
Fine-tuning the ISO/IEC Standard LightMAC

Soumya Chattopadhyay1, Ashwin Jha2, and Mridul Nandi1

1 Indian Statistical Institute, Kolkata, India
2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

s.c.2357@gmail.com,ashwin.jha@cispa.de,mridul.nandi@gmail.com

Abstract. LightMAC, by Luykx et al., is a block cipher based message
authentication code (MAC). The simplicity of design and low overhead
allows it to have very compact implementations. As a result, it has been
recently chosen as an ISO/IEC standard MAC for lightweight applica-
tions. LightMAC has been shown to achieve query-length independent
security bound of O(q2/2n) when instantiated with two independently
keyed n-bit block ciphers, where q denotes the number of MAC queries
and the query-length is upper bounded by (n − s)2s bits for a fixed
counter size s. In this paper, we aim to minimize the number of block ci-
pher keys in LightMAC. First, we show that the original LightMAC instan-
tiated with a single block cipher key, referred as 1k-LightMAC, achieves
security bound of O(q2/2n) while the query-length is at least (n−s) bits
and at most (n − s) min{2n/4, 2s} bits. Second, we show that a minor
variant of 1k-LightMAC, dubbed as LightMAC-ds, achieves security bound
of O(q2/2n) while query-length is upper bounded by (n−s)2s−1 bits. Of
independent interest, our security proof of 1k-LightMAC employs a novel
sampling approach, called the reset-sampling, as a subroutine within the
H-coefficient proof setup.

Keywords: LightMAC, MAC, PRF, single-key, lightweight, ISO/IEC standard

1 Introduction

Lightweight cryptography endeavors to safeguard communications in resource-
constrained environments. The advent of Internet of Things has given a great
impetus to this field of research in the last decade or so. As a result, several stan-
dardization efforts have tried to systematize the field, most notably the CAESAR
competition [1], NIST lightweight cryptography standardization project [2], and
the ISO/IEC standardization [3]. Specifically, the ISO/IEC 29192-6:2019 stan-
dard [3] specifies three message authentication code (or MAC) algorithms for
lightweight applications. MACs are symmetric-key primitives that achieve data

Soumya Chattopadhyay and Mridul Nandi are supported by the project “Study
and Analysis of IoT Security” under Government of India at R. C. Bose Centre for
Cryptology and Security, Indian Statistical Institute, Kolkata. Ashwin Jha’s work
was carried out in the framework of the French-German-Center for Cybersecurity, a
collaboration of CISPA and LORIA.

mailto:s.c.2357@gmail.com,ashwin.jha@cispa.de,mridul.nandi@gmail.com

2 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

authenticity and integrity. The ISO/IEC standard recommends LightMAC [4],
Tsudik’s keymode [5] and Chaskey-12 [6] as the three MAC algorithms. In this
paper, we focus on LightMAC.

LightMAC, by Luykx et al. [4], is a parallelizable block cipher-based MAC.
For an n-bit block cipher E instantiated with keys K1 and K2, and a global
parameter s < n, a simplified1 version of LightMAC can be defined as:

LightMACK1,K2
(m) := EK2

(EK1
(x[1])⊕ · · · ⊕EK1

(x[`− 1])⊕m[`]‖10s−1), (1)

where (m[1], . . . ,m[`]) denotes the (n − s)-bit parsing of the input message m,
and x[i] = 〈i〉s‖m[i] for 1 ≤ i ≤ ` − 1, where 〈i〉s denotes the s-bit binary
representation of i. For obvious reasons s is also called the counter size. The
counter-based encoding in LightMAC is inherited from some earlier MAC designs
such as the XOR MACs by Bellare et al. [7] and Bernstein’s protected counter
sums [8]. The use of counter-based encoding limits the rate—ratio of the number
of n-bit blocks in the message m to the number of block cipher calls required
to process m. For example, LightMAC requires 4 calls to process a message of
length 3n bits when the counter size s = n/4, whence the rate is 3/4. Ideally,
the rate should be as high as possible, with rate 1 or higher considered as holy
grail. Dutta et al. [9] give optimal counter-based encoding strategies for some
scenarios, resulting in significant speed-up. However, LightMAC still falls short
on this account when compared to some other MAC schemes such as OMAC [10]
and PMAC [11] etc.

However, LightMAC design is quite simple as it minimizes all auxiliary opera-
tions other than the block cipher call, which reduces the overhead to a minimum.
For this reason, LightMAC is expected to have more compact implementations
as compared to PMAC. Further, LightMAC is parallelizable like PMAC which en-
ables it to exploit the parallel computing infrastructure, whenever available. As
a result, LightMAC is a quite flexible algorithm, as it has qualities suitable for
both memory-constrained environments as well as high performance computing.

Query-Length Independence: Yet another avenue where LightMAC gains
over several other MAC schemes is its security guarantee. Many MAC algo-
rithms, including PMAC and OMAC, have security bounds which degrade linearly
with the query-length. Apparently, some sort of dependence on query-length is
unavoidable in iterated MAC schemes. However, LightMAC is shown to have
query-length independent security bounds.

It is well-known [12,13] that variable input length (VIL) pseudorandom func-
tions (or PRFs) are good candidates for deterministic MACs. Indeed, almost all
the security bounds on deterministic MAC schemes, in fact, quantify their PRF
security. In the following discussion q and ` denote the number of queries and
the bound on query-lengths, respectively.

Luykx et al. [4] showed that LightMAC achieves O(q2/2n) bound on the
success probability of any adversary (also referred as the PRF advantage). This

1 assuming all messages have length (n− s)r for some 1 ≤ r ≤ 2s.

Fine-tuning the ISO/IEC Standard LightMAC 3

bound is independent of the query-length `, apart from the obvious bound of
` ≤ (n− s)2s.

In comparison, arguably the most popular parallelizable MAC, PMAC, suf-
fers from a linear degradation in security with increase in query-length. Some
birthday-bound (PRF advantage is at least q2/2n) variants (or extensions) of
PMAC, like PMAC with parity [14] and PMAC3 [15], do achieve query-length in-
dependence for a wide range of ` values. However, this costs significant increase
in design complexity, such as more than two-fold increase in memory usage and
relatively complex auxiliary operations like multiple masking operations or gen-
erating error correcting codes.

The situation does not improve much, when we consider birthday-bound se-
quential modes either. Schemes like CBC-MAC [16], XCBC [17] and OMAC exhibit
similar degradation in security with increase in query-length as PMAC. EMAC
[18,19] achieves query-length independence with slightly higher PRF advantage
of O(q/2n/2) while ` ≤ 2n/4. However, EMAC only works for messages with
“multiple-of-n” length. One can extend the construction to arbitrary domain by
either using extra block cipher keys, as in ECBC and FCBC [17], or apply some
injective padding rule on the input message before processing it through EMAC.

Beyond-the-birthday bound (BBB) secure constructions such as Sum-ECBC
[20], PMAC+ [21], 3kf9 [22], PMACx [23], 1k-PMAC+ [24], and LightMAC+ [25],
can also achieve query-length independent security bounds for a wide range of
values of `. However, these constructions require significantly more memory and
additional operations (due to the BBB security requirement) as compared to
LightMAC.

1.1 Motivation

ISO standards are widely used in communication protocols such as TLS, Blue-
tooth protocol, Zigbee etc. Being an ISO standard for lightweight cryptography,
LightMAC is also widely recognized as a suitable MAC candidate for deployment
in resource-constrained environments. Possibly, its simple and compact design
and query-length independent security are the main reasons behind this percep-
tion. On a closer look, we see that the two independent keys greatly simplify
the security argument of LightMAC. Due to the independence of keys, it can be
viewed as an instance of the Hash-then-PRF paradigm [26,27], and hence the
PRF security bound follows directly from LightMAC output collision probability.

However, maintaining two block cipher keys could be a burden in memory-
constrained environments. Currently LightMAC with 2 keys requires 256 bits for
key (128-bit block cipher key). Instead, one-key variants of LightMAC use 128
bits, which is a significant optimization in memory footprint both in hardware
and software. The problem is further aggravated when implementations store
precomputed round keys to reduce latency. For example, in case of AES128 [28],
this precomputation would require 176 bytes of memory per key. This motivates
us to look into the problem of minimizing the number of keys in LightMAC, while
maintaining the query-length independence. Specifically, we ask the following
question:

4 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

† : Is there a single-key LightMAC variant which achieves similar query-length
independent bounds as two-key LightMAC?

As it turns out, the answer to this question is not straightforward. Recall the
description of LightMAC from Eq. (1). Let yi := EK1(xi) and y⊕ := y1 ⊕ · · · ⊕
y`−1 ⊕ m`‖10s−1. We call xi and yi the i-th intermediate input and outputs,
respectively and y⊕ and t = EK2

(y⊕) the final input and output, respectively.
There are two non-trivial bottlenecks (see section 3.2) in answering the above
questions:

1. Collisions between intermediate input and final input, and

2. Collisions between intermediate output and final output.

The naive way to handle these two cases is to bound the probability of these
events to O(q2`/2n) as there are at most q` intermediate inputs/outputs and q
final inputs/outputs. Clearly, this naive approach leads to a degradation in the
security. So,

? : we need a more sophisticated strategy to prove the security of single-key
LightMAC.

Yet another approach is to explicitly separate the final inputs from intermediate
inputs by fixing some input bit to 0 in intermediate inputs and 1 in final inputs.
This will help in resolving the first bottleneck. However, the second bottleneck
is still present. Hence, the resulting construction is not as straightforward as
two-key LightMAC. Further, domain separation also introduces slight changes in
the standardized design, which is not appreciated by end-users, in general. So,

?? : variants with very small modifications over the original LightMAC
algorithm will be preferred.

In this paper, we aim to answer † in affirmative using ? and ?? as general
guidelines.

1.2 Our Contributions

Our contributions are twofold:

First, in section 4, we show that single-key LightMAC, denoted as 1k-LightMAC,
is as secure as two-key LightMAC, while the query-lengths are lower bounded by
(n − s) bits and upper bounded by (n − s) min{2n/4, 2s} bits. In other words,
we show a security bound of O(q2/2n) for 1k-LightMAC, while (n − s) ≤ ` ≤
(n− s) min{2n/4, 2s}.

In order to circumvent the two bottlenecks discussed in section 1.1, we use
a novel sampling approach, called the reset-sampling – a proof style much in
the same vein as the reprogramming of random oracles [29]. At the highest
level, reset-sampling can be viewed as a subroutine in H-coefficient [30,31] or
Expectation method [32] based proofs that can be employed in order to transform

Fine-tuning the ISO/IEC Standard LightMAC 5

Table 1.1: A comparative summary of several birthday-bound block cipher based
MAC algorithms. Here q denotes the number of queries, ` denotes the bound on query-
length, and s denotes the counter size.

Mode #BC Keys Aux. memory1 PRF Bound Restriction2

EMAC [18,19] 2 0 O
(

q

2n/2

)
[33] ` ≤ n2n/4

ECBC,FCBC [17] 3 0 O
(

q

2n/2

)
[34] ` ≤ n2n/4

XCBC [17] 1 2n O
(
q2`
2n

)
[35] ` ≤ n2n/3

OMAC [10] 1 n O
(
q2`
2n

)
[36] ` ≤ n2n/4

PMAC [11] 1 n Θ(q
2`
2n) [35,37,38] -

PMAC3 [15] 2 3n O
(
q2

2n

)
[15,39] ` ≤ n2n/2

LightMAC [4,3] 2 s O
(
q2

2n

)
[4] ` ≤ (n− s)2s

1k-LightMAC 1 s O
(
q2

2n

)
(n− s) ≤ ` ≤ (n− s)min{2n/4, 2s}

LightMAC-ds 1 s O
(
q2

2n

)
` ≤ (n− s)2s−1

1 The memory used to store masking keys or counter value.
2 Upper bound on query-lengths for which the given security bound holds.

a possibly bad transcript into a good transcript given that certain conditions
are fulfilled. In other words, it resets some bad transcript into a good transcript.
For example, in our analysis we reset the intermediate outputs appropriately
whenever the corresponding intermediate input collides with some final input.

Second, in section 5, we propose a close variant of 1k-LightMAC, dubbed as
LightMAC-ds, and show that LightMAC-ds is asymptotically as secure as two-key
LightMAC, i.e., it achieves security bound of O(q2/2n) while ` ≤ (n − s)2s−1.
The restriction on length is due to the loss of 1-bit from counter for domain
separation.

Table 1.1 gives a comparison of LightMAC, 1k-LightMAC, and LightMAC-ds
with several popular birthday-bound block cipher based MAC mode of operation.
We deliberately refrain from enumerating beyond-the-birthday bound modes for
a fair comparison, as they require relatively more memory and/or key material
(due to the BBB security requirement). From the table, it is clear that the three
LightMAC candidates are overall better than other modes considering security
vs block cipher key size and security vs auxiliary memory. Further, 1k-LightMAC
is almost as good as LightMAC and LightMAC-ds as long as (n − s) ≤ ` ≤
(n−s) min{2n/4, 2s}. Note that, the lower bound on ` is necessary to avoid some
trivial collision events (see section 3.2 for further details). Similarly, LightMAC-
ds is as good as LightMAC as long as ` ≤ (n− s)2s−1.

Practical Significance: Our results are restricted in terms of the length of
messages, especially, 1k-LightMAC which effectively bounds the message length

6 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

to roughly 235.5 bytes for 128-bit block size. However, we believe that this is a
minor issue. Indeed, many real life communication protocols limit the message
lengths to much less than 1 Gigabyte. For example, SRTP [40] limits the pay-
load length to at most 1 Megabyte. So, the impact of length restriction could,
in fact, be minimal in most applications. Furthermore, we emphasize that 1k-
LightMAC can be used as a drop-in replacement, since the required changes are
minimal. This is particularly a compelling feature for the intended application
area of the ISO/IEC-29192-6:2019 standard, i.e. resource constrained environ-
ments, where additional deployment or maintenance cost is highly undesirable. In
summary, our results have significant practical importance due to the ISO/IEC
standardization of LightMAC and the inherent advantages of 1k-LightMAC and
LightMAC-ds over LightMAC.

2 Preliminaries

Notational Setup: For n ∈ N, [n] denotes the set {1, 2, . . . , n}. The set of
all bit strings (including the empty string) is denoted {0, 1}∗. The length of any
bit string X ∈ {0, 1}∗, denoted |X|, is the number of bits in X. For n ∈ N,
{0, 1}n denotes the set of all bit strings of length n, and {0, 1}≤n :=

⋃n
i=0{0, 1}i.

For any A,B ∈ {0, 1}∗, we write A‖B to denote the concatenation of A and B.

For n ∈ N and X ∈ {0, 1}∗, (X1, . . . , Xl)
n←− X denotes the n-bit parsing of X

where |Xi| = n for all 1 ≤ i ≤ l − 1 and 0 ≤ |Xl| ≤ n − 1. For any n ∈ N
and M ∈ {0, 1}∗, we define padn(M) := M‖10d where d is the smallest integer
such that |padn(M)| is a multiple of n. For i,m ∈ N such that i < 2m, we define
〈i〉m as the m-bit binary encoding of the integer i. For 0 ≤ k ≤ n, we define
the falling factorial (n)k := n!/(n− k)! = n(n− 1) · · · (n− k + 1). The set of all
functions from X to Y is denoted F(X ,Y), and the set of all permutations of X
is denoted P(X). We simply write F(a, b) and P(a), whenever X = {0, 1}a and
Y = {0, 1}b.

For a pair of q-tuples X̃ = (X1, . . . , Xq) and Ỹ = (Y1, . . . , Yq), (X̃, Ỹ) denotes
the 2q-tuple (X1, . . . , Xq, Y1, . . . , Yq). Similarly, one can extend notation for more

than 2 tuples. Two q-tuples X̃ and Ỹ are said to be permutation compatible,
denoted as X̃ ! Ỹ , if (Xi = Xj) ⇐⇒ (Yi = Yj), for all i 6= j. By an abuse of

notation, we also use X̃ to denote the set {Xi : i ∈ [q]}.
For a finite set X , X←$X denotes the uniform at random sampling of X

from X , and X̃←#X denotes the without replacement sampling of a tuple X̃
from the set X .

A Useful Lemma: The following result from linear algebra will be very useful
in later analysis.

Lemma 2.1. Let (Y1, . . . ,Yl)←#S ⊂ {0, 1}n with |S| = N > l. Let A be a

k× l binary matrix with rank r. We write the column vector (Y1, . . . ,Yl)
tr as Ỹ.

Then, for any c ∈ ({0, 1}n)k, we have

Pr
[
A · Ỹ = c

]
≤ 1

(N − l)r

Fine-tuning the ISO/IEC Standard LightMAC 7

Proof. Since the rank of the matrix A is r, we can identify 1 ≤ i1 < · · · < ir ≤ l
such that Yi1 , . . .Yir will be uniquely determined by fixing the value for the
remaining l− r variables. By conditioning on the values of these l− r variables,
the probability that A · Ỹ = c is bounded by at most 1

(N−l+r)r which is less than
1

(N−l)r . ut

We will often employ this lemma for k ≥ 2 cases.

2.1 Security Definitions

Distinguishers: A (q, T)-distinguisher A is an oracle Turing machine, that
makes at most q oracle queries, runs in time at most T , and outputs a single
bit. For any oracle O, we write A O to denote the output of A after its in-
teraction with O. By convention, T = ∞ denotes computationally unbounded
(information-theoretic) and deterministic distinguishers. In this paper, we as-
sume that the distinguisher is non-trivial, i.e., it never makes a duplicate query.
Let A(q, T) be the class of all non-trivial distinguishers limited to q queries and
T computations.

Pseudorandom Function: A (K,X ,Y)-keyed function F with key space K,
domain X , and range Y is a function F : K × X → Y. We write FK(X) for
F (K,X).

The pseudorandom function or PRF advantage of any distinguisher A against
a (K,X ,Y)-keyed function F is defined as

Advprf
F (A) = AdvF ;Γ(A) :=

∣∣∣∣ Pr
K←$K

[
A FK = 1

]
− Pr

Γ←$F(X ,Y)

[
A Γ = 1

]∣∣∣∣ . (2)

The PRF security of F against A(q, T) is defined as

Advprf
F (q, T) := max

A∈A(q,T)
Advprf

F (A).

Pseudorandom Permutation: A (K, {0, 1}n)-block cipher E with key space
K and block space {0, 1}n is a (K, {0, 1}n, {0, 1}n)-keyed function, such that
E(K, ·) is a permutation over {0, 1}n for any key K ∈ K. We write EK(X) for
E(K,X).

The pseudorandom permutation or PRP advantage of any distinguisher A
against a (K, {0, 1}n)-block cipher E is defined as

Advprp
E (A) = AdvE;Π(A) :=

∣∣∣∣ Pr
K←$K

[
A EK = 1

]
− Pr

Π←$P(n)

[
A Π = 1

]∣∣∣∣ . (3)

The PRP security of E against A(q, T) is defined as

Advprp
E (q, T) := max

A∈A(q,T)
Advprp

E (A).

8 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

2.2 H-coefficient Technique

The H-coefficient technique by Patarin [30,31] is a tool to upper bound the
distinguishing advantage of any deterministic and computationally unbounded
distinguisher A in distinguishing the real oracle R from the ideal oracle I. The
collection of all queries and responses that A made and received to and from
the oracle, is called the transcript of A , denoted as τ .

Let R and I denote the transcript random variable induced by A ’s interaction
with R and I, respectively. Let T be the set of all transcripts. A transcript
τ ∈ T is said to be attainable if Pr [I = τ] > 0, i.e., it can be realized by A ’s
interaction with I. Following these notations, we state the main result of H-
coefficient technique in Theorem 2.1. A proof of this theorem is available in
multiple papers, including [41,42].

Theorem 2.1 (H-coefficient). For ε1, ε2 ≥ 0, suppose there is a set Tbad ⊆ T ,
that we call the set of all bad transcripts, such that the following conditions hold:

– Pr [I ∈ Tbad] ≤ ε1; and

– For any τ /∈ Tbad, τ is attainable and
Pr [R = τ]

Pr [I = τ]
≥ 1− ε2.

Then, for any computationally unbounded and deterministic distinguisher A , we
have

AdvR;I(A) ≤ ε1 + ε2.

3 Revisiting LightMAC

LightMAC is a block cipher-based parallelizable PRF construction by Luykx et
al. [4]. It uses a counter-based encoding of input message blocks, much in the
same vein as some of the previously proposed constructions like XMACC and
XMACR [7] and protected counter sums [8]. Algorithm 3.1 gives the algorithmic
description of LightMAC and Figure 3.1 gives a pictorial illustration.

Throughout the rest of this paper, we refer to x[i] and y[i] as intermediate
input and output, respectively, for all i ∈ [`− 1] and y⊕ and t are referred as the
final input and output, respectively.

Note that, the block size n and counter size s are application specific pa-
rameters that are fixed before any invocation. In order to argue the security of
LightMAC, we must have 〈i〉s 6= 〈j〉s. When i = 2s + j for some j ∈ [2s − 1],
then 〈i〉s = 〈j〉s. So, the maximum number of blocks in the padded message,
denoted `max, must be less than 2s. This will ensure that all the counters will
be different.

3.1 Hash-then-PRP and the Security of LightMAC

For some ε ≥ 0, a (K, {0, 1}≤(n−s)2s , {0, 1}n)-keyed function H is called an ε-
universal hash function if for all distinct m,m′ ∈ {0, 1}≤(n−s)2s , we have

Pr
K←$K

[HK(m) = HK(m′)] ≤ ε.

Fine-tuning the ISO/IEC Standard LightMAC 9

Algorithm 3.1 LightMAC based on an n-bit block cipher E instantiated with
two keys K1,K2. Here s denotes the counter size.

1: function LightMACEK1
,EK2

(m)

2: y⊕ ← 0n

3: (m[1], . . . ,m[`])
n−s←−−− m

4: for i = 1 to `− 1 do
5: x[i]← 〈i〉s‖m[i] . encoding 〈i〉s and m[i] into x[i]
6: y[i]← EK1(x[i]) . encrypting the encoded input
7: y⊕ ← y⊕ ⊕ y[i] . accumulating the intermediate output
8: end for
9: y⊕ ← y⊕ ⊕ padn(m[`]) . accumulating final block of message

10: t← EK2(y⊕) . tag generation
11: return t
12: end function

EK1 EK1
. . . EK1

〈1〉s‖m[1] 〈2〉s‖m[2] 〈`− 1〉s‖m[`− 1]

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕ EK2 t. . .

padn(m[`])

Fig. 3.1: LightMAC evaluated over an `-block padded message m.

Universal hash functions are very useful in constructing PRFs via the Hash-
then-PRP2 paradigm [26,38]. In this paradigm, given independently keyed ε-
universal hash function HK and block cipher EK′ , we define the Hash-then-PRP
composition as EK′ ◦HK . It is well-known that

Advprf
EK′◦HK

(q, T) ≤ Advprp
E (q, T ′) +

(
q

2

)(
1

2n
+ ε

)
, (4)

where T ′ = T + qO(TE) and TE denotes the runtime of E.
We skip the proof of this result as it is available in multiple papers including

[38,43]. An informal justification for Eq. (4) is based on the observation that if
the input to EK′ is distinct for all q queries then the outputs behave as “almost
uniform at random”. The probability that some inputs to EK′ collide is bounded
by
(
q
2

)
ε.

PRF Security of LightMAC: Consider a (K, {0, 1}≤(n−s)2s , {0, 1}n)-keyed
function LightHash, defined by the following mapping:

∀m ∈ {0, 1}≤(n−s)2
s

, LightHashEK1
(m) := y⊕,

2 Here, we say PRP instead of PRF to highlight the use of block cipher based final-
ization.

10 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

where y⊕ is the final input corresponding to m in LightMACEK1
,EK2

(m). Now, we
can view LightMAC as an instantiation of Hash-then-PRP, by redefining Light-
MAC as

LightMACEK1
,EK2

(m) := EK2(LightHashEK1
(m)).

Suppose, LightHashΠ1
is an εLH-universal hash for Π1←$P(n). Then, using Eq.

(4), we have

Advprf
LightMAC(q, T) ≤ 2Advprp

E (σ, T ′) +

(
q

2

)(
1

2n
+ εLH

)
, (5)

where σ denotes the total number of blocks in all q padded queries, and T ′ =
T + σO(TE) and TE denotes the runtime of E.

In [4,9], it has been shown that εLH ≤ 1/(2n − 2`max), where `max is the
upper bound on the query-length in blocks. It is simply because for any m 6= m′

with lengths `, `′ respectively, the event LightHashΠ1
(m) = LightHashΠ1

(m′) is
identical with

`−1⊕
i=1

Π1(x[i])

`′−1⊕
j=1

Π1(x′[j]) = padn(m[`])⊕ padn(m′[`′]). (6)

Now, since m 6= m′, either (x[1], . . . , x[`− 1]) 6= (x′[1], . . . , x′[`′ − 1]), or

(x[1], . . . , x[`− 1]) = (x′[1], . . . , x′[`′ − 1]) ∧ padn(m[`]) 6= padn(m′[`′]).

The second case has zero probability. In the first case, assuming ` ≥ `′, we have
at least one block say x[i] which is distinct from all other blocks. Then, the
probability of the event defined in Eq. (6) can be bounded above by probability
that Π1(x[i]) attains a certain value conditioned on the output of Π1 on all other
x[j] and x′[j′] values for j ∈ [`−1]\{i} and j′ ∈ [`′−1]. There are at most 2`max

such values, i.e., Π1 is already sampled on at most 2`max points. Therefore, the
probability is bounded above by 1/(2n − 2`max).

By combining this bound with Eq. (5), we get the desired result for LightMAC
in the following proposition.

Proposition 3.1. For `max < min{2n−2, 2s}, we have

Advprf
LightMAC(q, T) ≤ 2Advprp

E (σ, T ′) +
1.5q2

2n
,

where σ denotes the total number of blocks in all q padded queries, and T ′ =
T + σO(TE) and TE denotes the runtime of E.

3.2 Bottlenecks for Single-key LightMAC

We have just seen that the query-length independent security argument for Light-
MAC comes quite easily from the Hash-then-PRP paradigm. This is possible
because K1 and K2 are independent of each other. A natural direction to explore

Fine-tuning the ISO/IEC Standard LightMAC 11

eK . . . eK . . . eK

∗ Xi[j] ∗

⊕⊕⊕. . . ⊕⊕⊕ ⊕⊕⊕ eK ∗. . .

... ...

∗

∗

...

eK eK

∗

. . . eK

∗ ∗

...

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕. . . eK ∗

...
...

Y ⊕i′

eK . . . eK . . . eK

∗ ∗ ∗

⊕⊕⊕. . . ⊕⊕⊕ ⊕⊕⊕ eK ∗. . .

...
...

∗

Yi[j]

∗

...

eK eK

∗

. . . eK

∗ ∗

...

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕. . . eK Ti′

...
...

Fig. 3.2: Icoll (left) and Ocoll (right) events. In each case, labels with same color are
equal, and double lines between two labels signify equality between the corresponding
variables.

is the relaxation: K1 = K2 = K, i.e., LightMAC instantiated with a single key.
Formally, we define the single-key LightMAC construction as follows:

1k-LightMACEK := LightMACEK ,EK .

We remark that the additional nomenclature 1k-LightMAC is just for the sake of
brevity. Indeed, 1k-LightMAC and LightMAC are algorithmically equivalent. We
have just instantiated K1 = K2 = K.

First thing to note is that Hash-then-PRP is no longer applicable as the hash
function HK and block cipher EK are no longer independent. So, we have to look
for a dedicated proof.

Suppose the adversary makes q queries m1, . . . ,mq and the corresponding
tuple of intermediate inputs and outputs are denoted xi = (xi[1], . . . , xi[`i − 1])
and yi = (yi[1], . . . , yi[`i− 1]), respectively. Similarly, the final input and output
for the q queries is denoted y⊕i and ti, respectively. Consider the events:

Icoll : ∃(i, a) ∈ [q]× [`i − 1], j ∈ [q], such that xi[a] = y⊕j ;

Ocoll : ∃(i, a) ∈ [q]× [`i − 1], j ∈ [q], such that yi[a] = tj ;

Icoll denotes the event that a final input collides with some intermediate input
and Ocoll denotes the analogous event for output collisions (see Figure 3.2).

In a dedicated proof we must take care of these cases as they may lead to
inconsistent transcripts. For example, it is possible that xi[a] = y⊕j (Icoll holds)
but yi[a] 6= tj or vice-versa. The probability of realizing such a transcript is zero
in the real world. In fact, one can easily create such inconsistencies by first

12 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

making a query m1 = 〈1〉s, and then making another query m2 = 10n−s−1‖x,
where x is any arbitrary bit string. Clearly, x2[1] = y⊕1 , which implies that Icoll
holds. This might help an adversary to mount an attack on 1k-LightMAC as it
can access the internal variables using very short queries. Interestingly, if we
swap the positions of counter and message block, then this trivial collision is no
longer possible, and it might even be possible to show that the resulting variant
is secure. Since our aim is to study the standardized algorithm, we simply assume
that messages are at least (n − s) bits long, thereby ensuring that at least one
block cipher call is made in the hash layer. But, this only helps to avoid collisions
in the corner case. We still have to consider the possibility of Icoll and Ocoll in
the general case. We have to ensure that such inconsistencies do not occur with
high probability. A straightforward bound on these events introduces a bound
of the form O(q2`max/2

n) since there are at most q`max many (i, a) pairs and q
choices for j. However, we aim to do better than this. In the next two sections,
we show how we can handle these events in better way.

4 Security of 1k-LightMAC

This section is devoted to the PRF security of 1k-LightMAC. Throughout this
section, we assume that messages are at least (n− s)-bit long. This assumption
is used to avoid some trivial bad events, as discussed in section 3.2.

Theorem 4.1. Let q, `min, `max, σ, t > 0. For `min ≥ 2, q + 4`max ≤ 2n−1, the
PRF security of 1k-LightMAC against A(q, T) is given by

Advprf
1k-LightMAC(q, T) ≤ Advprp

E (σ + q, T ′) +
1.5q2

2n
+

7.5q3`2max

22n
+

4q4`2max

23n
+

2σ

2n
,

where q denotes the number of queries, `max (res. `min) denotes an upper (res.
lower) bound on the number of blocks in any padded query, σ denotes the total
number of blocks present in all q queries, T ′ = T + σO(TE) and TE denotes the
runtime of E.

Further assuming `max ≤ min{2n/4, 2s} and q ≤ min{2 3n
4 −2, 2

n
2−1.51}, we have

Advprf
1k-LightMAC(q, T) ≤ Advprp

E (σ + q, T ′) +
4q2

2n
+

2σ

2n
.

The proof of this theorem is described in the rest of this section. First of all, we
switch to the information-theoretic setting, i.e., EK is replaced with Π←$P(n)
via a standard hybrid argument. Formally, we have

Advprf
1k-LightMAC(q, T) ≤ Advprp

E (σ + q, T ′) + Advprf
1k-LightMACΠ

(q,∞). (7)

So it is enough to bound the PRF security of 1k-LightMACΠ, henceforth also
referred as the real oracle. We apply the H-coefficient technique to bound this
term. Fix any A ∈ A(q,∞) such that

Advprf
1k-LightMACΠ

(q,∞) = Advprf
1k-LightMACΠ

(A).

Going forward, we will bound the advantage of A .

Fine-tuning the ISO/IEC Standard LightMAC 13

4.1 Description of Oracles and their Transcripts

Real Oracle: The real oracle corresponds to 1k-LightMACΠ. It responds faith-
fully to all the queries made by A . Once the query-response phase is over, it
releases all the intermediate inputs and outputs to A .

In addition, the real oracle releases three binary variables, namely, FlagT,
FlagZ, and FlagY, all of which are degenerately set to 0. The utility of these flags
will become apparent from the description of ideal oracle. For now, it is sufficient
to note that these flags are degenerate in the real world.
Formally, we have R := (M̃, T̃, X̃, Ỹ,FlagT,FlagZ,FlagY), where

– M̃ = (M1, . . . ,Mq) denotes the q-tuple of queries made by A , where Mi ∈
{0, 1}≤(n−s)2s for all i ∈ [q]. In addition, for all i ∈ [q], let `i :=

⌊
|Mi|
n−s

⌋
+ 1.

– T̃ = (T1, . . . ,Tq) denotes the q-tuple of final outputs received by A , where
Ti ∈ {0, 1}n.

– X̃ = (X1, . . . ,Xq), where Xi denotes the intermediate input tuple for the i-th
query, i.e., for all a ∈ [`i − 1], Xi[a] = 〈a〉s‖Mi[a].

– Ỹ = (Y1, . . . ,Yq), where Yi denotes the intermediate output tuple for the

i-th query, i.e., for all a ∈ [`i − 1], Yi[a] = Π(Xi[a]). In addition, let Ỹ⊕ :=
(Y⊕1 , . . . ,Y

⊕
q), where Y⊕i :=

⊕
a∈[q] Yi[a]⊕ padn(Mi[`i]) for all i ∈ [q].

– FlagI = 0 for all I ∈ {T,Z,Y}.

Note that, X̃ is completely determined from M̃. We have included it in the
transcript just for the sake of simplicity. From the definition of 1k-LightMAC,
we know that Π(Y⊕i) = Ti for all i ∈ [q]. So, in the real world we always have

(X̃, Ỹ⊕) ! (Ỹ, T̃), i.e., (X̃, Ỹ⊕) is permutation compatible with (Ỹ, T̃). We keep
this observation in our mind when we simulate the ideal oracle.

Ideal oracle: We reuse the variable notations from the real oracle description to
represent the ideal oracle transcript I, i.e., I := (M̃, T̃, X̃, Ỹ,FlagT,FlagZ,FlagY).
This should not cause any confusion, as we never consider the random variables
R and I jointly, whence the probability distributions of the constituent variables
will always be clear from the context. The ideal oracle transcript is described
in three phases, each contingent on some predicates defined over the previous
stages. Specifically, the ideal oracle first initializes FlagT = 0, FlagZ = 0, FlagY =
0, and then follows the sampling mechanism given below:

Phase I (Query-Response Phase): In the query-response phase, the ideal

oracle faithfully simulates Γ←$F({0, 1}≤(n−s)2s , {0, 1}n). Formally, for i ∈ [q],
at the i-th query Mi ∈ {0, 1}≤(n−s)2

s

, the ideal oracle outputs Ti←$ {0, 1}n.
The partial transcript generated at the end of the query-response phase is given
by (M̃, T̃, X̃), where

– M̃ = (M1, . . . ,Mq) and T̃ = (T1, . . . ,Tq).

14 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

– X̃ = (X1, . . . ,Xq), where Xi = (Xi[1], . . . ,Xi[`i − 1]) and Xi[a] := 〈a〉s‖Mi[a]
for all (i, a) ∈ [q]× [`i − 1].

Now, we define a predicate on T̃:

BadT : ∃i 6= j ∈ [q], such that Ti = Tj .

If BadT is true, then FlagT is set to 1, and Ỹ = (Y1, . . . ,Yq) is defined degener-
ately: Yi[a] = 0n for all (i, a) ∈ [q]× [`i−1]. Otherwise, the ideal oracle proceeds
to the next phase.

Phase II (Offline Initial Sampling Phase): Onward, we must have Ti 6=
Tj whenever i 6= j, and FlagT = 0, since this phase is only executed when BadT is
false. In the offline phase, the ideal oracle initially makes the following sampling:

(Rx1
, . . . ,Rxσ′)←# {0, 1}n \ T̃,

where (x1, . . . , xσ′) is an arbitrary ordering of the set

X(X̃) := {x : x = Xi[a], (i, a) ∈ [q]× [`i − 1]}.

Next, the ideal oracle sets

– Zi[a] := Rx if x = Xi[a], for all (i, a) ∈ [q]× [`i − 1], and

– Z⊕i :=
⊕`i−1

a=1 Zi[a]⊕ padn(Mi[`i]).

At this stage we have Zi[a] = Zj [b] if and only if Xi[a] = Xj [b]. In other words,

X̃ ! Z̃. But the same might not hold for Z⊕ and T̃. Now, we define four predi-
cates on (Z̃, X̃):

BadZ1 : ∃i 6= j ∈ [q], such that Z⊕i = Z⊕j .

BadZ2 : ∃(i, a) ∈ [q]× [`i − 1], such that Xi[a] = Z⊕i .

BadZ3 : ∃i 6= j 6= k ∈ [q], a 6= b ∈ [`i − 1], such that

(Xi[a] = Z⊕j) ∧ (Xi[b] = Z⊕k).

BadZ4 : ∃i 6= j 6= k ∈ [q], a ∈ [`i − 1], b ∈ [`j − 1], such that

(Xi[a] = Z⊕j) ∧ (Xj [b] = Z⊕k).

We write BadZ := BadZ1 ∨ BadZ2 ∨ BadZ3 ∨ BadZ4. Looking ahead momentarily,
BadZ will represent bad scenarios that are difficult to fix in the third stage.
For example, BadZ1 leads to permutation incompatibility between Z⊕ and T̃
which is not desirable. We will discuss utility of the other three predicates in the
description of next phase.

Fine-tuning the ISO/IEC Standard LightMAC 15

If BadZ is true, then FlagZ is set to 1, and Ỹ = (Y1, . . . ,Yq) is again defined
degenerately, as in the case of BadT. Otherwise, the ideal oracle proceeds to the
next phase.

Phase III (Offline Resetting Phase): At this point, we know that BadZ is
false. In this phase, we will define the complete transcript generated in the ideal
world, i.e., I, by appropriately defining Ỹ. Remember, our goal is to maintain
(X̃, Ỹ⊕) ! (Ỹ, T̃).

Definition 4.1 (full collision index). Any query index i ∈ [q] is called a full
collision index if ∃ a ∈ [`i − 1], j ∈ [q] such that Xi[a] = Z⊕j . Additionally, let

– I := {i ∈ [q] : Z⊕j = Xi[a], for some a ∈ [`i − 1], j ∈ [q]}.

– J := {j ∈ [q] : Z⊕j = Xi[a] for some (i, a) ∈ [q]× [`i − 1]}.

– FCT := {(i, a, j) : i, j ∈ [q], a ∈ [`i − 1] such that Z⊕j = Xi[a]}. Sometimes,

we also use F̃CT := {(i, a) ∈ [q]× [`i − 1] : ∃j ∈ [q] such that Z⊕j = Xi[a]}.

We refer to i ∈ I and j ∈ J as full-collision and resetting index, respectively.

Observe that we can simply set Ỹ = Z̃, whenever I = ∅, since ¬(BadT ∨ BadZ)
holds. However, we need a more involved method when I 6= ∅. Next, we use a
novel sampling approach, called reset-sampling, in context of the sampling for
Ỹ.

Reset-sampling: The sampling of Ỹ is done in two stages:

Stage 1: For all (i, a) ∈ [q]× [`i − 1], set Yi[a] = Zi[a].

Stage 2: For all (i, a, j) ∈ FCT, reset Yi[a] = Tj .

Finally, define Y⊕ := (Y⊕1 , . . . ,Y
⊕
q), where Y⊕i =

⊕
a∈[q] Yi[q]⊕ padn(Mi[`i]).

In the second stage, we have reset Yi[a] from Zi[a] to Tj for all (i, a, j) ∈ FCT.
This fixes the previous inconsistency issue, i.e., Xi[a] = Z⊕j and Yi[a] 6= Tj .
Figure 4.1 gives a pictorial view of this step. The following must hold due to the
condition ¬BadZ:

– For each (i, a) ∈ I × [`i − 1], there is a unique choice for j (if exists) such
that Yi[a] is reset to Tj . Otherwise, ¬BadZ1 is violated.

– Continuing the previous point, we must have j 6= i. Otherwise, ¬BadZ2 is
violated. Indeed, i = j incurs a trivial inconsistency: (Yi[a] = Ti) ∧ (Xi[a] 6=
Y⊕i) due to the resetting mechanism.

– For each i ∈ I, there exists at most one a ∈ [`i − 1], such that Yi[a] is reset.
Otherwise, ¬BadZ3 is violated.

– For all j ∈ J , none of the intermediate outputs are reset. Otherwise, ¬BadZ4
is violated.

16 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

π.

⊕⊕⊕. π

Xi[a]

π

Xj [1] padn(Mj [`j])

. . .

. . . ⊕⊕⊕ π∗ Tj

Yi[a] Z⊕j

Fig. 4.1: Resetting of Yi[a] due to collision Xi[a] = Z⊕
j . The red double line repre-

sents a collision arising in phase II sampling. The blue dashed edge represents the
corresponding resetting in phase III sampling.

To summarize, the ideal oracle ensures that for each full collision index at most
one intermediate output is reset, and the resetting index is uniquely determined.
Further, a full collision index cannot be a resetting index. Thus, ¬BadZ helps in
avoiding trivial inconsistencies as well as keeping the resetting to a minimum.
Now, we define two predicates on (X̃, Z̃, Ỹ):

BadY1 : ∃i 6= j, k ∈ [q],∃a ∈ [`i − 1], b ∈ [`k − 1], such that

(Xi[a] = Z⊕j) ∧ (Y⊕i = Xk[b]).

BadY2 : ∃i 6= j 6= k ∈ [q],∃a ∈ [`i − 1], such that (Xi[a] = Z⊕j) ∧ (Y⊕i = Y⊕k).

We write BadY := BadY1∨ BadY2. It is easy to see that BadY simply handles the
new inconsistencies that may arise due to the reset sampling. For example, BadY1
represents the scenario where resetting leads to collision between intermediate
and final inputs. Similarly, BadY2 represents the scenario where resetting leads
to collision between two final inputs.

If BadY is true, then FlagY is set to 1, and Ỹ is redefined degenerately, as in the
case of BadT and BadZ. At this point, the ideal oracle transcript is completely
defined.

Intuitively, if the ideal oracle is not sampling Ỹ degenerately at any stage,
then we must have (X̃, Ỹ⊕) ! (Ỹ, T̃). We justify this intuition in the following
proposition.

Proposition 4.1. For ¬(BadT∨BadZ∨BadY), we must have (X̃, Ỹ⊕) ! (Ỹ, T̃).

Proof. We have

– X̃ ! Z̃, by definition of Z̃. Moreover the resetting guarantees Z̃ ! Ỹ. Thus,
X̃ ! Ỹ.

Fine-tuning the ISO/IEC Standard LightMAC 17

– We have Yi[a] = Tj if and only if Xi[a] = Z⊕j . Now, ¬BadZ4 implies that

j 6∈ I thus, Y⊕j = Z⊕j . Therefore, Yi[a] = Tj ⇒ Xi[a] = Y⊕j . Also, Xi[a] = Y⊕j
implies j 6∈ I (due to ¬BadY1), thus, Z⊕j = Y⊕j . This gives us Xi[a] = Y⊕j ⇒
Yi[a] = Tj from the second stage sampling of Y. Thus, Xi[a] = Y⊕j ⇔ Yi[a] =
Tj .

– ¬BadZ∧¬BadY and definition of Y imply that Y⊕i ’s are distinct. Also, ¬BadT
implies that Ti’s are distinct. Thus Ỹ⊕ ! T̃.

These observations suffice to conclude that (X̃, Ỹ⊕) ! (Ỹ, T̃). ut

4.2 Transcript Analysis

Set of Transcripts: Given the description of transcript random variable
corresponding to the ideal oracle, we can define the set of transcripts T as the
set of all tuples τ = (m̃, t̃, x̃, ỹ,flagT,flagZ,flagY), where

– m̃ = (m1, . . . ,mq), where mi ∈
(
{0, 1}≤(n−s)2s

)
for i ∈ [q]. For i ∈ [q], let

`i =
⌊
|mi|
n−s

⌋
+ 1.

– t̃ = (t1, . . . , tq), where ti ∈ {0, 1}n for i ∈ [q];

– x̃ = (x1, . . . , xq), where xi = (xi[1], . . . , xi[`i − 1]) for i ∈ [q], and xi[a] =
〈a〉s‖mi[a] for all a ∈ [`i − 1];

– ỹ = (y1, . . . , yq), where yi = (yi[1], . . . , yi[`i − 1]) for i ∈ [q], and yi[a] ∈
{0, 1}n for all a ∈ [`i − 1].

– flagT,flagZ,flagY ∈ {0, 1}.

Furthermore, the following must always hold:

1. if flagI = 1 for some I ∈ {T,Z,Y}, then yi[a] = 0n for all (i, a) ∈ [q]× [`i−1].

2. if flagT = 0, then ti’s are all distinct.

3. if flagI = 0 for all I ∈ {T,Z,Y}, then (x̃, ỹ⊕) ! (ỹ, t̃).

The first two conditions are obvious from the ideal oracle sampling mechanism.
The last condition follows from Proposition 4.1 and the observation that in ideal
oracle sampling for any I ∈ {T,Z,Y}, FlagI = 1 if and only if BadI is true. Note
that, condition 3 is vacuously true for real oracle transcripts.

Bad Transcript: A transcript τ ∈ T is called bad if and only if the following
predicate is true:

(FlagT = 1) ∨ (FlagZ = 1) ∨ (FlagY = 1).

In other words, we term a transcript bad if the ideal oracle sets Ỹ degenerately.
Let

Tbad := {τ ∈ T : τ is bad.}.

18 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

All other transcript τ ′ = (m̃, t̃, x̃, ỹ,flagT,flagZ,flagY) ∈ T \ Tbad are called
good. From the preceding characterization of the set of transcripts, we conclude
that for any good transcript τ ′, we must have (x̃, ỹ⊕) ! (ỹ, t̃). Henceforth,
we drop flagT, flagZ, flagY notations for any good transcript with an implicit
understanding that flagT = flagZ = flagY = 0.

To apply the H-coefficient theorem we have to upper bound the probability
Pr [I ∈ Tbad] and lower bound the ratio Pr [R = τ]/Pr [I = τ] for any τ ∈ T \Tbad.

Lemma 4.1 (bad transcript analysis). For 4`max + q ≤ 2n−1, we have

Pr [I ∈ Tbad] ≤ 3q2

2n+1
+

2.5q3`2max

22n
+

4q3`max

22n
+

4q4`2max

23n
+

2σ

2n
.

The proof of this lemma is postponed to section 4.3.

Good Transcript: Now, fix a good transcript τ = (m̃, t̃, x̃, ỹ). Let σ′ := |x̃|.
Since, τ is good, we have (x̃, ỹ⊕) ! (ỹ, t̃). Then, we must have |ỹ⊕| = q. Further,
let |x̃ ∩ ỹ⊕| = r. Thus, |x̃ ∪ ỹ⊕| = q + σ′ − r.
Real world: In the real world, the random permutation Π is sampled on exactly
q + σ′ − r distinct points. Thus, we have

Pr [R = τ] =
1

(2n)q+σ′−r
. (8)

Ideal world: Here, the probability computation is slightly involved due to the
two stage sampling employed in the ideal oracle. First of all, we have

Pr
[
T̃ = t̃

]
=

1

2nq
, (9)

since each Ti is sampled uniformly from the set {0, 1}n independent of others.
Now, observe that all the full collision and resetting indices are fully determined

from the transcript τ itself. In other words, we can enumerate the set F̃CT. Now,

since the transcript is good, we must have |F̃CT| = |x̃ ∩ ỹ⊕| = r, and for all

indices (i, a) /∈ F̃CT, we have Yi[a] = Zi[a]. Thus, we have

Pr
[
Yi[a] = yia ∧ (i, a) /∈ F̃CT | T̃ = t̃

]
= Pr

[
Zi[a] = yia ∧ (i, a) /∈ F̃CT | T̃ = t̃

]
=

1

(2n − q)σ′−r
, (10)

where the second equality follows from the fact that truncation3 of a without
replacement sample from a set of size (2n − q) is still a without replacement
sample from the same set. We have

Pr [I = ω] = Pr
[
T̃ = t̃

]
× Pr

[
Ỹ = ỹ | T̃ = t̃

]
3 Removing some elements from the tuple.

Fine-tuning the ISO/IEC Standard LightMAC 19

≤ 1

2nq
× Pr

[
Yi[a] = yi[a] ∧ (i, a) /∈ F̃CT | T̃ = t̃

]
=

1

2nq
× 1

(2n − q)σ′−r
. (11)

The above discussion on good transcripts can be summarized in shape of the
following lemma.

Lemma 4.2. For any τ ∈ T \ Tbad, we have

Pr [R = τ]

Pr [I = τ]
≥ 1.

Proof. The proof follows from dividing Eq. (8) by Eq. (11). ut

From H-coefficient Theorem 2.1 and Lemma 4.1 and 4.2, we get

Advprf
1k-LightMACΠ

(A) ≤ 3q2

2n+1
+

2.5q3`2max

22n
+

4q3`max

22n
+

4q4`2max

23n
+

2σ

2n
. (12)

Theorem 4.1 follows from Eq. (7) and (12).

4.3 Proof of Lemma 4.1

We have

Pr [I ∈ Tbad] = Pr [(FlagT = 1) ∨ (FlagZ = 1) ∨ (FlagY = 1)]

= Pr [BadT ∨ BadZ ∨ BadY]

≤ Pr [BadT]× Pr [BadZ|¬BadT]× Pr [BadY|¬(BadT ∨ BadZ)]

We will handle the three terms on the right hand side separately. Before delving
further, we introduce few more notations.

Few more notations: For simplicity, we denote the last padded block of any
message mi by mi[`i] instead of padn(mi[`i]). For any (i, a) with i ∈ [q], a ∈ [`i],

Z
⊕\a
i (res. Y

⊕\a
i) denotes

⊕
b6=a Zi[b]⊕mi[`i] (res.

⊕
b6=a Yi[b]⊕mi[`i]).

While we bound the probability of bad events, we need to deal with system of
equations in Z variables. Note that Z can be viewed as Π(X) for the corresponding
X variable. We will often employ Lemma 2.1 implicitly (without referring at each
application) to bound the probability that these system of equations hold.

1. Bounding Pr [BadT]: Since, we have at most
(
q
2

)
choice for i, j, and for each

such pair, Ti = Tj holds with exactly 2−n probability. Thus, we have

Pr [BadT] ≤ q2

2n+1
. (13)

2. Bounding Pr [BadZ|¬BadT]: Here, we have four cases.

20 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

(a) BadZ1 : ∃i 6= j ∈ [q], such that Z⊕i = Z⊕j . This is similar to BadT above.
We have

Pr [BadZ1|¬BadT] ≤ q2

2 · (2n − q − 2`max)
.

(b) BadZ2 : ∃(i, a) ∈ [q] × [`i − 1], such that Xi[a] = Z⊕i . It is easy to see
that

Pr [BadZ2|¬BadT] ≤
q∑
i=1

`i − 1

2n − q − `max
≤ σ

2n − q − `max
.

(c) BadZ3 : ∃i 6= j 6= k ∈ [q], a, b ∈ [`i−1], such that (Xi[a] = Z⊕j)∧ (Xi[b] =

Z⊕k). Here, j 6= k implies that the system of equations has rank 2. Thus,
using Lemma 2.1, we have

Pr [BadZ3|¬BadT] ≤ q3`2max

12(2n − q − 2`max)2
.

(d) BadZ4 : ∃i 6= j 6= k ∈ [q], a ∈ [`i − 1], b ∈ [`j − 1], such that (Xi[a] =
Z⊕j) ∧ (Xj [b] = Z⊕k). Using similar argumentation as above, we have,

Pr [BadZ4|¬BadT] ≤ q3`2max

12(2n − q − 2`max)2
.

Combining all the four cases and assuming q + 2`max ≤ 2n−1, we have

Pr [BadZ|¬BadT] ≤ q2

2n
+

0.34q3`2max

22n
+

2σ

2n
(14)

3. Bounding Pr [BadY|¬(BadT ∨ BadZ)]: Here, we have two cases:

(a) BadY1 : ∃i, j, k ∈ [q],∃a ∈ [`i − 1], b ∈ [`k − 1] such that (Xi[a] = Z⊕j) ∧
(Y⊕i = Xk[b]). By virtue of resetting mechanism and ¬BadZ, we arrive at
an equivalent system of Z-equations

Z⊕j = Xi[a]

Z
⊕\a
i = Xk[b]⊕ Tj

We claim that the system always has rank 2. This can be argued as
follows: Suppose the system has rank less than 2. Then, we must have

Z⊕j ⊕ Xi[a] ⊕ Z
⊕\a
i ⊕ Xk[b] ⊕ Tj = 0n. However, Z̃ are sampled from

{0, 1}n \ T̃. Hence, Tj does not cancel out trivially. So, we must always
have rank 2. Now if the rank is 2, then we can always rewrite the system
of equations such that we have an equation in Tj and another equation
involving some Z variables. Then, the first equation holds with at most
1/2n probability (using the randomness of Tj) and conditioned on this

Fine-tuning the ISO/IEC Standard LightMAC 21

the second equation holds with probability at most 1/(2n − q − 2`max).
Thus, we have

Pr [BadY1|¬(BadT ∨ BadZ)] ≤ q3`2max

2n(2n − q − 2`max)
.

(b) BadY2 : ∃i, j, k ∈ [q],∃a ∈ [`i − 1], such that (Xi[a] = Z⊕j) ∧ (Y⊕i = Y⊕k).

Here we get Xi[a] = Z⊕j ∧ Z
⊕\a
i = Y⊕k ⊕ Tj which changes according to

the following subcases:

Case A: when k 6∈ I: Then the above system becomes

Z⊕j = Xi[a]

Z
⊕\a
i = Z⊕k ⊕ Tj

Using similar argumentation as before we can conclude that the sys-
tem has rank 2. Therefore, we have

Pr [BadY2 ∧ Case A|¬(BadZ ∨ BadT)] ≤ q3`max

(2n − q − 3`max)2
.

Case B: when k ∈ I: In this case we have the following system of
equations:

Z⊕j = Xi[a]

Z⊕l = Xk[b]

Z
⊕\a
i ⊕ Z

⊕\b
k = Tj ⊕ Tl

We must have j 6= l. Otherwise we will have Z⊕i = Z⊕k which again
violates ¬BadZ. Thus, j 6= l. Now, j 6= l and ¬BadZ implies that
Z⊕j 6= Z⊕l . Then, following a similar line of argument as before, we
conclude that the system has rank 3. Therefore, we have

Pr [BadY2 ∧ Case B|¬(BadZ ∨ BadT)] ≤ q4`2max

2n(2n − q − 4`max)2
.

Combining all the cases with the assumption that q+4`max ≤ 2n−1, we have

Pr [BadY|¬(BadT ∨ BadZ)] ≤ 2q3`2max

22n
+

4q3`max

22n
+

4q4`2max

23n
. (15)

The result follows from summing up Eq. (13)-(15). ut

5 LightMAC-ds: A Minute Variant of Single-key LightMAC

In the previous section we showed that single-key LightMAC achieves query-
length independent security bounds while `min ≥ 2 and `max ≤ 2n/4. Now, we
propose a simple variant of LightMAC that achieves query-length independent
security unconditionally.

22 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

5.1 Description of LightMAC-ds

For any x ∈ {0, 1}n and k < n, let chopk(x) denote the most significant n−k bits
of x. The complete algorithmic description of LightMAC-ds is given in Algorithm
5.1. It is clear from the description that LightMAC-ds uses the familiar technique

Algorithm 5.1 LightMAC-ds based on an n-bit block cipher E instantiated
with a single key K. Here the counter size is s−1. Highlighted lines point to the
algorithmic differences with the LightMAC algorithm.

1: function LightMAC-dsEK (m)

2: y⊕ ← 0n

3: (m[1], . . . ,m[`])
n−s←−−− m

4: for i = 1 to `− 1 do
5: x[i]← 0‖〈i〉s−1‖m[i] . encoding 〈i〉s−1 and m[i] into x[i]

6: y[i]← EK(x[i]) . encrypting the encoded input
7: y⊕ ← y⊕ ⊕ y[i] . accumulating the intermediate output
8: end for
9: y⊕ ← y⊕ ⊕ padn(m[`])

10: t← EK(1‖chop1(y⊕))

11: return t
12: end function

of domain separation to generate two “almost independent” instances of E.
Specifically, we fix the most significant 1-bit of the block cipher input to

– 0 in the processing of encoded message blocks (see line no. 5 in Algorithm
5.1).

– 1 in the tag generation call (see line no. 10 in Algorithm 5.1).

Since 1-bit is reserved for domain separation, the effective counter size is reduced
to s − 1 for some global parameter s < n. Thus, the maximum message length
can be at most (n − s)2s−1, which is a slight drop from (n − s)2s in case of
LightMAC, for large value of n and s.

5.2 Security of LightMAC-ds

Surprisingly (or not), the security argument for LightMAC-ds is quite similar to
the one for single-key LightMAC. In fact, it is slightly easy to argue the security
here, as we have already ensured ¬Icoll (see section 3.2) by the virtue of domain
separation. However, we still have to handle Ocoll (see section 3.2) which would
require a slight care while sampling the intermediate outputs in the ideal world.
Note that, such complications do not arise in case of LightMAC for the obvious
reason of independence between the primitives used to generate the intermediate
and final outputs. The PRF security of LightMAC-ds is presented in Theorem
5.1.

Fine-tuning the ISO/IEC Standard LightMAC 23

Theorem 5.1. Let q, `max, T > 0. For q + 2`max ≤ 2n−1, the PRF security of
A against A(q, T) is given by

Advprf
LightMAC-ds(q, T) ≤ Advprp

E (σ + q, T ′) +
2.5q2

2n
,

where ` denotes an upper bound on the number of blocks in any padded query,
T ′ = T +O(TE) and TE denotes the runtime of E.

As expected, the proof is quite similar and a bit easier than the proof of theorem
4.1. As the first step, we apply the hybrid argument to get

Advprf
LightMAC-ds(q, T) ≤ Advprp

E (σ + q, T ′) + Advprf
LightMAC-dsΠ

(q,∞). (16)

We are interested in a bound on the PRF security of LightMAC-dsΠ, henceforth
also referred as the real oracle. Fix any A ∈ A(q,∞) such that

Advprf
LightMAC-dsΠ

(q,∞) = Advprf
LightMAC-dsΠ

(A).

Going forward, we will bound the advantage of A using H-coefficient technique.

5.3 Description of Oracles and their Transcripts

Real Oracle: The real oracle is defined analogously as in the proof of Theorem
5.1. We describe it just for the sake of completeness. The real oracle faithfully
responds to all the queries made by A . Once the query-response phase is over,
it releases all the intermediate inputs and outputs to A . Additionally, the real
oracle releases two binary flags, FlagT and FlagZ, that are degenerately set to 0.
Formally, we have

R := (M̃, T̃, X̃, Ỹ,FlagT,FlagZ),

where

– M̃ = (M1, . . . ,Mq) denotes the q-tuple of queries made by A , where Mi ∈
{0, 1}≤(n−s)2s−1

for all i ∈ [q]. In addition, for all i ∈ [q], let `i :=
⌊
|Mi|
n−s

⌋
+ 1.

– T̃ = (T1, . . . ,Tq) denotes the q-tuple of final outputs received by A , where
Ti ∈ {0, 1}n.

– X̃ = (X1, . . . ,Xq), where Xi denotes the intermediate input tuple for the i-th
query, i.e., for all a ∈ [`i − 1], Xi[a] = 0‖〈a〉s−1‖Mi[a].

– Ỹ = (Y1, . . . ,Yq), where Yi denotes the intermediate output tuple for the

i-th query, i.e., for all a ∈ [`i − 1], Yi[a] = Π(Xi[a]). In addition, let Ỹ⊕ :=
(Y⊕1 , . . . ,Y

⊕
q), where Y⊕i :=

⊕
a∈[`i−1] Yi[a]⊕ padn(Mi[`i]) for all i ∈ [q].

– FlagT = FlagZ = 0.

Let chop1(Ỹ⊕) = (1‖chop1(Yi[1]), . . . , 1‖chop1(Yi[`i − 1])). It is straightforward

to see that in the real world we always have (X̃, chop1(Ỹ⊕)) ! (Ỹ, T̃), i.e.,

(X̃, chop1(Ỹ⊕)) is permutation compatible with (Ỹ, T̃).

24 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

Ideal oracle: We reuse the notations from real oracle description to represent
the variables in the ideal oracle transcript I, i.e.

I := (M̃, T̃, X̃, Ỹ,FlagT,FlagZ).

The ideal oracle transcript is described in two phases, with the second one
contingent on some predicate defined over the first stage. Specifically, the ideal
oracle initializes FlagT = FlagZ = 0, and then follows the sampling mechanism
given below:

Phase I (Query-Response Phase): In the query-response phase, the ideal

oracle faithfully simulates Γ←$F({0, 1}≤(n−s)2s−1

, {0, 1}n). Formally, for i ∈ [q],

at the i-th query Mi ∈ {0, 1}≤(n−s)2
s−1

, the ideal oracle outputs Ti←$ {0, 1}n.
The partial transcript generated at the end of the query-response phase is given
by (M̃, T̃, X̃), where

– M̃ = (M1, . . . ,Mq) and T̃ = (T1, . . . ,Tq).

– X̃ = (X1, . . . ,Xq), where Xi = (Xi[1], . . . ,Xi[`i−1]) and Xi[a] := 0‖〈a〉s−1‖Mi[a]
for all (i, a) ∈ [q]× [`i − 1].

Now, we define a predicate on T̃:

BadT : ∃i 6= j ∈ [q], such that Ti = Tj .

If BadT is true, then FlagT = 1, and Ỹ = (Y1, . . . ,Yq) is defined degenerately:
Yi[a] = 0n for all (i, a) ∈ [q] × [`i − 1]. Otherwise, the ideal oracle proceeds to
the next phase.

Phase II (Offline Sampling Phase): In the offline phase, the ideal oracle
initially makes the following sampling:

(Rx1
, . . . ,Rxt)←# {0, 1}n \ T̃,

where (x1, . . . , xt) is an arbitrary ordering of the set

X(X̃) := {x : x = Xi[a], (i, a) ∈ [q]× [`i − 1]}.

Next, the ideal oracle sets

– Zi[a] := Rx if x = Xi[a], for all (i, a) ∈ [q]× [`i − 1], and

– Z⊕i :=
⊕`i−1

a=1 Zi[a]⊕ padn(Mi[`i]).

At this stage we have Zi[a] = Zj [b] if and only if Xi[a] = Xj [b]. In other words,

X̃ ! Z̃. But the same might not hold for chop1(Z̃⊕) and T̃. Now, we define a

predicate on (Z̃, X̃):

BadZ : ∃i 6= j ∈ [q], such that chop1(Z⊕i) = chop1(Z⊕j).

Fine-tuning the ISO/IEC Standard LightMAC 25

Note that, ¬BadZ ensures chop1(Z̃⊕) ! T̃, that when coupled with the X̃ ! Z̃

due to the sampling mechanism ensures (X̃, chop1(Z̃⊕)) ! (Z̃, T̃). Intuitively,
this makes the ideal world almost similar to the real world.

If BadZ is true, then FlagZ = 1, and Ỹ := (Y1, . . . ,Yq) is again defined

degenerately, as in the case of BadT. Otherwise, Ỹ := Z̃. At this point, the
transcript random variable for the ideal world is completely determined.

5.4 Transcript Analysis

Set of Transcripts: Given the description of the transcript random variable
corresponding to the ideal oracle, we can define the set of transcripts T as the
set of all tuples τ = (m̃, t̃, x̃, ỹ,flagT,flagZ), where

– m̃ = (m1, . . . ,mq), where mi ∈
(
{0, 1}≤(n−s)2s−1

)
for i ∈ [q]. Let `i =⌊

|mi|
n−s

⌋
+ 1 for i ∈ [q].

– t̃ = (t1, . . . , tq), where ti ∈ {0, 1}n for i ∈ [q];

– x̃ = (x1, . . . , xq), where xi = (xi[1], . . . , xi[`i − 1]) for i ∈ [q], and xi[a] =
0‖〈a〉s−1‖mi[a] for all a ∈ [`i − 1];

– ỹ = (y1, . . . , yq), where yi = (yi[1], . . . , yi[`i − 1]) for i ∈ [q], and yi[a] ∈
{0, 1}n for all a ∈ [`i − 1].

– flagT,flagZ ∈ {0, 1}.

Furthermore, the following must always hold:

1. if flagI = 1 for some I ∈ {T,Z}, then yi[a] = 0n for all (i, a) ∈ [q]× [`i − 1].

2. if flagT = 0, then ti’s are all distinct.

3. if flagI = 0 for all I ∈ {T,Z}, then (x̃, chop1(Ỹ⊕)) ! (ỹ, t̃).

Bad Transcript: A transcript τ ∈ T is called bad if and only if the following
predicate is true:

(FlagT = 1) ∨ (FlagZ = 1).

In other words, we term a transcript bad if the ideal oracle sets Ỹ degenerately.
Let

Tbad := {τ ∈ T : τ is bad.}.

All other transcript τ ′ = (m̃, t̃, x̃, ỹ,flagT,flagZ) ∈ T \ Tbad are called good. It
is pretty straightforward to deduce that for any good transcript we must have
(x̃, chop1(ỹ⊕)) ! (ỹ, t̃).

Lemma 5.1 (bad transcript analysis). For q + 2`max ≤ 2n−1, we have

Pr [I ∈ Tbad] ≤ 2.5q2

2n
.

26 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

Proof. We have

Pr [I ∈ Tbad] = Pr [(FlagT = 1) ∨ (FlagZ = 1)]

= Pr [BadT ∨ BadZ]

≤ Pr [BadT]× Pr [BadZ|BadT].

We will handle the two terms on the right hand side separately:

1. Bounding Pr [BadT]: Since, we have at most
(
q
2

)
choice for i, j, and for each

such pair, Ti = Tj holds with exactly 2−n probability. Thus, we have

Pr [BadT] ≤ q2

2n+1
. (17)

2. Bounding Pr [BadZ|¬BadT]: Fix two indices i 6= j. Now, we can have two
cases:

(a) `i = `j : Since Mi 6= Mj , we must have at least one index a, such that
Mi[a] 6= Mj [a], which implies that Xi[a] 6= Xj [a]. Further, note that
Xi[a] 6= Xk[b] for all (k, b) ∈ {i, j} × [`k − 1]. Then, by conditioning on
the value of Zk[b] for all (k, b) ∈ {i, j} × [`k − 1] \ {(i, a)}, we bound the
probability that chop1(Z⊕i) = chop1(Z⊕i) to at most 2/(2n − q − 2`max),
where the factor of 2 in the numerator is due to 1-bit chopping. There
are at most

(
q
2

)
choices for i, j, so in this case the probability is at most

q2/(2n − q − 2`max).

(b) `i 6= `j : Without loss of generality we assume that `i > `j . Then, apply-
ing exactly the same argumentation as used in the preceding case with
(i, a) = (i, `i − 1), we can bound the probability in this case to at most
q2/(2n − q − 2`max).

Since the two cases are mutually exclusive, we have

Pr [BadZ|¬BadT] ≤ q2

(2n − q − 2`max)
. (18)

The result follows by summing up Eq. (17) and (18) and using q+2`max ≤ 2n−1.
ut

Good Transcript: Fix a good transcript τ = (m̃, t̃, x̃, ỹ, 0, 0). Let σ′ :=
|x̃|. Since, τ is good, we have (x̃, chop1(ỹ⊕)) ! (ỹ, t̃). Then, we must have
|chop1(ỹ⊕)| = q. Further, x̃ ∩ chop1(ỹ⊕) = ∅ due to domain separation. Thus,
|x̃ ∪ chop1(ỹ⊕)| = q + σ′.

Real world: In the real world, the random permutation Π is sampled on exactly
q + σ′ distinct points. Thus, we have

Pr [R = τ] =
1

(2n)q+σ′
. (19)

Fine-tuning the ISO/IEC Standard LightMAC 27

Ideal world: In the ideal world, first T̃ is sampled in with replacement fashion
from a set of size 2n. Then, exactly σ′ values are sampled corresponding to Ỹ in
without replacement fashion from a set of size 2n − q. Thus, we have

Pr [I = τ] =
1

2nq
× 1

(2n − q)σ′
. (20)

On dividing Eq. (19) by (20), we get

Pr [R = τ]

Pr [I = τ]
≥ 1.

From H-coefficient Theorem 2.1 and Lemma 5.1, we get

Advprf
LightMAC-dsΠ

(A) ≤ 2.5q2

2n
. (21)

Theorem 5.1 follows from Eq. (16) and (21).

6 Conclusion

In this paper we studied the single-key instance of LightMAC, an ISO/IEC stan-
dard for lightweight message authentication codes. Our main contribution is
a query-length independent security bound for 1k-LightMAC. Specifically, we
showed that 1k-LightMAC achieves PRF security bound of O(q2/2n) while (n−
s) ≤ ` ≤ (n − s) min{2n/4, 2s}. Further, we proposed a slight variant of Light-
MAC, called LightMAC-ds that achieves security bound of O(q2/2n) while ` ≤
(n− s)2s−1.

6.1 Future Directions in Reset-sampling

To prove the security of 1k-LightMAC, we used a novel sampling approach, called
reset-sampling, that works as a subroutine within the H-coefficient proof setup.
Although this approach is at a very nascent stage, we believe that reset-sampling
could potentially be useful in deriving better security bounds for other single-
key constructions. Indeed, OMAC [10] – another popular and standardized MAC
algorithm – has a similar bottleneck as 1k-LightMAC, and might benefit from this
sampling approach. In the following, we briefly discuss a possible reset-sampling
approach for query-length independent security bounds for OMAC.

A simplified variant of OMAC for any message m ∈ ({0, 1}n)` can be defined
as follows: y[0] := 0n; for 1 ≤ i ≤ `−1, x[i] = m[i]⊕y[i−1] and y[i] = EK(x[i]);
x[`] = m[`]⊕ y[`− 1]⊕ 2EK(0n); and OMACEK (m) := y[`] = EK(x[`]).

For all i ∈ [` − 1], x[i] and y[i] are referred as intermediate input and out-
put, respectively, and x[`] and y[`] are referred as the final input and output
respectively.

28 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

Suppose the adversary makes q queries. Given our analysis of 1k-LightMAC,
it is easy to observe that the most contentious issue is the event when some
intermediate input (res. output) collides with some final input (res. output).
Intuitively, this leads to a leakage of internal values to the adversary. However,
notice that this does not necessarily mean that the adversary can actually detect
and exploit this to mount an attack. This is precisely the point where reset-
sampling can help. As an example, consider the following sampling approach in
the ideal world:

– The ideal oracle faithfully answers the q queries in the online phase.
– Once the query-response phase is over:
• The ideal oracle samples the intermediate inputs/outputs by following

the OMAC definition, except for one small change: the intermediate out-
puts are sampled outside the set of all final outputs. This helps in avoid-
ing collisions between some intermediate output and some final output.

• Now, we may have a situation where some intermediate input xi[a] col-
lides with some final input xj [`j], which is an inconsistency.

• However, if xi[a + 1] is fresh, i.e., it does not collide with any other
intermediate/final input, then we can possibly reset yi[a] to yj [`j] and
redefine xi[a+ 1] := x′i[a+ 1] = mi[a+ 1]⊕ yj [`j].

• This might result in a collision of the form x′i[a + 1] = xk[b], but as
we have seen in case of 1k-LightMAC, the probability of such collisions
are easily bounded to O(q3`2/22n) by considering the compound event
xi[a] = xj [`j]∩x′i[a+1] = xk[b]. There will be some more inconsistencies
arising due to the resetting. But we ignore them for the sake of brevity.

• Finally, the ideal oracle releases the intermediate inputs and outputs.

A more formal and rigorous analysis of OMAC using reset-sampling will most
probably require handling of several other bad events, and could be an interesting
future research topic. Although the above description is very succinct and rough,
it is expressive enough to demonstrate the idea of resetting. The technique is
particularly useful for deriving improved bounds for single-key constructions,
as demonstrated for 1k-LightMAC and outlined for OMAC. Interestingly, the
dominating term in the bound of 1k-LightMAC is the collision probability. Indeed,
the bad events introduced due to reset sampling only contribute beyond-the-
brithday bound terms. In fact, this seems to be a general characteristic of reset
sampling based proof, as the additional bad events are generally joint events
involving two or more sources of randomness. Consequently, we believe that
reset sampling may, in future, find wide applications in the analysis of single-key
variant of BBB secure constructions, such as LightMAC+ [25], PMAC+ [21] etc.

References

1. CAESAR: Competition for authenticated encryption: Security, applicability and
robustness. Online webpage (2014)

2. NIST: Lightweight cryptography standardization project. Online webpage (2018)

Fine-tuning the ISO/IEC Standard LightMAC 29

3. 27, I.J.S.: Information technology — lightweight cryptography — part 6: Message
authentication codes (MACs). ISO/IEC 29192-6, International Organization for
Standardization (2019)

4. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight
block ciphers. In: Fast Software Encryption - FSE 2016, Revised Selected Papers.
(2016) 43–59

5. Tsudik, G.: Message authentication with one-way hash functions. In: IEEE -
INFOCOM 1992, Proceedings. (1992) 2055–2059

6. Mouha, N.: Chaskey: a MAC algorithm for microcontrollers - status update and
proposal of Chaskey-12. IACR Cryptol. ePrint Arch. 2015 (2015) 1182

7. Bellare, M., Guérin, R., Rogaway, P.: XOR macs: New methods for message au-
thentication using finite pseudorandom functions. In: Advances in Cryptology -
CRYPTO 1995, Proceedings. (1995) 15–28

8. Bernstein, D.J.: How to stretch random functions: The security of protected
counter sums. J. Cryptol. 12(3) (1999) 185–192

9. Dutta, A., Jha, A., Nandi, M.: A new look at counters: Don’t run like marathon
in a hundred meter race. IEEE Trans. Computers 66(11) (2017) 1851–1864

10. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Fast Software Encryption
- FSE 2003, Revised Papers. (2003) 129–153

11. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Advances in Cryptology - EUROCRYPT 2002, Proceedings.
(2002) 384–397

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: Symposium on Foundations of Computer Science - FOCS
1984, Proceedings. (1984) 464–479

13. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in
message authentication and authenticated encryption. IACR Cryptol. ePrint Arch.
2004 (2004) 309

14. Yasuda, K.: PMAC with parity: Minimizing the query-length influence. In: Topics
in Cryptology - CT-RSA 2012, Proceedings. (2012) 203–214

15. Naito, Y.: The exact security of PMAC with two powering-up masks. IACR Trans.
Symmetric Cryptol. 2019(2) (2019) 125–145

16. Ehrsam, W.F., Meyer, C.H.W., Smith, J.L., Tuchman, W.L.: Message verification
and transmission error detection by block chaining. Patent 4074066, USPTO (1976)

17. Black, J., Rogaway, P.: CBC macs for arbitrary-length messages: The three-key
constructions. In: Advances in Cryptology - CRYPTO 2000, Proceedings. (2000)
197–215

18. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Advances in Cryptology - CRYPTO 1994, Proceedings. (1994) 341–358

19. Berendschot, A., den Boer, B., Boly, J., Bosselaers, A., Brandt, J., Chaum, D.,
Damg̊ard, I., Dichtl, M., Fumy, W., van der Ham, M., Jansen, C., Landrock, P.,
Preneel, B., Roelofsen, G., de Rooij, P., Vandewalle, J.: Final Report of RACE
Integrity Primitives. Lecture Notes in Computer Science, Springer-Verlag, 1995
1007 (1995)

20. Yasuda, K.: The sum of CBC macs is a secure PRF. In: Topics in Cryptology -
CT-RSA 2010, Proceedings. (2010) 366–381

21. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In Rogaway,
P., ed.: Advances in Cryptology - CRYPTO 2011, Proceedings. (2011) 596–609

22. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: Enhancing 3gpp-mac beyond the
birthday bound. In: Advances in Cryptology - ASIACRYPT 2012, Proceedings.
(2012) 296–312

30 Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

23. Zhang, Y.: Using an error-correction code for fast, beyond-birthday-bound authen-
tication. In: Topics in Cryptology - CT-RSA 2015, Proceedings. (2015) 291–307

24. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of
pmac plus. IACR Trans. Symmetric Cryptol. 2017(4) (2017) 268–305

25. Naito, Y.: Blockcipher-based macs: Beyond the birthday bound without message
length. In: Advances in Cryptology - ASIACRYPT 2017, Proceedings, Part III.
(2017) 446–470

26. Wegman, M.N., Carter, L.: New classes and applications of hash functions. In:
Symposium on Foundations of Computer Science - FOCS 1979, Proceedings. (1979)
175–182

27. Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC macs.
In: Advances in Cryptology - CRYPTO 2005, Proceedings. (2005) 527–545

28. NIST: Announcing the ADVANCED ENCRYPTION STANDARD (AES). FIPS
197, National Institute of Standards and Technology, U. S. Department of Com-
merce (2001)

29. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro,
S.: Random oracles with(out) programmability. In: Advances in Cryptology -
ASIACRYPT 2010, Proceedings. (2010) 303–320

30. Patarin, J.: Etude des Générateurs de Permutations Pseudo-aléatoires Basés sur
le Schéma du DES. PhD thesis, Université de Paris (1991)

31. Patarin, J.: The “coefficients H” technique. In: Selected Areas in Cryptography -
SAC ’08. Revised Selected Papers. (2008) 328–345

32. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: Exact
bounds and multi-user security. In: Advances in Cryptology - CRYPTO 2016,
Proceedings, Part I. (2016) 3–32

33. Jha, A., Nandi, M.: Revisiting structure graphs: Applications to CBC-MAC and
EMAC. J. Math. Cryptol. 10(3-4) (2016) 157–180

34. Jha, A., Nandi, M.: Revisiting structure graphs: Applications to CBC-MAC and
EMAC. IACR Cryptol. ePrint Arch. 2016 (2016) 161

35. Minematsu, K., Matsushima, T.: New bounds for pmac, tmac, and XCBC. In
Biryukov, A., ed.: Fast Software Encryption - FSE 2007, Revised Selected Papers.
(2007) 434–451

36. Nandi, M.: Improved security analysis for OMAC as a pseudorandom function. J.
Math. Cryptol. 3(2) (2009) 133–148

37. Nandi, M., Mandal, A.: Improved security analysis of PMAC. J. Math. Cryptol.
2(2) (2008) 149–162

38. Gazi, P., Pietrzak, K., Rybár, M.: The exact security of PMAC. IACR Trans.
Symmetric Cryptol. 2016(2) (2016) 145–161

39. Chakraborty, B., Chattopadhyay, S., Jha, A., Nandi, M.: On length independent
security bounds for the PMAC family. IACR Cryptol. ePrint Arch. 2020 (2020)
656

40. Baugher, M., McGrew, D., Naslund, M., Carrara, E., Norrman, K.: The secure
real-time transport protocol (SRTP). RFC 3711, IETF (2004)

41. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers. In:
Advances in Cryptology - EUROCRYPT 2014, Proceedings. (2014) 327–350

42. Mennink, B., Neves, S.: Encrypted davies-meyer and its dual: Towards optimal
security using mirror theory. In: Advances in Cryptology - CRYPTO 2017, Pro-
ceedings, Part III. (2017) 556–583

43. Jha, A., Nandi, M.: A survey on applications of h-technique: Revisiting security
analysis of prp and prf. IACR Cryptol. ePrint Arch. 2018 (2018) 1130

	Fine-tuning the ISO/IEC Standard LightMAC

