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Abstract. We investigate all NIST PQC Round 3 KEM candidates
from the viewpoint of fault-injection attacks: Classic McEliece, Kyber,
NTRU, Saber, BIKE, FrodoKEM, HQC, NTRU Prime, and SIKE. All
KEM schemes use variants of the Fujisaki-Okamoto transformation, so
the equality test with re-encryption in decapsulation is critical.
We survey effective key-recovery attacks when we can skip the equality
test. We found the existing key-recovery attacks against Kyber, NTRU,
Saber, FrodoKEM, HQC, one of two KEM schemes in NTRU Prime, and
SIKE. We propose a new key-recovery attack against the other KEM
scheme in NTRU Prime. We also report an attack against BIKE that
leads to leakage of information of secret keys.
The open-source pqm4 library contains all KEM schemes except Classic
McEliece and HQC. We show that giving a single instruction-skipping
fault in the decapsulation processes leads to skipping the equality test
virtually for Kyber, NTRU, Saber, BIKE, and SIKE. We also report the
experimental attacks against them. We also report the implementation
of NTRU Prime allows chosen-ciphertext attacks freely and the tim-
ing side-channel of FrodoKEM reported in Guo, Johansson, and Nilsson
(CRYPTO 2020) remains, while there are no such bugs in their NIST
PQC Round 3 submissions.
keywords: post-quantum cryptography, NIST PQC standardization,
KEM, the Fujisaki-Okamoto transformation, fault-injection attacks.

1 Introduction

1.1 Background

Key encapsulation mechanism: Public-key encryption (PKE in short) al-
lows us to send a message secretly without a pre-shared secret key [30, 67, 73],



which is a fundamental task of cryptography. PKE consists of three algorithms;
a key-generation algorithm that generates a public key and a secret key, an en-
cryption algorithm that takes a message and a public key as input and outputs a
ciphertext, and a decryption algorithm that takes a secret key and a ciphertext
as input and outputs a message.

Key encapsulation mechanism (KEM in short) is also fundamental crypto-
graphic primitive [72, 26, 1], which can be considered as a variant of public-key
encryption (PKE). KEM’s encryption algorithm, which we call the encapsulation
algorithm, takes a public key as input and outputs a ciphertext and a key (or an
ephemeral key). KEM’s decryption algorithm, which we call the decapsulation
algorithm, takes a secret key and a ciphertext as input and outputs a key instead
of a message. KEM’s sender and receiver share a key instead of a message in the
case of PKE. KEM is a versatile primitive and has a lot of applications, e.g.,
key exchange, hybrid encryption, secure authentication, and authenticated key
exchange.

The most standard security notion of KEM is indistinguishability against
chosen-ciphertext attacks (IND-CCA-security) [63, 26]. Since it is hard to con-
struct efficient IND-CCA-secure KEMs directly, cryptographers often use the
transformations from weakly-secure PKE/KEM into IND-CCA-secure KEM.
The Fujisaki-Okamoto (FO) transformation [35, 36, 29] is one of the transfor-
mations often used in the design of IND-CCA-secure PKE/KEM in the random
oracle model (ROM). Roughly speaking, the FO transformation transforms an
underlying PKE scheme into KEM as follows: Let G and H be two random or-
acles. A key-generation algorithm of KEM is that of PKE. An encapsulation
algorithm on input a public key pk chooses a message m randomly, encrypts it
into ct = Enc(pk ,m;G(m)), where Enc is an encryption algorithm of PKE and
the randomness of encryption is computed as G(m), and outputs a ciphertext ct
and a key K = H(m). A decapsulation algorithm on input sk and ct decrypts ct
into m′ = Dec(sk , ct), where Dec is a decryption algorithm of PKE, re-encrypts
m′ into ct ′ = Enc(pk ,m′;G(m′)), and outputs a key K = H(m′) if ct = ct ′ and
a rejection symbol otherwise.

Post-quantum cryptography: Scalable quantum computers will threaten classical
public-key cryptography since Shor’s algorithm on a quantum machine solves
factorization and discrete logarithms efficiently [71]. The recent progress in de-
veloping quantum machines motivates us to replace classical public-key cryptog-
raphy with post-quantum cryptography (PQC). Hence, in the past decade, the
security proofs of the FO transformation and its variants have been extended to
those in the quantum random oracle model (QROM) [19] to show the security
against quantum polynomial-time adversary. See e.g., [76, 42, 69, 47, 17, 48, 52].

Moreover, in 2016, NIST PQC standardization called for proposals on PKE/KEM
and signatures as the basic primitives 4. In 2020, NIST selected four finalists and

4 https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/Call-for-Proposals
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five alternate candidates for KEM in Round 3 [6]. All use the FO-like transfor-
mations to construct IND-CCA-secure KEMs in the (Q)ROM.

Fault-injection attacks: In the real world, the decapsulation algorithm is im-
plemented physically. Hence, investigations into side-channel attacks (SCA) [50,
51] and fault-injection attacks (FIA) [16, 20] against proposed KEMs are strongly
promoted by NIST. The attacks’ targets are recovery of an ephemeral key of a
given ciphertext or a secret key of a given public key. We call the former and
the latter ephemeral-key-recovery attack and key-recovery attack, respectively.

We focus on FIA against KEM and review the scenario of it. Suppose that
an adversary can inject faults into a decapsulation machine that contains a
secret key. In this situation, it is natural to think the adversary has the machine
itself (e.g., decapsulation machines in card, sensor, robot, and TV box) and uses
it freely because the adversary can physically access the machine. Hence, the
adversary can decrypt any ciphertexts and recover the corresponding ephemeral
key of the target ciphertext. Thus, if we consider FIA, ephemeral-key-recovery
attacks are not so important.

On the other hand, recovery of secret key via FIA is non-trivial and interest-
ing, because the key-recovery attack logically breaks a tamper-resilient memory
by extracting the secret from it. In addition, once one obtains a secret key from
a decapsulation machine, one can copy the machine. Thus, we examine how FIA
leads to a key-recovery attack.

There are a lot of techniques to make decapsulation faulty; shooting a LASER
to set/reset a bit of SRAM [74], injecting a clock or power glitch [68, 33, 11],using
electromagnetic (EM) pulses [41]. (Un)fortunately, an injection of fault often fails
to obtain an expected result, say, a skip of an instruction of the assembly code.
Thus, the less number of faults in a single run of decapsulation an attack requires,
the better. Especially, we are interested in single-fault key-recovery attacks.

Skipping-the-equality-test attack: In the FO-like transformations, the decapsu-
lation algorithm given a ciphertext ct first decrypts the ciphertext into m′, re-
encrypts it into ct ′, and returns K = H(m′, aux) if ct = ct ′ and pseudorandom
value K = H(s, aux) or the rejection symbol ⊥ otherwise, where H is a hash
function modeled by a random oracle, aux depends on pk and ct , and s is a
secret value.

By injecting a fault carefully, we could force the decapsulation machine to
skip the equality test ct = ct ′ and return K = H(m′, aux) always, where m′ =
Dec(sk , ct). This enables us to implement a plaintext-checking oracle on input
guess mguess and ciphertext ct by checking if K = H(mguess, aux) or not and
a key-mismatch oracle on input guess Kguess and ciphertext ct by checking if
K = Kguess or not. Such oracles would enable an adversary to mount a key-
recovery attack against KEM.

Fault-injection attack against pre-quantum KEMs: Factoring/RSA-based PKE/KEM
is vulnerable against FIA. For example, safe-error attacks [79, 80] are effective
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to guess a bit of secret key. They are also applicable to Discrete-logaritm (DL)-
based PKE/KEM. DL-based PKE/KEM has several attack surfaces vulnerable
to FIA. See, for example, invalid point/curve attacks [15, 18, 8, 75].

We note that the existing key-recovery FIAs do not target the equality test
of the FO transformation. It is not known whether this plaintext-checking/key-
mismatch oracle (or even decryption oracle) enables us to recover the secret key
of the underlying PKE, say, the textbook RSA. (See e.g., [21] and [3].) Thus,
the key-recovery FIA against pre-quantum KEMs that skips the equality test
are not so explored.

Fault-injection attack against post-quantum KEMs: This situation is changed
in post-quantum KEMs. Unfortunately, underlying PKEs in the post-quantum
PKE/KEMs are often vulnerable to key-recovery chosen-ciphertext attacks. For
example, Hall, Goldberg, and Schneier [40] pointed out message-recovery and
key-recovery chosen-ciphertext attacks against the McEliece PKE [55, 58] and
the Ajtai-Dwork PKE [5], respectively. Fluhrer pointed out that a simple key-
exchange scheme based on ring learning with errors (RLWE) is vulnerable to
the key-mismatch attack if a user fixes its secret [34]. Galbraith, Petit, Shani,
and Ti [37] gave a key-recovery key-mismatch attack against SIDH [46, 28] with
fixed secret. Therefore, the equality test is an important target of FIA.

Although Pessl and Prokop [60] pointed out that the equality test is ‘an
obvious faulting target,’ we do not know how easily we can mount a skipping-
the-equality-test attack by injecting a single fault against the implementations
in the wild and how effective the skipping-the-equality-test attack is against the
NIST PQC Round 3 KEM candidates.

1.2 Our Contribution

We systematically study how effective fault-injection attacks that lead to the
skip of the equality test of FO-like transformations are against all KEMs in the
NIST PQC Round 3 finalists and the alternates: Classic McEliece [7], Kyber [70],
NTRU (ntruhps and ntruhrss) [22], Saber [27], BIKE [9], FrodoKEM [57], HQC [4],
NTRU Prime (sntrupr and ntrulpr) [14], and SIKE [45]. We summarize our find-
ings in Table 1.

Theoretical analysis: We study whether the underlying PKEs of KEMs are
resilient to key-recovery plaintext-checking attacks (KR-PCA) or not, since skip-
ping the equality test enables an adversary to obtain K = H(Dec(sk , ct), aux)
instead of pseudorandom string or ⊥ and to implement a plaintext-checking
oracle easily.

We found that almost all PKEs except the underlying PKE of Classic McEliece
leaks information of the decryption key in the presence of plaintext-checking or-
acle in vitro. Our findings are summarized as follows (see also Table 2):

Kyber, NTRU, Saber, FrodoKEM, HQC, sntrupr of NTRU Prime, and SIKE:
We survey the literature and found that there are KR-PCAs against the un-
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Table 1: Summary of our findings on NIST PQC Round 3 KEM Candidates
(finalists and alternates) and their implementations in pqm4: PCA implies
plaintext-checking attack.

Name Effect of PCA Attack Surface in pqm4 Effect of FIA in pqm4

Classic McEliece [7] Unknown N/A N/A
Kyber [70] Key recovery Skip Key recovery
NTRU – ntruhps [22] Key recovery Skip Key recovery
NTRU – ntruhrss [22] Key recovery Skip Key recovery
Saber [27] Key recovery Skip Key recovery

BIKE [9] Key leakage (New) Skip Key leakage
FrodoKEM [57] Key recovery Timing bug Key recovery
HQC [4] Key recovery N/A N/A
NTRU Prime – sntrupr [14] Key recovery CCA bug Key recovery
NTRU Prime – ntrulpr [14] Key recovery (New) CCA bug Key recovery
SIKE [45] Key recovery Skip Key recovery

derlying PKEs of Kyber, ntruhps and ntruhrss of NTRU, Saber, FrodoKEM,
HQC, sntrupr of NTRU Prime, and SIKE.

ntrulpr of NTRU Prime: We propose a KR-PCA against the underlying PKE
of NTRU LPRime (ntrulpr of NTRU Prime) by mimicking the KR-PCAs
against the underlying PKEs of Saber and Kyber [44]. See section 4.

BIKE: The underlying PKE of BIKE in round 3 also leaks the secret key’s
information from the plaintext-checking oracle as QC-MDPC [56] is vul-
nerable to the KR-PCA proposed by Guo, Johansson, and Stankvoski [39].
However, the change of a decoder algorithm in round 3 makes key-recovery
attacks difficult. See the full version.

Classic McEliece: There are no known KR-PCAs against the underlying PKE
of Classic McEliece if the decoder in a decryption algorithm rejects invalid
plaintexts 5 (We note that the specifications seem to allow the use of any
decoder that decodes binary Goppa codes.)

Trade-off: Skipping the equality test enables the adversary to obtain K =
KDF(m, aux) with m = Dec(sk , ct) rather than the plaintext-checking oracle.
Thus, the adversary can check if m = mguess by checking K = KDF(mguess, aux)
from a single faulty experiment. If the number of candidates of m is small, then
we can determine the value of m by an exhaustive search. By using this property,
there are trade-offs between the computational cost and the number of faulty
experiments in the cases of Kyber, Saber, FrodoKEM, and ntrulpr of NTRU
Prime. See the details in section 4 for the case of ntrulpr of NTRU Prime.

5 The plaintext space is a set of n-dimensional vectors whose Hamming weight is t.

5



Table 2: Theoretical plaintext-checking attacks and key-mismatch attacks
against the underlying PKEs of NIST PQC Round 3 KEM Candidates.

Name Results

Classic McEliece [7] Unknown
Kyber [70] Key recovery [61, 66, 44, 62]
NTRU – ntruhps [22] Key recovery [31]
NTRU – ntruhrss [22] Key recovery [81]
Saber [27] Key recovery [44, 62]

BIKE [9] Key leakage (New, adapted from [39])
FrodoKEM [57] Key recovery [10, 66, 77, 62]
HQC [4] Key recovery [44]
NTRU Prime – sntrupr [14] Key recovery [64]
NTRU Prime – ntrulpr [14] Key recovery (New, adapted from [10, 61, 66, 44, 77, 62])
SIKE [45] Key recovery [37]

Investigation of KEMs in pqm4: We investigate implementation of KEMs
in pqm4 [49], which include Kyber, NTRU (ntruhps and ntruhrss), Saber, BIKE,
FrodoKEM, NTRUPrime (sntrupr and ntrulpr), and SIKE 6

NTRU Prime: In the pqm4 implementation of NTRU Prime (sntrupr and
ntrulpr), a decapsulation program contains a fatal bug that forces the result
of the equality test to be true. 7 Thus, we can mount a chosen-ciphertext
attack against them freely. See subsection 5.1.

FrodoKEM: In 2020, Guo et al. [38] pointed out that the implementation of
FrodoKEM (and HQC) contains a leaky equality test that leaks information
of the secret key from the timing side channel and succeeded in mounting a
key-recovery attack using the timing information. Although FrodoKEM in
Round 3 repaired this leaky equality test, the bug still remains in the pqm4
implementation.8 See subsection 5.2.

Kyber, NTRU, and Saber: They shared a same structure to compute a key.
Roughly speaking, decapsulation programs use a flag for the equality test
and overwrite the decrypted result m′ by a secret seed s if the flag is set. This
overwriting is done by a single function call of ‘cmov’ (conditional-move).
(Un)fortunately, we can skip this function call by a single fault and mount
FIA. See subsection 5.3

BIKE: The decapsulation program of BIKE in pqm4 computes mask, which is
−1 or 0 depending on the re-encryption check, and overwrites the decryption
result m′ by a secret seed s or keep it as “m′ ← (m′ ∧¬mask)∨ (s∧mask)”.
9 (Un)fortunately, we identify a single operation such that if we skip the

6 We use 2021 Jun. 5 version. https://github.com/mupq/pqm4/commit/
8d3384d879b10619c8c36947e4be6ab13ec6d268.

7 We report it in https://github.com/mupq/pqm4/issues/195
8 pqm4 noticed this issue. See https://github.com/mupq/pqm4/issues/161.
9 If mask = 0, then we have m′ ← m′. Otherwise, we have m′ ← s.
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operation, then mask is set to 0 always. Thus, we can skip the overwrite
procedure virtually by a single fault. See subsection 5.4.

SIKE: The implementation of SIKE in pqm4 simply uses an ‘if’ statement to
overwrite the decrypted result m′ by a secret seed s. In the assembly code,
this if-then-overwrite is implemented as ‘compare’ and ‘conditional jump’.
(Un)fortunately, we can skip this ‘conditional jump’ by a single fault. See
subsection 5.5.

Experimental results: On the basis of our findings, we conduct the exper-
imental skip attacks on Kyber, NTRU, Saber, BIKE, and SIKE. The target
is STM32F415 whose core is ARM Cortex-M4, which is a de-facto standard
platform as NIST suggested. We run 100 fault injections to each scheme and
succeeded in injecting faults correctly with 15–50%. See section 6.

1.3 Related Works

For PQC candidates and their implementation, we recommend the reader to
read an exhaustive survey written by Howe, Prest, and Apon [43]. Ravi and Roy
gave a lecture on SCAs and FIAs against lattice-based PQC candidates [65].
Costello wrote a survey of isogeny-based cryptography [25]. For SCA, FIA, and
key-recovery plaintext-checking/key-mismatch attacks against NIST PQC KEM
Candidates, see our survey in the full version.

1.4 Organization

Section 2 reviews basic notions and notations. Section 3 reviews the variants of
the FO transformation. Section 4 gives a key-recovery attack against ntrulpr of
NTRU Prime using plaintext-checking oracle and discusses a trade-off between
efficiency and the number of queries if we consider the fault-injection attack.
Section 5 describes the equality test of KEMs and how we can mount skipping
attack. Section 6 reports our experimental results. In the full version, we will
review the variants of the FO transformation, the KEM schemes, and KR-PCAs
against them. In addition, we will report our key-leakage PCAs against BIKE.

2 Preliminaries

2.1 Notation

A security parameter is denoted by λ. We use the standard O-notations. DPT,
PPT, and QPT stand for deterministic polynomial-time, probabilistic polynomial-
time, and quantum polynomial-time, respectively. A function f(λ) is said to be
negligible if f(λ) = λ−ω(1). We denote a set of negligible functions by negl(λ).
For a statement P (e.g., r ∈ [0, 1]), we define boole(P ) = 1 if P is satisfied and
0 otherwise.
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For a distribution χ, we often write “x ← χ,” which indicates that we take
a sample x in accordance with χ. For a finite set S, U(S) denotes the uniform
distribution over S. We often write “x← S” instead of “x← U(S).” If inp is a
string, then “out← A(inp)” denotes the output of algorithm A when run on input
inp. If A is deterministic, then out is a fixed value and we write “out := A(inp).”
We use the notation “out := A(inp; r)” to make the randomness r explicit.

For an odd positive integer q, we define r′ := r mod± q to be the unique
element r′ ∈ [−(q − 1)/2, (q − 1)/2] with r′ ≡ r (mod q).

2.2 Public-Key Encryption (PKE)

The model for PKE schemes is summarized as follows:

Definition 2.1. A PKE scheme PKE consists of the following triple of polynomial-
time algorithms (Gen,Enc,Dec):

– Gen(1λ; rg) → (pk , sk): a key-generation algorithm that takes as input 1λ,
where λ is the security parameter, and randomness rg ∈ RGen and outputs a
pair of keys (pk , sk). pk and sk are called the encryption key and decryption
key, respectively.

– Enc(pk ,m; re)→ ct: an encryption algorithm that takes as input encryption
key pk, message m ∈M, and randomness re ∈ REnc and outputs ciphertext
ct ∈ C.

– Dec(sk , ct) → m/⊥: a decryption algorithm that takes as input decryption
key sk and ciphertext ct and outputs message m ∈M or a rejection symbol
⊥ 6∈ M.

Definition 2.2. We say a PKE scheme PKE is deterministic if Enc is deter-
ministic, that is, it takes pk and m and does not take a randomness re. DPKE
stands for deterministic public-key encryption.

Plaintext-checking oracle: Since we review and propose key-recovery attacks
using plaintext-checking oracle (PCO), we formally review the definition of the
plaintext-checking oracle [59, 2].

Definition 2.3 (Plaintext-Checking Oracle). A plaintext-checking oracle
PCO takes as input a plaintext m and a ciphertext ct and outputs 1 if and
only if m is equal to the decrypted result Dec(sk , ct). That is, PCO(m, ct) :=
boole(m = Dec(sk , ct)).

2.3 Key Encapsulation Mechanism (KEM)

The model for KEM schemes is summarized as follows:

Definition 2.4. A KEM scheme KEM consists of the following triple of polynomial-
time algorithms (Gen,Encaps,Decaps):

8



– Gen(1λ; rg) → (pk , sk): a key-generation algorithm that takes as input 1λ,
where λ is the security parameter, and randomness rg ∈ RGen and outputs a
pair of keys (pk , sk). pk and sk are called the encapsulation key and decap-
sulation key, respectively.

– Encaps(pk ; re) → (ct ,K): an encapsulation algorithm that takes as input
encapsulation key pk and randomness re ∈ REncaps and outputs ciphertext
ct ∈ C and key K ∈ K.

– Decaps(sk , ct)→ K/⊥: a decapsulation algorithm that takes as input decap-
sulation key sk and ciphertext ct and outputs key K or a rejection symbol
⊥ 6∈ K.

Key-mismatch oracle: We review the key-mismatch oracle, which is an analogue
of the plaintext-checking oracle for PKE.

Definition 2.5 (Key-Mismatch Oracle). A key-mismatch oracle KMO takes
as input a key K and a ciphertext ct and outputs 1 if and only if K is equal
to the decapsulated result Decaps(sk , ct). That is, KMO(K, ct) := boole(K =
Decaps(sk , ct)).

3 Variants of the Fujisaki-Okamoto Transformation

We review the variants of the FO transformation that are used by NIST PQC
Round 3 candidate KEMs: FO 6⊥ in this section and FO 6⊥′, FO 6⊥′′, HFO⊥, HFO 6⊥,
SXY, and HU 6⊥ in the full version. Let PKE = (Gen,Enc,Dec) be a PKE, whose
ciphertext space is CPKE. If PKE is probabilistic, then REnc denotes the random-
ness space of Enc. Let {0, 1}k(λ) be the key space of KEM.

3.1 FO with implicit rejection

FO 6⊥ transforms a weakly-secure probabilistic PKE into IND-CCA-secure KEM,
where the identifier “ 6⊥” implies implicit rejection [42]. This variant is used by
BIKE and SIKE.

Let {0, 1}`(λ) be the plaintext space of PKE. Let G : {0, 1}∗ → REnc and
H : {0, 1}`(λ) × CPKE → {0, 1}k(λ) be hash functions modeled by the random
oracles. The FO 6⊥ is summarized as Figure 1. Assuming the IND-CPA security
of PKE, the obtained KEM scheme is IND-CCA-secure in the QROM (see e.g.,
[52]).

Remark 3.1. BIKE and SIKE do not test whole re-encryption check. Roughly
speaking, their encryption algorithm Enc is separable into two algorithms Enc1
and Enc2. Enc1 takes pk and randomness r and outputs c1 and k ∈ {0, 1}`(λ).
Enc2 takes m and k and outputs c2 := k ⊕m.

Using this property, BIKE omits the re-encryption check. Concretely speak-
ing, k in BIKE’s Enc1 is computed as k := H(r), where H is a hash function
modeled by the random oracle. BIKE’s Dec internally obtains r′ and checks the

9



Gen(1λ)

(pk , sk)← Gen(1λ)

s← {0, 1}`(λ)

sk := (sk , pk , s)

return (pk , sk)

Encaps(pk)

m← {0, 1}`(λ)

r := G(m) // for BIKE

r := G(m, pk) // for SIKE

ct := Enc(pk ,m; r)

K := H(m, ct)

return (K, ct)

Decaps(sk , ct), where sk = (sk , pk , s)

m′ := Dec(sk , ct)

r′ := G(m′) // for BIKE

r′ := G(m′, pk) // for SIKE

ct ′ := Enc(pk ,m′; r′)

if ct = ct ′, then return K := H(m′, ct)

else return K := H(s, ct)

Fig. 1: KEM := FO 6⊥[PKE,G,H] for BIKE and SIKE.

validity of c1. It then retrieves m′ := c2 ⊕ H(r′) and checks the validity of the
ciphertext by checking r′ = G(m′) or not.

SIKE’s Decaps performs the test c′1 = c1 but omits the test c′2 = c2. Since
Dec retrieves m′ := c2⊕k deterministically, we do not need to check the equality
of c2 and c′2.

4 Key-Recovery Plaintext-Checking Attack against
ntrulpr of NTRU Prime

We propose a new key-recovery attack using plaintext-checking oracle against
ntrulpr of NTRU Prime [14]. NTRU LPRime (ntrulpr) is a variant of the LPR
PKE [54], which is also based on the Lindner–Peikert PKE [53], and has a similar
structure to Kyber and Saber. We mimic the KR-PCA against Kyber and Saber
proposed by Băetu et al. [10] and Huguenin-Dumittan and Vaudenay [44].

ntrulpr of NTRU Prime: NTRU LPRime has parameter sets p, q, w, δ, τ0, τ1, τ2,
and τ3. We note that q = 6q′+ 1 for some q′ and q ≥ 16w+ 2δ+ 3. For concrete
values, see Table 3.

Table 3: Parameter sets of ntrulpr of NTRU Prime

parameter sets p q w δ τ0 τ1 τ2 τ3

ntrulpr653 653 4621 252 289 2175 113 2031 290
ntrulpr761 761 4591 250 292 2156 114 2007 287
ntrulpr857 857 5167 281 329 2433 101 2265 324
ntrulpr953 953 6343 345 404 2997 82 2798 400
ntrulpr1013 1013 7177 392 450 3367 73 3143 449
ntrulpr1277 1277 7879 429 502 3724 66 3469 496

Let R := Z[x]/(xp − x − 1) and Rq := Zq[x]/(xp − x − 1). Let S := {a =∑p−1
i=0 aix

i ∈ R | ai ∈ {−1, 0,+1},HW(a) = w}, a set of “short” polynomials.
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Table 4: The PCO’s behaviors
sk i PCO(~1256, ct0) PCO(~1256, ct1)

1 1 1
0 1 0
−1 0 0

For a ∈ [−(q−1)/2, (q−1)/2], define Round(a) = 3·da/3c.10 For a polynomial
A =

∑
i aix

i ∈ Rq, we define trunc(A, l) = (a0, . . . , al−1) ∈ Zlq. For C ∈ [0, q),
define Top(C) = b(τ1(C + τ0) + 214)/215c. For T ∈ [0, 16), define Right(T ) =
τ3T − τ2 ∈ Zq. For a ∈ Z, define Sign(a) = 1 if a < 0, 0 otherwise.

The underlying CPA-secure PKE scheme11 works as follows:

– Gen(pp): Generate A ← Rq and sk ← S. Compute B := Round(A · sk).
Output pk := (A,B) and sk .

– Enc(pk , µ ∈ {0, 1}256): Choose t← S and output

(U, V ) :=
(
Round(t ·A),Top(trunc(t ·B, 256) + µ(q − 1)/2)

)
.

– Dec(sk , (U, V )): Compute r := Right(V )−trunc(sk ·U, 256)+(4w+1) ·~1256 ∈
Z256 and outputs m := Sign(r mod± q).

4.1 Key-Recovery Attack

We mainly follow the KR-PCAs against Kyber and Saber in Baetu et al. [10]
and Huguenin-Dumittan and Vaudenay [44], but we need some tweaks. Roughly
speaking, to determine the i-th coefficient of sk , their attack queries (a, b·xi) with
constant a and b and a candidate plaintext, because in the case of Kyber and
Saber, the dimension of V is the same as that of the base ring. However, ntrulpr
truncates tB to reduce redundancy, so we need to modify the query ciphertext.
Note that we can shift the effect of sk i into constant coefficient by multiplying
xp−i. That is, for i = 1, . . . , p− 1 and sk = sk0 + sk1x+ . . . skp−1x

p−1 ∈ R, we
have

xp−i · sk = sk i

+ (sk i + sk i+1)x+ (sk i+1 + sk i+2)x2 + · · ·+ (skp−1 + sk0)xp−i

+ sk1x
p−i+1 + sk2x

p−i+2 + · · ·+ sk i−1x
p−1.

Using this relation, we show the following two lemmas:

Lemma 4.1 (For general i ∈ [1, p)). Let c = τ2− (4w+1), b = b(c− 1)/6c ·3
and tβ = b(βb+ c− 1)/τ3c for β ∈ {0, 1}. Let us consider our test ciphertext

ctβ = (b·xp−i, (tβ , 0, . . . , 0)) for β ∈ {0, 1} and candidate plaintext ~1256. Then, we
have the relations between the i-th coordinate of decryption key and the behavior
of PCO as in Table 4.
10 When q = 6q′ + 1, Round([−(q − 1)/2, (q − 1)/2]) ∈ [−(q − 1)/2, (q − 1)/2].
11 ‘NTRU LPRime Core’ in the specification.
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Proof. The decryption algorithm computes r = Right
(
(tβ , 0, . . . , 0)

)
− trunc

(
sk ·

b · xp−i, 256
)

+ (4w + 1) ·~1256. Expanding this, we have
r0 = τ3tβ − b · sk i − c,
rj = −b · (sk i+j−1 mod p + sk i+j mod p)− c (j = 1, 2, . . . ,min{256, p− i})
rj = −b · sk j−(p−i) mod p − c (j = p− i+ 1, . . . ,min{256, p− 1}).

Recall that sk i ∈ {−1, 0,+1} for all i since sk is in S. Thus, we have rj ∈
{−2b−c,−b−c,−c, b−c, 2b−c} for j = 1, . . . , 256. Since we set b = b(c− 1)/6c·
3 ≤ (c − 1)/2, we have −2b − c > −2c and 2b − c < 0. Fortunately, we have
−2c = −2τ2−8w−2 ≥ −(q−1)/2 for all parameter sets. Thus, rj ’s are decoded
into 1 for j = 1, . . . , 256.

Let us consider r0. We have

r0 = τ3tβ − b · sk i − c > 0⇐⇒ (τ3tβ − c)/b > sk i

By our setting, if tβ = t0 (and t1), then (τ3tβ−c)/b is slightly smaller than 0 (and
1) for all parameter sets, respectively. In addition, we have τ3t1+b−c ≤ (q−1)/2
for all parameter sets. Therefore, r0 for t0 is decoded into 0 if and only if sk i < 0
and r0 for t1 is decoded into 0 if and only if sk i < 1. This completes the proof.

ut

By a similar argument, we have the following lemma on sk0.

Lemma 4.2 (i = 0). Let c = τ2 − (4w + 1), b = d(c− 1)/6e · 3 and tβ =
b(βb+ c− 1)/τ3c for β ∈ {0, 1}. Let us consider our test ciphertext ctβ =

(b, (tβ , 0, . . . , 0)) and candidate plaintext ~1256. Then, we have the relations be-
tween the constant term of decryption key and the behavior of PCO as in Ta-
ble 4.

Using the above lemmas, we can determine sk i for i = 0, . . . , p− 1 by testing
2p queries with the PCO.

4.2 Trade-Off

We observe that an adversary can obtain K ′ = H(m′, ct) by skipping the equality
test instead of the equality of K ′ and Kguess or the equality of m′ and mguess.
Therefore, the adversary can check if m′ = mguess or not by computing Kguess =
H(mguess, ct) by itself. This enables the adversary to determine ` coefficients of
the secret key at once by sacrificing the computational efficiency.

For simplicity, we let ` = 2k < 256.

Determine sky`, . . . , sky`+`−1 for y = 0, . . . , 256/` − 1: Let us determine ` co-
efficients sky`, . . . , sky`+`−1 of sk at once, where y = 0, . . . , 256/` − 1. Suppose
that we query two ciphertexts

ctβ = (U, Vβ) =
(
b, (

y`︷ ︸︸ ︷
0, . . . , 0,

`︷ ︸︸ ︷
tβ , . . . , tβ ,

256−(y+1)`︷ ︸︸ ︷
0, . . . , 0 )

)
12



for β ∈ {0, 1}. The decryption algorithm computes r = Right(Vβ) − trunc(sk ·
b, 256) + (4w + 1) ·~1256. Expanding this, we have

rj =

{
τ3tβ − b · sk j − c (j = y`, . . . , y`+ `− 1)

−b · sk j − c (j = 0, . . . , y`− 1, (y + 1)`, . . . , 256).

By using the argument in the proof of Lemma 4.1, rj ’s are decoded into 1 for
j = 0, . . . , y` − 1, (y + 1)`, . . . , 256. We also have, for j = y`, . . . , y` + ` − 1, rj
for t1 is decoded into 0 if and only if sk i < 0 and rj for t2 is decoded into 0 if
and only if sk i < 1.

Seeing K = H(m′, ctβ) where m′ = Dec(sk , ctβ), we compute Kguess =

H(mguess, ctβ) for mguess = ~1y`‖m′′‖~1256−(y+1)` for all m′′ ∈ {0, 1}` and de-
termine sk j for j = y`, . . . , y`+ `− 1.

Determine sky`, . . . , sky`+`−1 for y = 256/`, . . . , bp/`c: Suppose that we have
determined y` coefficients sk0, . . . , sky`−1 for some y ∈ {256/`, . . . , bp/`c}. Let
us determine ` coefficients sky`, . . . , sky`+`−1 at once: Let tβ = b(βb+ c− 1)/τ3c
for β ∈ {−1, 0, 1, 2}. Suppose that we query four ciphertexts

ctβ = (U, Vβ) =
(
b · xp−y`−1, (0,

`︷ ︸︸ ︷
tβ , . . . , tβ ,

256−`−1︷ ︸︸ ︷
0, . . . , 0)

)
for β ∈ {−1, 0, 1, 2}. The decryption algorithm computes r = Right(Vβ) −
trunc(sk · bxp−y`−1, 256) + (4w + 1) ·~1256. Expanding this, we have

rj =


−b · sky`−1 − c (j = 0)

τ3tβ − b · (sky`+j−2 mod p + sky`+j−1 mod p)− c (j = 1, 2, . . . , `)

−b · (sky`+j−2 mod p + sky`+j−1 mod p)− c (j = `+ 1, . . . ,min{256, p− y`})
−b · sk j−(p−i) mod p − c (j = min{256, p− y`+ 1}, . . . , 256).

By using the argument in the proof of Lemma 4.1, rj ’s are decoded into 1 for
j = 0 and j = `+ 1, . . . , 256.

Let us consider rj for j = 1, . . . , `. We have

rj = τ3tβ − b · (sk j + sk j+1)− c > 0⇐⇒ (τ3tβ − c)/b > sk j + sk j+1.

By our setting, (τ3tβ − c)/b is slightly smaller than β for all parameter sets,
respectively. In addition, we have −(q− 1)/2 ≤ τ3tβ − 2b− c and τ3tβ + 2b− c ≤
(q−1)/2 for all parameter sets. Therefore, rj for tβ is decoded into 0 if and only
if sk i < β.

Seeing K ′ = H(m′, ctβ) where m′ = Dec(sk , ctβ), we compute Kguess =

H(mguess, ctβ) for mguess = 1‖m′′‖~1256−`−1 for all m′′ ∈ {0, 1}` and determine
sky`+j−2 + sky`+j−1 ∈ {−2,−1, 0, 1, 2} for j = 1, . . . , `. Since we know sky`−1,
we can determine sky`, . . . , sky`+`−1 sequentially.
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5 Skipping the Equality Test by Skipping a Single
Instruction

In this section, we describe the fault-injection attack on the equality checking of
each KEM implementation. First, we examine the implementation of pqm4 [49]
for each scheme and discuss the possibility of skipping the equivalence test.
To identify the instructions to be skipped, we cross-compiled the C code in
pqm4 with GCC 8.3.1 running on Debian bullseye. The compilation options
were basically according to pqm4, with “-O3” as an optimization option.

We do not mention the attacks on Classic McEliece and HQC in this section
because pqm4 does not include their ARM Cortex M4-optimized code. Hereafter,
we describe the possibility of skip attacks on NTRU Prime, FrodoKEM, Kyber,
Saber, NTRU, BIKE, and SIKE.

If the reader is unfamiliar to Arm Cortex M4, please see the manual 12.

5.1 NTRU Prime – CCA Bug

The functions in the C code related to the FO-like transformation are
crypto kem dec, Decap, and Ciphertexts diff mask.13 Figure 2 shows the
source code of NTRU Prime’s comparison in pqm4. Note that we omit the
crypto kem dec function as it just calls Decap.

Let us consider how Ciphertexts diff mask computes the return value. It
initializes the uint16 variable differentbits as 0. After some computations, it
outputs ((-1)-((differentbits-1)>>31)) in line 17. The value is initialized
as 0 and unchanged before the return value is computed; these computations
only involve differentbits2. Thus, we eventually obtain 0 as the result of
(-1)-((0-1)>>31) and ciphertexts diff mask always outputs 0.

Decap first decrypts r := Dec(sk , c) in line 13 and encodes it into r enc

and re-encrypts it into cnew in line 14. In line 15, mask is always 0, since
Ciphertexts diff mask always returns 0 as we explained. Thus, r enc, which
is the result of faulty decryption, is unchanged, and Decap always sets k as the
result of H(1,r enc,c). This means that there is no re-encryption check and the
implementation opens the attack surface of chosen-ciphertext attacks.

5.2 FrodoKEM – Timing Attack

The decapsulation of FrodoKEM is performed in the crypto kem dec function.14

Figure 3 shows the source code of the equality test in the function. From the

12 https://developer.arm.com/documentation/100166/0001. See https:
//developer.arm.com/documentation/100166/0001/Programmers-Model/
Instruction-set-summary/Table-of-processor-instructions?lang=en for instruc-
tion set.

13 The source code of these functions is https://github.com/mupq/pqm4/blob/master/
crypto kem/sntrup761/m4f/kem.c.

14 https://github.com/mupq/pqm4/blob/master/crypto kem/frodokem640shake/m4/
kem.c
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1 static int Ciphertexts_diff_mask(const unsigned char *c,

2 const unsigned char *c2)

3 {

4 uint16 differentbits = 0;

5 int len = Ciphertexts_bytes+Confirm_bytes;

6
7 int *cc = (int *)( void *)c;

8 int *cc2 = (int *)( void *)c2;

9 int differentbits2 = 0;

10 for (len -=4 ;len >=0; len -=4) {

11 differentbits2 = __USADA8 ((*cc++) ,(* cc2++), differentbits2 );

12 }

13 c = (unsigned char *)( void *) cc;

14 c2 = (unsigned char *)( void *) cc2;

15 for (len &= 3; len > 0; len --)

16 differentbits2 =__USADA8 ((*c++) ,(*c2++), differentbits2 );

17 return ((-1)-(( differentbits -1) > >31));

18 }

1 static void Decap(unsigned char *k,const unsigned char *c,

2 const unsigned char *sk)

3 {

4 const unsigned char *pk = sk + SecretKeys_bytes;

5 const unsigned char *rho = pk + PublicKeys_bytes;

6 const unsigned char *cache = rho + Inputs_bytes;

7 Inputs r;

8 unsigned char r_enc[Inputs_bytes ];

9 unsigned char cnew[Ciphertexts_bytes+Confirm_bytes ];

10 int mask;

11 int i;

12
13 ZDecrypt(r,c,sk);

14 Hide(cnew ,r_enc ,r,pk,cache );

15 mask = Ciphertexts_diff_mask(c,cnew);

16 for (i = 0;i < Inputs_bytes ;++i)

17 r_enc[i] ^= mask&( r_enc[i]^rho[i]);

18 HashSession(k,1+mask ,r_enc ,c);

19 }

Fig. 2: NTRU Prime’s comparison in pqm4.
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// Is (Bp == BBp & C == CC) = true

if (memcmp(Bp , BBp , 2 * PARAMS_N * PARAMS_NBAR) == 0 &&

memcmp(C, CC, 2 * PARAMS_NBAR * PARAMS_NBAR) == 0) {

// Load k’ to do ss = F(ct || k ’)

memcpy(Fin_k , kprime , CRYPTO_BYTES );

} else {

// Load s to do ss = F(ct || s)

memcpy(Fin_k , sk_s , CRYPTO_BYTES );

}

shake(ss, CRYPTO_BYTES , Fin , CRYPTO_CIPHERTEXTBYTES

+ CRYPTO_BYTES );

Fig. 3: FrodoKEM’s comparison in pqm4

source code, this function uses the memcmp function with && to compare the
ciphertext and the re-encryption result. This indicates that the current imple-
mentation is still vulnerable to the timing attack by Guo et al. [38].

5.3 Kyber, Saber, and NTRU – cmov

In this subsection, we describe the skip attacks on Kyber, Saber, and NTRU
among the finalists. The basic idea of the skip attacks on these implementations
is identical, and thus we describe the case of Saber as an example to explain
the skip attack procedure. Figure 4 shows the crypto kem dec function that
performs the decapsulation of FO transformation15.

The crypto kem dec function performs re-encryption using the
indcpa kem enc cmp function at line 14 and stores the comparison results
of the ciphertext and the re-encryption result into a variable fail. If these
ciphertexts are not the same, fail becomes 1 and, if they are the same, fail
becomes 0. At line 16, the cmov substitutes a random value for kr when fail is
1. Note here that the hash value calculated from the decrypted result is stored
in the variable kr before cmov is called, and this means that we can perform a
key-recovery attack by skipping the call of cmov even when fail is 1.

Figure 5 shows the assembly code corresponding to the call of cmov. This
program first calls the sha3 256 function at line 1, prepares the arguments of
cmov at line 4–7, calls cmov at line 8, and finally prepares the arguments and
call the sha3 256 function at line 10–14. From this code, we notice that Saber
can be attacked by skipping bl cmov at line 8 using fault injection. In addition
to Saber, NTRU and Kyber also use cmov in the same manner, and therefore,
this attack can be applied to all of them.

15 https://github.com/mupq/pqm4/blob/master/crypto kem/saber/m4f/kem.c
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1 int crypto_kem_dec(uint8_t *k, const uint8_t *c,

2 const uint8_t *sk)

3 {

4 uint8_t fail;

5 uint8_t buf [64];

6 uint8_t kr [64]; // Will contain key , coins

7 const uint8_t *pk = sk + SABER_INDCPA_SECRETKEYBYTES;

8 const uint8_t *hpk = sk + SABER_SECRETKEYBYTES - 64;

9 // Save hash by storing h(pk) in sk

10
11 indcpa_kem_dec(sk, c, buf);

12 memcpy(buf + 32, hpk , 32);

13 sha3_512(kr, buf , 64);

14 fail = indcpa_kem_enc_cmp(buf , kr + 32, pk, c);

15 sha3_256(kr + 32, c, SABER_BYTES_CCA_DEC );

16 cmov(kr, sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES ,

17 SABER_KEYBYTES , fail);

18 sha3_256(k, kr, 64);

19 return (0);

20 }

21

Fig. 4: Saber’s comparison in pqm4

1 bl sha3_256

2 .LVL26:

3 .loc 1 79 3 is_stmt 1 view .LVU62

4 uxtb r3, r7

5 add r1 , r4 , #1536

6 add r0 , sp , #64

7 movs r2, #32

8 bl cmov

9 .LVL27:

10 .loc 1 82 3 view .LVU63

11 movs r2, #64

12 mov r0 , r6

13 add r1 , sp , r2

14 bl sha3_256

Fig. 5: Assembly code of Saber’s comparison in pqm4
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5.4 BIKE – For loop

We describe the skip attack on BIKE in this subsection. Figure 6 shows the C
code of BIKE’s comparison in the decapsulation16. We also show secure cmp

function and secure l32 mask function in Figure 7. Line 4–7 in Figure 6 com-
pares the hash value of the original message and that of the decrypted message
from the ciphertext. Then, if they are equal, the for block at line 12–15 stores
the decrypted message into m prime.raw[i]. Therefore, the goal of the fault-
injection attack is to store the decrypted message even when these hash values
differ. For this purpose, we need to force the variable mask to be 0.

Figure 8 shows the assembly code corresponding to the line 6–11 in the C
code to explain the position of a fault injection. Line 1–30 and line 31–44 in the
assembly code correspond to line 6 and line 11 in the C code, respectively. The
operation we need to skip for a key-recovery attack is “ldr r2, [sp, #20]” at
line 33 in this assembly code for the following reason.

Before line 33 in the assembly code, the r2 register is used in “cmp r2, #0”
at line 26. This corresponds to “return (0 == res);” at line 11 in secure cmp

function (Figure 7). Therefore, at this time, the r2 register contains the value
of the res variable. The value of the r2 register does not become 0 from the
attack assumption because the value of the res variable is not 0 when the two
arguments of secure cmp are not equal. Thus, the r2 register must be a non-zero
value if line 33 in the assembly code is skipped. After line 33, the value of the r2

register is used at line 41. This line corresponds to line 9 in the secure l32 mask

function (Figure 7). The secure l32 mask function compares the two arguments
v1 and v2 and returns 0 when v1 < v2 holds. mask becomes 0 when v2 is not 0
because v1 is 0 as shown in Figure 6. Meanwhile, we note that the variable v2

does not become 0 when we skip line 33 in the assembly code because the r2

register corresponds to the v2 variable. From the above, we can fix mask to 0 by
the fault injection, and thus the key-recovery attack is possible.

5.5 SIKE – Simple If

This subsection describe the skip attack on SIKE. Figure 9 and Figure 10 shows
the C code and its assembly of the comparison process in the FO transforma-
tion17.

The target of fault injection in C code is the if statement at line 4–6. The
assembly code in Figure 10 corresponds to the if statement. The process of
condition in the if statement at line 4 in the C code corresponds to line 1-3 in
the assembly code. In the assembly code, “bl memcmp” compares the variables
c0 and ct. If they differ, “cbnz r0, .L500” performs a jump to line 23. Note
that, even if we jump to line 23, the procedure comes back to line 4 because of “b
.L495” at line 33. In other words, line 23–33 in the assembly code correspond
to the process in the if block at line 5 in the C code. Thus, we can perform the
skip attack on SIKE by injecting a fault into “cbnz r0, .L500” at line 3.

16 https://github.com/mupq/pqm4/blob/master/crypto kem/bikel1/m4f/kem.c
17 https://github.com/mupq/pqm4/blob/master/crypto kem/sikep434/m4/sike.inc
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1 // Check if H(m ’) is equal to (e0’, e1 ’)

2 // (in constant -time)

3 GUARD(function_h (&e_tmp , &m_prime ));

4 success_cond = secure_cmp(PE0_RAW (& e_prime),

5 PE0_RAW (& e_tmp), R_BYTES );

6 success_cond &= secure_cmp(PE1_RAW (& e_prime),

7 PE1_RAW (& e_tmp), R_BYTES );

8
9 // Compute either K(m’, C) or K(sigma , C) based on the

10 // success condition

11 mask = secure_l32_mask (0, success_cond );

12 for(size_t i = 0; i < M_BYTES; i++) {

13 m_prime.raw[i] &= u8_barrier (~mask);

14 m_prime.raw[i] |= (u8_barrier(mask) & l_sk.sigma.raw[i]);

15 }

Fig. 6: BIKE’s comparison in pqm4.

1 _INLINE_ uint32_t secure_cmp(IN const uint8_t *a,

2 IN const uint8_t *b,

3 IN const uint32_t size)

4 {

5 volatile uint8_t res = 0;

6
7 for(uint32_t i = 0; i < size; ++i) {

8 res |= (a[i] ^ b[i]);

9 }

10
11 return (0 == res);

12 }

1 // Return 0 if v1 < v2, (-1) otherwise

2 _INLINE_ uint32_t secure_l32_mask(IN const uint32_t v1,

3 IN const uint32_t v2)

4 {

5 // If v1 >= v2 then the subtraction result is 0^32||(v1-v2).

6 // else it is 1^32||(v2-v1+1).

7 // Subsequently , negating the upper

8 // 32 bits gives 0 if v1 < v2 and otherwise (-1).

9 return ~(( uint32_t )((( uint64_t)v1 - (uint64_t)v2) >> 32));

10 }

Fig. 7: secure cmp and secure l32 mask function of BIKE in pqm4.
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1 .L26:

2 .loc 1 69 5 is_stmt 1 view .LVU627

3 ldrb r2, [r5, #1]!

4 .LVL169:

5 .loc 1 69 9 view .LVU629

6 ldrb r4, [r1, #1]!

7 ldrb r3, [sp, #18]

8 eors r2, r2, r4

9 orrs r3, r3, r2

10 .loc 1 68 3 view .LVU630

11 cmp r0 , r5

12 .loc 1 69 9 view .LVU631

13 strb r3, [sp, #18]

14 .LVL170:

15 .loc 1 68 3 view .LVU632

16 bne .L26

17 .LBE629:

18 .loc 1 72 3 is_stmt 1 view .LVU633

19 .LVL171:

20 .loc 1 72 13 is_stmt 0 view .LVU634

21 ldrb r2, [sp, #18]

22 .LBE628:

23 .LBE627:

24 .loc 2 278 16 view .LVU635

25 ldr r3 , [sp , #20]

26 cmp r2 , #0

27 ite ne

28 movne r3 , #0

29 andeq r3 , r3 , #1

30 str r3 , [sp , #20]

31 .loc 2 282 3 is_stmt 1 view .LVU636

32 .loc 2 282 10 is_stmt 0 view .LVU637

33 ldr r2 , [sp , #20]

34 .LVL172:

35 .LBB630:

36 .LBI630:

37 .loc 1 113 19 is_stmt 1 view .LVU638

38 .LBB631:

39 .loc 1 140 3 view .LVU639

40 .loc 1 140 37 is_stmt 0 view .LVU640

41 rsbs r2, r2, #0

42 sbc r3 , r3 , r3

43 .loc 1 140 10 view .LVU641

44 mvns r5, r3

Fig. 8: Assembly code of BIKE’s comparison in pqm4
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1 // Generate shared secret ss <- H(m||ct)

2 // or output ss <- H(s||ct)

3 EphemeralKeyGeneration_A(ephemeralsk_ , c0_);

4 if (memcmp(c0_ , ct, CRYPTO_PUBLICKEYBYTES) != 0) {

5 memcpy(temp , sk, MSG_BYTES );

6 }

7 memcpy (&temp[MSG_BYTES], ct, CRYPTO_CIPHERTEXTBYTES );

8 shake256(ss, CRYPTO_BYTES , temp ,

9 CRYPTO_CIPHERTEXTBYTES+MSG_BYTES );

Fig. 9: SIKE’s comparison in pqm4

1 bl memcmp

2 .loc 5 88 8 view .LVU4945

3 cbnz r0, .L500

4 .L495:

5 .loc 5 91 5 is_stmt 1 view .LVU4946

6 mov r1 , r4

7 add r0 , sp , #508

8 mov r2 , #346

9 bl memcpy

10 .loc 5 92 5 view .LVU4947

11 mov r0 , r8

12 add r2 , sp , #492

13 mov r3 , #362

14 movs r1, #16

15 bl shake256

16 .loc 5 94 5 view .LVU4948

17 .loc 5 95 1 is_stmt 0 view .LVU4949

18 movs r0, #0

19 add sp , sp , #856

20 .cfi_remember_state

21 .cfi_def_cfa_offset 24

22 pop {r4 , r5 , r6 , r7 , r8 , pc}

23 .L500:

24 .cfi_restore_state

25 .loc 5 89 9 is_stmt 1 view .LVU4950

26 ldr r0 , [r5]

27 ldr r1 , [r5 , #4]

28 ldr r2 , [r5 , #8]

29 ldr r3 , [r5 , #12]

30 add r5 , sp , #492

31 .loc 5 89 9 is_stmt 0 view .LVU4951

32 stmia r5!, {r0 , r1 , r2 , r3}

33 b .L495

Fig. 10: Assembly code of SIKE’s comparison in pqm4
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Fig. 11: Experimental setup overview.

Table 5: Numbers of failures and successes when we conducted 100 skip attacks
on each scheme

Name # failures # Successes # required queries Expected time [s]

Kyber – Kyber512 60 52 5908 626
NTRU – ntruhps2048509 74 46 2235 384
Saber – LightSaber 33 33 15515 1, 567

BIKE – Bikel1 49 34 - -
SIKE – sikep434 30 15 1787 19, 478

6 Experimental Attacks

In this section, we conduct the experimental skip attacks on the pqm4 imple-
mentation of the above mentioned KEM schemes. The target schemes in this
section are Kyber, NTRU, Saber, BIKE, and SIKE, which were shown to be
attackable by a single fault injection in the previous section. In this experiment,
we used the parameters of the security level 1 for all schemes.

6.1 Setup

Figure 11 shows the experimental environment. The target chip under attack is
an STM32F415 microcontroller with an ARM Cortex M4 core, which is a de-
facto standard platform to evaluate software implementation of schemes running
in NIST’s PQC process. The target device is mounted on a ChipWhisperer cw308
UFO baseboard, which enables us to perform fault-injection attacks using a
glitchy clock. The ChipWhisperer cw1200 capture box is used to generate the
base clock, and the clock frequency was set to 24 MHz. The glitch parameters
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for instruction skipping were searched by sweeping the parameters to find the
one that successfully skips the instruction. We use the implementation in pqm4
for each KEM scheme, and “O3” was specified as an optimization option during
compilation.

6.2 Results

Table 5 reports the experimental results of the proposed skip attacks. In Table 5,
we show the number of times when a fault occurred on the device and the number
of successful instruction skips when we performed 100 fault injections for each
scheme. Also, the table shows the number of required queries to recover the secret
key from each scheme using fault injection.1819 These required query numbers
are calculated by multiplying the minimum required number of queries for a
key-recovery attack and the inverse of the success rate of a skip attack. We only
omitted the number of required queries for the case of BIKE in this table because
it is difficult to fully recover the secret key. We also show the expected time to
recover the secret key for each scheme. From the table, we confirm that the
probability of a successful attack was about 15-50%, and there is a difference in
the probability of successful attacks among Saber, Kyber, and NTRU, although
the fault-injection capability is almost the same. This would be because of the
difference in instructions before and after the call of the cmov function that
affects the state of pipeline registers in the microcontroller.

In addition, in this experiment, the injected faults did not always cause a
single instruction skip as expected and sometimes crashed the device, which
led to a non-negligible cost for an oracle access. A similar phenomenon was also
observed in [60] in fault-injection attacks on lattice KEMs using ChipWhisperer,
and more sophisticated equipment for fault injection should achieve higher attack
stability.

7 Countermeasure

Default fail: The one of major countermeasures is the ‘default fail’ technique,
which initiates a variable with the fail result and if a condition is satisfied then
the variable is overwritten by the sensitive data [32].

Recall Saber’s decapsulation in Figure 4: We want to compute K =
H(K̄ ′,H(ct)) or H(s,H(ct)) depending on the re-encryption test result, where
K̄ ′ is computed from the decrypted result m′ and pk and s is a secret seed. If
we skip the function call of cmov, then K̄ ′ in kr is unchanged and we obtain
K = H(K̄ ′,H(ct)) as the faulty decapsulation result. According to the ’default
fail’ technique, we put a secret seed s as the default value of kr and apply cmov

18 In practice, we may need more queries than the values shown in the table, because
the value of the secret key may occasionally carry an error due to an inserted fault.
For simplicity, we ignore such situations here.

19 On Saber and Kyber, we have trade-offs between the number of expected queries
and efficiency. In this table, we use ` = 1.
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to overwrite s by K̄ ′ depending on the value flag. (In addition, we will need to
clear the original K̄ ′.) If it was, then skipping cmov results in K = H(s,H(ct))
irrelevant to the decrypted result m′.

Moreover, a concrete assembly-level implementation of conditional branch
resistant to single instruction skipping by default fail was presented in [32]. Their
countermeasure enables that sensitive instruction(s) should be performed only if
a condition is surely tested and satisfied. In other words, if the condition test is
skipped by a single-fault attack, the implementation with their countermeasure
always outputs the rejection.

Instruction duplication: The other major countermeasures is the ‘assembly-level
instruction duplication’ technique: If every instructions are duplicated carefully,
then a single-fault instruction skipping attack is ineffective. See, e.g., [12] for the
effectiveness and cost.

Random delay: Random delays are yet another major countermeasure of fault-
injection analysis. If a random delay is inserted, then it is hard to determine the
timing for injecting a fault. See, e.g., [24] for such technique.

8 Conclusion

From the viewpoint of fault-injection attacks, we have investigate all NIST PQC
Round 3 KEM candidates, which use variants of the FO transformation. We
survey effective key-recovery attacks if we can skip the equality test.

We found the existing key-recovery attacks against Kyber, NTRU, Saber,
FrodoKEM, HQC, and SIKE (Table 2). We have proposed a new key-recovery
attack against ntrulpr of NTRU Prime. We also pointed out trade-offs between
the number of queries and computational costs when the target is Kyber, Saber,
or ntrulpr. We also reported attacks against sntrupr of NTRU Prime and BIKE
that lead to leakage of information of secret keys.

The open-source pqm4 library contains Kyber, NTRU, Saber, BIKE,
FrodoKEM, NTRU Prime, and SIKE. We show that giving a single instruction-
skipping fault in the decapsulation processes leads to skipping the equality test
virtually for Kyber, NTRU, Saber, BIKE, and SIKE. We also report the im-
plementation of NTRU Prime allows chosen-ciphertext attacks freely and the
timing side-channel of FrodoKEM reported in Guo et al. [38] remains.

Finally, we have reported the experimental attacks against Kyber, NTRU,
Saber, BIKE, and SIKE on pqm4. We also discuss possible countermeasures.
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18. Blömer, J., Günther, P.: Singular curve point decompression attack. In: FDTC
2015. pp. 71–84. IEEE Computer Society (2015).
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