the proof technique of
[3,29] does not seem to extend to the adaptive setting. Datta et al. [11] designed
an adaptively simulation secure predicate encryption scheme for the same class of
predicates as [29], but their ciphertexts do not preserve compactness as they had
to impose a read-once restriction on the attributes due to the usual information
theoretic argument required in dual system encryption.

Overcoming the one-use restriction of the dual system proof techniques for
adaptive security, Lin and Luo [19] developed new techniques to obtain adaptive
indistinguishability secure ABE with compact ciphertexts for the class of predi-
cates expressed as ABPs. [19] takes a semi-generic approach to design their ABE
schemes. Their main idea is to replace the core information theoretic step of the
dual system methodology with a computational step and thereby avoid the one-
use restriction. Two main ingredients of [19] are arithmetic key garbling scheme
(AKGS) which is the information theoretic component and function-hiding slotted
inner product functional encryption (IPFE) which is the computational compo-
nent. We try to adopt the techniques of [19] into our setting of simulation-based
security for FE without the one-use restriction. However, a straight-forward adap-
tation of the [19] framework into our setting presents several challenges which
we overcome with new ideas. Before describing those challenges and our ideas,
we first give a high-level overview of the two primitives, namely, AKGS and
function-hiding slotted IPFE.
Arithmetic Key Garbling Schemes: The notion of partial garbling scheme
was proposed in [14] and recently it was further refined by [19] in the context
of arithmetic computations. The refined notion is called arithmetic key garbling
scheme (AKGS) which garbles a function f : Znp → Zn′p along with two secrets
α, β ∈ Zp so that the evaluation with an input x ∈ Znp gives the value αf(x)+β.
Note that the evaluation does not reveal any information about α and β. In
particular, the AKGS has the following algorithms:
• (`1, . . . , `m+1)← Garble(αf(x)+β; r): The garbling algorithm outputs (m+

1) affine label functions L1, . . . , Lm+1, described by their coefficient vectors
`1, . . . , `m+1 over Zp, using the randomness r ∈ Zmp where (m+ 1) denotes
the size of the function f .
• γ ← Eval(f,x, `1, . . . , `m+1): The linear evaluation procedure recovers γ =
αf(x) + β using the input x and the label function values `j = Lj(x) =
`j · (1,x) ∈ Zp.
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AKGS is a partial garbling process as it only hides α, β which is captured by the
usual simulation security given by [14]. The simulator produces simulated labels

(̂̀1, . . . , ̂̀m+1) ← SimGarble(f,x, αf(x) + β) which is the same distribution as
the actual label function values evaluated at input x. Additionally, [19] defines
piecewise security of AKGS that consists of two structural properties, namely
reverse sampleability and marginal randomness. The partial garbling scheme for
ABPs of Ishai and Wee [14] directly implies a piecewise secure AKGS for ABPs.
(See Section 3.3 for further details.)

Function-Hiding Slotted IPFE: A private-key function-hiding inner product
functional encryption (IPFE) scheme based on a bilinear group G = (G1,G2,GT ,
g1, g2, e) generates secret keys IPFE.SK for vectors [[v]]2 ∈ Gn2 and produces ci-
phertexts IPFE.CT for vectors [[u]]1 ∈ Gn1 using the master secret key of the
system. Both the key generation and encryption algorithm perform linear oper-
ations in the exponent of the source groups G2,G1 respectively. The decryption
recovers the inner product [[v · u]]T ∈ GT in the exponent of the target group.
The sizes of the secret keys, IPFE.SK, and ciphertexts, IPFE.CT, in such a system
grow linearly with the sizes of the vectors v and u respectively. Roughly, the
function-hiding security of an IPFE ensures that no information about the vec-
tors v,u is revealed from IPFE.SK and IPFE.CT except the inner product value
v ·u which is trivially extracted using the decryption algorithm. A slotted version
of IPFE introduced in [20,19] is a hybrid between a secret-key function-hiding
IPFE and a public-key IPFE. The index set of the vectors u is divided into two
subsets: public slots Spub and private slot Spriv so that the vector u is written as
u = (upub ‖ upriv). With addition to the usual (secret-key) encryption algorithm,
the slotted IPFE has another encryption algorithm that uses the master public
key of the system to encrypt the public slots of u, i.e. vectors with upriv = 0. The
slotted IPFE preserves the function-hiding security with respect to the private
slots only as anyone can encrypt arbitrary vectors into the public slots.

Challenges with Adapting the Framework of [19] and Our Ideas
We now briefly explain at a high level, the main challenges in adapting the [19]
technique into our setting and our ideas to overcome those challenges.

1. To handle the pre-challenge secret-key queries, [19] formulates new proper-
ties of AKGS such as reverse sampling and marginal randomness. Using such
structural properties of AKGS, their main motivation was to reversely sample
the first garbling label using the challenge attribute so that it can be shifted
into the ciphertext component and make the remaining labels uniformly ran-
dom. This procedure works fine for arguing zero advantage for the adversary
at the end of the hybrid sequence in case of ABE as functions in the queried
secret keys do not vanish on the challenge attribute and hence the challenge
ciphertext can never be decrypted using such secret keys available to the
adversary such that the value αf(x) + β becomes completely random. But,
FE permits the adversary to have secret keys that decrypts the challenge ci-
phertext, that is, we cannot afford to have z[t]ft(x)+βt completely random.
In order to handle this, we carefully integrate the techniques of pre-image
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sampleability [26,11] with the reverse sampling and marginal randomness
properties of AKGS to handle the pre-challenge queries.

2. The security proof of [19] implements a version of the dual system encryp-
tion methodology [28,18,17] via the function-hiding slotted IPFE. Since the
ABE is only payload hiding, the usual dual system encryption technique is
sufficient for achieving adaptive security where only one hidden subspace
is required. More precisely, the secret keys are made of two slots, out of
which the first public slot contains the honestly computed components which
may be used to decrypt any honestly computed ciphertext and the other
hidden slot is used to embed its interaction with the challenge ciphertext.
This dual system encryption technique has been used in several prior works
[28,18,17,24,23,25,11,19]. Here, a single hidden slot is enough to handle the
interaction between all ciphertext and secret-key queries since by the game
restrictions, no secret key queried by the adversary can decrypt the chal-
lenge ciphertext and thus their interactions with the challenge ciphertext
always result in random outputs. For our application, a portion of the at-
tribute must be kept hidden from an adversary in the context of FE, who
is allowed to have polynomially many secret keys that successfully decrypts
the challenge ciphertext. The usual dual system encryption is not sufficient
for our purpose. We need three hidden subspaces for our security reduction.
The first hidden subspace of the challenge ciphertext is kept for handling
the interactions with the post-ciphertext secret keys. The second hidden
subspace is required to place the dummy vector (obtained from pre-image
sampleability) which helps in simulating the interactions between the chal-
lenge ciphertext and the pre-ciphertext secret keys. The last hidden subspace
is used as a temporary way station to switch each pre-ciphertext secret key
from interacting with the original hidden attribute of the challenge cipher-
text to interacting with the dummy attribute sampled using the pre-image
sampleability. We extend the framework of [19] to implement a three-slot
dual system encryption procedure for building our one-slot FE scheme.

Our One-Slot FE: We aim to design our decryption algorithm such that given
a secret key for a weight function ABP f : Znp → Zn′p with coordinate functions
f1, . . . , fn′ : Znp → Zp and an encryption of an attribute vector pair (x, z) ∈ Znp×
Zn′p , the decryption algorithm would first recover the value for each coordinate
z[t]ft(x) masked with a random scalar βt, that is, z[t]ft(x) + βt and then sum
over all these values to obtain the desired functional value (we take the scalars
{βt}t∈[n′] such that

∑
t=[n′] βt = 0 mod p). Thus we want our key generation

algorithm to use AKGS to garble the functions z[t]ft(x) +βt. Note that here, βt
is a constant but z[t] is a variable. While doing this garbling, we also want the
label functions to involve either only the variables x or the variable z[t]. This is
because, in the construction we need to handle x and z[t] separately since x is
public whereas z[t] is private. This is unlike [19] which garbles αf(x) + β where
both α, β are known constants and only x is a variable. To solve this issue, we
garble an extended ABP where we extend the original ABP ft by adding a new



(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 11

sink node and connecting the original sink node of ft to this new sink node with
a directed edge labeled with the variable z[t].

We also make use of a particular instantiation of AKGS given by [14] where we
observe that the first m coefficient vectors `1,t, . . . , `m,t are independent of z[t]
and the last coefficient vector `m+1,t involves only the variable z[t]. In the setup

phase, two pairs of IPFE keys (IPFE.MSK, IPFE.MPK) and ( ̂IPFE.MSK, ̂IPFE.MPK)
for a slotted IPFE are generated for appropriate public and private index sets.
The first instance of IPFE is used to handle the public attributes x, whereas the
second instance for the private attributes z. Let f = (f1, . . . , fn′) : Znp → Zn′p be
a given weight function ABP such that ft : Znp → Zp is the t-th coordinate ABP
of f . To produce a secret-key SKf , we proceed as follows:
– Sample vectors α,βt ← Zkp such that

∑
t∈[n′] βt[ι] = 0 mod p ∀ι ∈ [k]

– Suppose we want to base the security of the proposed scheme under the

MDDHk assumption. Generate k instances of the garblings (`
(ι)
1,t, . . . , `

(ι)
m+1,t)←

Garble(z[t]α[ι]ft(x) + βt[ι]; r
(ι)
t ) for ι ∈ [k] where r

(ι)
t ← Zmp . Using the in-

stantiation of AKGS given by [14], we have that the (m+1)-th label functions

L
(ι)
m+1,t take the form L

(ι)
m+1,t(z[t]) = z[t]α[ι]− r(ι)t [m] with α[ι] a constant.

– Compute the IPFE secret keys
IPFE.SK = IPFE.KeyGen(IPFE.MSK, [[α, 0kn ‖ 0, 0n, 0n′ , 0n′ ]]2)

IPFE.SKj,t = IPFE.KeyGen(IPFE.MSK, [[`
(1)
j,t , . . . , `

(k)
j,t ‖ 0, 0n, 0n′ , 0n′ ]]2) for j ∈ [m]

̂IPFE.SKm+1,t = IPFE.KeyGen( ̂IPFE.MSK, [[r
(1)
t [m], . . . , r

(k)
t [m],α ‖ 0, 0, 0, 0, 0, 0, 0]]2)

– Return SKf = (IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′])
Here, we separate public and private slots by “ ‖ ” and 0 denotes a vector of
all zero elements. Now, to produce a ciphertext CT for some attribute vectors
(x, z), we use the following steps:
– Sample s ← Zkp and use the slotted encryption of IPFE to compute the

ciphertexts
IPFE.CT = IPFE.SlotEnc(IPFE.MSK, [[s, s⊗ x]]1)

̂IPFE.CTt = IPFE.SlotEnc( ̂IPFE.MSK, [[−s, s · z[t]]]1) for all t ∈ [n
′
]

where ⊗ denotes the tensor product.

– return CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′])
Decryption first uses IPFE.Dec to compute

v · u = [[α · s]]T (1)

vj,t · u = [[
∑
ι

s[ι](`
(ι)
j,t · (1,x))]]T = [[`j,t]]T for j ∈ [m], t ∈ [n

′
] (2)

vm+1,t · ht = [[
∑
ι

s[ι](α[ι]z[t]− r(ι)t [m])]]T = [[`m+1,t]]T for t ∈ [n
′
] (3)

and then apply the evaluation procedure of AKGS to get
Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T ) = [[(α · s) · z[t]ft(x) + βt · s]]T . (4)

Finally, multiplying all these evaluated values and utilizing the fact
∑
t∈[n′] βt ·

s = 0, we recover f(x)>z =
∑
t∈[n′] z[t]ft(x).

The Simulator for Our One-Slot FE Scheme: We now describe our sim-
ulator of the adaptive game for our one-slot FE scheme. Note that the private
slots on the right side of “ ‖ ” will be used by the simulator and we program
them during the security analysis. For the q-th secret-key query corresponding
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to a function fq = (fq,1, . . . , fq,n′), the simulator sets public slots of all the vec-
tors vq,vq,j,t for j ∈ {1, . . . ,mq + 1} as in the original key generation algorithm.
Instead of using the linear combination of the label vectors, the simulator uses
freshly sampled garblings to set the private slots. The pre-challenge secret key
SKfq takes the form

IPFE.SKq = IPFE.KeyGen(IPFE.MSK, [[α[ι], 0kn ‖ α̃q, 0n, 0n′ , 0n′ ]]2)

IPFE.SKq,j,t = IPFE.KeyGen(IPFE.MSK, [[`
(1)
q,j,t, . . . , `

(k)
q,j,t ‖ ˜̀q,j,t, 0n′ , 0n′ ]]2) for j ∈ [mq ]

̂IPFE.SKq,mq+1,t = IPFE.KeyGen( ̂IPFE.MSK, [[r
(1)
t [mq ], . . . , r

(k)
t [mq ],α ‖ 0, 0, r̃q,t[mq ], α̃q, 0, 0, 0]]2)

where ( ˜̀q,1,t, . . . , ˜̀q,mq,t) ← Garble(α̃qz[t]fq,t(x) + β̃q,t; r̃q,t), α̃q, β̃q,t ← Zp such

that
∑
t∈[n′] β̃q,t = 0 mod p. We write 0ξ as a vector of length ξ with all zero

elements. To simulate the ciphertext for the challenge attribute x∗, the simulator
uses the set of all functional values V = {(fq, fq(x∗)>z∗) : q ∈ [Qpre]} to compute
a dummy vector d satisfying fq(x

∗)>d = fq(x
∗)>z∗ for all q ∈ [Qpre]. Since the

inner product functionality is pre-image sampleable and both fq,x
∗ are known

to the simulator, a dummy vector d can be efficiently computed via a polynomial
time algorithm given by O’Niell [26]. The simulated ciphertext becomes

IPFE.CT = IPFE.Enc(IPFE.MSK, [[0k, 0kn ‖ 1,x
∗
, 0n′ , 0n′ ]]1)

̂IPFE.CTt = IPFE.Enc( ̂IPFE.MSK, [[0k, 0k ‖ 1, 0,−1,d[t], 0, 0, 0]]1)
The post-challenge secret-key query for the q-th function fq = (fq,1, . . . , fq,n′)

with q > Qpre is answered using the simulator of AKGS. In particular, we choose
βq,t ← Zp satisfying

∑
t∈[n′] βq,t = 0 mod p and compute the simulated labels

as follows:
(̂̀q,1,1, . . . , ̂̀q,mq+1,1)← SimGarble(fq,1,x

∗
, α̃q · fq(x∗)>z∗ + βq,1) (5)

(̂̀q,1,t, . . . , ̂̀q,mq+1,t)← SimGarble(fq,t,x
∗
, βq,t) for 1 < t ≤ n′ (6)

Note that, for post-challenge secret keys the functional value fq(x
∗)>z∗ is known

and hence the simulator can directly embed the value into the secret keys. The
post-challenge secret key SKfq takes the form

IPFE.SKq = IPFE.KeyGen(IPFE.MSK, [[α, 0kn ‖ α̃q, 0n, 0n′ , 0n′ ]]2)

IPFE.SKq,j,t = IPFE.KeyGen(IPFE.MSK, [[`
(1)
j,t , . . . , `

(k)
j,t ‖ `q,j,t, 0n, 0n′ , 0n′ ]]2) for j ∈ [mq ]

̂IPFE.SKq,mq+1,t = IPFE.KeyGen( ̂IPFE.MSK, [[r
(1)
t [mq ], . . . , r

(k)
t [mq ],α ‖ `q,mq+1,t, 0, 0, 0, 0, 0, 0]]2)

Security Analysis of Our One-Slot FE Scheme: To show the adaptive
simulation-based security of our FE scheme, we follow a sequence of hybrid ex-
periments to move from the real game to the ideal game with the simulated
algorithms described above. The security analysis has three steps where in the
first step we apply function-hiding IPFE and MDDH assumption to use freshly
sampled garblings instead of linearly combined coefficient vectors. In the second
step, the dummy vector d is utilized in the challenge ciphertext to handle pre-
challenge secret-key queries. Here, we need to extend the framework of [19] to
implement a three slot encryption technique using function-hiding IPFE. Finally,
in the third step, we use the simulator of AKGS for simulating the post-challenge
secret-key queries.

Step 1

Hybrid H0: This is the real adaptive simulation security game with all the real
algorithms described above.
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Hybrid H1: Indistinguishable from H0 by the slot-mode correctness of the IPFE
where we replace the SlotEnc algorithm with the Enc algorithm of slotted IPFE.

u = (s, s⊗ x∗ ‖ 0 , 0n , 0n′ , 0n′ ),

ht = (−s, s · z∗[t] ‖ 0 , 0 , 0 , 0 , 0 , 0 , 0 ).

Hybrid H2: Indistinguishable from H1 by function-hiding IPFE

vq = ( α, 0kn ‖ αq , 0n, 0n′ , 0n′ )

vq,j,t = ( `
(1)
q,j,t, . . . , `

(k)
q,j,t ‖ `q,j,t , 0n′ , 0n′ ) for j ∈ [mq ]

u = ( 0k , 0kn ‖ 1 , x
∗
, 0n′ , 0n′ )

vq,mq+1,t = ( r
(1)
t [mq ], . . . , r

(k)
t [mq ], α ‖ rq,t[mq ] , αq , 0, 0, 0, 0, 0 )

ht = ( 0k , 0k ‖ −1 , z
∗
[t] , 0, 0, 0, 0, 0 )

where αq = αq · s, `q,j,t =
∑
ι s[ι]`

(ι)
q,j,t and rq,t[mq] =

∑
ι s[ι]r

(ι)
q,t[mq]. Since the

inner product values between the vectors remain the same, the indistinguisha-
bility follows from the function-hiding property of IPFE.
Hybrid H3: Indistinguishable from H2 by MDDH assumption

vq = ( α, 0kn ‖ α̃q , 0n, 0n′ , 0n′ )

vq,j,t = ( `
(1)
j,t , . . . , `

(k)
j,t ‖ ˜̀

q,j,t 0n′ , 0n′ ) for j ∈ [mq ]

vq,mq+1,t = (r
(1)
t [mq ], . . . , r

(k)
t [mq ],α ‖ r̃q,t[mq ] , α̃q , 0, 0, 0, 0, 0)

where α̃q, β̃q,t ← Zp satisfying
∑
t∈[n′] β̃q,t = 0 mod p and ( ˜̀q,1,t, . . . , ˜̀q,mq+1,t)←

Garble(α̃qz[t]fq,t(x)+β̃q,t; r̃q,t). The indistinguishability follows from the MDDH
assumption in the source group G2. This completes the first step of the security
analysis. In the next step, we use the dummy vector d obtained via the pre-image
sampling algorithm [26] and execute our three slot dual system encryption vari-
ant devised by extending the framework of [19].
Step 2

Hybrid H4: Indistinguishable from H3 by function-hiding security of IPFE
vq,mq+1,t = ( · · · ‖ r̃q,t[mq ], α̃q, 0, 0, 0, 0, 0 )

ht = ( · · · ‖ −1, z∗[t], −1 , d[t] , −1 , z∗[t] , 0 )

Hybrid H5,q(q ∈ [Qpre]): Indistinguishable from H5,(q−1) via a sequence of
sub-hybrids {H5,q,1,H5,q,2,H5,q,3}. Hybrid H5,0 coincides with H4.

vq′,mq+1,t = ( · · · ‖ 0, 0, r̃q′,t[mq ] , α̃q′ , 0, 0, 0 ) for q′ ≤ q

vq′,mq+1,t = ( · · · ‖ r̃q′,t[mq ], α̃q′ , 0, 0, 0, 0, 0 ) for q < q′ < Qpre

Hybrid H5,q,1(q ∈ [Qpre]): Indistinguishable from H5,(q−1) by function-hiding
security of IPFE.
vq′,mq+1,t = ( · · · ‖ 0, 0, r̃q′,t[mq ], α̃q′ , 0, 0, 0 ) for q′ < q

vq,mq+1,t = ( · · · ‖ 0 , 0 , 0, 0, r̃q,t[mq ] , α̃q , 0 )

vq′,mq+1,t = ( · · · ‖ r̃q′,t[mq ], α̃q′ , 0, 0, 0, 0, 0 ) for q < q′ < Qpre

Hybrid H5,q,2(q ∈ [Qpre]): Indistinguishable from H5,q,1 by piecewise security
of AKGS and function-hiding security of IPFE.

ht = (· · · ‖ − 1, z
∗
[t],−1,d[t],−1, d[t] , 0)

In order to establish the indistinguishability between H5,q,1 and H5,q,2, we actu-
ally rely on a computational problem, namely the 1-key 1-ciphertext simulation
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security of a secret-key FE scheme for attribute-weighted sums where the single
key query is made before making the challenge ciphertext query. This scheme
is presented in Section 4. The security of (secret-key) one FE scheme follows
from the piecewise security of AKGS and the function-hiding security of IPFE.
This is the core indistinguishability step that have been information theoretic in
all prior applications of the extended dual system encryption methodology for
adaptive attribute-hiding security [22,10]. Built on the techniques of [19], we are
able to make this core indistinguishability step computational and thus remove
the one-use restriction in the context of adaptive attribute-hiding security for
the first time.
Hybrid H5,q,3(q ∈ [Qpre]): Indistinguishable from H5,q,2 by function-hiding
security of IPFE.

vq′,mq+1,t = ( · · · ‖ 0, 0, r̃q′,t[mq ], α̃q′ , 0, 0, 0 ) for q′ < q

vq,mq+1,t = ( · · · ‖ 0, 0, r̃q,t[mq ] , α̃q , 0 , 0 , 0, )

vq′,mq+1,t = ( · · · ‖ r̃q′,t[mq ], α̃q′ , 0, 0, 0, 0, 0, ) for q < q′ < Qpre

ht = ( · · · ‖ −1, z∗[t], −1, d[t], −1, z∗[t] , 0, )

Observe that H5,q,3 coincides with H5,q.
Hybrid H6: Indistinguishable from H5,Qpre by function-hiding security of IPFE

ht = (· · · ‖ − 1, z
∗
[t],−1,d[t], 0 , 0 , 0)

The second step of the security analysis is now over as all the pre-challenge secret
keys decrypt the challenge ciphertext using dummy vector d, instead of using the
private attribute z∗. However, we still require z∗ to be present in the vector ht
for the successful decryption of the challenge ciphertext by post-challenge secret
keys since we have not yet altered the forms of the post-ciphertext secret keys.
The last step of the security analysis is similar to the selective game of [3] where
the simulator of AKGS is employed to remove z∗ from the challenge ciphertext
and functional values are directly plugged into the post-challenge secret keys.
Step 3

Hybrid H7: Indistinguishable from H6 by function-hiding security IPFE.

vq,j,t = (· · · ‖ ˜̀
q,j,t , 0n , 0n′ , 0n′ ) for j ∈ [mq ], q > Qpre

vq,mq+1,t = ( · · · ‖ ˜̀
q,mq+1,t , 0 , 0, 0, 0, 0, 0 ) for q > Qpre

ht = ( · · · ‖ 1 , 0 , −1, d[t], 0, 0, 0 )

Hybrid H8: Indistinguishable from H7 by simulation security of AKGS.

vq,j,t = (· · · ‖ ̂̀
q,j,t , 0n, 0n′ , 0n′ ) for j ∈ [mq ], q > Qpre

vq,mq+1,t = (· · · ‖ ̂̀
q,mq+1,t , 0, 0, 0, 0, 0, 0) for q > Qpre

In hybrid H7, we use the honestly computed value ˜̀q,j,t = L̃q,j,t(x
∗) for j ∈ [mq]

and ˜̀q,mq+1,t = α̃qz
∗[t] − r̃q,t[mq]. After that, in H8, we utilize simulator of

AKGS to simulate α̃q · z∗[t]fq,t(x∗) + β̃q,t using ˜̀q,j,t.
Hybrid H9: Statistically close to H8

vq,j,t = (· · · ‖ ̂̀
q,j,t , 0n, 0n′ , 0n′ ) for j ∈ [mq ], q > Qpre

vq,mq+1,t = (· · · ‖ ̂̀
q,mq+1,t , 0, 0, 0, 0, 0, 0) for q > Qpre



(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 15

Finally, we change the distribution of {β̃q,t} to embed the value α̃q ·fq(x∗)>z∗+

β̃q,1 into ̂̀q,j,1 and the value β̃q,t into ̂̀q,j,1 for 1 < t ≤ n′, as in equations 5 and
6. We observe that hybrid H9 is exactly the same as the simulator of our FE
scheme.
From One-Slot FE to One-Slot extFE: We extend our one-slot FE to an
extended FE (extFE) scheme which is required for applying the compiler of [3] to
bootstrap to the unbounded-slot scheme. In an extFE scheme, as opposed to just
taking a weight function f as input, the key generation procedure additionally
takes a vector y as input. Similarly, the encryption algorithm takes an additional
vector w in addition to a usual public/private vector pair (x, z) such that

SKf,y ← KeyGen(MSK, (f,y)), CT← Enc(MPK, (x, z ‖ w))

The decryption procedure recovers f(x)>z + y>w instead of f(x)>z like
a regular one-slot scheme. The main idea is to use the linearity of the Eval
algorithm of AKGS. We add an extra term ψt = νt · (α · s)y>w to the first
garbling value `1,t so that Equation 4 becomes

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T )

= Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T ) · [[ψt]]T
= [[(α · s) · (ft(x)z[t] + νty

>w) + βt · s]]T
where νt ← Zp for t ∈ [n′] be such that

∑
t∈[n′] νt = 1 mod p. Therefore,

multiplying all the evaluated terms and using the inner product v · u = α · s,
as in our one-slot FE scheme, we get [[f(x)>z + y>w]]T using the fact that∑
t∈[n′] βt · s = 0. The security analysis is similar to our one-slot scheme.

2.2 Bootstrapping from One-Slot FE to Unbounded-Slot FE

Abdalla et al. [3] devised a compiler that upgrades the one-slot FE into an
unbounded-slot FE scheme where the number of slots N can be arbitrarily chosen
at the time of encryption. The transformation also preserves the compactness
of ciphertexts of the underlying one-slot scheme. However, their transformation
actually needs a one-slot extFE scheme as defined above.

The extFE scheme of [3] is built in a bilinear group G = (G1,G2,GT , g1, g2, e)
where ciphertexts are encoded in the group G1 and secret keys in the group
G2. Interestingly, the structure of the extFE scheme of [3] is such that the key
generation procedure can still be run if the vector y is given in the exponent
of G2, that is, [[y]]2. The decryption, given (SKf,y, (f, [[y]]2)), (CT,x), recovers
[[f(x)>z+y>w]]T without leaking any additional information about the vectors
z,w. Now, the unbounded-slot FE (ubdFE) scheme follows a natural masking
procedure over the original one-slot scheme. More specifically, we useN extFE en-
cryptions to obtain ciphertexts {CTi}i∈[N ] where CTi encrypts (xi, zi ‖ wi) with∑
i∈[N ]wi = 0 mod p. The decryption procedure first computes individual sum

[[f(xi)
>zi+y

>wi]]T and then multiply all the sums to learn
∑
i∈[N ] f(xi)

>zi via

solving a discrete logarithm problem (using brute force). Abdalla et al. [3] proved
the semi-adaptive simulation-based security of the scheme assuming MDDH as-
sumption in the source group G2. The main idea was to gradually shift the sum∑
i∈[2,N ] f(xi)

>zi from the last (N − 1) ciphertexts {CTi}i∈[2,N ] to the first
component of the ciphertext CT1.
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We apply the same high level strategy for proving the adaptive simulation
security of the transformation. However, in order to do so, we face two main
obstacles. First, the reduction must incorporate the decryption results of all the
pre-ciphertext secret keys into the challenge ciphertext. Therefore, for all the
pre-ciphertext secret key queries (f,y), the reduction needs to know [[y]]1 in
order to simulate the challenge ciphertext and [[y]]2 to simulate the key. The
reason why y cannot be made available to the reduction in the clear at a high
level, is that the shifting of the sums into the first ciphertext component CT1

from a subsequent ciphertext component, say CTη, once both CT1 and CTη are
in the simulated form is to be done via a computational transition based on some
MDDH-like assumption. In case of [3], there was no pre-ciphertext key queries
and hence the MDDH assumption in G2 was sufficient. However, in our case,
the MDDH assumption only in the source group G2 is not sufficient to shift the
sum

∑
i∈[2,N ] f(xi)

>zi to the first ciphertext component without changing the

adversary’s view. Thus, we consider the bilateral MDDH (bMDDH) assumption
[12,5,30] which allows the vector components to be available in the exponent of
both the source groups G1,G2:

{[[y]]1, [[y]]2, [[y
>wi]]1, [[y

>wi]]2}
c
≈ {[[y]]1, [[y]]2, [[u]]1, [[u]]2}

where u is uniform.

The second and more subtle obstacle arises in handling the pre-ciphertext
secret key queries in the simulated game. The simulator algorithm of [3] uses the
simulator of the underlying one-slot scheme to simulate the ciphertext and se-
cret key components for the first slot while it generates all other ciphertexts and
secret key components normally. Now recall that in the simulated adaptive secu-
rity game, the simulator embed the outputs of all the functions {fq}q∈[Qpre], for
which the pre-ciphertext secret key queries are made, on the challenge message
{(xi, zi)}i∈[N ], that is, the values {

∑
i∈[N ] fq(xi)

>zi}q∈[Qpre] into the challenge
ciphertext. Since the simulator is only generating the ciphertext and secret key
components for the first slot in simulated format, we must embed the functional
values {

∑
i∈[N ] fq(xi)

>zi}q∈[Qpre] into the ciphertext component corresponding
to the first slot. As for the one-slot scheme, we aim to make use of the pre-
image sampling procedure for this embedding. However, this means we need to
solve the system of equations {fq(x1)>d1+y>q d2 =

∑
i∈[N ] fq(xi)

>zi}q∈[Qpre] for

(d1,d2). Clearly, this system of equations may not possess a solution since the
right-hand side contains the sum of the functional values for all the slots while
the left-hand side only involves entries corresponding to the first slot. Further,
even if solution exists information theoretically, finding it out in polynomial time
may not be possible given the fact that the simulator does not receive the vectors
{yq}q∈[Qpre] in the clear, rather in the exponent of group elements.

In order to overcome the above problem, rather than solving the above sys-
tem of equations, we instead solve the system of equations {fq(x∗)>d1 +y>q d2 +

e>q d3 =
∑
i∈[N ] fq(xi)

>zi}q∈[Qpre] for (d1,d2,d3), where eq is the q-th unit vec-
tor. Note that this system of equations can be easily solved by sampling the
vectors d1,d2 randomly and then setting the q-th entry of the vector d3 to be∑
i∈[N ] fq(xi)

>zi − fq(x∗)>d1 − y>q d2 for all q ∈ [Qpre]. However, this strategy
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would necessitate the introduction of Qpre many additional subspaces into the
ciphertext and secret key components for the underlying one-slot extFE scheme
to accommodate for d3. (Those subspaces will contain 0s in the real scheme and
only become active in the security proof). This, in turn, requires setting a bound
on Qpre, that is, the number of pre-ciphertext secret key queries, for both the
underlying extFE scheme and the resulting ubdFE scheme.

Based on the bMDDH assumption and the above pre-image sampling strategy,
we are able to show that the ubdFE scheme provides adaptive simulation-based
security against a bounded number of pre-ciphertext secret key queries and an
arbitrary polynomial number of post-ciphertext secret key queries if the under-
lying extFE scheme is adaptive simulation secure against such many secret key
queries. Please refer to the full version of the paper for a detailed formal exposure
of the modifications and our analysis of the bootstrapping transformation.

3 Preliminaries

Notations. We denote by λ the security parameter that belongs to the set of
natural number N and 1λ denotes its unary representation. We use the notation
s← S to indicate the fact that s is sampled uniformly at random from the finite
set S. For a distribution X , we write x ← X to denote that x is sampled at
random according to distribution X . A function negl : N → R is said to be a
negligible function of λ, if for every c ∈ N there exists a λc ∈ N such that for all
λ > λc, |negl(λ)| < λ−c.

Let Expt be an interactive security experiment played between a challenger
and an adversary, which always outputs a single bit. We assume that ExptCA is
a function of λ and it is parametrized by an adversary A and a cryptographic
protocol C. Let ExptC,0A and ExptC,1A be two such experiment. The experiments are
computationally/statistically indistinguishable if for any PPT/computationally
unbounded adversary A there exists a negligible function negl such that for all
λ ∈ N,

AdvCA(λ) = |Pr[1← ExptC,0A (1λ)]− Pr[1← ExptC,1A (1λ)]| < negl(λ)

We write ExptC,0A
c
≈ ExptC,1A if they are computationally indistinguishable (or

simply indistinguishable). Similarly, ExptC,0A
s
≈ ExptC,1A means statistically indis-

tinguishable and ExptC,0A ≡ ExptC,1A means they are identically distributed.

For n ∈ N, we denote [n] the set {1, 2, . . . , n} and for n,m ∈ N with n < m, we
denote [n,m] be the set {n, n+ 1, . . . ,m}. We use lowercase boldface, e.g., v, to
denote column vectors in Znp and uppercase boldface, e.g., M, to denote matrices
in Zn×mp for p, n,m ∈ N. The i-th component of a vector v ∈ Znp is written as
v[i] and the (i, j)-th element of a matrix M ∈ Zn×mp is denoted by M[i, j]. The

transpose of a matrix M is denoted by M> such that M>[i, j] = M[j, i].To write
a vector of length n with all zero elements, we write 0n or simply 0 when the
length is clear from the context. Let u,v ∈ Znp , then the inner product between

the vectors is denoted as u · v = u>v =
∑
i∈[n] u[i]v[i] ∈ Zp.

Let f : Znp → Zp be an affine function with coefficient vector f = (f [const],
f [coef1], . . . , f [coefn]). Then for any x ∈ Znp , we have f(x) = f [const] +∑
i∈[n] f [coefi]x[i] ∈ Zp.
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3.1 Arithmetic Branching Program
Arithmetic Branching Program (ABP) is a computational model [21] that can be
used to model boolean formula, boolean branching program or arithmetic for-
mula through a linear time reduction with a constant blow-up in their respective
sizes. In this work, we consider ABP over Zp.
Definition 1 (Arithmetic Branching Program) An arithmetic branching
program (ABP) over Znp is a weighted directed acyclic graph (V,E, φ, v0, v1),
where V is the set of all vertices, E is the set of all edges, φ : E → (Znp → Zp)
specifies an affine weight function for each edge, and v0, v1 ∈ V are two distin-
guished vertices (called the source and the sink respectively). The in-degree of
v0 and the out-degree of v1 are 0. It computes a function f : Znp → Zp given by

f(x) =
∑
P∈P

∏
e∈P

φ(e)(x)

where P is the set of all v0-v1 path and e ∈ P denotes an edge in the path
P ∈ P. The size of the ABP is |V |, the number of vertices.

We denote by F (n)
ABP the class of ABPs over Znp :

F (n)
ABP = {f |f is an ABP over Znp for some prime p and positive integer n}

The class of ABP can be extended in a coordinate-wise manner to a ABPs
f : Znp → Zn′p . More precisely, an ABP f : Znp → Zn′p has all its weight functions

φ = (φ1, . . . , φn′) : E → (Znp → Zn′p ) with each coordinate function φt for t ∈ [n′]
of φ being an affine function in x having scalar constants and coefficients. There-
fore, such a function f can be viewed as f = (f1, . . . , fn′) with each coordinate
function ft : Znp → Zp being an ABP that has the same underlying graph struc-
ture as that of f and having φt : E → (Znp → Zp) as the weight functions. The
class of all such functions is given by

F (n,n′)
ABP = {f = (f1, . . . , fn′) : Znp → Z(n′)

p |ft ∈ F (n)
ABP for t ∈ [n′]}

Thus F (n)
ABP can alternatively be viewed as F (n,1)

ABP .

Lemma 1 [13] Let f = (V,E, φ, v0, v1) ∈ F (n,1)
ABP be an ABP of size m and

v0, v2, . . . , vm−1, v1 be stored topologically. Let M be a square matrix of order
(m− 1) defined by

M[i+ 1, j] =


0, i > j;

−1, i = j;

0, i < j, ei,j = (vi, vj) 6∈ E;

φ(ei,j), i < j, ei,j = (vi, vj) ∈ E.
Then the entries of M are affine in x and f(x) = det(M).

3.2 Functional Encryption for Attribute-Weighted Sum

We formally present the syntax of FE for attribute-weighted sum and define
adaptive simulation security of the primitive. We consider the function class

F (n,n′)
ABP and message space M = (Znp × Zn′p )∗.

Definition 2 (The Attribute-Weighted Sum Functionality) For any n, n′ ∈
N, the class of attribute-weighted sum functionalities is defined as(x ∈ Znp , z ∈ Zn

′
p ) 7→ f(x)

>
z =

∑
t∈[n′]

ft(x)z[t] | f = (f1, . . . , fn′ ) ∈ F
(n,n′)
ABP


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Definition 3 (Functional Encryption for Attribute-Weighted Sum) An
unbounded-slot FE for attribute-weighted sum associated to the function class

F (n,n′)
ABP and the message space M consists of four PPT algorithms defined as

follows:

Setup(1λ, 1n, 1n
′
): The setup algorithm takes as input a security parameter λ

along with two positive integers n, n′ representing the lengths of message vectors.
It outputs the master secret-key MSK and the master public-key MPK.

KeyGen(MSK, f): The key generation algorithm takes as input MSK and a

function f ∈ F (n,n′)
ABP . It outputs a secret-key SKf and make f available publicly.

Enc(MPK, (xi, zi)i∈[N ]): The encryption algorithm takes as input MPK and

a message (xi, zi)i∈[N ] ∈ (Znp × Zn′p )∗. It outputs a ciphertext CT and make
(xi)i∈[N ] available publicly.

Dec((SKf , f), (CT, (xi)i∈[N ])): The decryption algorithm takes as input SKf
and CT along with f and (xi)i∈[N ]. It outputs a value in Zp.
Correctness: The unbounded-slot FE for attribute-weighted sum is said to be

correct if for all (xi, zi)i∈[N ] ∈ (Znp × Zn′p )∗ and f ∈ F (n,n′)
ABP , we get

Pr

Dec((SKf , f), (CT, (xi)i∈[N])) =
∑
i∈[N]

f(xi)
>
zi :

(MSK,MPK)← Setup(1λ, 1n, 1n
′
),

SKf ← KeyGen(MSK, f),
CT← Enc(MPK, (xi, zi)i∈[N])

 = 1

We consider adaptively simulation-based security of FE for attribute-weighted
sum.

Definition 4 Let (Setup, KeyGen, Enc, Dec) be an unbounded-slot FE for attribute-

weighted sum for function class F (n,n′)
ABP and message space M. The scheme is

said to be adaptively simulation secure if ExptReal,ubdFEA (1λ)
c
≈ ExptIdeal,ubdFEA (1λ),

where the experiments are defined as follows:

ExptReal,ubdFEA (1λ)

1. 1N ← A(1λ);

2. (MSK,MPK)← Setup(1λ, 1n, 1n
′
);

3. ((x∗i , z
∗
i )i∈[N])← A

OKeyGen(MSK,·) (MPK);
4. CT∗ ← Enc(MPK, (x∗i , z

∗
i )i∈[N]);

5. return AOKeyGen(MSK,·) (MPK,CT∗)

ExptIdeal,ubdFEA (1λ)

1. 1N ← A(1λ);

2. (MSK∗,MPK)← Setup∗(1λ, 1n, 1n
′
, 1N );

3. ((x∗i , z
∗
i )i∈[N])← A

OKeyGen∗0(MSK∗,·) (MPK)
4. CT∗ ← Enc∗(MPK,MSK∗, (x∗i )i∈[N],V);

5. return A
OKeyGen∗1(MSK∗,(x∗

i
)i∈[N],·,·) (MPK,CT∗)

OKeyGen(MSK,·)

1. input: f
2. output: SKf

OKeyGen∗0(MSK∗,·)

1. input: fq for q ∈ [Qpre]
2. output: SK∗fq

Enc∗(MPK,MSK∗, (x∗i )i∈[N], ·)
1. input:
V = {((fq, SKfq ),

∑
i∈[N] fq(x

∗
i )
>z∗i ) :

q ∈ [Qpre]}
2. output: CT∗

OKeyGen∗1(MSK∗,(x∗
i
)i∈[N],·,·)

1. input: fq,
∑
i∈[N] fq(x

∗
i )
>z∗i for q >

Qpre

2. output: SK∗fq
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3.3 Arithmetic Key Garbling Scheme

Lin and Luo [19] introduced arithmetic key garbling scheme (AKGS). The notion
of AKGS is an information theoretic primitive, inspired by randomized encodings
[8] and partial garbling schemes [14]. It garbles a function f : Znp → Zp (possibly
of size (m + 1)) along with two secrets z, β ∈ Zp and produces affine label
functions L1, . . . , Lm+1 : Znp → Zp. Given f , an input x ∈ Znp and the values
L1(x), . . . , Lm+1(x), there is an efficient algorithm which computes zf(x) + β
without revealing any information about z and β.
Definition 5 (Arithmetic Key Garbling Scheme (AKGS), [14,19]) An
arithmetic garbling scheme (AKGS) for a function class F = {f}, where f :
Znp → Zp, consists of two efficient algorithms:

Garble(zf(x)+β): The garbling is a randomized algorithm that takes as input
a description of the function zf(x) + β with f ∈ F and scalars z, β ∈ Zp where
z,x are treated as variables. It outputs (m+ 1) affine functions L1, . . . , Lm+1 :
Zn+1
p → Zp which are called label functions that specifies how input is encoded

as labels. Pragmatically, it outputs the coefficient vectors `1, . . . , `m+1.

Eval(f, x, `1, . . . , `m+1): The evaluation is a deterministic algorithm that takes
as input a function f ∈ F , an input vector x ∈ Znp and integers `1, . . . , `m+1 ∈ Zp
which are supposed to be the values of the label functions at (x, z). It outputs
a value in Zp.
Correctness: The AKGS is said to be correct if for all f : Znp → Zp ∈ F , z, β ∈
Zp and x ∈ Znp , we have

Pr

Eval(f,x, `1, . . . , `m+1) = zf(x) + β :
(`1, . . . , `m+1)← Garble(zf(x) + β),
`j ← Lj(x, z) for j ∈ [m+ 1]

 = 1

The scheme has deterministic shape, meaning that m is determined solely by f ,
independent of z, β and the randomness in Garble. The number of label functions,
(m+ 1), is called the garbling size of f under this scheme.

Linearity: The AKGS is said to be linear if the following conditions hold:
– Garble(zf(x) + β) uses a uniformly random vector r ← Zm′p as its random-

ness, where m′ is determined solely by f , independent of z, β.
– The coefficient vectors `1, . . . , `m+1 produced by Garble(zf(x)+β) are linear

in (z, β, r).
– Eval(f,x, `1, . . . , `m+1) is linear in `1, . . . , `m+1.

Simulation-Based Security: In this work, we consider linear AKGS for our
application. Now, we state the usual simulation-based security of AKGS, which
is similar to the security of partial garbling scheme [14].

An AKGS = (Garble, Eval) for a function class F is secure if there exists
an efficient algorithm SimGarble such that for all f : Znp → Zp, z, β ∈ Zp and
x ∈ Znp , the following distributions are identically distributed:{

(`1, . . . , `m+1) :
(`1, . . . , `m+1)← Garble(zf(x) + β),
`j ← Lj(x, z) for j ∈ [m+ 1]

}
,

{
(̂̀1, . . . , ̂̀m+1) : (̂̀1, . . . , ̂̀m+1)← SimGarble(f,x, zf(x) + β)

}
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The simulation security of AKGS is used to obtain semi-adaptive or selective
security of FE for attribute-weighted sum [3], however it is not sufficient for
achieving adaptive security. We consider the piecewise security of AKGS proposed
by Lin and Luo [19] where they used it to get adaptive security for ABE.

Instantiation of AKGS: ([14,19]). We now discuss an instantiation of AKGS

= (Garble, Eval) for the function class F = F (n,1)
ABP following [14,19].

Garble(zf(x)+β): It takes input an ABP f : Znp → Zp ∈ F (n,1)
ABP of size (m+1)

and two secrets z, β ∈ Zp. The algorithm works as follows:

1. Using Lemma 1, it computes a matrix M ∈ Zm×mp such that det(M) is the
output of the function f .

2. Next, it augments M into an (m+ 1)× (m+ 1) matrix M′:

M′ =



∗ ∗ · · · ∗ ∗ β

−1 ∗ · · · ∗ ∗ 0

−1 · · · ∗ ∗ 0

. . .
.
.
.

.

.

.
.
.
.

0 −1 ∗ 0

0 0 · · · 0 −1 z


=

 M m1

m>2 z



3. It samples its randomness r ← Zmp and sets N =

(
Im r
0 1

)
.

4. Finally, it defines the label functions by computing

M̂ = M′N =

 M Mr +m1

m>2 m>2 r + z

 =



L1(x)

L2(x)

M
.
.
.

Lm(x)

0 0 · · · 0 −1 Lm+1(z)


and outputs the coefficient vectors `1, . . . , `m+1 of L1, . . . , Lm+1.

Remark 1 We note down some structural properties of Garble as follows:

– The label function Lj for every j ∈ [m] is an affine function of the input x
and Lm+1 is an affine function of z. It follows from the fact that M′ is affine
in x, z and N is independent of x, z. Hence, the last column of the product
M′N, which is the label functions L1, . . . , Lm+1, are affine in x, z.

– The output size of Garble is determined solely by the size of f (as an ABP),
hence Garble has deterministic shape.

– Note that Garble is linear in (z, β, r), i.e., the coefficient vectors `1, . . . , `m+1

are linear in (z, β, r). It follows from the fact that M,m2 are independent of
(z, β, r), and r,m1, z are linear in (z, β, r). Hence, Mr+m1, which defines
the label functions L1, . . . , Lm, and m>2 r + z, which is the label function
Lm+1, are linear in (z, β, r).

– The last label function Lm+1 is in a special form, meaning that it is indepen-
dent of x, β and r[j < m]. In particular, it takes the form Lm = m>2 r+ z =
z−r[m]. Thus, the elements of the coefficient vector `m+1 are all zero except
the constant term, i.e., `m[const] = z−r[m] and `m[coefi] = 0 for all i ∈ [n].
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Eval(f, x, `1, . . . , `m): It takes input an ABP f : Znp → Zp ∈ F (n,1)
ABP of size

(m+ 1), an input x ∈ Znp and (m+ 1) labels `1, . . . , `m+1. It proceeds as follows:
1. It computes the matrix M using Lemma 1 after substituting x.
2. Next, it augments M to get the matrix

M̂ =



`1

`2

M
.
.
.

`m

0 0 · · · 0 −1 `m+1


3. It returns det(M̂).

For correctness of the evaluation procedure, we see that when `j = Lj(x) for all
j ∈ [m] and `m+1 = Lm+1(z), Eval computes

det(M̂) = det(M′N) = det(M′)det(N) = det(M′) = zdet(M) + β = zf(x) + β.
The determinant of M′ is calculated via Laplace expansion in the last column.

Remark 2 Here, we observe some structural properties of Eval which we require
for our application.

– If we consider the Laplace expansion of det(M̂) in the last column then Eval
can be written as

Eval(f,x, `1, . . . , `m+1) = A1`1 + A2`2 + · · ·+ Am+1`m+1 (7)

where Aj is the (j, (m+1))-cofactor of M̂. This shows that Eval is linear in
`1, . . . , `m+1. Due to this linearity feature, Eval can be computed in the expo-
nent of any bilinear group. More precisely, suppose G = (G1,G2,GT , g1, g2, e)
be a bilinear group then for any i ∈ {1, 2, T}, we have Eval(f,x, [[`1]]i, . . . ,
[[`m+1]]i) = [[Eval(f,x, `1, . . . , `m+1)]]i.

– Now, in particular, the coefficient of `1 is A1 = (−1)2+m(−1)m = 1. There-
fore, for any non-zero δ ∈ Zp, we can write

δ + Eval(f,x, `1, . . . , `m+1) = Eval(f,x, δ, 0, . . . , 0) + Eval(f,x, `1, . . . , `m+1) (8)

= Eval(f,x, `1 + δ, `2, . . . , `m+1) (9)

where equation 8 holds due to equation 7 and A1 = 1; and equation 9 holds
by the linearity of Eval. We will utilize equation 9 in our extended one slot
FE construction.

Now, we describe the simulator of AKGS which simulates the values of label
functions by using f,x and zf(x) + β.

SimGarble(f, x, zf(x) + β): The simulator works as follows:

1. It defines a set H =

{(
Im r
0 1

) ∣∣∣∣∣r ∈ Zmp

}
which forms a matrix subgroup.

2. Following Lemma 1, it computes the matrix M using f,x and sets the matrix

M′′ =



zf(x) + β

0

M
.
.
.

0

0 0 · · · 0 −1 0


which defines a left coset M′′H = {M′′N|N ∈ H}.
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3. It uniformly samples a random matrix from the coset M′′H and returns the
last column of the matrix as simulated values of the label functions.
The simulation security follows from [14]. They observed that M′′ belongs to

the coset M′H and hence by the property of cosets M′′H = M′H which proves
the security. We omit the details here and state the security of AKGS in the
following lemma.
Lemma 2 ([19]) The above construction of AKGS = (Garble, Eval) is secure.
Moreover, it is special piecewise secure.

4 Our 1-Key 1-Ciphertext Secure 1-Slot FE

In this section, we describe our 1-slot FE scheme for the attribute-weighted sum
functionality secure against a single ciphertext and secret key queries. We de-
scribe the construction for any fixed value of the security parameter λ and sup-
press the appearance of λ for simplicity of notations. Let (Garble,Eval) be a spe-

cial piecewise secure AKGS for a function class F (n,n′)
ABP , G = (G1,G2,GT , g1, g2,

e) a tuple of pairing groups of prime order p, and (SK-IPFE.Setup.SK-IPFE.KeyGen,
SK-IPFE.Enc,SK-IPFE.Dec) a secret-key function-hiding SK-IPFE based on G.

Setup(1n, 1n
′
): Define the index sets as follows

S1-FE =
{
const, {coefi}i∈[n], {simτ , sim

∗
τ}τ∈[n′]

}
, Ŝ1-FE = {ĉonst, ĉoef, ŝim∗}

It generates IPFE.MSK← SK-IPFE.Setup(S1-FE) and ̂IPFE.MSK← SK-IPFE.Setup

(Ŝ1-FE). Finally, it returns MSK = (IPFE.MSK, ̂IPFE.MSK).

KeyGen(MSK, f): Let f ∈ F (n,n′)
ABP be a function such that f = (f1, . . . , fn′) :

Znp × Zn′p → Zp where f1, . . . , fn′ : Znp → Zp are ABPs of size (m + 1). Sample
βt ← Zp for t ∈ [n′] such that

∑
t∈[n′] βt = 0 mod p. Next, sample independent

random vectors rt ← Zmp for garbling and compute the coefficient vectors
(`1,t, . . . , `m,t, `m+1,t)← Garble(z[t]ft(x) + βt; rt)

for all t ∈ [n′]. Here we make use of the instantiation of the AKGS described
in Section 3.3. From the description of that AKGS instantiation, we note that
the (m+ 1)-th label function `m+1,t would be of the form `m+1,t = z[t]− rt[m].
Also all the label functions `1,t, . . . , `m,t involve only the variables x and not
the variable z[t]. Next, for all j ∈ [m] and t ∈ [n′], it defines the vectors vj,t
corresponding to the label functions `j,t obtained from the partial garbling:

vector const coefi simτ sim∗τ

vj,t `j,t[const] `j,t[coefi] 0 0

vector ĉonst ĉoef ŝim∗

vm+1,t rt[m] 1 0

It generates the secret-keys as

IPFE.SKj,t ← SK-IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← SK-IPFE.KeyGen( ̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

It returns the secret-key as SKf = ({IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]).
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Enc(MSK, x ∈ Znp , z ∈ Zn′

p ): It sets the vectors

vector const coefi simτ sim∗τ

u 1 x[i] 0 0

vector ĉonst ĉoef ŝim∗

ht −1 z[t] 0

for all t ∈ [n′]. It encrypts the vectors as
IPFE.CT← SK-IPFE.Enc(IPFE.MSK, [[u]]1)

̂IPFE.CTt ← SK-IPFE.Enc( ̂IPFE.MSK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).
Dec((SKf , f), (CT, x)): It parses the secret-key SKf = ({IPFE.SKj,t}j∈[m],t∈[n′],

{ ̂IPFE.SKm+1,t}t∈[n′]) and the ciphertext CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]). It
uses the decryption algorithm of SK-IPFE to compute

[[`j,t]]T = SK-IPFE.Dec(IPFE.SKj,t, IPFE.CT) for j ∈ [m], t ∈ [n′]

[[`m+1,t]]T = SK-IPFE.Dec( ̂IPFE.SKm+1,t, ̂IPFE.CTt) for t ∈ [n′]

Next, it utilizes the evaluation procedure of AKGS and obtain a combined value
[[ρ]]T =

∏
t∈[n′] Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T ).

Finally, it returns a value ρ by solving a discrete logarithm problem. Similar
to [3], we assume that the desired attribute-weighted sum lies within a specified
polynomial-sized domain so that discrete logarithm can be solved via brute force.

Correctness: By the correctness of IPFE, we have SK-IPFE.Dec(IPFE.SKj,t,
IPFE.CT) = [[`j,t]]T = [[Lj,t(x)]]T for all j ∈ [m], t ∈ [n′] and SK-IPFE.Dec

( ̂IPFE.SKm+1,t, ̂IPFE.CTt) = [[`m+1,t]]T = [[z[t] − rt[m]]]T for all t ∈ [n′]. Next,
using the correctness of AKGS and the linearity of the Eval function, we have

Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T ) = [[ft(x)z[t] + βt]]T
Therefore, we get by multiplying

[[ρ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T )

= [[

n′∑
t=1

Eval(ft,x, `1,t, . . . , `m+1,t)]]T = [[

n′∑
t=1

ft(x)z[t] + βt]]T = [[f(x)>z]]T

where the last equality holds since
∑
t∈[n′] βt = 0 mod p.

Theorem 2 The 1-FE scheme for attribute-weighted sum is adaptively simula-
tion secure against a single ciphertext and secret key queries assuming the AKGS
is piecewise secure and the IPFE is function hiding.

5 Our 1-Slot FE for Attribute-Weighted Sums

In this section, we describe our 1-slot FE scheme Πone for the attribute-weighted
sum functionality. We describe the construction for any fixed value of the secu-
rity parameter λ and suppress the appearance of λ for simplicity of notations.

Let (Garble,Eval) be a special piece-wise secure AKGS for a function class F (n,n′)
ABP ,
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G = (G1,G2,GT , g1, g2, e) a tuple of pairing groups of prime order p such that the
MDDHk assumption holds in G2, and (IPFE.Setup.IPFE.KeyGen, IPFE.Enc, IPFE.Dec)
a slotted IPFE based on G. We construct an FE scheme for attribute-weighted
sums with the message space M = Znp × Zn′p .

Setup(1n, 1n
′
): Define the following index sets as follows

Spub =
{
{const(ι)}ι∈[k], {coef

(ι)
i }ι∈[k],i∈[n]

}
, Ŝpub =

{
ĉonst

(ι)
, ĉoef

(ι)}
ι∈[k]

Spriv =
{
const, {coefi}i∈[n], {simτ , sim

∗
τ}τ∈[n′]

}
,

Ŝpriv = {ĉonst1, ĉoef1, ĉonst2, ĉoef2, ĉonst, ĉoef, ŝim
∗
}.

It generates (IPFE.MSK, IPFE.MPK) ← IPFE.Setup(Spub, Spriv) and ( ̂IPFE.MSK,
̂IPFE.MPK) ← IPFE.Setup(Ŝpub, Ŝpriv). Finally, it returns MSK = (IPFE.MSK,
̂IPFE.MSK) and MPK = (IPFE.MPK, ̂IPFE.MPK).

KeyGen(MSK, f): Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP . Sample α,βt ← Zkp for

t ∈ [n′] such that ∑
t∈[n′] βt[ι] = 0 mod p for all ι ∈ [k]

Next, sample independent random vectors r
(ι)
t ← Zmp and computes

(`
(ι)
1,t, . . . , `

(ι)
m,t, `

(ι)
m+1,t)← Garble(α[ι]z[t]ft(x) + βt[ι]; r

(ι)
t )

for all ι ∈ [k], t ∈ [n′]. Here we make use of the instantiation of the AKGS

described in Section 3.3. From the description of that AKGS instantiation, we

note that the (m + 1)-th label function `
(ι)
m+1,t would be of the form `

(ι)
m+1,t =

α[ι]z[t]−r(ι)t [m] whereα[ι] is a constant. Also all the label functions `
(ι)
1,t, . . . , `

(ι)
m,t

involve only the variables x and not the variable z[t]. Next, for all j ∈ [m] and

t ∈ [n′], it defines the vectors vj,t corresponding to the label functions `
(ι)
j,t

obtained from the partial garbling above as

vector const(ι) coef
(ι)
i Spriv

v α[ι] 0 0

vj,t `
(ι)
j,t [const] `

(ι)
j,t [coefi] 0

vector ĉonst
(ι)

ĉoef
(ι)

Ŝpriv

vm+1,t r
(ι)
t [m] α[ι] 0

It generates the secret-keys as
IPFE.SK← IPFE.KeyGen(IPFE.MSK, [[v]]2)

IPFE.SKj,t ← IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← IPFE.KeyGen( ̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

It returns SKf = (IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]).
Enc(MPK, x ∈ Znp , z ∈ Zn′

p ): It samples s← Zkp and set the vectors

vector const(ι) coef
(ι)
i

u s[ι] s[ι]x[i]
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vector ĉonst
(ι)

ĉoef
(ι)

ht −s[ι] s[ι]z[t]

for all t ∈ [n′]. It encrypts the vectors as
IPFE.CT← IPFE.SlotEnc(IPFE.MPK, [[u]]1)

̂IPFE.CTt ← IPFE.SlotEnc( ̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).
Dec((SKf , f), (CT, x)): It parses SKf = (IPFE.MSK, {IPFE.MSKj,t}j∈[m],t∈[n′],

{ ̂IPFE.MSKm+1,t}t∈[n′]) and CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]). It uses the de-
cryption algorithm of IPFE to compute

[[µ]]T = IPFE.Dec(IPFE.SK, IPFE.CT)

[[`j,t]]T = IPFE.Dec(IPFE.SKj,t, IPFE.CT) for j ∈ [m], t ∈ [n′]

[[`m+1,t]]T = IPFE.Dec( ̂IPFE.SKm+1,t, ̂IPFE.CTt) for t ∈ [n′]

Next, it utilizes the evaluation procedure of AKGS and obtain a combined value
[[ρ]]T =

∏
t∈[n′] Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T ).

Finally, it returns a value ζ from a polynomially bounded set P such that [[ρ]]T =
[[µ]]T · [[ζ]]T ; otherwise ⊥.

Correctness: By the correctness of IPFE, AKGS and the linearity of the Eval
function we have

Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T ) = [[

k∑
ι=1

α[ι]s[ι] · ft(x)z[t] + βt[ι]s[ι]]]T

= [[α · s · ft(x)z[t] + βt · s]]T
Therefore, [[ρ]]T = [[

∑n′

t=1α · s · ft(x)z[t] + βt · s]]T = [[α · sf(x)>z]]T since∑
t∈[n′] βt[ι] = 0 mod p for all ι ∈ [k]. Also, by the correctness of IPFE we see

that [[µ]]T = [[α · s]]T and hence [[ζ]]T = [[f(x)>z]]T ∈ P.

Remark 3 (Multi-Ciphertext Scheme) The 1-slot FE schemeΠone described
above is secure against adversaries that are restricted to query a single cipher-
text. However, we can easily modify the FE scheme to another FE scheme that
is secure for any a-priori bounded number of ciphertext queries from the ad-
versary’s end. For the extension, we introduce additional (2n′ + 2)qCT private
slots on each ciphertext and decryption key sides, where qCT denotes the num-
ber of ciphertext queries. More specifically, we add 2n′qCT and 2qCT dimensional
hidden slots to Spriv and Ŝpriv respectively to handle the qCT ciphertext queries
during the security reduction. Consequently, the sizes of the master public key,
secret-keys, and ciphertext would grow linearly with qCT. A similar strategy can
be followed to convert our extended 1-slot FE scheme (of Section 6) that only
supports a single ciphertext query to one that is secure for any a-priori bounded
number of ciphertext queries.

Theorem 3 The 1-slot FE scheme Πone for attribute-weighted sums is adap-
tively simulation-secure assuming the AKGS is piece-wise secure, the MDDHk
assumption holds in group G2, and the slotted IPFE is function hiding.
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6 Our 1-Slot Extended FE for Attribute-Weighted Sums

In this section, we describe our 1-slot extFE scheme ΠextOne for the attribute-
weighted sum functionality. We describe the construction for any fixed value of
the security parameter λ and suppress the appearance of λ for simplicity of no-
tations. Let (Garble,Eval) be a special piecewise secure AKGS for a function class

F (n,n′)
ABP , G = (G1,G2,GT , g1, g2, e) a tuple of pairing groups of prime order p such

that MDDHk assumption holds in G2, and (IPFE.Setup.IPFE.KeyGen, IPFE.Enc,
IPFE.Dec) a slotted IPFE based on G. We construct an FE scheme for attribute-
weighted sums with the message space M = Znp × Zn′p .

Setup(1λ, 1n, 1n
′
, 1B): Defines the following index sets as follows

Spub =
{
{const(ι)}ι∈[k], {coef

(ι)
i }ι∈[k],i∈[n], {extnd(ι)κ }ι,κ∈[k]

}
, Ŝpub = {ĉonst(ι), ĉoef(ι)}ι∈[k],

Spriv =
{
const, {coefi}i∈[n], {extndκ,1, extndκ,2, extndκ}κ∈[k], {queryη}η∈[B], {simτ , sim∗τ}τ∈[n′]

}
,

Ŝpriv = {ĉonst1, ĉoef1, ĉonst2, ĉoef2, ĉonst, ĉoef, ŝim
∗}

where B denotes a bound on the number of pre-ciphertext queries. It generates
two pair of IPFE keys (IPFE.MSK, IPFE.MPK) ← IPFE.Setup(Spub, Spriv) and

( ̂IPFE.MSK, ̂IPFE.MPK)← IPFE.Setup(Ŝpub, Ŝpriv). Finally, it returns the master

secret-key of the system as MSK = (IPFE.MSK, ̂IPFE.MSK) and master public-

key as MPK = (IPFE.MPK, ̂IPFE.MPK).

KeyGen(MSK, (f, y)): Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP and y ∈ Zkp. It samples

integers νt ← Zp and vectors α,βt ← Zkp for t ∈ [n′] such that∑
t∈[n′] νt = 1 and

∑
t∈[n′] βt[ι] = 0 mod p for all ι ∈ [k]

Next, sample independent random vectors r
(ι)
t ← Zmp and computes

(`
(ι)
1,t, . . . , `

(ι)
m,t, `

(ι)
m+1,t)← Garble(α[ι]z[t]ft(x) + βt[ι]; r

(ι)
t )

for all ι ∈ [k], t ∈ [n′]. Here, we make use of the instantiation of the AKGS
described in Section 3.3. From the description of that AKGS instantiation, we

note that the (m + 1)-th label function `
(ι)
m+1,t would be of the form `

(ι)
m+1,t =

α[ι]z[t]−r(ι)t [m] whereα[ι] is a constant. Also all the label functions `
(ι)
1,t, . . . , `

(ι)
m,t

involve only the variables x and not the variable z[t]. Next, for all j ∈ [2,m]
and t ∈ [n′], it defines the vectors vj,t corresponding to the label functions `j,t
obtained from the partial garbling above and the vector y as

vector const(ι) coef
(ι)
i extnd(ι)κ Spriv

v α[ι] 0 0 0

v1,t `
(ι)
1,t[const] `

(ι)
1,t[coefi] α[ι]y[κ]νt 0

vj,t `
(ι)
j,t [const] `

(ι)
j,t [coefi] 0 0

vector ĉonst
(ι)

ĉoef
(ι)

Ŝpriv

vm+1,t r
(ι)
t [m] α[ι] 0

It generates the secret-keys as
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IPFE.SK← IPFE.KeyGen(IPFE.MSK, [[v]]2)

IPFE.SKj,t ← IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← IPFE.KeyGen( ̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

Finally, it returns the secret-key as SKf,y = (IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′],

{ ̂IPFE.SKm+1,t}t∈[n′]) and (f,y).

Remark 4 We note that the vector y is only used to set v1,t[extnd
(ι)
κ ] and the

IPFE.KeyGen only requires [[v1,t]]2 ∈ Gk2 to compute the secret-key IPFE.SK1,t.
Therefore, the key generation process can compute the same secret-key SKf,y
if (f, [[y]]2) is supplied as input instead of (f,y) and we express this by writ-
ing KeyGen(MSK, (f, [[y]]2)) = KeyGen(MSK, (f,y)). This fact is crucially while
describing our unbounded-slot FE in the full version.

Enc(MPK, (x, z||w) ∈ Znp × Zn′+k
p ): It samples a random vector s← Zkp and

sets the vectors

vector const(ι) coef
(ι)
i extnd(ι)κ

u s[ι] s[ι]x[i] s[ι]w[κ]

vector ĉonst
(ι)

ĉoef
(ι)

ht −s[ι] s[ι]z[t]

for all t ∈ [n′]. It encrypts the vectors as

IPFE.CT← IPFE.SlotEnc(IPFE.MPK, [[u]]1)

̂IPFE.CTt ← IPFE.SlotEnc( ̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]) and x.

Dec((SKf,y, f), (CT, x)): It parses the secret-key and ciphertext as SKf =

(IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]) and CTx,z = (IPFE.CT,

{ ̂IPFE.CTt}t∈[n′]). It uses the decryption algorithm of IPFE to compute

[[ρ]]T ← IPFE.Dec(IPFE.SK, IPFE.CT)

[[`1,t + ψt]]T ← IPFE.Dec(IPFE.SK1,t, IPFE.CT)

[[`j,t]]T ← IPFE.Dec(IPFE.SKj,t, IPFE.CT) for j ∈ [2,m], t ∈ [n′]

[[`m+1,t]]T ← IPFE.Dec( ̂IPFE.SKm+1,t, ̂IPFE.CTt) for t ∈ [n′]

where ψt =
∑k
ι=1α[ι]s[ι] · νt · y>w = α · s · νt · y>w. Next, it utilizes the

evaluation procedure of AKGS and obtain a combined value

[[ζ]]T =
∏
t∈[n′] Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T ).

Finally, it returns a value [[µ]]T = [[ζ]]T · [[ρ]]−1T ∈ GT .

Correctness: First, the IPFE correctness implies IPFE.Dec(IPFE.SK1,t, IPFE.CT)

= [[`1,t +ψt]] where ψt =
∑k
ι=1α[ι]s[ι] · νt · y>w = α · s · νt · y>w. Next, by the

correctness of IPFE, AKGS we have
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Eval(ft,x, `1,t + ψt, . . . , `m+1,t)

= Eval(ft,x, `1,t, . . . , `m+1,t) + Eval(ft,x, ψt, 0, . . . , 0)

= Eval(ft,x, `1,t, . . . , `m+1,t) + ψt

=

k∑
ι=1

(α[ι]s[ι] · z[t]ft(x) + βt[ι]s[ι]) +α · s · νt · y>w

= α · s · (z[t]ft(x) + νt · y>w) + βt · s
The first equality follows from the linearity of Eval algorithm. Therefore, multi-
plying all the evaluated values we have

[[ζ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T )

= [[

n′∑
t=1

α · s · (z[t]ft(x) + νt · y>w) + βt · s]]T = [[α · s · (f(x)>z + y>w)]]T

where the last equality follows from the fact that
∑
t∈n′ νt = 1 and

∑
t∈[n′] βt[ι] =

0 for all ι ∈ [k]. Also, by the correctness of IPFE we see that [[ρ]]T = [[α ·s]]T and
hence [[µ]]T = [[f(x)>z + y>w]]T .

Theorem 4 The extended one slot FE scheme ΠextOne for attribute-weighted
sum is adaptively simulation-secure against adversaries making at most B pre-
ciphertext secret key queries and an arbitrary polynomial number of post-ciphertext
secret key queries assuming the AKGS is piecewise-secure, the MDDHk assump-
tion holds in group G2, and the slotted IPFE is function hiding.
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