
Snarky Ceremonies

Markulf Kohlweiss1,2, Mary Maller3, Janno Siim4, Mikhail Volkhov2

1 IOHK
2 The University of Edinburgh, UK

{mkohlwei, mikhail.volkhov}@ed.ac.uk
3 Ethereum Foundation

mary.maller@ethereum.org
4 University of Tartu, Estonia

janno.siim@ut.ee

Abstract. Succinct non-interactive arguments of knowledge (SNARKs)
have found numerous applications in the blockchain setting and else-
where. The most efficient SNARKs require a distributed ceremony pro-
tocol to generate public parameters, also known as a structured reference
string (SRS). Our contributions are two-fold:

– We give a security framework for non-interactive zero-knowledge ar-
guments with a ceremony protocol.

– We revisit the ceremony protocol of Groth’s SNARK [Bowe et al.,
2017]. We show that the original construction can be simplified and
optimized, and then prove its security in our new framework. Im-
portantly, our construction avoids the random beacon model used in
the original work.

1 Introduction

Zero-knowledge proofs of knowledge [23] allow to prove knowledge of a witness
for some NP statement while not revealing any information besides the truth
of the statement. The recent progress in zero-knowledge (ZK) Succinct Non-
interactive Arguments of Knowledge (SNARKs) [16, 24, 25, 34, 37] has enabled
the use of zero-knowledge proofs in practical systems, especially in the context
of blockchains [6, 10,31].

Groth16 [25] is the SNARK with the smallest proof size and fastest verifier in the
literature, and it is also competitive in terms of prover time. Beyond efficiency,
it has several other useful properties. Groth16 is rerandomizable [33], which is a
desirable property for achieving receipt-free voting [33]. Simultaneously, it also
has a weak form of simulation extractability [3] which guarantees that even if the
adversary has seen some proofs before, it cannot prove a new statement without
knowing the witness. The prover and verifier use only algebraic operations and
thus proofs can be aggregated [13]. Furthermore, Groth16 is attractive to prac-
titioners due to the vast quantity of implementation and code auditing it has
already received.

2 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

Every application using Groth16 must run a separate trusted setup ceremony
in order to ensure security, and even small errors in the setup could result a
complete break of the system. Indeed, the paper of the original Zcash SNARK [8]
contained a small typo which resulted in a bug that would allow an attacker
to print unlimited funds in an undetectable manner [20]. Some would use this
example as a reason to avoid any SNARK with a trusted setup ceremony at all
costs. And yet Groth16 is not only still being used, but many protocols are being
actively designed on top of it, potentially for the reasons listed above. Thus we
believe that if this SNARK ceremony is going to be used anyway, it is important
to put significant effort on simplifying its description and verifying its security.

The primary purpose of this work is to take a formal approach to proving the
security of the Groth16 setup ceremony of Bowe, Gabizon, and Miers [12] that
is currently commonly used in practice. The first prominent application of the
protocol was the Zcash Sapling ceremony, but it was also run by many other
projects, for example Aztec protocol, Filecoin, Semaphore, Loopring, Tornado
Cash, Plumo Ceremony, and Hermez. Some of these ceremonies are based on
the project called Perpetual Powers of Tau (PPoT), which implements the first
phase of [12], that is not specialized to any circuit — this implies that the project
planning to run a ceremony can fork off the PPoT, reducing its own setup cost. In
other words, [12] is by far the most popular ceremony protocol used in practice;
but it is also modified, specialized, and re-implemented by many independent
projects. We simplify the original protocol, specifically we remove the need for a
random beacon. Our security proofs equally apply to the version of the protocol
with a beacon already used in practice.

A number of different works have analysed the setup security of zk-SNARKs.
The works of [1,7,11] propose specialized multi-party computation protocols for
SRS generation ceremonies. A common feature of these protocols is that they
are secure if at least one of the parties is honest. However, these schemes are
not robust in the sense that all parties must be fixed before the beginning of
the protocol and be active throughout the whole execution. In other words if a
single party goes offline between rounds then the protocol will not terminate.
Bowe, Gabizon, and Miers [12] showed that the latter problem could be solved
if there is access to a random beacon — an oracle that periodically produces
bitstrings of high entropy— which can be used to rerandomize the SRS after each
protocol phase. Unfortunately, obtaining a secure random beacon is, by itself,
an extremely challenging problem [9, 27, 30]. Secure solutions include unique
threshold signatures [28], which themselves require complex setup ceremonies as
well as verifiable delay functions [9, 38, 39] that require the design and use of
specialized hardware. Practical realizations have instead opted for using a hash
function applied to a recent blockchain block as a random beacon. This is not
an ideal approach since the blockchain miners can bias the outcome.5

5 It is desirable for a setup ceremony to avoid dependence on setups as much as
possible—we spurn random beacons but embrace random oracles.

Snarky Ceremonies 3

The work of Groth, Kohlweiss, Maller, Meiklejohn, and Miers [26] takes a differ-
ent approach and directly constructs a SNARK where the SRS is updatable, that
is, anyone can update the SRS and knowledge soundness and zero-knowledge
are preserved if at least one of the updaters was honest.6 Subsequent updat-
able SNARKS like Sonic [36], Marlin [15], and PLONK [21] have improved the
efficiency of updatable SNARKs, but they are still less efficient than for exam-
ple [25]. Mirage [32] modifies the original Groth16 by making the SRS universal,
that is the SRS works for all relations up to some size bound. The latter work
can be seen as complementary to the results of this paper as it amplifies the
benefits of a successfully conducted ceremony.

1.1 Our Contributions

Our key contributions are as follows:

Designing a security framework. We formalize the notion of non-interactive
zero-knowledge (NIZK) argument with a multi-round SRS ceremony proto-
col, which extends the framework of updatable NIZKs in [36]. Our definitions
fix a syntax for ceremonies with Update and VerifySRS algorithms and take
a game-based approach. This is less rigid than a multi-party computation
definition (see for example [1] for a UC-functionality). Our security notion
says that an adversary cannot forge a SNARK proofs even if they can par-
ticipate in the setup ceremony. We call such a SNARK ceremonial. This
notion is more permissible for the setup ceremony than requiring simulata-
bility and is therefore easier to achieve. In particular, using our definitions
we do not require the use of a random beacon (as is needed in [12]) or ad-
ditional setup assumptions ([7] assumes a common random string and [1]
assumes a trusted commitment key), whereas it is not clear that those could
be avoided in the MPC setting. Our definitions are applicable to SNARKs
with a multiple round setup ceremony as long as they are ceremonial.

Proving security without a random beacon. We prove the security of the
Groth16 SNARK with a setup ceremony of [12] in our new security frame-
work. We intentionally try not change the original ceremony protocol too
much so that our security proof would apply to protocols already used in
practice. Security is proven with respect to algebraic adversaries [18] in the
random oracle model. We require a single party to be honest in each phase of
the protocol in order to guarantee that knowledge soundness and subversion
zero-knowledge hold. Unlike [12], our security proof does not rely on the use
of a random beacon. However, our security proof does apply to protocols
that have been implemented using a (potentially insecure) random beacon
because the beacon can just be treated as an additional malicious party.
We see this as an important security validation of real-life protocols that
cryptocurrencies depend on.

6 Note that one can independently prove subversion ZK [2,17].

4 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

Revisiting the discrete logarithm argument. The original paper of [12] used
a novel discrete logarithm argumentΠdl to prove knowledge of update contri-
butions. They showed that the argument has knowledge soundness under the
knowledge of exponent assumption in the random oracle model. While prov-
ing the security of the ceremony protocol, we observe that even stronger secu-
rity properties are necessary. The discrete logarithm argument must be zero-
knowledge and straight-line simulation extractable, i.e., knowledge sound in
the presence of simulated proofs. Furthermore, simulation-extractability has
to hold even if the adversary obtains group elements as an auxiliary input
for which he does not know the discrete logarithm. We slightly modify the
original argument to show that those stronger properties are satisfied if we
use the algebraic group model with random oracles.

Thus, this work simplifies the widely used protocol of [12] and puts it onto firmer
security foundations.

1.2 Our Techniques

Security framework Our security framework assumes that the SRS is split
into ϕmax distinct components srs = (srs1, . . . , srsϕmax) and in each phase of
the ceremony protocol one of the components gets finalized. We formalize this
by enhancing the standard definition of NIZK with an Update and VerifySRS
algorithms. Given srs and the phase number ϕ, the Update algorithm updates srsϕ
and produces a proof ρ that the update was correct. The verification algorithm
VerifySRS is used to check that srs and update proofs {ρi}i are valid.

We obtain the standard updatability model of [36] if ϕmax = 1. When modelling
the Groth16 SNARK we set ϕmax = 2. In that scenario, we split the SRS into a
universal component srs1 = srsu that is independent of the specific relation that
we want to prove7 and to a specialized component srs2 = srss, which depends on
a concrete relation R. Both srsu and srss are updatable; however, the initial srss
has to be derived from srsu and the relation R. Thus, parties need first to update
srsu, and only after a sufficient number of updates can they start to update srss.
The universal srsu can potentially be reused for other relations.

In our definition of update knowledge soundness, we require that no adversary
can convince an honest verifier of a statement unless either (1) they know a valid
witness; (2) the SRS does not pass the setup ceremony verification VerifySRS;
or (3) one of the phases did not include any honest updates. Completeness and
zero-knowledge hold for any SRS that passes the setup ceremony verification,
even if there were no honest updates at all. The latter notions are known as
subversion completeness and subversion zero-knowledge [5].

7 Similarly to the universal updatability notions that share the same “independence”,
e.g. [36], srsu still formally depends on the maximum size of the circuit, which can
nevertheless be made large enough to be practically universal.

Snarky Ceremonies 5

Security proof of setup ceremony We must prove subversion zero-knowledge
and update knowledge-soundness. Subversion zero-knowledge follows from the
previous work in [2, 17], which already proved it for Groth16 under knowledge
assumptions. The only key difference is that we can extract the simulation trap-
door with a discrete logarithm proof of knowledge argument Πdl used in the
ceremony protocol.

Our security proof of update knowledge-soundness uses a combination of the
algebraic group model and the random oracle (RO) model. As was recently shown
by Fuchsbauer, Plouviez, and Seurin [19] the mixture of those two models can be
used to prove powerful results (tight reductions of Schnorr-based schemes in their
case) but it also introduces new technical challenges. Recall that the algebraic
group model (AGM) is a relaxation of the generic group model proposed by
Fuchsbauer, Kiltz, and Loss [18]. They consider algebraic adversaries Aalg that
obtain some group elements G1, . . . , Gn during the execution of the protocol
and whenever Aalg outputs a new group element E, it also has to output a
linear representation ~C = (c1, . . . , cn) such that E = Gc11 G

c2
2 . . . Gcnn . Essentially,

Aalg can only produce new group elements by applying group operations to
previously known group elements. In contrast to the generic group model, the
representation of group elements is visible to Aalg, and thus security proofs
in AGM are typically reductions to some group-assumptions (e.g. the discrete
logarithm assumption).

Already the original AGM paper [18] proved knowledge soundness of the Groth16
SNARK in the AGM model (assuming trusted SRS). They proved it under the
q-discrete logarithm assumption, i.e., a discrete logarithm assumption where the
challenge is (Gz, Gz

2

, . . . , Gz
q

). The main idea for the reduction is that we can
embed Gz in the SRS of the SNARK. Then when the algebraic adversary Aalg
outputs a group-based proof π, all the proof elements are in the span of the SRS
elements, and Aalg also outputs the respective algebraic representation. We can
view the verification equation as a polynomial Q that depends on the SRS and π
such that Q(SRS, π) = 0 when the verifier accepts. Moreover, since π and SRS
depend on z, we can write Q(SRS, π) = Q′(z). Roughly, the proof continues by
looking at the formal polynomial Q′(Z), where Z is a variable corresponding to
z, and distinguishing two cases: (i) if Q′(Z) = 0, it is possible to argue based on
the coefficient of Q′ that the statement is valid and some of the coefficients are
the witness, i.e., Aalg knows the witness, or (ii) if Q′(Z) 6= 0, then it is possible
to efficiently find the root z of Q′ and solve the discrete logarithm problem.

Our proof of update knowledge soundness follows a similar strategy, but it is
much more challenging since the SRS can be biased, and the Aalg has access to
all the intermediate values related to the updates. Furthermore, Aalg also has ac-
cess to the random oracle, which is used by the discrete logarithm proof of knowl-
edge Πdl. Firstly, since the SRS of the Groth16 SNARK contains one trapdoor
that is inverted (that is δ), we need to use a novel extended discrete logarithm
assumption where the challenge value is ({Gzi}q1i=0, {Hzi}q2i=0, r, s,G

1
rz+s , H

1
rz+s)

where G and H are generators of pairing groups and r, s, z are random integers.

6 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

We prove that this new assumption is very closely related (equivalent under
small change of parameters) to the q-discrete logarithm assumption. In the case
with an honest SRS [18] it was possible to argue that by multiplying all SRS el-
ements by δ we get an equivalent argument which does not contain division, but
it is harder to use the same reasoning when the adversary biases δ. The reduc-
tion still follows a similar high-level idea, but we need to introduce intermediate
games that create a simplified environment before we can use the polynomial
Q. For these games we rely on the zero-knowledge property and simulation ex-
tractability of Πdl. Moreover, we have to consider that Aalg sees and adaptively
affects intermediate states of the SRS on which the proof by π can depend on.
Therefore the polynomial Q′ takes a significantly more complicated form, but
the simplified environment will reduce this complexity.

Revisiting the discrete logarithm argument One of the key ingredients
in the [12] ceremony is the discrete logarithm proof of knowledge Πdl. Each
updater uses this to prove that it knows its contribution to the SRS. The orig-
inal [12] proved only knowledge soundness of Πdl. While proving the security
of the setup ceremony in our framework, we observe that much stronger prop-
erties are needed. Firstly, Πdl needs to be zero-knowledge since it should not
reveal the trapdoor contribution. Secondly, Πdl should be knowledge sound, but
in an environment where the adversary also sees simulated proofs and obtains
group elements (SRS elements) for which it does not know the discrete loga-
rithm. For this, we define a stronger notion simulation-extractability where the
adversary can query oracle Ose for simulated proofs and oracle Opoly on polyno-
mials f(X1, . . . , Xn) that get evaluated at some random points x1, . . . , xn such
that the adversary learns Gf(x1,...,xn) or Hf(x1,...,xn).

We show that proofs can be trivially simulated when the simulator has access to
the internals of the random oracle and thusΠdl is zero-knowledge. We once again
use AGM, this time to prove simulation-extractability. Since in this proof we can
embed the discrete logarithm challenge in the random oracle responses, we do
not need different powers of the challenge and can instead rely on the standard
discrete logarithm assumption. We also slightly simplify the original Πdl and
remove the dependence on the public transcript TΠ of the ceremony protocol,
that is, the sequence of messages broadcasted by the parties so far. Namely, the
original protocol hashes TΠ and the statement to obtain a challenge value. This
turns out to be a redundant feature, and removing it makes Πdl more modular.

Implementation and Optimization Partners in a joint research project have
developed a Rust implementation8 of our Update and VerifySRS algorithms for
Groth16 building on the arkworks library with various optimizations such as
batching and parallelization. This validates the correctness of our algorithms and
intends to serve as an independent implementation to measure other solutions.
We describe batched SRS update verification in the full version of this paper.
8 https://github.com/grnet/snarky

https://github.com/grnet/snarky

Snarky Ceremonies 7

2 Preliminaries

PPT denotes probabilistic polynomial time, and DPT denotes deterministic
polynomial time. The security parameter is denoted by λ. We write y r← A(x)
when a PPT algorithm A outputs y on input x and uses random coins r. Often
we neglect r for simplicity. If A runs with specific random coins r, we write
y ← A(x; r). Uniformly sampling x from a set A is denoted by x←$A. A view
of an algorithm A is a list denoted by viewA which contains the data that fixes
A’s execution trace: random coins, its inputs (including ones from the oracles),
and outputs9. We sometimes refer to the “transcript” implying only the public
part of the view: that is interactions of A with oracles and the challenger.

Let ~a and ~b be vectors of length n. We say that the vector ~c of length 2n − 1

is a convolution of ~a and ~b if ck =

(n,n)∑
(i,j)=(1,1);i+j=k+1

aibj for k ∈ {1, . . . , 2n − 1}. In par-

ticular, multiplying the polynomial
∑n
i=1 aiX

i−1 with
∑n
i=1 biX

i−1 produces∑2n−1
i=1 ciX

i−1. When indexing families of values, we sometimes use semicolon
to separate indices, e.g. {Gβx:i}ni=0 is a vector Gβx indexed by i.

Bilinear Pairings. Let BGen be a bilinear group generator that takes in a security
parameter 1λ and outputs a pairing description bp = (p,G1,G2,GT , ê, G,H)
where G1,G2,GT are groups of prime order p, G is a generator of G1, H is a
generator of G2, and ê : G1×G2 → GT is a non-degenerate and efficient bilinear
map. That is, ê(G,H) is a generator of GT and for any a, b ∈ Zp, ê(Ga, Hb) =
ê(G,H)ab. We consider Type III asymmetric pairings, with G1 6= G2 and without
any efficiently computable homomorphism between G1 and G2.

2.1 Algebraic Group Model with RO and Discrete Logarithm
Assumptions

We will use the algebraic group model (AGM) [18] to prove the security of
Groth’s SNARK. In AGM, we consider only algebraic algorithms that provide
a linear explanation for each group element that they output. More precisely, if
Aalg has so far received group elements G1, . . . , Gn ∈ G and outputs a group
element Gn+1 ∈ G, then it has to also provide a vector of integer coefficients ~C =
(c1, . . . , cn) such that Gn+1 =

∏n
i=1G

ci
i . We will use AGM in a pairing-based

setting where we distinguish between group elements of G1 and G2. Formally,
the set of algebraic coefficients ~C is obtained by calling the algebraic extractor
~C ← EagmA (viewA) that is guaranteed to exist for any algebraic adversary A. This
extractor is white-box and requires A’s view to run.

9 The latter can be derived from the former elements of the list, and is added to viewA
for convenience

8 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

ROt(φ) // Initially QRO = ∅

if QRO[φ] 6= ⊥ then r ← QRO[φ];
else r←$Zp; QRO[φ]← r
if t = 1 then return r else return Gr

Fig. 1. The transparent random oracle RO0(·) : {0, 1}∗ → G1, RO1(·) : {0, 1}∗ →
Zp. We write RO(φ) for the interface RO0(φ) provided to protocols.

Random Oracle. Fuchsbauer et al. [18] also show how to integrate the AGM
with the random oracle (RO) model. In particular, we are interested in RO that
outputs group elements. Group elements returned by RO(φ) are added to the
set of received group elements. To simulate update proofs we make use of a
weakening of the programmable RO model that we refer to as a transparent
RO, presented on Fig. 1. For convenience we will denote RO(·) := RO0(·).
The simulator has access to RO1(·) and can learn the discrete logarithm r by
querying RO1(x). It could query RO0(x) for Gr but can also compute this value
itself. Constructions and the A in all security definitions only have access to the
restricted oracle RO0(·).

One remarkable detail in using white-box access to the adversary A in the RO
model is that viewA includes the RO transcript (but not RO randomness), since
it contains all requests and replies A exchanges with the oracles it has access
to, including RO. Thus access to viewA is sufficient for our proofs, even though
we do not give any explicit access to the RO history besides the view of the
adversary to the extractor.

Assumptions. We recall the (q1, q2)-discrete logarithm assumption [18].

Definition 1 ((q1, q2)-dlog). The (q1, q2)-discrete logarithm assumption holds
for BGen if for any PPT A, the following probability is negligible in λ,

Pr
[
bp← BGen(1λ); z←$Zp; z′ ← A(bp, {Gz

i}q1i=1, {Hzi}q2i=1) : z = z′
]
.

In our main theorem it is more convenient to use a slight variation of the above.

Definition 2 ((q1, q2)-edlog). The (q1, q2)-extended discrete logarithm assump-
tion holds for BGen if for any PPT A, the following probability is negligible in
λ,

Pr

[
bp← BGen(1λ); z, r, s←$Zp s.t. rz + s 6= 0;

z′ ← A(bp, {Gzi}q1i=1, {Hzi}q2i=1, r, s,G
1

rz+s , H
1

rz+s) : z = z′

]
.

The assumption is an extension of (q1, q2)-dlog, where we additionally give A the
challenge z in denominator (in both groups), blinded by s, r, which A is allowed
to see. Later this helps to model fractional elements in Groth16’s SRS. Notice
that (q1, q2)-edlog trivially implies (q1, q2)-dlog, since A for the latter does not

Snarky Ceremonies 9

need to use the extra elements of the former. The opposite implication is also
true (except for a slight difference in parameters) as we state in the following
theorem. The proof is postponed to full version of this paper.

Theorem 1. If (q1 + 1, q2 + 1)-dlog assumption holds, then (q1, q2)-edlog as-
sumption holds.

We also state two lemmas that are often useful in conjunction with AGM proofs.

Lemma 1 ([4]). Let Q be a non-zero polynomial in Zp[X1, . . . , Xn] of total de-
gree d. Define Q′(Z) := Q(R1Z+S1, . . . , RnZ+Sn) in the ring (Zp[R1, . . . , Rn, S1, . . . , Sn])[Z].
Then the coefficient of the highest degree monomial in Q′(Z) is a degree d poly-
nomial in Zp[R1, . . . , Rn].

Lemma 2 (Schwartz-Zippel). Let P be a non-zero polynomial in Zp[X1, . . . , Xn]
of total degree d. Then, Pr[x1, . . . , xn←$Zp : P (x1, . . . , xn) = 0] ≤ d/p.

3 Ceremonial SNARKs

We present our definitions for NIZKs that are secure with respect to a setup cere-
mony. We discuss the new notions of update completeness and update soundness
that apply to ceremonies that take place over many rounds. We also define sub-
version zero-knowledge which is adjusted to our ceremonial setting.

Compared to standard MPC definitions, our definition of (update) knowledge
soundness is not simulation-based and the final SRS may not be uniformly ran-
dom. We believe that the attempt to realise standard MPC definitions is what
led prior works to make significant practical sacrifices e.g. random beacons or
players that cannot go offline. This is because a rushing adversary that plays last
can manipulate the bit-decomposition, for example to enforce that the first bit of
the SRS is always 0. We here choose to offer an alternative protection: we allow
that the final SRS is not distributed uniformly at random provided that the ad-
versary does not gain any meaningful advantage when attacking the soundness
of the SNARK. This is in essence an extension of updatability definitions [26] to
ceremonies that require more than one round.

We consider NP-languages L and their corresponding relations R = {(φ,w)}
where w is an NP-witness for the statement φ ∈ L. An argument system Ψ (with
a ceremony protocol) for a relation R contains the following algorithms:

(i) A PPT parameter generator Pgen that takes the security parameter 1λ

as input and outputs a parameter p (e.g., a pairing description) 10. We
assume that p← Pgen(1λ) and the security parameter is given as input to
all algorithms without explicitly writing it.

10 We disallow subversion of p in this paper but in real life systems also this part of
the setup needs scrutiny. This is arguable easier since usually p is trapdoor free.

10 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

(ii) A PPT SRS update algorithm Update that takes as input a phase number
ϕ ∈ {1, . . . , ϕmax}, the current SRS srs, and proofs of previous updates
{ρi}i, and outputs a new SRS srs′ and an update proof ρ′. It is expected
that Update itself forces a certain phase order, e.g. the sequential one.

(iii) A DPT SRS verification algorithm VerifySRS that takes as an input a SRS
srs and update proofs {ρi}i, and outputs 0 or 1.

(iv) A PPT prover algorithm Prove that takes as an input a SRS srs, a statement
φ, and a witness w, and outputs a proof π.

(v) A DPT verification algorithm Verify that takes as an input a SRS srs, a
statement φ, and a proof π, and outputs 0 or 1.

(vi) A PPT simulator algorithm Sim that takes as an input a SRS srs, a trapdoor
τ , and a statement φ, and outputs a simulated proof π.

The description of Ψ also fixes a default srsd = (srsd1, . . . , srs
d
ϕmax). We require

that a secure Ψ satisfies the following flavours of completeness, zero-knowledge,
and knowledge soundness. All our definitions are in the (implicit) random oracle
model, since our final SRS update protocol will be using RO-dependent proof
of knowledge. Therefore, all the algorithms in this section have access to RO, if
some sub-components of Ψ require it.

Completeness of Ψ requires that Update and Prove always satisfy verification.

Definition 3 (Perfect Completeness). An argument Ψ for R is perfectly
complete if for any adversary A, it has the following properties:

1. Update completeness:

Pr

[
(ϕ, srs, {ρi}i)← A(1λ), (srs′, ρ′)← Update(ϕ, srs, {ρi}i) :
VerifySRS(srs, {ρi}i) = 1 ∧ VerifySRS(srs′, {ρi}i ∪ {ρ′}) = 0

]
= 0.

2. Prover completeness:

Pr

[
(srs, {ρi}i, φ, w)← A(1λ), π ← Prove(srs, φ, w) :
VerifySRS(srs, {ρi}i) = 1 ∧ (φ,w) ∈ R ∧ Verify(srs, φ, π) 6= 1

]
= 0.

Our definition of subversion zero-knowledge follows [2]. Intuitively it says that
an adversary that outputs a well-formed SRS knows the simulation trapdoor τ
and thus could simulate a proof himself even without the witness. Therefore,
proofs do not reveal any additional information. On a more technical side, we
divide the adversary into an efficient SRS subverter Z that generates the SRS
(showing knowledge of τ makes sense only for an efficient adversary) and into
an unbounded distinguisher A. We let Z send st to communicate with A.

Definition 4 (Subversion Zero-Knowledge (sub-ZK)). An argument Ψ for
R is subversion zero-knowledge if for all PPT subverters Z, there exists a PPT
extractor EZ , such that for all (unbounded) A, |ε0 − ε1| is negligible in λ, where

εb := Pr

[
(srs, {ρi}i, st)← Z(1λ), τ ← EZ(viewZ) :
VerifySRS(srs, {ρi}i) = 1 ∧ AOb(srs,τ,·)(st) = 1

]
.

Snarky Ceremonies 11

Ob is a proof oracle that takes as input (srs, τ, (φ,w)) and only proceeds if (φ,w) ∈
R. If b = 0, Ob returns an honest proof Prove(srs, φ, w) and when b = 1, it returns
a simulated proof Sim(srs, τ, φ).

Bellare et al. [5] showed that it is possible to achieve soundness and subver-
sion zero-knowledge at the same time, but also that subversion soundness is
incompatible with (even non-subversion) zero-knowledge. Updatable knowledge
soundness from [26] can be seen as a relaxation of subversion soundness to over-
come the impossibility result.

We generalize the notion of update knowledge soundness to multiple SRS genera-
tion phases. SRS is initially empty (or can be thought to be set to a default value
srsd). In each phase ϕ, the adversary has to fix a part of the SRS, denoted by
srsϕ, in such a way building the final srs. The adversary can ask honest updates
for his own proposal of srs∗ϕ, however, it has to pass the verification VerifySRS.
The adversary can query honest updates using update query through a special
oracle Osrs, described in Fig. 2. Eventually, adversary can propose some srs∗ϕ with
update proofs Q∗ to be finalized through finalize query. The oracle does it if
Q∗ contains at least one honest update proof obtained from the oracle for the
current phase. If that is the case, then srsϕ cannot be changed anymore and the
phase ϕ+1 starts. Once the whole SRS has been fixed, A outputs a statements
φ and a proof π. The adversary wins if (srs, φ, π) passes verification, but there is
no PPT extractor EA that can extract a witness even when given the view of A.

Definition 5 (Update Knowledge Soundness). An argument Ψ for R is
update knowledge-sound if for all PPT adversaries A, there exists a PPT extrac-
tor EA such that Pr[GameA,EAuks (1λ) = 1] is negligible in λ, where

GameA,EAuks (1λ) :=

[
(φ, π)← AOsrs(·)(1λ); get (srs, ϕ) from Osrs;w ← EA(viewA);
return Verify(srs, φ, π) = 1 ∧ (φ,w) 6∈ R ∧ ϕ > ϕmax

]
,

SRS update oracle Osrs is described in Fig. 2.

If ϕmax = 1, we obtain the standard notion of update knowledge soundness. In
the rest of the paper, we only consider the case where ϕmax = 2. In particular, in
the first phase we will generate a universal SRS srsu = srs1 that is independent
of the relation and in the second phase we generate a specialized SRS srss = srs2
that depends on the concrete relation. We leave it as an open question whether
ceremony protocols with ϕmax > 2 can provide any additional benefits. We also
note that we do not model the possibility of the protocol running for several
relations honestly simultaneously, although A can construct such SRS variants
on its own.

It is important to explain the role of the default SRS in the definition. Our
definition allows A to start its chain of SRS updates from any SRS, not just from
the default one; the only condition is the presence of a single honest update in
the chain. The default srsd is only used as a reference, for honest users. This has

12 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

Osrs(intent, srs
∗, Q∗) // Initially Q1 = · · · = Qϕmax = ∅;ϕ = 1

if ϕ > ϕmax : return ⊥; // SRS already finalized for all phases
srsnew ← (srs1, . . . , srsϕ−1, srs

∗
ϕ, . . . , srs

∗
ϕmax);

if VerifySRS(srsnew, Q
∗) = 0 : return ⊥; // Invalid SRS

if intent = update :
(srs′, ρ′)← Update(ϕ, srsnew, Q

∗);Qϕ ← Qϕ ∪ {ρ′};
return (srs′, ρ′);

if intent = finalize ∧Qϕ ∩Q∗ 6= ∅ :
Assign srsϕ ← srs∗ϕ;ϕ← ϕ+ 1;

Fig. 2. SRS update oracle Osrs given to the adversary in Definition 5. update
returns A an honest update for ϕ, and finalize finalizes the current phase.
Current phase ϕ and current SRS srs are shared with the KS challenger. {Qϕi}i
is a local set of proofs for honest updates, one for each phase.

positive real-world consequences: since the chain is not required to be connected
to any “starting point”, clients only need to verify the suffix of Q∗, if they are
confident it contains an honest update. In particular, clients that contribute to
the SRS update can start from the corresponding proof of update.

We again note that when using the random oracle model in a sub-protocol, we
assume that all of the above algorithms in our security model have access to RO.

4 Update Proofs of Knowledge

One of the primary ingredients in the setup ceremony is a proof of update knowl-
edge whose purpose is to ensure that adversary knows which values they used
for updating the SRS. In this section, we discuss the proof of knowledge given by
Bowe et al [12]. Bowe et al. only proved this proof of knowledge secure under the
presence of an adversary that can make random oracle queries. This definition
is not sufficient to guarantee security (at least in our framework), because the
adversary might be able to manipulate other users proofs or update elements in
order to cheat. We therefore define a significantly stronger property that suffices
for proving security of our update ceremony.

4.1 White-box Simulation-Extraction with Oracles

In this section, we provide definitions for the central ingredient of the ceremony
protocol — the update proof of knowledge that ensures validity of each sequential
SRS update. The proof of knowledge (PoK) protocol does not rely on reference
string but employs a random oracle as a setup. Hence we will extend the standard
NIZK definitions with ROt(·), defined in Fig. 1.

Since NIZK proof of knowledge is used in our ceremony protocol, we require it to
satisfy a stronger security property than knowledge soundness or even simulation

Snarky Ceremonies 13

extraction. Instead of the standard white-box simulation-extractability (SE), we
need a property that allows to compose the proof system more freely with other
protocols while still allowing the adversary to extract. This is somewhat similar
to idea of universal composability (UC, [14]), but contrary to the standard UC,
our extractor is still white-box. Another way would be to use an augmented UC
model which allows white-box assumptions (see [29]). In this work we follow the
more minimal and commonly used game-based approach.

We model influence of other protocols by considering a polynomial oracle Opoly

in the SE game of the update PoK.

The adversary can query the oracle Opoly on Laurent polynomials fi(Z1, . . . , Zn)

and it will output Gfi(z1,...,zn) for z1, . . . , zn pre-sampled from a uniform distri-
bution, and unknown to A. We use Laurent polynomials since SRS elements,
the access to which the oracle models, may have negative trapdoor powers.11 By
deg(f) we will denote the maximum absolute degree of its monomials, where by
absolute degree of the monomial we mean the sum of all its degrees taken as
absolute values. Formally, deg(c ·

∏
i Z

ai
i) :=

∑
i |ai|, and deg(f(Z1, . . . , Zn)) =

deg(
∑
iMi) := max{deg(Mi)}, where Mi are monomials of f . For example,

deg(3x2αδ−2 + y) = 5. This notion is used to limit the degree of input to Opoly

— we denote the corresponding degree d(λ) (or d, interchangeably).

This empowered adversary still should not be able to output a proof of knowledge
unless it knows a witness. Note that Opoly is independent from the random
oracle ROt and cannot provide the adversary any information about the random
oracle’s responses. In general, Opoly adds strictly more power to A. The intention
of introducing Opoly is to account for the SRS of the Groth’s SNARK later on.

In addition, our ceremony protocol for Groth’s SNARK requires NIZK to be
straight-line simulation extractable, i.e., that extraction works without rewinding
and is possible even when the adversary sees simulated proofs. Below, we define
such a NIZK in the random oracle model.

Ose(φ)

// Initially Q = ∅
π ← SimRO1(·)(φ)
Q← Q ∪ {(φ, π)}
return π

OG1
poly(f(Z1, . . . , Zd(λ)))

if deg(f) > d(λ)
return ⊥

else return Gf(z1,...,zd(λ))

OG2
poly(g(Z1, . . . , Zd(λ)))

if deg(g) > d(λ)
return ⊥

else return Hg(z1,...,zd(λ))

Fig. 3. Simulation-extraction oracle and two d−Poly oracles — for G1 and G2.
All used in GamesSE.

Let L be a language and R the corresponding relation. The argument Ψ for R in
the random oracle model consists of the following PPT algorithms: the parameter
11 See the description of Groth16 SRS, which has 1/δ in some SRS elements.

14 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

generator Pgen, the prover ProveRO(·), the verifier VerifyRO(·), and the simulator
SimRO1(·). We make an assumption that all algorithms get p ← Pgen(1λ) as an
input without explicitly writing it.

We assume that Ψ in the random oracle model satisfies the following definitions.

Definition 6. An argument Ψ for R is perfectly complete in the random oracle
model, if for any adversary A,

Pr
[
(φ,w)← ARO(·), π ← ProveRO(·)(φ,w) : (φ,w) ∈ R ∧ VerifyRO(·)(φ, π) 6= 1

]
= 0.

Definition 7. An argument Ψ for R is straight-line simulation extractable in
the (RO, d−Poly)-model, if for all PPT A, there exists a PPT extractor EA such
that Pr[GameAsSE(1

λ) = 1] = negl(λ), where GameAsSE(1
λ) =Q← ∅; z1, . . . , zd(λ) ← Zp;

(φ, π)← AOse,RO,O
G1
poly,O

G2
poly(1λ);

w ← EA(viewA);
:
VerifyRO(·)(φ, π) = 1∧
(φ,w) 6∈ R ∧ (φ, π) 6∈ Q

The oracles Ose,OG1

poly,O
G2

poly are defined on Fig. 3.

Roughly speaking, the adversary wins if it can output a verifying statement and
proof for which it does not know a witness, such that this proof has not been
obtained from a simulation oracle. There are also up to d(λ) random variables
chosen at the start such that the adversary can query an oracle for arbitrary
polynomial evaluations with maximum degree d(λ) of these values in the group.
With respect to the relation of this definition to more standard one we note two
things. First, our definition is white-box (since EA requires viewA), and strong
(in the sense that proofs are not randomizable). Second, our notion implies
strong-SE in the presence of RO, which is the special case of GamesSE with Opoly

removed, and thus is very close to the standard non-RO strong-SE variant.

Definition 8. An argument Ψ for the relation R is perfectly zero-knowledge
in the random oracle model if for all PPT adversaries A, ε0 = ε1, where εb :=
Pr
[
AOb(·),RO(·)(1λ) = 1

]
. Ob is a proof oracle that takes as an input (φ,w) and

only proceeds if (φ,w) ∈ R. If b = 0, Ob returns an honest proof ProveRO(·)(φ,w)

and when b = 1, it returns a simulated proof SimRO1(·)(φ).

Note that Sim is allowed to have access to RO discrete logarithms.

4.2 On the Security of BGM Update Proofs

We now prove that the proof system of [12] satisfies this stronger property.

Bowe et al. [12] proved that the proof system is secure under a Knowledge-of-
Exponent assumption. Their analysis does not capture the possibility that an
attacker might use additional knowledge obtained from the ceremony to attack

Snarky Ceremonies 15

the update proof. Our analysis is more thorough and assumes this additional
knowledge. This means that we cannot use a simple Knowledge-of-Exponent
assumption. Instead we rely on the algebraic group model; the AGM is to date
the weakest idealized model in which Groth16 has provable security and thus we
do not see this as being a theoretical drawback. The proof of knowledge is for
the discrete logarithm relation

Rdl = {(φ = (m,Gy1 , Hy2), w) | y1 = y2 = w},

where m is an auxiliary input that was used in the original [12] proof of knowl-
edge. The auxiliary input is redundant as we will see, but we still model it to
have consistency with the original protocol. We recall that one of our goals is
also to confirm the security of ceremony protocols already used in practice.

The protocol is given formally in Fig. 4. First the prover queries the random
oracle on the instance φ. The oracle returns a fresh random group element Hr.
The prover returns π = Hrw. The verifier checks that the instance is well-
formed (y1 = y2), and then checks that ê(π,H) = ê(RO(φ), Hy2) which ensures
knowledge of y2. Intuition for the last equation is that RO(φ) acts as a fresh
random challenge for φ and the only way to compute π = RO(φ)y2 and Hy2 is
by knowing y2. The fact that in Rdl every φ with y1 = y2 belongs to Ldl (the
exponent w always exists) justifies that we will call the correspondent equation
“well-formedness check”; subsequently, we will refer to the other check as “the
main verification equation”.

Prove
RO(·)
dl (φ,w)

Gr ← RO(φ);
return Grw;

Verify
RO(·)
dl (φ = (·, Gy1 , Hy2), π)

Gr ← RO(φ);
Verify that
ê(Gy1 , H) = (G,Hy2) ∧
ê(π,H) = ê(Gr, Hy2);

Sim
RO1(·)
dl (φ = (·, Gy1 , Hy2))

Assert ê(Gy1 , H) = (G,Hy2);
rφ ← RO1(φ);
return π ← (Gy1)rφ ;

Fig. 4. A discrete logarithm proof of knowledge Πdl.

Here we have moderately simplified the description from [12]:

– We allow the message m to be unconstrained. Thus if one were to hash
the public protocol view, as current implementations do, our security proof
demonstrates that this approach is valid. However, we can also allow m to
be anything, including the empty string.

– The original protocol has the proof element in G2. We switched it to G1 to
have shorter proofs.

– Our protocol includes the pairing based equality check for y in Gy and Hy in
the verifier rather than relying on this being externally done in the ceremony
protocol. The value Gy is needed by the simulator.

16 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

We are now ready to state the security theorem for Πdl.

Theorem 2. The argument Πdl = (Prove
RO(·)
dl ,Verify

RO(·)
dl ,Sim

RO1(·)
dl) is (i) com-

plete, (ii) perfect zero-knowledge in the random oracle model, and (iii) straight-
line SE in the (RO,d−Poly)-model against algebraic adversaries under the (1, 0)-
dlog assumption in G1.

Proof (sketch). Completeness and perfect zero-knowledge follow directly from
the construction of the prover, verifier, and simulator algorithms. The proof of
straight-line simulation extractability is considerably more challenging and we
provide the proof in the full version of this paper. We only mention the high
level idea here.

We consider security against algebraic adversaries A. Both statement φ elements
(Gy, Hy) and proof π ∈ G1 thatA outputs are going to be in the span of elements
that A queried from oracles. Coefficients of those spans are available in A’s view
viewA due to A being algebraic. We construct an extractor EA that gets viewA as
an input and returns the coefficient k corresponding to the element RO(φ) = Gr.
Rest of the proof focuses on proving that k is the witness y. Roughly speaking, the
idea is to construct a discrete logarithm adversary C that embeds (a randomized)
discrete logarithm challenge Gc into each of the random oracle queries that A
makes. We show that unless k = y, C is able to compute the discrete logarithm
c from viewA with an overwhelming probablity. ut

5 Groth16 is Ceremonial

We show that Groth16 is ceremonial for a setup ceremony similar to the one
proposed in [12]. In this section, we start by giving an intuitive overview of
the [12] ceremony protocol. After that, we recall the Groth16 argument and
carefully model the ceremony protocol in our security framework.

5.1 Ceremony Overview

We briefly remind the main idea of the [12] ceremony protocol.

– The SRS contains elements of the form e.g. (A1, . . . , An, T) = (Gx, Gx
2

, . . . ,
Gx

n

, Gδp(x)) where p(X) is a public polynomial known to all parties, and x
and δ are secret trapdoors.12

– Parties initialize the SRS to (A1, . . . , An, T) = (G, . . . , G,G).

– In the first phase any party can update (A1, . . . , An) by picking a random
x′ ∈ Zp and computing (Ax

′

1 , . . . , A
(x′)n

n). They must provide a proof of
knowledge of x′.

12 The polynomial p(X) is introduced only in the scope of this example, and is not
related to QAP.

Snarky Ceremonies 17

– The value T is publicly updated to Gp(x) given A1, . . . , An.

– In the second phase any party can update T by picking a random δ′ ∈ Zp
and computing T δ

′
. They must provide a proof of knowledge of δ′.

In order to prove knowledge of x′ they assume access to a random oracle RO :
{0, 1}∗ → G2 and proceed as follows:

– The prover computes R← RO(TΠ‖Gx) as a challenge where TΠ is the public
transcript of the protocol.

– Then prover outputs π ← Rx as a proof which can be verified by recomputing
R and checking that ê(G, π) = ê(Gx, R). The original protocol is knowledge
sound under (a variation of) the knowledge of exponent assumption, which
states that if given a challenge R, the adversary outputs (Gx, Rx), then the
adversary knows x.

Our protocol differs from the [12] in a few aspects related to both performance
and security. Additionally to the RO switch toG1 and optionality of including TΠ
in evaluation of RO, which we described in Section 4, we remove the update with
the random beacon in the end of each phase. That means that SRS can be slightly
biased, but we prove that it is not sufficient to break the argument’s security. We
consider this to be the biggest contribution of this work since obtaining random
beacons is a significant challenge both in theory and practice. Our approach
completely side-steps this issue by directly proving the protocol without relying
on the random beacon model.

5.2 Formal Description

We present the version of Groth’s SNARK [25] from [12] and adjust the ceremony
protocol to our security framework by defining Update and VerifySRS algorithms
which follow the intuition of the previous section.

Firstly, let us recall the language of Groth’s SNARK. A Quadratic Arithmetic
Program (QAP) is described by a tuple

QAP =
(
Zp, {ui(X), vi(X), wi(X)}mi=0, t(X)

)
where ui(X), vi(X), wi(X) are degree n− 1 polynomials over Zp, and t(X) is a
degree n polynomial over Zp. Let the coefficients of the polynomials be respec-
tively uij , vij , wij , and tj . We can define the following relation for QAP,

RQAP =

(φ,w)

0 φ = (a0 = 1, a1, . . . , a`) ∈ Z1+`
p ,

w = (a`+1, . . . , am) ∈ Zm−`p ,
∃h(X) ∈ Zp[X] of degree ≤ n− 2 such that
(
∑m
i=0 aiui(X)) (

∑m
i=0 aivi(X)) =

∑m
i=0 aiwi(X) + h(X)t(X)

 .

In particular, the satisfiability of any arithmetic circuit, with a mixture of public
and private inputs, can be encoded as a QAP relation (see [22] for details).

18 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

Setup(RQAP): Sample τ = (α, β, δ, x)←$ (Z∗p)4 and return (srs = (srsu, srss), τ) s.t.

srsu ←
(
{Gx

i

, Hxi}2n−2
i=0 , {Gαx

i

, Gβx
i

, Hαxi , Hβxi}n−1
i=0

)
,

srss ←
(
Gδ, Hδ, {G

βui(x)+αvi(x)+wi(x)
δ }mi=`+1, {G

xit(x)
δ }n−2

i=0

)
.

Prove(RQAP, srs, {ai}mi=0): Sample r, s←$Zp and return π = (GA, HB , GC), where

A = α+
∑m
i=0 aiui(x) + rδ, B = β +

∑m
i=0 aivi(x) + sδ,

C =
∑m
i=`+1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)

δ
+As+Br − rsδ.

Verify(RQAP, srs, {ai}`i=1, π): Parse π as (GA, HB , GC) and verify that

ê(GA, HB) = ê(Gα, Hβ) · ê(
∏̀
i=0

Gai(βui(x)+αvi(x)+wi(x)), H) · ê(GC , Hδ).

Sim(RQAP, srs, τ, {ai}`i=1): Return (GA, HB , GC), where

A,B←$Zp, C =
AB−αβ−

(∑`
i=0 ai(βui(x)+αvi(x)+wi(x))

)
δ

Fig. 5. Groth’s zk-SNARK description.

Groth [25] proposed an efficient SNARK for the QAP relation, which is now
widely used in practice. Bowe et al. [12] modified original argument’s SRS to
make it consistent with their distributed SRS generation protocol. The full de-
scription of the latter argument is in Fig. 5. For the intuition of the construction,
we refer the reader to the original paper by Groth.

We adjust the SRS in Fig. 5 to our model with a ceremony protocols: the de-
fault SRS, update algorithm, and a SRS specialization algorithm are described
in Fig. 6. 13 We obtain the default SRS from the trapdoor τ = (1, 1, 1, 1). The
algorithm Update samples new trapdoors and includes them in the previous SRS
by exponentiation as was described in Section 5.1. For example, to update Gι,
where ι is some trapdoor, the updater will sample ι′ and computes (Gι)ι

′
. De-

pending on the phase number ϕ ∈ {1, 2}, the algorithm will either update srsu
or srss. When updating srsu, we also derive a consistent srss using the Specialize
algorithm14 which essentially computes srss with δ = 1. This fixes a sequential
phase update scenario, since updating srsu after srss overwrites the latter.

Each update is additionally accompanied with an update proof ρ, which allows
us to verify update correctness. For each trapdoor update ι′, ρ contains Gιι

′
(the

element of the new SRS), Gι
′
, Hι′ , and a NIZK proof of knowledge πι′ for ι′.

13 Our Groth16 SRS follows [12] and not the original [25]. It additionally contains
{Hxi}2n−2

i=n−2, {H
αxi}n−1

i=1 , and {H
βxi}n−1

i=1 .
14 This generality simplifies our model. In practice srss can be derived using Specialize

only once just before starting phase 2.

Snarky Ceremonies 19

Default SRS: Run Setup in Fig. 5 with τ = (1, 1, 1, 1) to obtain srsd.

Update(RQAP, ϕ ∈ {1, 2}, (srs = (srsu, srss), Q)):
If ϕ = 1:

1. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0

)
;

2. Sample α′, β′, x′ ←$Z∗p;
3. For ι ∈ {α, β, x}: πι′ ← Prove

RO(·)
dl (Gι

′
, Hι′ , ι′);

4. ρα′ ← (Gα
′
αx:0, G

α′ , Hα′ , πα′);
5. ρβ′ ← (Gβ

′

βx:0, G
β′ , Hβ′ , πβ′);

6. ρx′ ← (Gx
′
x:1, G

x′ , Hx′ , πx′);
7. ρ← (ρα′ , ρβ′ , ρx′);

8. srs′u ←
(
{G(x′)i

x:i , H
(x′)i

x:i }
2n−2
i=0 , {Gα

′(x′)i

αx:i , G
β′(x′)i

βx:i , H
α′(x′)i

αx:i , H
β′(x′)i

βx:i }n−1
i=0

)
9. srs′s ← Specialize(QAP, srs′u);
10. return ((srs′u, srs

′
s), ρ);

If ϕ = 2:
11. Parse srss =

(
Gδ, Hδ, {Gsum:i}mi=`+1, {Gt(x):i}n−2

i=0

)
;

12. Sample δ′ ←$Z∗p;
13. πδ′ ← Prove

RO(·)
dl (Gδ

′
, Hδ′ , δ′);

14. ρ← (Gδ
′
δ , G

δ′ , Hδ′ , πδ′);
15. srs′s ←

(
Gδ
′
δ , H

δ′
δ , {G

1/δ′

sum:i}
m
i=`+1, {G

1/δ′

t(x):i}
n−2
i=0

)
;

16. return ((srsu, srs
′
s), ρ);

Specialize(RQAP, srsu): // Computes srss with δ = 1

17. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0

)
;

18. srss ←
(
G,H, {

∏n−1
j=0 G

uij
βx:j ·G

vij
αx:j ·G

wij
x:j }

m
i=`+1, {

∏n
j=0G

tj
x:(i+j)}

n−2
i=0

)
;

19. return srss;

Fig. 6. Default SRS and update algorithm for Groth’s SNARK

Since Gι is part of the previous update proof, we can use pairings to assert well-
formedness of Gιι

′
, Gι

′
, and Hι′ . The first element of the update proof duplicates

the element of the new SRS, but since we do not store every updated SRS but
only update proofs, we must keep these elements.

Finally, we have a SRS verification algorithm VerifySRS in Fig. 7, that takes as
an input srs and a set of update proofs Q, and then (i) uses pairing-equations
to verify that srs is well-formed respect to some trapdoors, (ii) checks that each
update proof ρ ∈ Q contains a valid NIZK proof of discrete logarithm, and
(iii) uses pairing-equations to verify that update proofs in Q are consistent with
srs. In the full version, we show how to make VerifySRS more efficient by using
batching techniques. This will allow to substitute most of pairings in VerifySRS
with significantly cheaper small-exponent multi-exponentiations.

20 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

VerifySRSRO(·)(QAP, srs, Q):
1. Parse srs = (srsu, srss) and Q = (Qu, Qs) = {ρu,i}kui=1 ∪ {ρs,i}

ks
i=1;

2. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0

)
and as-

sert that elements belong to correct groups;
3. For i = 1, . . . , ku:

(a) Parse ρu,i = (ρ
(i)

α′ , ρ
(i)

β′ , ρ
(i)

x′);
(b) For ι ∈ {α, β, x}:

i. Parse ρ(i)ι′ = (G
(i)
ι , G

(i)

ι′ , H
(i)

ι′ , π
(i)

ι′);
ii. Assert VerifyRO(·)

dl (G
(i)

ι′ , H
(i)

ι′ , π
(i)

ι′) = 1;
iii. If i 6= 1: Assert ê(G(i)

ι , H) = ê(G
(i−1)
ι , H

(i)

ι′);
4. Assert Gx:1 = G

(ku)
x 6= 1; Gαx:0 = G

(ku)
α 6= 1; Gβx:0 = G

(ku)
β 6= 1;

5. For i = 1, . . . , 2n − 2: Assert ê(Gx:i, H) = ê(G,Hx:i) and ê(Gx:i, H) =
ê(Gx:(i−1), Hx:1);

6. For i = 0, . . . , n − 1 and ι ∈ {α, β}: Assert ê(Gιx:i, H) = ê(G,Hιx:i) and
ê(Gιx:i, H) = ê(Gx:i, Hιx:0);

7. Parse srss ←
(
Gδ, Hδ, {Gsum:i}mi=`+1, {Gt(x):i}n−2

i=0 ,
)
and assert that ele-

ments belong to correct groups;
8. For i = 1, . . . , ks:

(a) Parse ρs,i = (G
(i)
δ , G

(i)

δ′ , H
(i)

δ′ , πδ′);
(b) Assert VerifyRO(·)

dl (G
(i)

δ′ , H
(i)

δ′ , πδ′) = 1;
(c) if i 6= 1 assert ê(G(i)

δ , H) = ê(G
(i−1)
δ , H

(i)

δ′);
9. Assert ê(Gδ, H) = ê(G,Hδ) and Gδ = G

(ks)
δ 6= 1;

10. For i = ` + 1, . . . ,m: Assert ê(Gsum:i, Hδ) = ê(
∏n−1
j=0 G

uij
βx:j · G

vij
αx:j ·

G
wij
x:j , H);

11. For i = 0, . . . , n− 2: Assert ê(Gt(x):i, Hδ) = ê(Gt(x), Hx:i), where Gt(x) =∏n
j=0G

tj
x:j ;

Fig. 7. SRS verification algorithm for Groth’s SNARK

6 Security

We prove the security of Groth’s SNARK from Section 5 in our NIZK with a
ceremony framework of Section 3.

Theorem 3 (Completeness). Groth’s SNARK has perfect completeness, i.e.,
it has update completeness and prover completeness.

Proof. Let us first make a general observation that if some bitstring s = (srs, {ρi}i)
satisfies VerifySRS(s) = 1, then there exists a unique α, β, x, δ ∈ Z∗p that define
a well-formed srs.

Update completeness: Let A be an adversary that outputs s = (ϕ, srs, {ρi}i)
such that VerifySRS(s) = 1. By the observation above, there exists some α, β, x, δ ∈
Z∗p that map to a well-formed srs. It is easy to observe that by construction
Update(QAP, ϕ, (srs, {ρi}i)) picks a new α′, β′, x′ ∈ Z∗p (or δ′ if ϕ = 2) and

Snarky Ceremonies 21

rerandomizes srs such that the new srs′ has a trapdoor αα′, ββ′, xx′ ∈ Z∗p (or
δδ′ ∈ Z∗p). Since the srs′ is still well-formed and ρ is computed independently,
VerifySRS(srs′, {ρi}i ∪ {ρ′}) = 1.

Prover completeness: Suppose thatA output (srs, {ρi}i, φ, w) such that (φ,w) ∈
RQAP, and VerifySRS(srs, {ρi}i) = 1. It follows that srs is a well-formed SRS for
Groth’s SNARK. From here, the prover completeness follows from the complete-
ness proof in [25]. ut

Subversion zero-knowledge of Groth’s SNARK was independently proven in [2]
and [17] under slightly different knowledge assumptions. Our approach here dif-
fers only in that we extract the trapdoor from Πdl proofs. For sake of complete-
ness, we sketch the main idea below.

Theorem 4 (sub-ZK). If Πdl is a non-interactive proof of knowledge, then
Groth’s SNARK is subversion zero-knowledge.

Proof (sketch). Let Z be a PPT subverter and A an unbounded adversary
in the subversion zero-knowledge definition. We suppose that Z(1λ) outputs
(srs, {ρi}i, st) such that VerifySRS(srs, {ρi}i) = 1. The latter guarantees that srs
is well-formed and that update proofs verify. To prove subversion zero-knowledge,
we need to construct an extractor EZ that give viewZ extracts the simulation
trapdoor for srs. Idea behind EA is that we use straight-line extractability of Πdl

to extract ι1, ..., ιm for ι ∈ {x, α, β, δ} from the proofs {ρi}i and then compute
ι =

∏
i ιi to obtain the trapdoor τ = (x, α, β, δ). Given that EA outputs the

correct trapdoor τ , proofs can be perfectly simulated as is proven in [25]. ut

6.1 Update Knowledge Soundness

Theorem 5. Let us assume the (2n− 1, 2n− 2)-edlog assumption holds. Then
Groth’s SNARK has update knowledge soundness with respect to all PPT alge-
braic adversaries in the random oracle model.

Proof. Let A be an algebraic adversary against update knowledge soundness
and let us denote the update knowledge soundness game Gameuks by Game0.
We construct an explicit white-box extractor EA and prove it to succeed with an
overwhelming probability. The theorem statement is thus AdvGame0

A,EA (λ) = negl(λ).
We assume that A makes at most q1 update queries in phase 1 and at most q2
in phase 2. Often we will use ι to denote any of the elements x, α, β or δ.

Description of the extractor EA. We present the extractor EA on Fig. 8.
The extractor takes the adversarial view viewA as an input and extracts AGM
coefficients from viewA when A produces a verifying proof. The goal of the
extractor is to reconstruct the witness from this information.

The intuition behind its strategy is that, in Prove on Fig. 5, C is constructed as∑
i ai(αui(x)+βvi(x)+wi(x))/δ, and we would like to obtain precisely these ai as

22 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

EA(viewA)

1. Extract the set of algebraic coefficients Tπ ← EagmA (viewA) and obtain
{Ci:x:j}m1,m

i,j=(1,l+1) from it, corresponding to the elements {(βui(x) + αvi(x) +

wi(x))/δ} in the second phase, where m1 is the number of update queries
made in the first phase, and m is the QAP parameter.

2. From viewA deduce icrit2 — Osrs query index that corresponds to the last
honest update in the final SRS.

3. Return coefficients w = {Cicrit2 :x:j}mj=l+1.

Fig. 8. The extractor EA for update knowledge soundness

AGM coefficients corresponding to the (αui(x)+. . .)/δ elements of the final SRS.
When A submits the final response (φ, π = (A,B,C)), the proof element C ∈ G1

has the algebraic representation, corresponding to following G1 elements: (1)
SRS elements that the update oracle outputs, (2) corresponding update proofs,
and (3) direct RO replies. These sets include all the SRS elements that were
produced during the update KS game, not only those that were included in the
final SRS. The coefficient of elements (αui(x) + . . .)/δ that the extractor needs
belong to the the first category and in particular correspond to the second phase
updates, since δ is updated there.

Let mϕ be the number of update queries that A makes in phase ϕ ∈ {1, 2}. We
introduce the notion of the critical query — icritϕ ∈ {1, . . . ,mϕ} corresponds
to the last honest update that A includes into the finalized SRS in phase ϕ.
Technically, we define it in the following way. For every phase ϕ, the final SRS
is associated with update proofs {ρϕ,i}

kϕ
i=1 (contained in Q∗ in Fig. 2) and at

least one of them must be produced by honest update query for finalization to
succeed. Suppose that ρϕ,imax is the last honest update in that set, that is, the
one with the largest index i. If ρϕ,imax was obtained as the j-th update query,
then we define icritϕ := j.

The extractor EA can deduce icritϕ , since viewA includes Osrs responses and Q∗.
When EA obtains icrit2 , it merely returns the AGM coefficients (which it can
obtain from viewA since A is algebraic) corresponding to the (αui(x) + . . .)/δ
elements of update oracle response number icrit2 . For now, there is no guarantee
that these elements are in any way connected to the final SRS, but later we show
that EA indeed succeeds.

Description of Game1. We describe Game1 , that differs from Game0 in that
one of the honest updates in each phase is a freshly generated SRS instead of
being an update of the input SRS. This simplifies further reasoning (Lemma 4),
and also at a later step we build a reduction B that embeds the edlog challenge
z into the trapdoors of the fresh SRS. For convenience, we describe Game1 in

Snarky Ceremonies 23

terms of communication between the challenger C (top-level execution code of
Game1) and A.

C of Game1 maintains an update (current call) counter icall, which is reset to
zero in the beginning of each phase. Before the game starts, C uniformly samples
two values iguess1 and iguess2 , ranging from 1, . . . , q1 and 1, . . . , q2 (upperbounds
on the number of queries) correspondingly, in such a way attempting to guess
critical queries {icritϕ}ϕ. In case the actual number of queries mϕ in a particular
execution of A is less than iguessϕ , C will just execute as in Game0 for phase
ϕ. C will generate fresh SRS for at most two (randomly picked) update queries
throughOsrs, and it will respond to all the other update requests fromA honestly.
The successful guess formally corresponds to the event lucky, set during SRS
finalization in Game1.

It is not possible for C to generate an update proof for a fresh SRS as in Game0
because it does not know the update trapdoors ι̂′ for critical queries — these
values do not exist explicitly, since instead of updating an SRS, C generated
a new one. Therefore, it uses a specific technique to simulate update proofs
using the procedure SimUpdProof. The task of SimUpdProof is to create ρι̂′ =
(Gι̂

′

ι̂ , G
ι̂′ , H ι̂′ , πι̂′), which is a valid update proof from srs∗ to a freshly generated

srs′. Since C does not actually update srs∗, but creates a completely new one
with zι trapdoors, we have Gzι = Gι̂ι̂

′
where ι̂ is the trapdoor value of srs∗ and

ι̂′ is the new update trapdoor. Given the value ι̂ in clear, we can reconstruct Gι̂
′

by computing (Gι̂ι̂
′
)ι̂
−1

= (Gzι)ι̂
−1

.

This is the strategy of C: it uses viewA to extract the trapdoors ιj for all the
ku updates that led to srs∗ϕ, and thus obtains ι̂. Notice that these updates can
be both honest and adversarial, but importantly, none of them are simulated
(because we perform this procedure only once per phase), which guarantees that
extraction succeeds. Next, SimUpdProof computes a product ι̂ of these extracted
values, and using its inverse produces (Gι̂

′
, H ι̂′), which are the second and third

elements of the update proof. The first element of ρι̂′ is just an element of the
new SRS (e.g. for ι = x, it is Gι

′

x:1, and for ι ∈ {α, β} it is Gι
′

ιx:0), so we set
the value to Gzι . The last element, the proof-of-knowledge of ι̂′, we create by
black-box simulation, since Πdl is perfectly ZK. Namely, since the challenger
already has φdl = (⊥, Gι̂′ , H ι̂′), it passes it into Simdl, and attaches the resulting
πι′ to the update proof. Since we know zι in Game1 (and therefore know φdl
exponent ι̂′), it is not necessary to simulate the proof in Game1 — technically,
the procedure only requires Gzι . However, simulation will be critical in the final
part of our theorem, reduction to edlog, since in that case zι contains embedded
edlog challenge for which the challenger does not know the exponent. This is
why we introduce it here in Game1.

We prove in the full version of this paper that the game Game1 that we introduced
is indistinguishable from Game0 for A by relying on the zero-knowledge and
simulation-extractability properties ofΠdl. We recall that (1, 0)-dlog assumption
is implied by (2n− 1, 2n− 2)-edlog assumption.

24 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

Lemma 3. Assuming (1, 0)-dlog, the difference between advantage of A in win-
ning Game0 and Game1 is negligible: AdvGame0

A,EA (λ) ≤ AdvGame1
A,EA (λ) + negl(λ).

Reconstructing the proof algebraically. For the next steps of our proof
we will need to be able to reconstruct the proof elements, and the verification
equation generically from the AGM coefficients we extract from A. Almost all
the elements that A sees depend on certain variables ~Ψ that are considered
secret for the adversary (update trapdoors, RO exponents, critical query honest
trapdoors). SinceA can describe proof elements A,B,C as linear combinations of
elements it sees, that depend on ~Ψ , we are able to reconstruct the proof elements
as functions A(~Ψ), B(~Ψ), C(~Ψ) (Laurent polynomials, as we will show later).
That is, for the particular values ~ψ that we chose in some execution in Game1,
A(~ψ) = A (but we can also evaluate A(~Ψ) on a different set of trapdoors). From
these functions A(~Ψ), B(~Ψ), C(~Ψ) one can reconstruct a SNARK verification
equation Q(~Ψ), such that Verify(ψ, π) = 1 ⇐⇒ Q(~ψ) = 0.

We note that it is not trivial to obtain the (general) form of these functions,
because it depends on viewA— different traces produce different elements that A
sees, which affects with which functions these elements are modelled. Therefore,
we start by defining which variables are used to model elements that A sees.

We denote by ~Ψ this set of variables which are unknown to A. This includes,
first and foremost, the set of trapdoors that are used for the (critical) simulation
update queries: Zx, Zα, Zβ , Zδ (these abstract the corresponding trapdoors {zι}).
To denote the expression that includes final adversarial trapdoors ιAj , we will
use Ẑι that is equal to the previously defined Zι, but now as a function of Zι:
Ẑι(Zι) = Zι

∏
ιAj for ι ∈ {x, α, β}, and Ẑδ(Zδ) = Zδ/

∏
δAj .15

The full list of variables that constitute ~Ψ is the following:

1. Critical honest trapdoor variables: Zα, Zβ , Zx, Zδ.
2. Honest (non-critical) update trapdoors ~T = {Ti,ι}.
3. RO replies, which we, for convenience of indexing, split into three disjoint

sets:
– RO values for the critical queries ~K = {Kι}x,α,β,δ: these RO replies are

used in PoK simulation by Game1.
– RO values for honest update proofs ~RT = {RT :i:ι}i,ι. First phase up-

date query number i ∈ {1, . . . ,m1} corresponds to three values RT :i:x,
RT :i:α, RT :i:β , and second phase update query number j ∈ {1, . . . ,m2}
corresponds to RT :j:δ.

– RO responses ~RA that A directly requests from RO. These are used
by A, in particular, but not only, to create PoKs for adversarial SRS
updates.

15 If Ẑι is not equal Zι
∏
ιAj as a function we have Ẑι(Ψ) − Zι

∏
ιAj 6= 0 but Ẑι(ψ) −

zι
∏
ιAj ≡ 0 for ι ∈ {x, α, β, δ}, and we break the (2n− 1, 2n− 2)-edlog problem as

in Lemma 6.

Snarky Ceremonies 25

We denote by ~R = ~RA ∪ ~RT . Therefore, ~Ψ = ({Zι}ι, ~K, ~T , ~R). Since we will be
often working only with the first set of variables {Zι}, we will denote it as ~Ψ2,
and all other variables from ~Ψ as ~Ψ1.

Success in lucky executions. In general, the set structure of Q(~Ψ) can vary
enormously, and it depends on many things, including the way A interacts with
the challenger. Each interaction can present a different set of coefficients in A
that will be modelled by different functions. Therefore, we would like to take
advantage of the lucky event to simplify our reasoning and reduce the space of
possible interactions.

We claim that lucky is independent from A’s success in Game1. In other words,
in order to win Game1 it suffices to only show the existence of a witness extractor
in the case where the lucky indices correspond to A’s critical queries.

AdvGame1
A,EA (λ) = Pr[GameA,EA1 (1λ) = 1] = Pr[GameA,EA1 (1λ) = 1 | lucky]

where q1 and q2 are polynomially bounded. Indeed, A is blind to whether we sim-
ulate or not, and so we can assume independence of events: Pr[GameA,EA1 (1λ) =
1 | simi] is the same for all simulation strategies simi, including the lucky one.

AdvGame1
A,EA (λ) =

q1q2∑
i=0

Pr[GameA,EA1 (1λ) = 1 | simi]
1

q1q2

=
1

q1q2

∑
i

Pr[GameA,EA1 (1λ) = 1 | lucky] = Pr[GameA,EA1 (1λ) = 1 | lucky]

Our choice of {iguessϕ}ϕ, and thus the chosen simulation strategy simi is inde-
pendent from the success of A. This does not imply that we ignore some traces
of A, which would break the reduction. Instead, for each possible trace of A, and
thus each possible way it communicates with the challenger and the oracles, we
only consider those executions in which we guess the indices correctly.

Defining the function Q(~Ψ) for Game1. Therefore, when in Game1 the
challenger guesses critical queries correctly (lucky), and A returns a verifying
proof, the complexity is greatly simplified, and we can now define at least the
high-level form of the function Q:

Q(~Ψ) :=

(
A(~Ψ)B(~Ψ)−ẐαẐβ−

∑̀
i=0

ai(Ẑβui(Ẑx)+Ẑαvi(Ẑx)+wi(Ẑx))−C(~Ψ)Ẑδ

)
(1)

such that GA(~ψ) = A and similarly for B and C, where ~ψ is the concrete set of
secret values used for a particular execution.16 The function Q(~Ψ) reconstructs
16 The form of the proof-independent parts of the verification equation is due to our

critical-step-simulation strategy that we introduce in Game1. That is, these values
they only depend on the challenge variables Zι plus last adversarial trapdoors (e.g.∏
αAi etc). This is where guessing the last query really helps: otherwise these terms

would also depend on Ψ1, e.g. on ~T .

26 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

GameA,EA2 (1λ)

srs← srsd, ϕ = 1,
Q1, Q2 ← ∅; icall ← 0; iguess1 ←$ [0, q1]; iguess2 ←$ [0, q2]; {zι}ι∈{x,α,β,δ} ←$Zp;
ROt, Osrs and SimUpdProof are constructed as in Game1;
(φ, π)← AOsrs,RO;
w ← EA(viewA);
bad :=

(
lucky ∧Q(ψ1, {zι}) = 0 ∧Q(ψ1, {Zι}) 6≡ 0

)
return Verify(srs, φ, π) = 1 ∧ (φ,w) /∈ R ∧ ϕ > ϕmax ∧ lucky;

Fig. 9. Description of Game2, an extension of Game1 with bad event. Q(~Ψ1, ~Ψ2)

is the function (Laurent polynomial in ~Ψ2) that corresponds to the way to re-
construct π and verification equation, where Ψ2 corresponds to the trapdoor
variables {Zι}.

verification equation of the proof in this particular game execution: in particular,
Q(~ψ) = 0 ⇐⇒ Verify(srs, φ, π) = 1.

Note that the form of functions A(~Ψ), B(~Ψ), and C(~Ψ) depends on the interaction
with A, and thus on the particular execution trace. But the general form of Q
we have just specified is enough to argue the critical lemmas. The proof of the
following Lemma, which shows exactly that, is deferred to the full version.

Lemma 4. In Game1, conditioned on event lucky, the general form of the func-
tion Q(~Ψ) reconstructing the main verification equation is as presented in Eq. (1),
under (2n− 1, 2n− 2)-edlog. Moreover, A,B,C are Laurent polynomials in ~Ψ2

when viewed over Zp[~C, ~Ψ1], where ~C are AGM coefficients, abstracted as vari-
ables. In other words, A,B,C ∈ (Zp[~C, ~Ψ1])[~Ψ2] are Laurent. Therefore, Q also
is Laurent when viewed as (Zp[~C, ~Ψ1])[~Ψ2] element.

Description of Game2. The following game, presented on Fig. 9 extends Game1
with two additions. Firstly, it introduces the event bad. The condition that we
are trying to capture is whether A uses the elements that depend on trapdoors
zι blindly or not. When bad does not happen, the adversary is constructing
π in such a way that it works for any value of z′ι (Q(ψ1, {Zι}) is a zero as a
polynomial). Otherwise, we can argue that A’s cheating strategy depends on the
specific value of zι, even though it is hidden in the exponent (Q(ψ1, {zι}) = 0,
but Q(ψ1, {Zι}) is a non-zero polynomial).

Secondly, we require that adversary wins only if the event lucky happens. Since
lucky is an independent event, then Pr[GameA,EA2 (1λ) = 1] = Pr[GameA,EA1 (1λ) =

1 ∧ lucky] = Pr[GameA,EA1 (1λ) = 1]/(q1q2). The last transition is due to inde-
pendence of winning Game1 and lucky explained earlier (Pr[GameA,EA1 (1λ) =

Snarky Ceremonies 27

1] = Pr[GameA,EA1 (1λ) = 1 | lucky]). We can use the total probability formula
to condition winning in Game2 on the event bad.

Pr[GameA,EA2 (1λ) = 1] =Pr[GameA,EA2 (1λ) = 1 | ¬bad] · Pr[¬bad]

+Pr[GameA,EA2 (1λ) = 1 | bad] · Pr[bad]

≤Pr[GameA,EA2 (1λ) = 1 | ¬bad] + Pr[bad].

The next two lemmas will upperbound this probability. The Lemma 5 will bound
the first term of the sum and the Lemma 6 bounds the second term.

Extractor succeeds in good executions. In this subsection we present a
lemma, that states that whenever C guesses the critical indices correctly, and
event bad does not happen, the output of the extractor EA is a QAP witness.
The proof of Lemma 5 is presented in the full version of this paper.

Lemma 5. In Game2, when ¬bad happens and A produces a verifying proof,
then EA succeeds: Pr[GameA,EA2 (1λ) = 1 | ¬bad] = negl(λ).

Description of the EDLOG reduction. We show that the event bad can
only happen with a negligible probability by making a reduction to the edlog
assumption. If A triggers bad, then it could construct a proof in a manner that
is specific to the SRS ~ψ2 and does not generalize to any other ~ψ′2. This means
that A has knowledge of the exponent element, which is impossible assuming
edlog. The proof of the following lemma is delayed to the full version.

Lemma 6. The probability of bad in Game2 is negligible under the (2n−1, 2n−
2)-edlog assumption.

Now, combining the results of Lemma 5 and Lemma 6 with previous game tran-
sitions:

Pr[GameA,EA0 (1λ) = 1] ≤ Pr[GameA,EA1 (1λ) = 1] + negl(λ)

= (q1q2) Pr[GameA,EA2 (1λ) = 1] + negl(λ)

≤ (q1q2)
(
Pr[GameA,EA2 (1λ) = 1 | ¬bad] + Pr[bad]

)
+ negl(λ)

= (q1q2)(negl(λ) + negl(λ)) + negl(λ) = negl(λ)

This concludes the proof of the update knowledge soundness theorem. ut

Acknowledgements

This work has been supported in part by the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 780477 (project
PRIViLEDGE). Janno Siim was additionally supported by the Estonian Re-
search Council grant PRG49. An early version of this work [35] included a Sapling
security proof that was funded by the Electric Coin Company.

28 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

References
1. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, Janno Siim, and Michal

Zajac. UC-secure CRS generation for SNARKs. In Johannes Buchmann, Abder-
rahmane Nitaj, and Tajje eddine Rachidi, editors, AFRICACRYPT 19, volume
11627 of LNCS, pages 99–117. Springer, Heidelberg, July 2019.

2. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A
subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3–33. Springer, Hei-
delberg, December 2017.

3. Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov. Another
look at extraction and randomization of groth’s zk-SNARK. Cryptology ePrint
Archive, Report 2020/811, 2020. https://eprint.iacr.org/2020/811.

4. Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of com-
putational assumptions in the algebraic group model. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
121–151. Springer, Heidelberg, August 2020.

5. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an un-
trusted CRS: Security in the face of parameter subversion. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS,
pages 777–804. Springer, Heidelberg, December 2016.

6. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474.
IEEE Computer Society Press, May 2014.

7. Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars
Virza. Secure sampling of public parameters for succinct zero knowledge proofs.
In 2015 IEEE Symposium on Security and Privacy, pages 287–304. IEEE Computer
Society Press, May 2015.

8. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct
non-interactive zero knowledge for a von neumann architecture. In Kevin Fu and
Jaeyeon Jung, editors, USENIX Security 2014, pages 781–796. USENIX Associa-
tion, August 2014.

9. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay
functions. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 757–788. Springer, Heidelberg, August 2018.

10. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. ZEXE: Enabling decentralized private computation. In 2020 IEEE
Symposium on Security and Privacy, pages 947–964. IEEE Computer Society Press,
May 2020.

11. Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for
constructing the public parameters of the pinocchio zk-SNARK. Cryptology ePrint
Archive, Report 2017/602, 2017. http://eprint.iacr.org/2017/602.

12. Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for
zk-SNARK parameters in the random beacon model. Cryptology ePrint Archive,
Report 2017/1050, 2017. http://eprint.iacr.org/2017/1050.

13. Benedikt Bünz, Mary Maller, Pratyush Mishra, and Noah Vesely. Proofs for inner
pairing products and applications. Cryptology ePrint Archive, Report 2019/1177,
2019. https://eprint.iacr.org/2019/1177.

14. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

https://eprint.iacr.org/2020/811
http://eprint.iacr.org/2017/602
http://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2019/1177

Snarky Ceremonies 29

15. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable
SRS. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I,
volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

16. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span
programs with applications to succinct NIZK arguments. In Palash Sarkar and
Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages
532–550. Springer, Heidelberg, December 2014.

17. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla and
Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 315–347.
Springer, Heidelberg, March 2018.

18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer, Heidelberg,
August 2018.

19. Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures
and signed ElGamal encryption in the algebraic group model. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS,
pages 63–95. Springer, Heidelberg, May 2020.

20. Ariel Gabizon. On the security of the BCTV pinocchio zk-SNARK variant. Cryp-
tology ePrint Archive, Report 2019/119, 2019. https://eprint.iacr.org/2019/
119.

21. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permuta-
tions over lagrange-bases for oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/
2019/953.

22. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–
645. Springer, Heidelberg, May 2013.

23. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In 17th ACM STOC, pages 291–304.
ACM Press, May 1985.

24. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, Heidelberg, December 2010.

25. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

26. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Up-
datable and universal common reference strings with applications to zk-SNARKs.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III,
volume 10993 of LNCS, pages 698–728. Springer, Heidelberg, August 2018.

27. Runchao Han, Jiangshan Yu, and Haoyu Lin. RandChain: Decentralised random-
ness beacon from sequential proof-of-work. Cryptology ePrint Archive, Report
2020/1033, 2020. https://eprint.iacr.org/2020/1033.

28. Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology
overview series, consensus system. arXiv preprint arXiv:1805.04548, 2018. https:
//arxiv.org/abs/1805.04548.

https://eprint.iacr.org/2019/119
https://eprint.iacr.org/2019/119
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2020/1033
https://arxiv.org/abs/1805.04548
https://arxiv.org/abs/1805.04548

30 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

29. Thomas Kerber, Aggelos Kiayas, and Markulf Kohlweiss. Composition with knowl-
edge assumptions. Cryptology ePrint Archive, Report 2021/165, 2021. https:
//eprint.iacr.org/2021/165.

30. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 357–388. Springer, Heidelberg, August 2017.

31. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papa-
manthou. Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts. In 2016 IEEE Symposium on Security and Privacy, pages 839–
858. IEEE Computer Society Press, May 2016.

32. Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, and Dawn
Song. MIRAGE: Succinct arguments for randomized algorithms with applica-
tions to universal zk-SNARKs. In Srdjan Capkun and Franziska Roesner, editors,
USENIX Security 2020, pages 2129–2146. USENIX Association, August 2020.

33. Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh. SAVER: Snark-friendly,
additively-homomorphic, and verifiable encryption and decryption with rerandom-
ization. Cryptology ePrint Archive, Report 2019/1270, 2019. https://eprint.
iacr.org/2019/1270.

34. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive
zero-knowledge arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of
LNCS, pages 169–189. Springer, Heidelberg, March 2012.

35. Mary Maller. A proof of security for the sapling generation of zk-
snark parameters in the generic group model. https://github.com/zcash/
sapling-security-analysis/blob/master/MaryMallerUpdated.pdf, 2018. Ac-
cessed 26/02/2020.

36. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKs from linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press, November 2019.

37. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In 2013 IEEE Symposium on Security and Pri-
vacy, pages 238–252. IEEE Computer Society Press, May 2013.

38. Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS
2019, volume 124, pages 60:1–60:15. LIPIcs, January 2019.

39. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS,
pages 379–407. Springer, Heidelberg, May 2019.

https://eprint.iacr.org/2021/165
https://eprint.iacr.org/2021/165
https://eprint.iacr.org/2019/1270
https://eprint.iacr.org/2019/1270
https://github.com/zcash/sapling-security-analysis/blob/master/MaryMallerUpdated.pdf
https://github.com/zcash/sapling-security-analysis/blob/master/MaryMallerUpdated.pdf

	Snarky Ceremonies
	 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

