
Shorter Lattice-Based Group Signatures via
“Almost Free” Encryption and Other

Optimizations‹

Vadim Lyubashevsky1, Ngoc Khanh Nguyen1,2, Maxime Plancon1,2, and
Gregor Seiler1,2

1 IBM Research Europe, Zurich, Switzerland
2 ETH Zurich, Switzerland

Abstract. We present an improved lattice-based group signature scheme
whose parameter sizes and running times are independent of the group
size. The signature length in our scheme is around 200KB, which is
approximately a 3X reduction over the previously most compact such
scheme, based on any quantum-safe assumption, of del Pino et al. (CCS
2018). The improvement comes via several optimizations of some basic
cryptographic components that make up group signature schemes, and
we think that they will find other applications in privacy-based lattice
cryptography.

Keywords: Lattice Cryptography, Group Signatures, Zero-Knowledge

1 Introduction

The eventual coming of quantum computers, combined with the ongoing shift
to decentralization, makes designing efficient quantum-safe privacy-based primi-
tives a highly pertinent problem. One of the more elementary privacy-preserving
primitives is a group signature, and constructing such schemes has often been
seen as an important stepping stone towards constructing more expressive prim-
itives.

In a group signature scheme, the setup authority gives out individual signing
keys si to users with identities mi. User mi can then utilize si to create a
signature σ on a message µ of his choosing. There is also an entity called the
Opener (or Group Manager) who is able to derive the identity mi of the user who
created σ. A basic group signature scheme has the following security properties:

1. Anonymity. The adversary who knows all the signing keys si cannot distin-
guish between signatures produced by user mi or mi1 , for i, i1 of the adver-
sary’s choosing.

2. Traceability. The adversary who possesses signing keys to all users in some
set S, and the Opener’s secret key, cannot create a valid signature that the
Opener will decrypt to some identity mi R S or to K (i.e. decryption will
fail).

‹ Supported by the SNSF ERC Transfer Grant CRETP2-166734 FELICITY and the
EU H2020 ERC Project 101002845 PLAZA

While there exist fairly efficient group signatures based on standard assump-
tions (e.g. [CS97]), most of the early work in trying to construct lattice-based
group signatures were efficient only in an asymptotic sense with concrete signa-
ture sizes being around 50MB (e.g. [GKV10, LLNW16]). More recently, some
concretely efficient schemes appeared that lowered the signature sizes to a little
over 1MB (c.f. [BCN18]), and the scheme with the smallest signature size, in
which the parameters and computational complexity of signing and verifying do
not depend on the group size, was proposed by del Pino et al. [dPLS18] in 2018,
where signature sizes are approximately 580KB.

Starting in 2019, the efficiency of lattice-based zero-knowledge proofs, which
are important components of group signatures, has improved by several orders
of magnitude (c.f. [YAZ`19, BLS19, ESLL19, ESS`19, ALS20, ENS20, LNS20]).
The improvements have been dramatic-enough that one can now create sophis-
ticated systems like lattice-based confidential transactions (i.e. a Monero-like
payment system based on the hardness of lattice problems) where the commu-
nication complexity of a transaction is under 30KB [EZS`19, LNS21b].

Using these same techniques, [EZS`19] improved on the efficiency of group
signatures for the special case where the group size is not too large. While the
signature size is smaller, the signing, verification, and opening times are linear in
the number of group members. When the group size is « 210, the signature size
is around 60KB and the scheme is reasonably efficient. The computational com-
plexity of the scheme becomes prohibitive, however, as the group size approaches
220 members.

It is interesting that despite the recent progress in zero-knowledge proofs,
there haven’t been any improvements in general group signature constructions
whose complexities are independent of the group size. One reason for this lack of
progress might be that the techniques used in [dPLS18] are quite different than
what has been improved upon. For example, a key component in that scheme an
ABB-like [ABB10] selectively-secure signature scheme that uses the Micciancio-
Peikert trapdoor generation procedure [MP12], which has not been improved
upon since it was first introduced. Furthermore, the utilized zero-knowledge
proof in [dPLS18] requires proving equations of the form As “ t pmod qq, where
s has very large coefficients, on the order of

?
q. Most of the improvements in

ZK proof constructions, on the other hand, only improved upon proofs of the
above equation when s has small (e.g. ´1{0{1) coefficients. And of course the
state of the art of lattice-based encryption also hasn’t changed since 2018.

In this work, we improve the group signature scheme in [dPLS18] by approxi-
mately a 3X factor in the signature size. Our construction follows the framework
from [dPLS18] and the signature size improvement comes from moderate im-
provements to many parts of that protocol. Since some of those parts are quite
generic, we believe that our improvements could also find applications in other
privacy-based protocols, including group signatures that satisfy stronger security
notions (e.g. dynamic, corrupt setup authority, etc.). We will now give a high
level overview of our signing algorithm and relate it to what was the state of the
art in [dPLS18].

2

1. The prover P chooses a masking parameter y (from some specified distribution),
creates w “ A1y and sends w to the verifier

2. The verifier chooses a random challenge c
3. The prover computes z “ cs`y, performs rejection sampling to make sure z does

not leak information about s, and sends z to the verifier (or restarts).
4. The verifier accepts if }z} is small and A1z “ w ` cu.

Fig. 1. Zero Knowledge Proof of Knowledge of low-norm s̄, c̄ that satisfy A1s̄ “ c̄u,
when the prover has knowledge of s satisfying A1s “ u.

1.1 The Scheme of [dPLS18] and Our Improvements

The master public key of the setup authority consists of a random matrix A P

Rαˆ2α
q and B “ AR P Rαˆ3α

q , where R is the master secret key and consists
of polynomials in Rq with small coefficients, and a random polynomial vector
u P R2α

q . In our scheme, the ring Rq is fixed to be ZqrXs{pX128 ` 1q, for q «
264, and the security of the scheme is based on the Module-SIS / Module-LWE
problems and varies with α. This is similar to the setup in [dPLS18], except
there the security was based on Ring-LWE.

The secret key of a user with identity m P Rq is a low-norm vector s satisfying

“

A| B `mG
‰

s “ u, (1)

where G is a “gadget matrix” which, together with the trapdoor matrix R,
is used to create such an s using the sampling algorithm of [MP12].

When creating a signature on a message µ, the signer needs to prove knowl-
edge of s and m that satisfy this equation and to also to create an encryption to
this same m under the public key of the opening authority.3 As is often the case
in lattice cryptography, it is more efficient to give a relaxed proof of (1) showing
knowledge of an s̄ with a slightly larger norm, and a small c̄ satisfying

“

A| B `mG
‰

s̄ “ c̄u. (2)

The above is very similar in form to the basic lattice-based ZK relaxed proof
that one uses to construct Schnorr-like signature schemes (c.f. [Lyu09, Lyu12,
DKL`18]). The idea in those schemes is that a signer with a secret key s sat-
isfying A1s “ u, where A1 and u are public, can prove knowledge of s̄ and c̄
satisfying A1s̄ “ c̄u as described in Figure 1. It’s a proof of knowledge because
by rewinding the prover at step (2), the verifier can create a second equality
A1z1 “ w ` c1u, and subtract to obtain A1z̄ “ c̄u, where z̄ “ z ´ z1 and
c̄ “ c´ c1.

One could hope to use the same approach for creating a proof for (2), but
there is an important difference that doesn’t allow a direct application of the

3 The message µ enters the signature as an input to a hash function that is used to
convert the interactive proof into a non-interactive one via the Fiat-Shamir trans-
form.

3

same proof technique. In (2), the matrix on the left side is not public, as it con-
tains the secret identity m. The verifier would therefore have no way to perform
the verification in step (4) of the above procedure. The solution in [dPLS18]
was to commit to the vectors mG using a BDLOP commitment [BDL`18] and
then replace the value mG with the commitment. Via some homomorphic prop-
erties of this commitment scheme, one can combine a zero-knowledge proof of
the commitment with the zero-knowledge proof of (2) (with the modified left
side) to conclude something similar to (2). The main downside of that approach
is that the proof of knowledge for the commitment and (2) are both “relaxed”,
and therefore there is an additional c̄ term that ends up multiplying into an
extracted value and increasing the size of the extracted solution.

An improved proof of (2). As part of our improved protocol, we propose a
simpler and more efficient technique for proving (2). The verification in step (4)
of Figure 1 requires all the involved elements to be known to the verifier. If they
are not known (as A1 :“

“

A| B `mG
‰

will not be), then what we can instead
do is to create a commitment to the part of A1 that is unknown, and also a
commitment to w (this is necessary to keep the unknown part of A1 hidden, and
so in the first step, the prover sends the commitment to w instead of w itself),
and then instead of the verifier doing the verification check himself, the prover
sends him a zero-knowledge proof that A1z “ w ` cu. If we use the BDLOP
commitment scheme and the above equation is linear over the ring Rq, then
proving this relation does not add anything extra over just proving knowledge
of the committed values.

To go back to our example, if we create a BDLOP commitment of m and
w, then the equation

“

A| B `mG
‰

z “ w ` cu is indeed linear over Rq in the
committed values m and w. Thus sending this proof proves knowledge of s̄ and
c̄ satisfying (2) because one can do the extraction exactly in the same manner
as for the protocol in Figure 1.

Proving Knowledge that the identity m is in a “Special” Set. It is
important for the security of our scheme, which will eventually be shown to
be as hard to break as forging the ABB signature scheme, that the identity
m comes from a set S Ă Rq which satisfies that for m ‰ m1 P S, m ´ m1

is invertible in Rq, and that |S| is small. The security reduction of the ABB
signature scheme loses a factor |S|, one should ideally not have S be too large.4

A good compromise is therefore having |S| “ q « 264 and one can define it to
be all polynomials in Rq of degree 0 (i.e. the integers modulo q). Now one needs
to prove that m is indeed of this form. This is somewhat surprisingly a non-
trivial problem, and in [dPLS18], this proof was performed by showing that m is
fixed under two specific automorphisms, and therefore must be an integer. But
these “automorphism stability” proofs increased the size of the BDLOP opening
proofs (unlike the linear relation proofs).

4 While it’s insecure for S “ Rq, it’s unclear whether the size of S actually affects the
real security of the scheme or it’s just an artefact of the proof.

4

In our current construction, we instead use the recent advances in ZK proofs
for proving multiplicative relations over Rq [ALS20], as well as linear relations
over the NTT coefficients [ENS20], of polynomials committed using BDLOP
commitments. The tools from [ALS20, ENS20] are quite powerful and the proof
that a committed value is an integer follows quite easily (there may even be
multiple equally good ways of doing it), but we give a sketch of one such approach
anyway. If m P Rq is an integer, then NTT pmq contains m in all the slots. In
other words,

NTT pmq “

»

—

—

–

1 2 4 8 . . .
1 2 4 8 . . .
.
1 2 4 8 . . .

fi

ffi

ffi

fl

¨ NTT pmbinq ,

where mbin P Rq is a polynomial all of whose NTT coefficients are 0{1. The
idea is then to include a commitment to the polynomial mbin into the BDLOP
commitment that we already use for proving (2), and then the above relation
can pe proved using the techniques from [ENS20]. To prove that mbin has 0{1
NTT coefficients, we give a proof that pmbinq ¨ p1 ´ mbinq “ 0 by using the
multiplicative proof from [ALS20].5

Because we were already using a BDLOP commitment, committing to an
extra Rq polynomial and doing the above two proofs only adds a few extra
kilobytes to the entire proof system.

Encryption (and Proof) of m almost for free. Our final improvement
relates to the encryption procedure. A group signature scheme requires the signer
to encrypt his identitym under the opener’s public key and give a zero-knowledge
proof that the encryption is the same m that was used in the proof of (2). A
significant saving in the size of our signature, as compared to [dPLS18], is that
we show how the encryption and the proof of knowledge that the encryption is
valid can already be mostly included in the commitment of m that we created
when proving (2).

The BDLOP commitment to a message m P Rq, and other things that need
to be included (e.g. the mbin described in the previous section, the w needed for
the proof of (2), some “garbage terms” that need to be committed to as part of
the proofs, etc.) is of the form

»

—

–

A0

bT1
...

fi

ffi

fl

¨ r `

»

—

–

0
m
...

fi

ffi

fl

“

»

—

–

t0
t1
...

fi

ffi

fl

, (3)

5 Observe that we cannot use mbin as our identity because the set of polynomials
with 0{1 NTT coefficients is not closed under subtraction – hence this conversion is
necessary.

5

where A0 and b1 are random.6 The important thing to note in the commitment
scheme is that if we want to commit to an element in Rq, then t1 is just an
element of the ring. On the other hand, the length of the vector t0 needs to be
large for the security (binding property) of the commitment scheme. So if Rq is
a 128-dimensional ring, the size of t0 could be 20 - 30 X larger than t1.

Another thing to notice is that (3) looks very similar to a Regev-type en-
cryption scheme [Reg09]. In particular, if bT1 “ sT1 A0 ` eT1 (where eT1 has small
coefficients) then one could “decrypt” by computing t1 ´ sT1 t0 “ eT1 r `m. So
if bT1 is part of the opener’s public key, one can use the BDLOP commitment
both for committing to m for the proof of (2) and for encrypting m! The main
savings comes from the fact that we do not need to send two polynomial vec-
tors of the form t0, one for the encryption and one for the commitment. If the
opener uses A0 as part of his (Module)-LWE public key, then the same t0 can
be used for both, which results in a substantial saving. Since the binding prop-
erty of the commitment scheme only depends on A0, a malicious opener cannot
do anything except possibly construct b1 such that it does not hide m – but a
malicious opener can anyway always construct a malformed public key that does
the same thing. So there is no disadvantage to combining the commitment and
the encryption scheme into one.

We are, however, not quite yet done. One issue that needs to be taken care
of is that from (3), the opener can recover t1 ´ sT1 t0 “ eT1 r ` m, where eT1 r
has small coefficients; but this does not allow him to recover m because m is an
arbitrary integer in Zq. In order for the opener to be able to recover m, we need to
employ an encryption scheme implicit in Gentry et al. [GSW13] which allows for
encryptions of arbitrary-size messages. In particular, in addition to encrypting
m, the prover will also have to encrypt

?
qm (it’s really t

?
qs, but we will omit

the t¨s for the sake of readability) as bT2 r `
?
qm “ t2, where bT2 “ sT2 A0 ` eT2 .

Then to decrypt, the decryptor uses his secret keys sT1 , s
T
2 as before, to obtain

u1 “ eT1 r `m “ ε1 `m pmod qq

u2 “ eT2 r `
?
qm “ ε2 `

?
qm pmod qq,

and then compute u2 ´
?
qu1 “ ε2 ´

?
qε1 pmod qq. If the size of ε1, ε2 ă

?
q{4,

then no reduction modulo q takes place in the preceding equation. And further-
more, ε1 and ε2 can be easily recovered by computing the previous equation mod-
ulo

?
q. And then one can recover m. So in order to have the commitment scheme

which commits to arbitrary-sized ring elements also be an encryption scheme,
the prover just needs to create an additional commitment to

?
qm (which is very

cheap because it’s just one ring element), and do a BDLOP linear proof over Rq

that the commitments to m and
?
qm are related by a factor of

?
q (which does

not add anything to the proof size).

6 Sometimes to save on computation time, the vector A0 and b1 can contain some
polynomials that are just 0 or 1 (see [BDL`18]), but in our case we will need them
to be uniformly random.

6

1. The prover generates masking vector y and computes w “
“

A| B `mG
‰

y
2. The prover creates a BDLOP commitment f to pm,m

?
q,mbin,wq, and sends f

to the verifier.
3. The verifier picks a random challenge c and sends it to the prover.
4. The prover computes z “ cs ` y and performs rejection sampling to make sure

that the distribution of z is independent of s.
5. The prover creates the following ZK proofs on the values committed in f :

– BDLOP proof of knowledge of the committed values
– BDLOP linear proof that

“

A| B `mG
‰

z “ w ` cu.
– BDLOP proof that

?
q times the first committed value equals the second

– Multiplicative proof that mbin ¨ pmbin ´ 1q “ 0

– Linear proof that

»

—

—

–

1 2 4 8 . . .
1 2 4 8 . . .
.
1 2 4 8 . . .

fi

ffi

ffi

fl

¨ NTT pmbinq “ NTT pmq.

6. The prover sends z and all the proofs to the verifier.
7. The verifier checks that }z} is small and that all the proofs are valid.

Fig. 2. The interactive protocol allowing a prover with identity m and low-norm poly-
nomial vector s satisfying (1) to prove knowledge of low-norm s̄ and c̄ satisfying (2).
Additionally, the BLDOP proof of knowledge of the committed values implies a proof
of knowledge of r̄, c̄ satisfying (4), which can be used by the opener to recover m. The
commitments to some “garbage terms” and other extraneous terms that are required
for the scheme to work are omitted from this high level description. To convert this
interactive protocol to a signing algorithm for the group signature, one applies the
Fiat-Shamir transform and puts the message µ to be signed as an input to the hash
function.

There is still a second issue. When doing a proof of knowledge for the BDLOP
commitment as in (3) (with the additional bT2 line), the prover does not actually
prove this equation. Instead, he gives a “relaxed” proof (analogously to (2))
showing the existence of a low-norm vector r̄ and polynomial c̄ satisfying

»

—

—

—

–

A0

bT1
bT2
...

fi

ffi

ffi

ffi

fl

¨ r̄ ` c̄

»

—

—

—

–

0
m
?
qm
...

fi

ffi

ffi

ffi

fl

“ c̄

»

—

—

—

–

t0
t1
t2
...

fi

ffi

ffi

ffi

fl

. (4)

Because the opener does not know c̄, he cannot perform decryption as above.
He can, however, perform a decryption of the type described in [LN17] where
decryption involves guessing an element c1 from the challenge space and then
trying to decrypt using it and the proof produced by the prover by constructing
a c̄ “ c ´ c1 and essentially testing whether (4) is satisfied. This is also the
decryption algorithm that was used in the group signatures of [dPLS18] and
[EZS`19]. The encryption scheme used in [LN17] was the Regev scheme where
the messages were small, but we prove that the same technique is also applicable
in our case where the message is arbitrary in Rq.

7

We summarize the high-level signing algorithm in Figure 2. The real algo-
rithm described in Figure 5 includes the concrete “garbage terms” that one needs
to include as part of the proof of all the parts we described, and also a modifi-
cation to the public key that is necessary for the security proof to go through.
Specifically, instead of the public key being rA| B “ AR s, it is of the form
rA| AR | B1s where B1 is a random matrix and serves no real purpose in the
signing procedure. The reason for its inclusion is that proving security of the
scheme requires doing game hops between the public key being rA| ARs and
rA| AR `m˚Gs for an arbitrary message m. While these two public keys are
indistinguishable based on the Module-LWE assumption, the game hops also
require the extractor to be able to produce valid signatures – and so some trap-
door needs to always be present. The only way that we know how to do such
game hops is to embed a second trapdoor into B1 so that the extractor can al-
ways sign even when he loses access to the trapdoor AR. It’s interesting to note
that if the parameters were set such that AR were statistically-close to uniform,
then we would not need to use a computational assumption and could simply
replace AR with AR ` m˚G. But imposing that AR is statistically-close to
uniform would make the overall parameters significantly worse than just adding
the useless B1 to the public key (and thus also increasing the dimension of the
vector s in (1)). If one chooses to remove this matrix B1 from the public key, one
could save approximately 15% in the size of the signature from the parameter
computation in Section 4.2. Removing the need for such a B1 in the security
proof (without affecting parameters) is a very good open problem.

1.2 Reducing the Public Key Size by Using Multiple Rings

For optimal efficiency of the protocol in Figure 2, we would like to create com-
mitments of elements in a small ring, as certain parts of the proof are linear in
the ring size. Working over small rings, however, has a negative effect on the
public key size of the group signature scheme. The matrix B comprising the
public key contains a trapdoor, and therefore, unlike the A and the A0 in (4),
it cannot be generated from a small seed. One therefore needs to store the en-
tire matrix B as part of the public key. In our sample instantiation (Table 1),
the matrix B consists of αˆ 3α d-dimensional polynomials. Since the modulus
we’re working with is « 264, α “ 24, and d “ 128, storing this matrix requires
128 ¨ 3α2 ¨ 64 bits, which is more than 1.7MB.

Since the security of the scheme is determined by the total dimension over
Z of the matrix B, which is αd, it would be more advantageous to work over a
larger ring, while having a smaller α. For example, if we instead set d “ 1024,
and α “ 3, the total dimension over Z of the matrix remains the same, yet the
cost of storing it goes down to 216KB. And if we wanted to increase security to
have αd “ 4096, we could set α “ 1 and d “ 4096, and end up needing under
100KB to represent B. Having a larger αd, though, would increase the signature

8

size.7 In short, we want d to be small in order for the proofs to be more compact,
but we want d to be large in order to have a small public key.

It turns out that we can have the best of both worlds. That is, we can still use
small (e.g. 128-degree) rings for the commitment scheme in (3), while using larger
rings in equations that use the non-compressible public key (1). The interaction
between the committed elements in (3) and the equation in (1) is through the
BDLOP proof of

“

A| B `mG
‰

z “ w ` cu, where m and w are in committed
form and all the other variables are public. If the smaller ring S is a sub-ring
of the larger one R (e.g. S “ ZrXs{pXd ` 1q and R “ ZrXs{pXdk ` 1q), then
one can show that there is a ring homomorphism between R and Sk, for an
appropriately-defined multiplication over Sk. In other words, whatever relation
that we need to prove over R can be proved by showing that some corresponding
relations over S hold true. Therefore we can use BDLOP commitments over S to
prove relations over R at no extra cost. For simplicity, we describe our protocols
in this paper entirely over the small ring S, and give details about how one can
express relations over R in S in the full version of the paper.

2 Preliminaries

2.1 Notation

Let q be an odd prime. We write x Ð S when x P S is sampled uniformly at
random from the finite set S and similarly xÐ D when x is sampled according
to the distribution D. For a ă b and n P N, we define ra, bs :“ ta, a ` 1 . . . , bu
and rns :“ r1, ns. Given two functions f, g : N Ñ r0, 1s, we write fpµq « gpµq if
|fpµq ´ gpµq| ă µ´ωp1q. A function f is negligible if f « 0. We write neglpnq to
denote an unspecified negligible function in n.

For a power of two d, denote R and Rq respectively to be the rings ZrXs{pXd`

1q and ZqrXs{pXd ` 1q. Unless stated otherwise, lower-case letters denote ele-
ments in R or Rq and bold lower-case letters represent column vectors with
coefficients in R or Rq. We also write bold upper-case letters for matrices in R
or Rq.

For an element w P Zq, we write }w}8 to mean |w mod˘ q|. Define the `8
and `p norms for w “ w0 ` w1X ` . . .` wd´1X

d´1 P R as follows:

}w}8 “ max
j
}wj}8, }w}p “

p

b

}w0}
p
8 ` . . .` }wd´1}

p
8.

If w “ pw1, . . . , wmq P Rk, then

}w}8 “ max
j
}wj}8, }w}p “

p
a

}w1}
p ` . . .` }wk}p.

By default, we denote }w} :“ }w}2.

7 In principle, d does not need to be a power-of-2, but then we could not work with
the very convenient polynomial rings ZrXs{pXd

`1q. We think that the slight saving
in the public key size is not worth the extra hassle of working aver different rings,
and so we only consider power-of-2 d.

9

2.2 Cyclotomic Rings

Suppose q splits into l prime ideals of degree d{l in R. This means Xd ` 1 ”
ϕ1 . . . ϕl pmod qq with irreducible polynomials ϕj of degree d{l modulo q. We
assume that Zq contains a primitive 2l-th root of unity ζ P Zq but no elements
whose order is a higher power of two, i.e. q ´ 1 ” 2l pmod 4lq. Therefore, we
have

Xd ` 1 ”
ź

jPZl

´

X
d
l ´ ζ2j`1

¯

pmod qq. (5)

Let Mq :“ tp P ZqrXs : degppq ă d{lu be the Zq-module of polynomials of
degree less than d{l. We define the Number Theoretic Transform (NTT) of a
polynomial p P Rq as follows:

NTT ppq :“

»

—

–

p̂0
...

p̂l´1

fi

ffi

fl

PMl
q where NTT ppqj “ p̂j “ p mod pX

d
l ´ ζ2j`1q.

Furthermore, we expand the definition of NTT to vectors of polynomials p P Rk
q ,

where the NTT operation is applied to each coefficient of p, resulting in a vector
in Mkl

q .

We also define the inverse NTT operation. Namely, for a vector ~v P Ml
q,

NTT´1
p~vq is the polynomial p P Rq such that NTT ppq “ ~v.

Let ~v “ pv0, . . . , vl´1q, ~w “ pw0, . . . , wl´1q P Ml
q. Then, we define the

component-wise product ~v ˝ ~w to be the vector ~u “ pu0, . . . , ul´1q P Ml
q such

that

uj “ vjwj mod pX
d
l ´ ζ2j`1q

for j P Zl. By definition, we have the following property of the inverse NTT
operation:

NTT´1
p~vq ¨ NTT´1

p~wq “ NTT´1
p~v ˝ ~wq .

Similarly, we define the inner product as in [LNS21b]:

x~v, ~wy “
l´1
ÿ

j“0

´

vjwj mod pX
d
l ´ ζ2j`1q

¯

.

We point out that this operation is not an inner product in the strictly mathe-
matical sense (e.g. it is not linear). Nevertheless, it has a few properties which
are characteristic for an inner product. For instance, given arbitrary vectors
~x, ~y, ~z PMl

q and scalar c P Zq we have: x~x, ~yy “ x~y, ~xy (symmetry), x~x` ~y, ~zy “
x~x, ~zy ` x~y, ~zy (distributive law) and xc~x, ~yy “ cx~x, ~zy. We also remark that the
definition of x¨, ¨y depends on the factors of Xd ` 1 modulo q.

We generalise the newly introduced operations to work for vectors ~v “
p~v1, . . . , ~vkq and ~w “ p~w1, . . . , ~wkq P Mkl

q of length being a multiple of l in

the usual way. In particular x~v, ~wy “
řk
i“1x~vi, ~wiy.

10

Eventually, for a matrix A PMnˆkl
q with rows ~a1, . . . ,~an PMkl

q and a vector

~v PMkl
q , we define the matrix-vector operation:

A~v “

¨

˚

˝

x~a1, ~vy
...

x~an, ~vy

˛

‹

‚

PMn
q .

In proving linear relations, we will need the following two lemmas.

Lemma 2.1 ([LNS21b]). Let n, k P N. Then, for any A P Mnlˆkl
q , ~v P Mnl

q

and ~s P Zklq we have

xA~s,~vy “ x~s,AT~vy.

Lemma 2.2 ([ENS20]). Let p “ p0 ` p1X ` . . .` pd´1X
d´1 P Rq. Then,

1

l

l
ÿ

i“0

NTT ppqi “

d{l´1
ÿ

i“0

piX
i.

2.3 Challenge Space

Let C :“ t´1, 0, 1ud Ă Rq be the challenge set of ternary polynomials with
coefficients ´1, 0, 1. We define the following probability distribution C : C Ñ
r0, 1s. The coefficients of a challenge c Ð C are independently identically dis-
tributed with Prp0q “ 1{2 and Prp1q “ Prp´1q “ 1{4. We write ω such that
PrcÐCp}c}1 ď ωq ď 2´λ.

Consider the coefficients of the polynomial c mod pXd{l ´ ζ2j`1q for cÐ C.
Then, all coefficients follow the same distribution over Zq. Let us write Y for the
random variable over Zq that follows this distribution. Attema et al. [ALS20]
give an upper bound on the maximum probability of Y .

Lemma 2.3. Let the random variable Y over Zq be defined as above. Then for
all x P Zq,

PrpY “ xq ď
1

q
`

2l

q

l´1
ÿ

j“0

l´1
ź

i“0

∣∣∣∣12 ` 1

2
cos

`

2πp2j ` 1qyζi{q
˘

∣∣∣∣ . (6)

In particular, [ALS20, ENS20] computed that for q « 232, the maximum proba-
bility for each coefficient of c mod Xd{l ´ ζ2j`1 is around 2´31.4. In general, we
will call this probability p.

An immediate consequence of Lemma 2.3 is that polynomial c Ð C is in-
vertible in Rq with overwhelming probability as long as parameters q, d, l are
selected so that q´d{l is negligible.

11

2.4 Module-SIS and Module-LWE Problems

Security of the [BDL`18] commitment scheme used in our protocols relies on
the well-known computational lattice problems, namely Module-LWE (MLWE)
and Module-SIS (MSIS) [LS15]. Both problems are defined over Rq.

Definition 2.4 (MSISκ,m,B). Given AÐ Rκˆm
q , the Module-SIS problem with

parameters κ,m ą 0 and 0 ă B ă q asks to find z P Rm
q such that Az “ 0 over

Rq and 0 ă }z} ď B. An algorithm Adv is said to have advantage ε in solving
MSISκ,m,B if

Pr
“

0 ă }z} ď B ^ Az “ 0
ˇ

ˇAÐ Rκˆm
q ; z Ð AdvpAq

‰

ě ε.

Definition 2.5 (MLWEm,λ,χ). The Module-LWE problem with parameters m,λ ą
0 and an error distribution χ over R asks the adversary Adv to distinguish be-
tween the following two cases: 1) pA,As ` eq for A Ð Rmˆλ

q , a secret vector

s Ð χλ and error vector e Ð χm, and 2) pA, bq Ð Rmˆλ
q ˆRm

q . Then, Adv is
said to have advantage ε in solving MLWEm,λ,χ if

ˇ

ˇPr
“

b “ 1
ˇ

ˇAÐ Rmˆλ
q ; sÐ χλ; eÐ χm; bÐ AdvpA,As` eq

‰

(7)

´ Pr
“

b “ 1
ˇ

ˇAÐ Rmˆλ
q ; bÐ Rm

q ; bÐ AdvpA, bq
‰
ˇ

ˇ ě ε.

2.5 Probability Distributions

In this paper we sample the coefficients of the random polynomials in the com-
mitment scheme using the distribution χ on t´1, 0, 1u where ˘1 both have
probability 5{16 and 0 has probability 6{16 identically as in e.g. [BLS19, ALS20,
ENS20]. We also write Sµ the uniform distribution over the set tx P Rq | }x}8 ď
µu.

Discrete Gaussian distribution. We now define the discrete Gaussian distribution
used for the rejection sampling.

Definition 2.6. The discrete Gaussian distribution on Z` centered around ~v P
Z` with standard deviation s ą 0 is given by

D`
~v,sp~zq “

e´}~z´~v}
2
{2s2

ř

~z1PZ` e
´}~z1}2{2s2

.

When it is centered around 0 P Z` we write D`
s “ D`

~0,s

We will use the following tail bound, which follows from [Ban93, Lemma
1.5(i)].

Lemma 2.7. Let z Ð D`d
s . Then

Pr
”

‖z‖2 ď s
?

2`d
ı

ě 1´ 2´ logpe{2q`d{4.

12

2.6 Rejection Sampling

In lattice-based zero-knowledge proofs, the prover will want to output a vector
z whose distribution should be independent of a secret randomness vector r, so
that z cannot be used to gain any information on the prover’s secret. During
the protocol, the prover computes z “ y ` cr where r is the randomness used
to commit to the prover’s secret, c Ð C is a challenge polynomial, and y is a
“masking” vector. In order to remove the dependency of z on r, one applies
rejection sampling [Lyu12].

Lemma 2.8 (Rejection Sampling). Let V Ď R` be a set of polynomials with
norm at most T and ρ : V Ñ r0, 1s be a probability distribution. Now, sample
v Ð ρ and y Ð D`d

s , set z “ y` v, and run bÐ Rej0pz,v, sq as defined in Fig.
3. Then, the probability that b “ 0 is at least p1´ 2´100q{M and the distribution
of pv, zq, conditioned on b “ 0, is within statistical distance of 2´100{M of the
product distribution ρˆD`d

s .

Rej0p~z,~v, sq
01 uÐ r0, 1q

02 If u ą 1
M
¨ exp

´

´2x~z,~vy`}~v}2

2s2

¯

03 return 1
04 Else
05 return 0

Rej1p~z,~v, sq
01 If x~z,~vy ă 0
02 return 1
03 uÐ r0, 1q

04 If u ą 1
M
¨ exp

´

´2x~z,~vy`}~v}2

2s2

¯

05 return 1
06 Else
07 return 0

Fig. 3. Two rejection sampling algorithms: the one used generally in previous works
[Lyu12] (left) and the one proposed recently in [LNS21a] (right).

We recall how parameters s and M in Lemma 2.8 are selected. Concretely, the
repetition rate M is chosen to be an upper-bound on:

D`d
s pzq

D`d
v,spzq

“ exp

ˆ

´2xz,vy ` }v}2

2s2

˙

ď exp

ˆ

24s}v} ` }v}2

2s2

˙

“M8. (8)

For the inequality we used the tail bound which says that with probability at
least 1´ 2100 we have |xz,vy| ă 12s}v} for z Ð D`d

s [Ban93, Lyu12]. Hence, by
setting s “ 11}v} we obtain M « 3.

2.7 BDLOP Commitment Scheme

We recall the BDLOP commitment scheme from [BDL`18]. Suppose that we
want to commit to a message vector m “ pm1, . . . ,mnq P Rn

q for n ě 1 and

8 Here, the inner product is over Z, i.e. xz,vy “ x~z,~vy where vectors ~z,~v are polynomial
coefficients of z and v respectively.

13

that module ranks of κ and λ are required for MSIS and MLWE security, re-

spectively. Then, in the key generation, a matrix A0 Ð Rκˆpκ`λ`nq
q and vectors

b1, . . . , bn Ð Rκ`λ`n
q are generated and output as public parameters. Note that

one could choose to generate A0,a1, . . . ,an in a more structured way as in
[BDL`18] since it saves some computation. However, for readability, we write
the commitment matrices in the “Knapsack” form as above. In our case, the hid-
ing property of the commitment scheme is established via the duality between
the Knapsack and MLWE problems. We refer to [EZS`19, Appendix C] for a
more detailed discussion.

To commit to the message m, we first sample r Ð χd¨pκ`λ`nq. Now, there
are two parts of the commitment scheme: the binding part and the message
encoding part. In particular, we compute

t0 “ A0r mod q,

ti “ aTi r `mi mod q,

for i P rns, where t0 forms the binding part and each ti encodes a message
polynomial mi. In this paper, when we write that we compute a BDLOP com-
mitment to a vector ~m “ p~m1, . . . , ~mnq PMnl

q , we mean that we commit to the

vector of polynomials m “ pNTT´1
p~m1q , . . . ,NTT

´1
p~mnqq P Rn

q as above.
Next, we define the notion of a weak opening of the commitment [ALS20].

Definition 2.9. A weak opening for the commitment t “ t0 ‖ t1 ‖ ¨ ¨ ¨ ‖ tn
consists of a polynomial c̄ P Rq, a randomness vector r˚ over Rq and messages
m˚1 , . . . ,m

˚
n P Rq such that

‖c̄‖1 ď 2d and c̄ is invertible over Rq

‖c̄r˚‖2 ď 2β,

A0r
˚ “ t0,

aTi r
˚ `m˚i “ ti for i P rns.

Attema et al. [ALS20] show that the commitment scheme is still binding with
respect to weak openings if MSISκ, 8dβ is hard.

3 The group signature

A group signature is composed of four algorithms. The first one, which we write
KeyGen is run by the group manager and is described in Figure 4. In the end of
this algorithm, the group manager generated a group public key, his own group
manager secret and secret keys for all group members. The second one is the
signature. The group member of identity m was given his secret key, which he will
prove knowledge of (among other statements) in the signature. The signature is
a non-interactive version of the zero-knowledge proof π described on Figure 5.
Third, the verification is simply the verification of π. Finally, the last algorithm
GSdec described in Algorithm 1 allows the group manager to reveal the identity
at the origin of a signature. We will write

?
q (respectively 3

?
q) the integer t

?
qs

(respectively t 3
?
qs) for the sake of readability.

14

3.1 All-in-one interactive zero-knowledge proof

In this subsection, we introduce a single zero-knowledge proof that encompasses
all the proofs needed for our group signature scheme. From a high level, π proves
the following statements

1. Knowledge of an identity m
2. Knowledge of the secret key of m
3. The decryption of the identity of the prover is m.

Intuitively, these three statements are required to capture the security notions
of a group signature.

Each of these statements is proven by gathering more elementary zero-knowledge
proofs from [LNS20, ALS20, BDL`18]. For completeness, we present an overview
of the techniques in ??. More specifically, we take I the set of identities to be
t0, 1, . . . , 2d´1u Ă Rq the set of degree zero polynomials of Rq i.e Zq; such that
the binary representation of m also fits in length as an element of Rq. The prover
will commit to m, but also to mbin “ NTT´1

pbinarypmqq the inverse NTT of the
binary representation of m. This way, we need to prove two things : 1) mbin’s
NTT is binary 2) we have the linear relation

Q NTT pmbinq “ NTT pmq , where Q “

»

—

—

—

–

1 2 4 . . . 2d´1

1 2 4 . . . 2d´1

...
...

...
...

1 2 4 . . . 2d´1

fi

ffi

ffi

ffi

fl

.

For 1), this proof is done using the product proof from [ALS20]. For 2), we use
the so called unstructured linear proof from [LNS20]. Notice that since all the
NTT coefficients of m are proven to be equal, m has to be an integer. On top of
that, since its binary representation has length d, we indeed prove that m P I.

Proving knowledge of the short sm1 , s
m
2 , s

m
3 is done in two steps. The relation

that these secret vectors verify is Asm1 `pB`mGqsm2 `B1sm3 , where the identity
m is multiplied with the so called gadget matrix :

G “ Iα b r1 3
?
q 3
?
q2s “

»

—

–

1 3
?
q 3
?
q2

1 3
?
q 3
?
q2

. . .

fi

ffi

fl

The matrix rA|B `mG|B1s depends on the committed identity m and we can
therefore not directly use the linear proof from [BDL`18]. To circumvent this
problem, instead of sending some w “ Ay1 ` pB ` mGqy2 ` B1y3 as in the
BDLOP linear proof, we commit to this w and give a BDLOP linear proof that
Az1`pB`mGqz2`B1z3 “ w` cu. This statement is indeed linear in the two
committed values m and w.

The encryption of the identity m is part of the commitments. In a nutshell,
the group manager plants his decryption key in the public commitment matrix

15

Fig. 4. KeyGenpq :

Decryption secret keys

h1,h2 Ð Sκµ , e1, e2 Ð Sκ`λ`α`5
µ

Commitment public parameters

pA0,A1,a2,a3,a4q Ð Rκˆpκ`λ`α`5q
q ˆRαˆpκ`λ`α`5q

q ˆ pRκ`λ`α`5
q q

3

t1 “ AT
0 h1 ` e1, t2 “ AT

0 h2 ` e2

Group signature group manager key and public parameters

R Ð tx P Rαˆα
q | }x}8 ď 1u2ˆ3

A Ð Rαˆ2α
q ,B “ AR,B1 Ð Rαˆ3α

q

psgm1 , sgm2 , sgm3 q Ð D2dα
σ ˆD3dα

σ ˆD3dα
σ

u “
“

A| B |B1
‰

»

–

sgm1
sgm2
sgm3

fi

fl

Group members secret keys

@m P I, use GPV trapdoor to sample psm1 , s
m
2 , s

m
3 q such that

“

A| B`mG |B1
‰

»

–

sm1
sm2
sm3

fi

fl “ u

during the key generation. This way, it allows the commitment to m by the
prover to also be (part of) a ciphertext for the group manager to decrypt. The
encryption involves two commitments, one to m and one to

?
qm. To prove that

the ciphertext is valid9 reduces to proving the knowledge of the short randomness
r in the commitment scheme and the linear relation between the committed m
and

?
qm. The latter proofs almost come for free : the opening proof is anyway

necessary for the other proofs, and the linear proof is very cheap since these
committed values are polynomials from Rq.

Theorem 3.1. The interactive proof π from Figure 5 is complete, sound and
zero-knowledge.

More precisely, if the prover follows Figure 5 and does not abort, an honest
verifier will output 1 with overwhelming probability.

There exists a simulator S that without access to secret information outputs
a distribution that is, under the MLWE assumption for parameters pκ, κ ` λ `
α` 5, Sµq and pκ` α` 5, λ, χq, indistinguishable from the actual interaction.

Let B2 ě 8ω2σ1
a

2pκ` λ` α` 5qd. If ε is the success probability of the
prover and T its runtime, then there exists an extractor E that with rewindable
blackbox access to this prover finds with probability ě 1{8, in time OpT {εq, ei-
ther a solution to MSISκ,κ`λ`α`5,B2 or m̄ P I, s̄1, s̄2, s̄3 of norms lower than

9 I.e that the group manager can decrypt it and recover the identity m.

16

Fig. 5. Interactive proof π

Prover Verifier

Identity m, sk “ ps1, s2, s3q

py1,y2,y3,y4q Ð D2dα
σ ˆD3dα

σ ˆD3dα
σ ˆD

pκ`λ`α`5qd

σ1

w “
“

A| B`mG| B1
‰

»

–

y1

y2

y3

fi

fl

g Ð p0d{l|Zd{lˆpl´1q
q q

f “

»

—

—

—

—

—

—

—

—

–

A0

A1

a2

a3

a4

t1
t2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

r`

»

—

—

—

—

—

—

—

—

–

0
w

aT3 y4p2mbin ´ 1q
mbin

g
m
?
qm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

t “ A0y4

v2 “
?
qtT1 y4 ´ tT2 y4

v3 “ pa
T
3 y4q

2
` aT2 y4

f , t, v2, v3
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑcÐ C, φÐMl

q

z1 “ y1 ` cs1
c,φ

ÐÝÝÝÝÝÝÝÝÝÝÝÝÝ

z2 “ y2 ` cs2

z3 “ y3 ` cs3

Rej0pz1, cs1, σq,Rej0pz2, cs2, σq,Rej0pz3, cs3, σq

v1 “ AT
1 y4 ´Gz2t

T
1 y4

v4 “
´

aT4 ` aT3 NTT
´1

´

QTφ
¯

` tT1 NTT
´1
pφq

¯

y4

j “ g `mbinNTT
´1

´

QTφ
¯

´mNTT´1
pφq

z1,z2,z3,v1,j,v4
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑeÐ C

z4 “ y4 ` er
e

ÐÝÝÝÝÝÝÝÝÝÝÝÝÝ

Rej0pz4, er, σ
1
q

z4
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

return verifypq

17

Fig. 6. verifypπq where π is the proof on Figure 5

Accept if :

}z1}2
?
ď σ

?
4αd, }z2}2

?
ď σ

?
6αd, }z3}2

?
ď σ

?
6αd (9)

and }z4}2
?
ď σ1

a

2pκ` λ` α` 5qd (10)

and A0z4
?
“ t` ef0 (11)

and
?
qtT1 z4 ´ tT2 z4

?
“ v2 ` ep

?
qf5 ´ f6q (12)

and
“

eA| eB´ tT1 z4G| eB
1
‰

»

–

z1

z2

z3

fi

fl`AT
1 z4

?
“ v1 ` ceu` epf1 ´Gz2f5q

(13)

and paT3 z4 ´ ef3qpa
T
3 z4 ´ ef3 ´ eq ` aT2 z4 ´ ef2

?
“ v3 (14)

and epj ´ f4 ` NTT´1
´

QTφ
¯

f3 ´ NTT´1
pφq f5q

?
“ aT4 z4a

T
3 z4NTT

´1
´

QTφ
¯

´ tT1 z4NTT
´1
pφq ´ v4 (15)

and j0, . . . , jd{l´1
?
“ 0 (16)

respectively 4σ
?
αd, 2σ

?
6αd, 2σ

?
6αd and c̄ P C̄ such that

“

A| B` m̄G| B1
‰

»

–

s̄1
s̄2
s̄3

fi

fl “ c̄u.

Proof. Completeness. Completeness follows from equations in the soundness
proof. More precisely, if the prover follows honestly his part in the protocol
Figure 5, then it follows from Equations (24) to (27), (30) and (31)10 that the
verifier shall always accept all conditions on Equations (11) to (14). Moreover,
from Lemma 3.2 of [BLS19], the verifier will accept the conditions on Equa-
tions (9) and (10) with overwhelming probability.

Soundness. We construct an extractor E that with rewindable blackbox access to
the prover recovers short vectors s̄1, s̄2, s̄3, z̄4 and polynomials m̄, c̄, ē such that :

10 Equation (31) holds because g’s first d{l coefficients are set to be 0.

18

“

A| B` m̄G| B1
‰

»

–

s̄1
s̄2
s̄3

fi

fl “ c̄u (17)

m̄ P I (18)

ēf0 “ A0z̄4 (19)

ēf5 “ tT1 z̄4 ` ēm̄ (20)

ēf6 “ tT2 z̄4 ` ē
?
qm̄ (21)

First, we prove that from two transcripts pf , j, g, t,v, c, φ, z1, z2, z3, e, z4q and
pf , j, g, t,v, c, φ, z1, z2, , z3, e

1, z14q, the extractor can recover vectors r̄, w̄ and a
polynomial m̄ such that in addition to Equations (20) and (21), we have :

“

A| B` m̄G| B1
‰

»

–

z1
z2
z3

fi

fl “ w̄ ` cu. (22)

Let z̄4 “ z4 ´ z14, ē “ e´ e1 and r̄ “ ē´1z̄4. The extractor defines the messages
in the commitment as follows :

»

—

—

—

—

—

—

–

w̄
¯garb
m̄
m̄1

Ęmbin

ḡ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

f1
f2
f3
f4
f5
f6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

—

—

–

AT
1

aT2
aT3
aT4
tT1
tT2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

r̄. (23)

The extractor further defines ȳ4 “ z4 ´ er̄ and ȳ14 “ z4 ´ e1r̄. Equation (19)
follows from taking the difference of Equation (11) for both transcripts and
Equation (20) follows from the definition of m̄ in Equation (23). We substitute
f5, f6, z4 in Equation (12) for both transcripts and we obtain :

v2 ´ p
?
qtT1 ȳ4 ´ tT2 ȳ4q ` ep

?
qm̄´ m̄1q “ 0 (24)

v2 ´ p
?
qtT1 ȳ4 ´ tT2 ȳ4q ` e

1p
?
qm̄´ m̄1q “ 0. (25)

We take the difference of both equations and we have m̄1 “
?
qm̄, and hence

Equation (21). Now, we plug in the expressions of f1, f5, z4 in Equation (13) for
both transcripts, and we obtain :

e
“

A|B` m̄G| B1
‰

»

–

z1
z2
z3

fi

fl “ epw̄ ` cuq ` v1 ´AT
1 ȳ4 ´ tT1 ȳ4Gz2 (26)

e1
“

A|B` m̄G| B1
‰

»

–

z1
z2
z3

fi

fl “ e1pw̄ ` cuq ` v1 ´AT
1 ȳ4 ´ tT1 ȳ4Gz2. (27)

19

Again, we take the difference and we conclude Equation (22).

We will now prove that with overwhelming probability, Ęmbin, m̄ are such that

Q NTT pĘmbinq “ NTT pm̄q (28)

ĘmbinpĘmbin ´ 1q “ 0. (29)

First, we claim that the prover is committed to unique ȳ4 and r̄, that are there-
fore independent of the challenge. From Lemma 4.1 of [ALS20], if the prover
breaks this commitment11, then B finds an MSISκ,κ`α`λ`5,B2 solution for A1.
Otherwise, we have that

z4 “ ȳ4 ` er̄ and z14 “ ȳ4 ` e
1r̄,

and ȳ4, ¯mbin, ¯garb are independent of the challenge.

Next, we show that Ęmbin verifies Equation (29). We substitute f2, f3 and z4
with respectively aT3 r̄`Ęmbin , aT2 r̄` ¯garb and ȳ4 ` er̄ in Equation (14), and we
obtain :

aT2 ȳ4 ´ v3 ` pa
T
3 ȳ4q

2 ` epaT3 ȳ4p2Ęmbin ´ 1q ´ Ěgarbq ` e2ĘmbinpĘmbin ´ 1q “ 0.
(30)

Since we claimed that (unless the extractor finds an MSIS solution for A1)
¯mbin, ¯garb and ȳ4 do not depend on e, we can claim that the expression on

the left of Equation (30) is a degree 2 polynomial in e. If Equation (29) does
not hold, then there exists a prime ideal pXd{l ` ζq such that Equation (30)
mod pXd{l ` ζq is a degree 2 polynomial in e over the field Rq{pX

d{l ` ζq. This
polynomial has at most two roots in this field, say x1, x2. Assuming indepen-
dence, it follows from Lemma 2.3 that the probability that e mod pXd{l ` ζq
is either of these roots is at most 2

qd{l
` Opεq, where ε is the error term from

Lemma 2.3. This probability is negligible, hence we conclude Equation (29).

We finally prove that NTT pĘmbinq is binary. We just shown that the extracted
Ęmbin is such that ĘmbinpĘmbin ´ 1q “ 0. Let Xd{l ´ ζ be any of the irreducible
factors of Xd ` 1 mod q. We have the following :

ĘmbinpĘmbin ´ 1q “ 0

NTT pĘmbinpĘmbin ´ 1qq “ 0

NTT pĘmbinq ˝ pNTT pĘmbinq ´ 1q “ 0.

Since ZqrXs{pXd{l ´ ζq is a field, we either have Ęmbin mod pXd{l ´ ζq “ 0 or
Ęmbin mod pXd{l ´ ζq “ 1. This holds for all the NTT coefficients, from which
we conclude Equation (18).

11 That is to say ȳ4 ‰ ȳ14.

20

We just proved that Ęmbin is the inverse NTT vector of a binary element of Rq. We
then prove that this element is the binary representation of m̄ via Equation (28).
To do so, we notice that by taking the difference of Equation (15) for both
transcripts and plugging the expressions of Ęmbin, m̄, ḡ, the extractor finds that
the latter variables are such that

j “ ḡ `ĘmbinNTT
´1

`

QTφ
˘

´ m̄NTT´1
pφq . (31)

Equation (16) says that the first d{l coefficients of j are 0. On the other hand,
using Lemmas 2.1 and 2.2, we have

l

d{l´1
ÿ

i“0

ji “

d{l´1
ÿ

i“0

gi ` xQ NTT pĘmbinq ´ NTT pm̄q , φy,

where the latter equality is over Zlq. If Q NTT pĘmbinq ´ NTT pm̄q ‰ 0, then
since the challenge φ is uniformly random, so is xQ NTT pĘmbinq ´NTT pm̄q , φy.
Notice that g was committed to by the prover prior to its knowledge of φ, and
therefore, the probability that Equation (31) holds without Equation (28) being
true is 1

qd{l
. Since this probability is negligible, we conclude Equation (28).

Finally, to prove that m̄ is a valid identity, we notice that Equation (28) yields
that all NTT coefficients of m̄ are equal. Together with the fact that Ęmbin is
binary, this yields that NTT pm̄q “ pm̄, . . . , m̄q, and it follows that m̄ P I.

We now prove that E can extract s̄1, s̄2, s̄3 that together with the previously
extracted m̄ (that, we showed, verifies Equations (18) and (20)) verifying Equa-
tion (17). The extractor acquires 4 transcripts

pf , t,v, c, φ, j, z1, z2, z3, e, z4q

pf , t,v, c, φ, j, z1, z2, z3, e
1, z14q

pf , t,v11, v2, v3, v
1
4, c

1, φ, j, z11, z
1
2, z

1
3, e

2, z24q

pf , t,v11, v2, v3, v
1
4, c

1, φ, j, z11, z
1
2, z

1
3, e

p3q, z
p3q
4 q.

We proceed to describe how the extractor gets those transcripts and what
his success probability is. Let ε be the probability of a deterministic prover to
produce a proof that passes verification. The extractor first runs log 10

ε times the
prover, or until the prover returns a valid transcript pf , t,v, c, φ, j, z1, z2, z3, e, z4q.
If the prover fails to do so, E aborts. Next, E runs the prover log 10

ε{2´Cpcq times,

answering the same challenge c (and φ) in the first verifier interaction, and chal-
lenges e1 Ð C in the second verifier interaction. Again, if the prover fails to pro-
duce a valid transcript, E aborts. Otherwise, E then receives a second transcript
pf , t,v, c, φ, j, z1, z2, z3, e

1, z14q. Thirdly, E runs the prover on fresh challenges
pc1, φ1, e2q with the only condition that c1 ‰ c for a total of log 10

ε´Cpcq times. Unless

the prover provided a valid transcript pf , t,v11, v2, v3, v
1
4, c

1, φ1, j, z11, z
1
2, z

1
3, e

2, z24q,
E aborts. Finally, E repeats the second step : E runs the prover on c1, φ1 with
fresh ep3q Ð Czte2u for a total of log 10

ε{2´Cpe2q times.

21

We now calculate the probability that E never aborts and indeed acquires the
4 transcripts. The extractor has 4 opportunities to abort and thus not receive 4
transcripts from the prover. We write aborti the event where E acquires the first
i ´ 1 transcripts but aborts when done trying to get the i-th. Since the failure
probability of the prover for one iteration is 1´ ε, Prpabort1q “ p1´ εq

log 10{ε ď

expp´εqlog 10{ε, and finally Prpabort1q ď 1{10. For E to abort in step 2, E must
have received a first transcript for challenges c, φ, e. From the heavy-rows lemma
[OO98], the probability that the pc, φq row is heavy12 is at least 1{2. Moreover,
from the definition of a heavy row, the success probability of the prover when
pc, φq yields a heavy row is at least ε1 “ ε{2´Prc1ÐCpc

1 “ cq. Therefore, we have
Prpabort2q ď p1´ ε

1qlog 10{ε1`1{2 ď 3{5. Similarly, we have Prpabort3q ď 1{10,
and Prpabort4q ď 3{5. The probability that E never aborts is the product of
1´ Prpabortiq for i “ 1, 2, 3, 4, which is given by 81{625 ě 1{8.

Using the previous result on both the first pair and the second pair of tran-
scripts, the extractor finds r̄, m̄, w̄ and r̄1, m̄1, w̄1 that verify Equations (18)
to (21). Since r̄ē1 ´ r̄1ē is small13, then pr̄, m̄, w̄q “ pr̄1, m̄1, w̄1q. The extrac-
tor defines s̄1 “ z1 ´ z11, s̄2 “ z2 ´ z12, s̄3 “ z3 ´ z13, c̄ “ c ´ c1. Then, using
Equation (21), s̄1, s̄2, s̄3, c̄ verify Equation (17), and therefore the protocol is
sound.

Zero-knowledge. We define the simulator S as follows :

1. Generate cÐ C, φÐMl
q, eÐ C

2. Generate pz1, z2, z3, z4q Ð D2dα
σ ˆD3dα

σ ˆD3dα
σ ˆD

pκ`λ`α`5qd
σ1

3. Generate f Ð Rκ`α`5
q , r Ð χκ`λ`α`5

4. Generate j Ð p0d{l|Z
d{lˆpl´1q
q q

5. Set v, t so Equations (11) to (14) hold
6. Output pf , t, j,v, z1, z2, z3, z4, c, φ, eq

To conclude zero-knowledge for π, we show that the distribution output by
S is indistinguishable from the distribution of a non-aborting accepting tran-
script from Figure 5. The variables c, φ, e are distributed exactly as in the
procedure. The vectors pz1, z2, z3, z4q in non-aborting proofs follow a distribu-
tion independent to c, φ, e that is indistinguishable ([BLS19], Lemma 3.2) of

D2dα
σ ˆD3dα

σ ˆD3dα
σ ˆD

pκ`λ`α`5qd
σ1 , which is their distribution in the output of

S.

Under the hardness of MLWEκ`λ`α`5,κ,Sµ , t1, t2 are indistinguishable from uni-
form. Under the hiding property of the commitment scheme, which in turn relies

12 Challenges pc, φq are in a heavy row when the success probability of the prover
conditionned on the first challenges to be these c, φ is at least ε{2. We refer to
[OO98] for further detail.

13 Otherwise, r̄ē1 ´ r̄1ē is a solution for MSIS for A0 of norm at most
8ω2σ1

a

2pκ` λ` α` 5qd

22

on the hardness of MLWEκ`α`5,λ,χ, the distribution of f in honestly generated
transcripts is indistinguishable from uniform, which is its distribution in the
output of the simulator S.

Equation (11) uniquely determines t “ A0z4 ´ ef0 from z4, e, f0. Similarly, all
the coordinates of v are uniquely determined by the sampled variables of S
from Equations (12) to (15). To summarize, the variables that S samples follow
a distribution indistinguishable from the one from the actual interaction and
the other variables are binded by the verification equations in the accepting
transcripts, from which we conclude zero-knowledge.

3.2 Decryption

The verifiable encryption scheme of our group signature scheme is hidden in the
commitment scheme. The group manager sets the commitment public vectors
for m and

?
qm to be t1 “ AT

0 h1 ` e1,t2 “ AT
0 h2 ` e2, where h1,h2, e1, e2

are the group manager decryption secret key. The idea of the encryption is the
following : the ciphertext is of the form

A0r “ u0 (32)

tT1 r`m “ u1 (33)

tT1 r`
?
qm “ u2. (34)

The steps to decrypt using the secrets h1,h2, e1, e2 are as follows. Compute
x1 “ u1 ´ hT1 u0 “ hT1 r ` m,x2 “ u2 ´ hT2 u0 “ hT2 r `

?
qm. Then, compute

?
qx1 ´ x2 “ p

?
qhT1 ´ hT2 qr. If this latter polynomial has all its coefficients

less than q{2, then this equality holds over the integers. Moreover, if we take the
parameters such that hT1 r ď

?
q, then we have k “

?
qx1´x2 mod

?
q “ ´hT1 r.

To finish, we have m “ px2 ` kq{
?
q, provided that p

?
qhT1 ´ hT2 qr ď q{2 and

hT1 r ď
?
q.

The problem is that the proof that the ciphertext is valid given through π
does not ensure Equations (32) to (34) but rather a relaxed proof that there
exists a ē P C̄ and r̄ such that

A0r̄ “ ēu0

tT1 r̄` ēm “ ēu1

tT1 r̄` ē
?
qm “ ēu2.

We use a similar technique as [LN17, dPLS18]. The idea is that the group man-
ager is given a proof π for a challenge e. The soundness of the proof ensures
that there exists another challenge e1 such that with ē “ e ´ e1 (and notations
from π) : pēf0, ēf5, ēf6q is a valid ciphertext. The known technique that we use
to tackle this is to try and decrypt pēf0, ēf5, ēf6q for a random second challenge
e1 Ð C. Possibly not any challenge e1 yields a decryption to the right message
m. What [LN17] shown for their verifiable encryption scheme is that a simple
test condition can 1) reject the challenges e1 that do not yield a decryption to

23

m 2) Not reject too many challenges so the decryption runtime is reasonable.
We have a similar result for our decryption, where the condition on Line 6 plays
this role, where both correctness of the decryption and ’reasonable’ runtime are
stated in Lemma 3.2.

Algorithm 1 Decryption algorithm GSdecpπ,h1,h2, e1, e2q :

1: e1 Ð C
2: ē “ e´ e1

3: x1 “ f5 ´ hT1 f0
4: x2 “ f6 ´ hT2 f0
5: k “ ēp

?
qx1 ´ x2q mod

?
q

6: if }ēp
?
qx1 ´ x2q}8 ď

q
4ω

then
7: return pēx2 ` kq{p

?
qēq

8: else go to Line 1
9: end if

Lemma 3.2. If the verification of a proof π from Figure 5 passes, then Algo-
rithm 1 on input π and the group manager secret key returns a unique decryption
in expected running-time at most Oph2q, where h2 is the number of queries to
the second random oracle made by the prover to generate a signature. For an
honest prover, the expected number of iterations is

?
3.

Proof. The proof is deferred to the full version of the paper.

4 Security and parameters

In this section, prove the two security notions required for a group signature,
that is, anonymity and traceability. Afterwards, we propose a set of parameters
for the group signature that achieve a signature size of rougly 203 KB.

4.1 Security

Throughout this subsection, we will write εGA the success probability of an ad-
versary A against a game G. The proof for traceability is done in two steps : we
reduce the traceability of our scheme to a hybrid trace˚ game, and then reduce
the latter to lattice problems. The trace˚ game (more formally defined in the
full version of the paper) is informally defined as follows. The challenger B runs
KeyGen honestly, except for the following steps :

1. The public matrix rA|B|B1s is crafted such that A is uniformly random,
B “ AR ´ m˚G where R is generated as in KeyGen and m˚ Ð I is a
uniformly random identity, and B1 “ AR1 where R1 is distributed as R.

2. The vector u is defined as u “ As1`ARs2`AR1s3, and thus corresponds
to the identity m˚.

24

Similarly as in the traceability game for our scheme, the adversary can query
secret keys, signatures and the random oracles.

Lemma 4.1. Let A be an adversary to the traceability game for our scheme.
Let ZK be the zero-knowledge game for π. We have

εtraceabilityA ď 5ε
MLWEα,α,S1
A ` εZKA ` εtrace˚A .

The proof is deferred to the full version of the paper.

Lemma 4.2. let A be an adversary that runs in time T and has success proba-
bility ε against the trace˚ game. Let h1 (respectively h2) be the number of queries
that A can make to the first random oracle (respectively to the second random or-
acle), B ě 4σ

?
dαp1`2ωqp3dα`1q and B2 ě 8ω2σ1

a

2dpκ` λ` α` 5q. Then,
there exists an adversary B that runs in time OpT {εq and that has probability at
least 1{p8|I|q to find either a solution to MSISα,2α,B or to MSISκ,κ`λ`α`5,B2 .

Proof. Let A be an adversary. We assume that with at most h1 queries to the
first random oracle, h2 queries to the second random oracle and Q queries to the
signing algorithm, A has a probability ε of successfully outputing a forgery. Let
B be an algorithm that can query A. The goal of B is to either solve MSISα,2α,B
for some matrix X P Rαˆ2α

q , or solve MSISκ,κ`λ`α`5,B2
for some matrix Y.

Description of B :

Given the instances of MSIS, B sets the public parameters of the scheme
honestly, except for the following steps. The public matrix A is set as A “ X,
and B “ XR´mGT for some uniformly random guess m of the identity that the
adversary is going to impersonate. The public commitment matrix A0 is set as Y.
The parameters of this game are identical to the trace˚ game, therefore provided
that B can answer secret key signature queries, A shall have a probability ε to
output a forgery. Note that on top of his knowledge of the trapdoors R,R1, B
knows the honestly generated secret vector sgm1 , sgm2 , sgm3 and defines u as

u “
“

X| XR| AR1
‰

»

–

sgm1
sgm2
sgm3

fi

fl .

To answer a secret key query for an identity m1 ‰ m˚ from A, B uses his
knowledge of the trapdoor R to sample a valid secret key psm

1

1 , sm
1

2 , sm
1

3 q such
that

“

X| XR` pm1 ´m˚qG| AR1
‰

»

–

sm
1

1

sm
1

2

sm
1

3

fi

fl “ u.

If A queries the secret key for m˚, B is unable to use its trapdoor R so he returns
psgm1 , sgm2 , sgm3 q.

To answer A’s signing queries, B will run the simulator S from the zero-
knowledge property of π. From Theorem 3.1, the distribution of the transcripts

25

that B sends to A is computationnally indistinguishable from the actual dis-
tribution of the transcripts from the signature, and therefore A can indeed be
provided with as many as Q signing queries.

When A is ready to produce forgeries, B will follow the transcript-acquisition
from the extractor E of the soundness of π. More precisely, B has a probability
at least 1{8 to get 4 forged signatures from A in time OpT {εq : 2 different second
challenges e per first different challenges c, φ. We reuse the notations from the
extraction.

Next, B will proceed as E and recover either a solution to MSISκ,κ`λ`α`5,B2
-

or recover vectors s̄1, s̄2, s̄3, r̄ and polynomials m, c̄ such that m P I and Xs̄1 `
pXR` pm´m˚qGqs̄2 `XR1s̄3 “ u, which completes the proof either way.

From Lemma 3.2, the decryption of all of A’s forgeries are the same m P I. Since
A is playing the trace˚ game, we assume that he never queried nor received the
secret key for identity m. With probability |I|´1, B’s uniformly random guess
m˚ is indeed the identity that A impersonates. If this did not happen, then
B fails and aborts. From now on, we assume that m “ m˚. On one hand, B
received from A short vectors that satisfy Xps̄1 ` Rs̄2 ` R1s̄3q “ c̄u. On the
other hand, B knows psgm1 , sgm2 , sgm3 q verifying Xpsgm1 ` Rsgm2 ` Rsgm3 q “ u. In
other words, s̄1 ´ c̄sgm1 ` Rps̄2 ´ c̄sgm2 q ` R1ps̄3 ´ c̄sgm3 q is a solution to MSIS
for the given random matrix X of size with overwhelming probability at most
4σ
?
dαp1` 2ωqp3dα` 1q.

Theorem 4.3. The group signature scheme, where the signature is the Fiat-
Shamir transform of π defined in Figure 5 is untraceable and anonymous.

More precisely for anonymity, the advantage of an adversary A against the
anonymity game is upper bounded by 299{M ` 2εMLWE

A .
For traceability, with B ě 4σ

?
dαp1` 2ωqp3dα` 1q and

B2 ě 8ω2σ1
a

2dpκ` λ` α` 5q,

the success probability εtraceabilityA of an adversary A against the traceability game
is upper bounded by

3ε
MLWEα,α,S1
A ` 8|I|maxpε

MSISα,2α,B
A , ε

MSISκ,κ`λ`α`5,B2

A q.

The proof is deferred to the full version of the paper.

4.2 Parameters

Similarly as in [dPLS18], we apply the Fiat-Shamir transformation [FS86] on
the interactive protocol in Fig. 5 to obtain a group signature. We first compute
sizes for our signature and then propose several common optimisations.

To begin with, we set pq, d, lq “ p« 264, 128, 64q so that q´d{l « pd{l « 2´128.
Next, we aim for the repetition rate of our protocol to be 27 as in [dPLS18].
Hence, we set M such that M2 “ 27 14, i.e. M “ 33{2. We compute an upper-

14 Recall that in Fig. 5 we run four rejection algorithms. However, for efficiency pur-
poses we can merge the ones for z1,z2,z3 since they follow the same standard
deviation σ.

26

bound Ts on}cps1||s2||s3q}, where cÐ C, as follows. Recall that using a trapdoor
sampling similar to [dPLS18], coefficients of vectors si follow a discrete Gaus-

sian distribution with standard deviation str ď 2p3
?
αd ` 1q

a

rq1{3s2 ` 1 (see
[dPLS18, Section 2.6] for more details). Hence, by Lemma 2.7 with an over-
whelming probability we have

}cps1||s2||s3q}
2 “

3
ÿ

i“1

}csi}
2 ď

3
ÿ

i“1

pd}si}q
2 ď 16d2s2trαd.

Thus, we set Ts “ 8p3
?
αd` 1qd

a

rq1{3s2 ` 1
?
αd and σ “ 8Ts in order to have

M “ 33{2 (as in Equation 8).
Let Tr be an upper-bound on }er} where e is the challenge in Fig. 5. We apply

the exact method as in [LNS21a, Appendix C]. Namely, we use the observation
that

}er}2 ď d

›

›

›

›

›

ÿ̀

i“1

σ´1priqri

›

›

›

›

›

1

where r “ pr1, . . . , rκ`λ`α`5q and σ´1 is the Galois automorphism σ´1 : X ÞÝÑ

X´1. Then, we heuristically choose Tr so that the expression on the right-hand
side is less than T 2

r with probability at least 99%. Similarly as before, we set
s1 “ 8Tr.

In Fig. 1 we choose parameters κ, λ, α, µ so that the MSIS and MLWE prob-
lems described in the previous subsections are hard. For a fair comparison with
[dPLS18], we measure the hardness with the root Hermite factor δ and aim for
δ « 1.0036.

We now turn to computing the signature size. As “full-sized” elements of Rq

we have f and j (it is missing d{l coefficients but this has negligible impact on
the sizes). Therefore, we have in total κ ` α ` 5 ` 1 full elements of Rq which
give us

pκ` α` 6qd log q bits.

What we have left are vectors of short polynomials z1, z2, z3 and z4. Since they
come from a discrete Gaussian distribution with standard deviation s and s1

respectively, with high probability we can upper-bound their coefficients by 6s
and 6s1 [Lyu12]. Thus, they require at most:

8αd logp12sq ` pκ` λ` α` 5qd logp12s1q bits.

Finally, the challenges c, e cost at most 4 ¨ d “ 512 bits.

Various optimisations. First, we apply the rejection strategy introduced
[LNS21a] for z4. Namely. we use the algorithm Rej1 defined in Fig. 3 instead
of Rej0. Consequently, we manage to significantly reduce the standard deviation
s1 at a cost of leaking one bit of the randomness r. This is fine in our case since
each new signature requires a fresh randomness vector.

We cannot use the rejection approach from [LNS21a] for z1, z2, z3 since each
signature would reveal some more information about secret vectors si. In order

27

to reduce the standard deviation σ, we will use Bimodal Gaussians [DDLL13]
instead. We remark that this technique is not new and it was recently used in
e.g. [LNS21b, Section 1.5] and [LNS21a, Appendix B].

Concretely, we additionally commit to a randomly chosen sign b P t´1, 1u:

f8 “ aT5 r ` b.

Then, we send zi “ y ` bcsi for i “ 1, 2, 3 and later prove that

“

A| B `mG| B1
‰

»

–

z1
z2
z3

fi

fl “ w ` bcu

where BDLOP commitments to m, b and w are given. Furthermore, we need to
prove that f8 is a commitment to ´1 or 1. First, we prove that pb`1qpb´1q “ 0
over Rq. This implies that the NTT coefficients of b are either ´1 or 1. Next,

we show that all coefficients of b are the same, i.e. the NTT vector ~b “ NTT pbq

of b satisfies V~b “ ~0 where

V “

¨

˚

˚

˚

˝

1 ´1 0 . . . 0
0 1 ´1 . . . 0
...

...
...

. . .
...

´1 0 0 . . . 1

˛

‹

‹

‹

‚

P Zlˆlq .

Since we already prove linear and multiplicative relations in Fig. 5, the additional
proofs for b do not affect the total signature size . Hence, we manage to decrease
the standard deviation σ at a cost of committing to one more polynomial b.
Eventually, with the aforementioned optimisations, we manage to decrease the
standard deviations to σ “ 0.7Ts and σ1 “ 0.7Tr. Thanks to these modifications,
the extracted MSIS solution from the traceability game has Euclidean norm at
most 261 which is less than q.

With the given parameters, we obtain a group signature of size around 203KB
which is around a factor of three improvement over [dPLS18].

q d l κ λ α µ

« 264 128 64 20 24 24 127

Table 1. Group signature parameters.

References

ABB10. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in
the standard model. In EUROCRYPT, pages 553–572, 2010.

28

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical product
proofs for lattice commitments. In CRYPTO (2), volume 12171 of Lecture
Notes in Computer Science, pages 470–499. Springer, 2020.

Ban93. Wojciech Banaszczyk. New bounds in some transference theorems in the
geometry of numbers. Mathematische Annalen, 296(1):625–635, Dec 1993.

BCN18. Cecilia Boschini, Jan Camenisch, and Gregory Neven. Floppy-sized group
signatures from lattices. In ACNS, volume 10892 of Lecture Notes in Com-
puter Science, pages 163–182. Springer, 2018.

BDL`18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert. More efficient commitments from structured lattice assump-
tions. In SCN, pages 368–385, 2018.

BLS19. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic tech-
niques for short (er) exact lattice-based zero-knowledge proofs. In CRYPTO,
pages 176–202. Springer, 2019.

CS97. Jan Camenisch and Markus Stadler. Efficient group signature schemes for
large groups (extended abstract). In Burton S. Kaliski Jr., editor, Advances
in Cryptology - CRYPTO ’97, volume 1294 of Lecture Notes in Computer
Science, pages 410–424. Springer, 1997.

DDLL13. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In CRYPTO (1), pages 40–56,
2013.

DKL`18. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-
based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2018(1):238–268, 2018.

dPLS18. Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based
group signatures and zero-knowledge proofs of automorphism stability. In
ACM Conference on Computer and Communications Security, pages 574–
591. ACM, 2018.

ENS20. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
exact proofs from lattices: New techniques to exploit fully-splitting rings.
In ASIACRYPT (2), pages 259–288, 2020.

ESLL19. Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu.
Lattice-based zero-knowledge proofs: New techniques for shorter and faster
constructions and applications. In CRYPTO (1), volume 11692 of Lecture
Notes in Computer Science, pages 115–146. Springer, 2019.

ESS`19. Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and
Dongxi Liu. Short lattice-based one-out-of-many proofs and applications
to ring signatures. In ACNS, volume 11464 of Lecture Notes in Computer
Science, pages 67–88. Springer, 2019.

EZS`19. Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu,
and Dongxi Liu. Matrict: Efficient, scalable and post-quantum blockchain
confidential transactions protocol. In CCS, pages 567–584. ACM, 2019.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, pages 186–194, 1986.

GKV10. S. Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group sig-
nature scheme from lattice assumptions. In Advances in Cryptology - ASI-
ACRYPT 2010, pages 395–412, 2010.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-faster,

29

attribute-based. In CRYPTO (1), volume 8042 of Lecture Notes in Com-
puter Science, pages 75–92. Springer, 2013.

LLNW16. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-
knowledge arguments for lattice-based accumulators: Logarithmic-size ring
signatures and group signatures without trapdoors. In EUROCRYPT (2),
volume 9666 of Lecture Notes in Computer Science, pages 1–31. Springer,
2016.

LN17. Vadim Lyubashevsky and Gregory Neven. One-shot verifiable encryption
from lattices. In EUROCRYPT, 2017.

LNS20. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
lattice-based zero-knowledge proofs for integer relations. In CCS, pages
1051–1070. ACM, 2020.

LNS21a. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In Public
Key Cryptography (1), volume 12710 of Lecture Notes in Computer Science,
pages 215–241. Springer, 2021.

LNS21b. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Smile: Set
membership from ideal lattices with applications to ring signatures and con-
fidential transactions. Cryptology ePrint Archive, Report 2021/564, 2021.
https://eprint.iacr.org/2021/564, to appear at CRYPTO 2021.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, pages 598–616, 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT, pages 738–755, 2012.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In EUROCRYPT, pages 700–718, 2012.

OO98. Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of
signatures derived from identification. In Annual International Cryptology
Conference, pages 354–369. Springer, 1998.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6), 2009.

YAZ`19. Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and
William Whyte. Efficient lattice-based zero-knowledge arguments with stan-
dard soundness: Construction and applications. In CRYPTO (1), volume
11692 of Lecture Notes in Computer Science, pages 147–175. Springer, 2019.

30

https://eprint.iacr.org/2021/564

	Shorter Lattice-Based Group Signatures via ``Almost Free'' Encryption and Other Optimizations

