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Abstract. Significantly extending the framework of (Couteau and Hart-
mann, Crypto 2020), we propose a general methodology to construct
NIZKs for showing that an encrypted vector χ belongs to an algebraic
set, i.e., is in the zero locus of an ideal I of a polynomial ring. In the case
where I is principal, i.e., generated by a single polynomial F , we first con-
struct a matrix that is a “quasideterminantal representation” of F and
then a NIZK argument to show that F (χ) = 0. This leads to compact
NIZKs for general computational structures, such as polynomial-size al-
gebraic branching programs. We extend the framework to the case where
I is non-principal, obtaining efficient NIZKs for R1CS, arithmetic con-
straint satisfaction systems, and thus for NP. As an independent result,
we explicitly describe the corresponding language of ciphertexts as an
algebraic language, with smaller parameters than in previous construc-
tions that were based on the disjunction of algebraic languages. This
results in an efficient GL-SPHF for algebraic branching programs.
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1 Introduction

Zero-knowledge arguments are fundamental cryptographic primitives allowing
one to convince a verifier of the truth of a statement while concealing all further
information. A particularly appealing type of zero-knowledge arguments, with a
wide variety of applications in cryptography, are non-interactive zero-knowledge
arguments (NIZKs) with a single flow from the prover to the verifier.

Early feasibility results from the 90’s established the existence of NIZKs
for all NP languages (in the common reference string model) under standard
cryptographic assumptions. However, these early constructions were inefficient.
In the past decades, a major effort of the cryptographic community has been
directed towards obtaining efficient and conceptually simple NIZK argument
systems for many languages of interest. Among the celebrated successes of this
line of work are the Fiat-Shamir (FS) transform, which provides simple and
efficient NIZKs but only offers heuristic security guarantees, and pairing-based
NIZKs such as the Groth-Sahai proof system [21] (and its follow-ups).
The quest for efficient and conceptually simple NIZKs. The Groth-Sahai
NIZK proof system was a major breakthrough in this line of work, providing the
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first provably secure (under standard pairing assumptions) and reasonably ef-
ficient NIZK for a large class of languages, capturing many concrete languages
of interest. This proof system initiated a wide variety of cryptographic applica-
tions, and its efficiency was refined in a sequence of works. Unfortunately, the
efficiency of Groth-Sahai proofs often remains unsatisfying (typically much worse
than NIZKs obtained with Fiat-Shamir), and building an optimized Groth-Sahai
proof for a specific problem is an often tedious process that requires considerable
expertise. This lack of conceptual simplicity inhibits the potential for large-scale
deployment of this proof system. Therefore, we view it as one of the major open
problems in this line of work to obtain an efficient proof system where con-
structing an optimized proof for a given statement does not require dedicated
expertise. The Fiat-Shamir transform offers such a candidate – and as a con-
sequence, it has seen widescale adoption in real-world protocols – but lacks a
formal proof of security. The recent line of work on quasi-adaptive NIZKs offers
simultaneously simple, efficient, and provably secure proof systems, but these are
restricted to a small class of languages – namely, linear languages. Some recent
SNARK proof systems also offer generic and efficient methods to handle a large
class of languages given by their high-level description; however, they all rely on
very strong knowledge-of-exponent style assumptions.
The Couteau-Hartmann argument system. Very recently, Couteau and
Hartmann put forth a new framework for constructing pairing based NIZKs [9].
At a high level, their approach compiles a specific interactive zero-knowledge
proof into a NIZK (as does Fiat-Shamir), by embedding the challenge in the
exponent of a group equipped with an asymmetric pairing. The CH argument
system enjoys several interesting features:
– It generates compact proofs, with efficiency comparable to Fiat-Shamir argu-

ments, with ultra-short common reference strings (a single group element);
– It has a conceptually simple structure, since it compiles a well-known and

simple interactive proof;
– It handles a relatively large class of algebraic languages [5,8], which are

parameterized languages of the shape LΓ ,θ = {x : ∃w,Γ (x) · w = θ(x)},
where x is the input, w is the witness, Γ and θ are affine maps, such that
x and θ(x) are vectors and Γ (x) is a matrix. We call (θ,Γ ) the matrix
description of the language L. Since any NP language can be embedded into
an algebraic language3, this gives a proof system for all of NP.

These features make the CH argument system a competitive alternative to Fiat-
Shamir and Groth-Sahai in settings where efficiency and conceptual simplicity
are desirable while maintaining provable security under a plausible, albeit new,
assumption over pairing groups. In a sense, Couteau-Hartmann achieves a sweet
spot between efficiency, generality, and underlying assumption.
Limitations of the CH argument system. The CH transformation offers
attractive efficiency features, but its core advantage is (arguably) its conceptual
3 The classical approach to do so for circuit satisfiability uses algebraic commitments
to all values on the wire of the circuit; then the statement “all committed values are
consistent and the output is 1” is an algebraic language.
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simplicity. As many previous works pointed out (see e.g. [25]), what “real-world”
protocol designers need is a method that can easily take a high-level description
of a language, and “automatically” generate a NIZK for this language without
going through a tedious and complex process requiring dedicated expertise. Ide-
ally, both the process of generating the NIZK description from the high-level
language and the NIZK itself should be efficient.

With this in mind, CH provides an important step in the right direction,
where producing the NIZK for any algebraic language is a straightforward generic
transformation applied to its matrix description. However, it falls short of fully
achieving the desired goal for two reasons.

First, it does not entirely remove the need for dedicated expertise from the
NIZK construction; rather, it pushes the complexity of building the NIZK to that
of finding its matrix description given a higher-level description of an algebraic
language. However, it does not provide a characterization of which languages,
given via a common higher-level description, are algebraic, neither does it give
a method to construct their matrix description4.

Second, the CH-compilation produces NIZKs whose soundness reduces to an
instance of the novel ExtKerMDH family of assumptions. However, the particular
assumption will only be falsifiable in the much more restricted setting of witness-
samplable algebraic languages, which essentially seem to capture disjunctions
of linear languages. Couteau and Hartmann focused on NIZKs based on the
falsifiable variant, which severely limits the class of languages captured by the
framework. It is much more desirable to base the security of all NIZKs produced
by this framework on a single, plausible, well-supported assumption: this would
avoid protocol designers the hurdle of precisely assessing the security of the
specific flavor of the ExtKerMDH assumption their particular instance requires.

1.1 Our Contribution

We overcome the main limitations of the CH argument system. Our new ap-
proach, which significantly departs from the CH methodology, allows us to pro-
duce compact NIZKs for a variety of languages, with several appealing features.
A general framework. We provide a generic method to compute, for several im-
portant families of languages, a different matrix description of the languages. We
then construct a NIZK. We implicitly use the CH-compiler but in a way, different
from [9]. We focus on the important setting of commit-and-prove NIZK argument
systems, i.e. languages of the form {Com(x1), . . . ,Com(xn) | R(x1, . . . , xn)},
where R is some efficiently computable relation. Our method allows us to au-
tomatically obtain a compact matrix description for many types of high-level
relations.
New NIZKs: improved efficiency or generality. As a first byproduct, we obtain
improved NIZKs for some important statements, such as set membership (see

4 While we can always embed any language in an algebraic language, this can be
inefficient; the CH proof system is efficient when the language is “natively” algebraic.
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Table 1) or the language of commitments to points on an elliptic curve5, as well
as new NIZKs for very general classes of statements, such as R1CS, arithmetic
constraint satisfaction systems (and thus for NP).
A weaker unified assumption. As the second byproduct of our formal approach,
we manage to base all NIZKs in our framework on a slightly weaker form of
the extended Kernel Diffie-Hellman assumption, which we call the CED (family
of) assumption(s) (for Computational Extended Determinant assumption). This
turns out to have an important consequence: we show that all instances of our
assumption can be based on a single plausible gap assumption, which states
that solving the kernel Diffie-Hellman assumption in a group G2 (a well-known
search assumption implied in particular by DDH) remains hard, even given a
CDH oracle in a different group G1. On top of it, several of our NIZKs (like the
one for Boolean Circuit-SAT) are based on a falsifiable CED assumption, while
we also show that a slight modification of the NIZK for arithmetic circuits can
be also based on a falsifiable variant of CED.
New SPHFs. Eventually, as another byproduct of our methodology, we obtain
constructions of Smooth Projective Hash Functions (SPHFs) [17] for new lan-
guages (SPHFs were the original motivation for introducing the notion of alge-
braic language, and [5] gives a generic construction of SPHFs given the matrix
description of an algebraic language), including languages describable by efficient
algebraic branching programs.

1.2 Efficiency, Generality, and Security of our NIZKs

The argument of Couteau and Hartmann [9] improves over (even optimized vari-
ants of) the standard Groth-Sahai approach on essentially all known algebraic
languages. Couteau and Hartmann illustrated this by providing shorter proofs
for linear languages (Diffie-Hellman tuples, membership in a linear subspace)
and OR proofs (and more generally, membership in t out of n possibly differ-
ent linear languages), two settings with numerous important applications (to
structure-preserving signatures, tightly-secure simulation-sound NIZKs, tightly-
mCCA-secure cryptosystems, ring signatures...). Our framework builds upon
the Couteau-Hartmann framework, provides a clean mathematical approach to
overcoming its main downside (which is that the matrix description of “algebraic
languages” must be manually found), and significantly generalizes it. Our frame-
work enjoys most of the benefits of the Couteau-Hartmann framework, such as
its ultra-short common random string (a single random group element).
Efficiency. Our framework shines especially as soon as the target language be-
comes slightly too complex to directly “see” from its description an appropriate
and compatible matrix description C of the language; then, we get significant
efficiency improvements. We illustrate this on a natural and useful example: set

5 NIZKs for this type of languages have recently found important applications in
blockchain applications, such as the zcash cryptocurrency, see [25] and https://z.
cash/technology/jubjub/.

https://z.cash/technology/jubjub/
https://z.cash/technology/jubjub/
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Table 1. Comparison of set-membership proofs, i..e., NIZKs for Lpk,F , where F (X) is
univariate, as in Lemmas 7 and 8 and an additional lemma in the full version [10]. The
verifier’s computation is given in pairings. The Groth-Sahai computation figures are not
published and based on our own estimation; hence, we have omitted the computation
cost. Note that |G2| = 2|G1| in common settings. In CHM and new NIZK, |crs| = |G2|.

Argument |π| P comp. V comp.
Previous works

Optimized GS [33] d|G1|+ (3d+ 2)|G2| - -
CHM NIZK + [9] (Γ ,θ), full version [10] (3d− 1)|G1|+ (3d− 2)|G2| (7d− 4)e1 + (3d− 1)e2 9d− 2

New solutions
CHM NIZK + new Γ ,θ, Lemma 8 2d|G1|+ (2d− 1)|G2| (5d− 3)e1 + 4de2 7d− 1
New NIZK, Lemma 7 2d|G1|+ (2d− 1)|G2| ≤ 3de1 + (4d− 2)e2 7d− 1

membership proofs for ElGamal ciphertext over G1 (i.e., the language of ElGa-
mal encryptions of m ∈ S for some public set S of size d), see Table 1. It depicts
the complexity of optimized Groth-Sahai proofs, the generic Couteau-Hartmann
compilation of Maurer’s protocol (denoted CHM) by using the language pa-
rameters (Γ ,θ) provided in [9], CHM NIZK for (Γ ,θ) automatically derived in
the current paper from the matrix description C, and our new NIZK. On the
other hand, our modular approach provides significantly shorter proofs. Taking
e.g. d = 5, we get a proof about 25% shorter compared to Groth-Sahai. Our
approach also significantly improves in terms of computational efficiency. More-
over, since in our approach, we need to only encrypt the data in a single group,
as opposed in two groups in the case of (asymmetric-pairing-based) Groth-Sahai,
we have three times shorter commitments. In Section 8.2, we also discuss the case
of multi-dimensional set membership proofs (where, depending on the structure
of the set, our framework can lead to even more significant improvements).
Generality. Our framework also goes way beyond the class of languages natu-
rally handled by Couteau-Hartmann. In particular, we show that our framework
directly encompasses arithmetic constraint satisfaction systems (aCSPs), i.e.,
collections of functions F1, . . . , Fτ (called constraints) such that each function
Fi depends on at most q of its input locations.6 In particular, this efficiently
captures arithmetic circuits, hence all NP languages.7

Rank-1 constraints systems (R1CS) are well-known to be powerful, since they
capture compactly many languages of interest [16]. They have been widely used
in the construction of SNARKs. aCSPs directly extend these simple constraints
to arbitrary low-degree polynomial relations. Moving away from R1CS to more
expressive constraint systems can potentially be very useful: in many applica-
tions of NIZKs with complex languages, an important work is dedicated to find-
6 That is, for every j ∈ [1, τ ] there exist i1, . . . , iq ∈ [1, n] and f : Fq → F such that
∀χ ∈ Fn, Fj(χ) = f(χi1 , . . . , χiq ). Then F is satisfiable if ∀j, Fj(χ) = 0.

7 Technically, one could always take aCSPs, write them as a circuit satisfiability prob-
lem, and embed that into an agebraic language to capture it with the Couteau-
Hartmann framework; the point of our framework is that, by capturing this powerful
model directly, we can obtain much better efficiency on aCSPs.
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ing the “best” R1CS to represent the language. The increased flexibility of being
allowed to handle more general constraints can typically allow to achieve a signif-
icantly more efficient solution. While systematically revisiting existing works and
demonstrating that their R1CS system could be improved using aCSPs would
be out of the scope of this paper, we point out that this generalization approach
was successfully applied in the past: the work of [22] described a method to go
beyond R1CS in “Bulletproof style” random-oracle-based NIZKs (this setting is
incomparable to ours, as we focus on NIZKs in the standard model). They show
how to handle general quadratic constraints, and demonstrate that this leads to
efficiency improvements over Bulletproof on aggregate range proofs. Since aCSPs
are even more general, handling any low-degree polynomials, we expect that this
representation could lead to significant optimizations for many applications of
NIZKs that rely on R1CS representations. However, we are aware of no previous
random-oracle-less NIZKs that can handle aCSPs natively.

Furthermore, even in scenarios where R1CS does indeed provide the best pos-
sible representation, our framework leads to proofs more compact than Groth-
Sahai. We illustrate this on Table 2 for the case of general boolean circuits.
Here, the standard GOS approach [20] reduces checking each gate of the circuit
to checking R1CS equations. When comparing the cost obtained with our frame-
work to the cost achieved by a Groth-Sahai proof (using the optimized variant
of [18]), we find that our framework leads to three times smaller commitments,
20% shorter argument, and almost a factor two reduction in computation.

On the non-falsifiability of our assumption. When the algebraic branching
program representation of the relation is multivariate, the corresponding matrix
description may lead to a NIZK under a non-falsifiable assumption. This might
appear at first sight to significantly restrict the interest of our framework: while
our NIZKs are typically more efficient than Groth-Sahai, they are usually larger
than SNARKs since they grow linearly with (the algebraic branching program
representation of) the relation, while SNARKs have size independent of both the
relation and the witness. Hence, if we allow non-falsifiable assumptions, wouldn’t
SNARKs provide a better solution?

We discuss this apparent issue in Section 10. First, we identify a large class
of important cases where the underlying assumption becomes falsifiable; this in-
cludes Boolean circuits (and thus NP). Second, we provide a general approach
to transform any NIZK from our framework into NIZKs under a falsifiable as-
sumption, by replacing the underlying commitment scheme by a DLIN-based
encryption scheme and double-encrypting certain values. This comes at the cost
of increasing the commitment and argument size. Third, we argue that the gap
assumption [30] underlying our framework is, despite its non-falsifiability, a very
natural and plausible assumption; see Section 10 for more details. In particular,
gap assumptions are generally recognized as much more desirable than knowl-
edge of exponent assumptions. In essence, our assumption says that uncovering
structural weaknesses in a group G1 does not necessarily imply the existence
of structural weaknesses in another group G2; in particular, this assumption
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trivially holds in the generic bilinear group model (where a CDH oracle in G1

provides no useful information for breaking any assumption in G2).
Overall, we view our framework as providing a desirable middle ground be-

tween Groth-Sahai (which leads to less efficient NIZKs, but under the standard
SXDH assumption) and SNARKs (which lead to more efficient NIZKs in general
but require highly non-standard knowledge of exponent assumptions).

1.3 Technical Overview

Intuitive overview. At a high level, the Couteau-Hartmann methodology com-
piles a Σ-protocol for languages of the form {x : ∃w,Γ (x) ·w = θ(x)}, where
(Γ ,θ) are linear maps, into a NIZK. This leaves open, however, the tasks of
characterizing which languages admit such a representation, finding such a rep-
resentation, and when multiple representations are possible optimizing the choice
of the representation. We provide a blueprint for these tasks.

We focus on commit-and-prove languages, a large and useful class of lan-
guages. At the heart of our techniques is a general method to convert a set of
low-degree polynomial equations Fi(X) into a set of “optimized” matricesCi(X)
such that det(Ci(X)) = Fi(X) with a specific additional structure. We call this
matrix a quasideterminental (QDR) representation of the polynomial. Then, we
directly construct a compact NIZK proof system for a QDR, using a variant of
the Couteau-Hartmann methodology. We prove that the resulting proof system
is sound under a CED assumption. Whenever Fi has a polynomial number of
roots (e.g., univariate), the corresponding CED assumption is always falsifiable.

Constructing a QDR from a polynomial is a non-trivial task that highly de-
pends on the representation of Fi. We provide a general framework to construct
such QDRs from the algebraic branching program (ABP [29]) representation of
Fi; hence, our framework is especially suited whenever the polynomials have a
compact ABP representation. ABP is a powerful model of computation, cap-
turing in particular all log-depth circuits, boolean branching programs, boolean
formulas, logspace circuits, and many more.
Background. The rest of the technical overview requires understanding of some
minimal background from algebraic geometry, see [11] for more. Let F = Zp and
X = (X1, . . . , Xν). For a set F of polynomials in F[X], let A(F) := {χ ∈ Fν :
f(χ) = 0 for all f ∈ F} be the algebraic set defined by F . A subset A ⊆ Fν
is an algebraic set if A = A(F) for some F . Given a subset A of Fν , let I(A)
be the ideal of all polynomial functions vanishing on A, I(A) := {f ∈ F[X] :
f(χ) for all χ ∈ A}. Since each ideal of F [X] is finitely generated [11], then so
is I(A), and thus I(A) = 〈F1, . . . , Fτ 〉 for some Fi. I is principal if it is generated
by a single polynomial. All univariate ideals are principal. For an ideal I with
generating set {Fi}, A(I) := A({Fi}). We also define Z(F ) := A({F}).
Commit-and-prove NIZKs for algebraic sets. For the sake of concreteness,
we focus on commit-and-prove languages where the underlying commitment
scheme is the ElGamal encryption scheme; it is easy to extend this approach
to any additively homomorphic and perfectly binding algebraic commitment
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scheme. Let pk be an Elgamal public key and let A be an algebraic set. We pro-
vide a general methodology of constructing a NIZK argument for the language
Lpk,A = {[ct]1 : ∃χ such that Dec([ct]1) = [χ]1∧χ ∈ A} of Elgamal-encryptions
of elements of A. We define Lpk,F := Lpk,Z(F ) when we are working with a single
polynomial. Assuming I(A) = 〈F1, . . . , Fτ 〉, we prove that χ ∈ A by proving that
Fi(χ) = 0 for each Fi. The resulting argument system is efficient (probabilistic
polynomial-time), assuming that there is
(i) an efficient algorithm (to be run only once) that finds a small generating

set (F1, . . . , Fτ ) for I(A) where τ = poly(λ), and
(ii) an efficient NIZK argument system to show that Fi(χ) = 0 for each Fi.

Note that the NIZK for showing that Fi(χ) = 0 for each i is a simple conjunction
of NIZKs for showing for each i that Fi(χ) = 0.

Now, i is a non-cryptographic problem from computational commutative al-
gebra. The classical Buchberger-Möller algorithm [27] can find efficiently a finite
Gröbner basis {Fi} for all algebraic sets A that have a finite Gröbner basis.
Other methods exist, and we will only mention a few. Most importantly, one can
relate i to finding efficient arithmetic circuits and arithmetic constraint satisfac-
tion systems (aCSPs), see Section 8.1. The main technical contribution of our
work (on top of the general framework) is to propose an efficient solution to ii.

Constructing a compact proof system for F (χ) = 0. Here, we follow the
next blueprint: we construct
(iii) a small matrix C(X) (that satisfies some additional properties) of affine

maps, such that det(C(X)) = F (X), and
(iv) an efficient NIZK argument system for showing that det(C(χ)) = 0 for

committed χ.
To solve iv, we build upon the new computational extended determinant assump-
tion (CED). The CED assumption is a relaxation of the ExtKerMDH assumption
from [9], which itself is a natural generalization of the Kernel Diffie-Hellman
assumption. At a high level, CED says that given a matrix in a group G2, it is
hard to find an extension of this matrix over G2, together with a large enough
set of linearly independent vectors in G1 in the kernel of the extended matrix
(where (G1,G2) are groups equipped with an asymmetric pairing). While CED
is not falsifiable in general, it can be reduced to a natural gap assumption. The
latter reduction does not work with the ExtKerMDH assumption.

Our reduction to the CED assumption proceeds by identifying the matrix C,
returned by the CED adversary, with the matrix C(X) from iii. Intuitively,
we construct a reduction that, knowing the Elgamal secret key sk, extracts
[(γ‖C)(χ)]1, where [χ]1 = Decsk([ct]1), such that C(χ) has full rank iff the
soundness adversary cheated, i.e., F (χ) 6= 0. In that case, the reduction can
obviously break the CED assumption.

To ensure that the NIZK argument can be constructed, we require that C
satisfies two additional properties. Briefly, (1) C(X) is a matrix of affine maps,
(to ensure that the matrix is computable from the statement) and (2) the first
column of C(χ) is in the linear span of the remaining columns of the matrix
for any χ ∈ Z(F ) (a technical condition which ensures that an honest prover
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can compute the argument). We say that then C(X) is a quasideterminantal
representation (QDR) of F . We also give some conditions which make it easier
to check whether a given matrix is a QDR of F .
Building NIZKs from QDRs. Assuming C(X) is a QDR of F , we propose
a linear-algebraic NIZK argument Πnizk for showing that x ∈ Lpk,F . We prove
that Πnizk is sound under a CED assumption. Importantly, CED is falsifiable if
A = A(F ) has a polynomial number of elements. Otherwise, CED is in general
non-falsifiable (except in some relevant cases, see Section 10), but belongs to the
class of “inefficient-challenger” assumptions (usually considered more realistic
than knowledge assumptions, see [31]). Furthermore, CED can be reduced to a
single, natural gap assumption: the hardness of breaking DDH in a group G2

given a CDH oracle in a different group G1. We refer to 10.2 for more details.
Constructing QDRs. The remaining, highly non-trivial, problem is to con-
struct a QDR of F , such that the constructed NIZK argument is efficient. In the
rest of the paper, we study this problem.

First, we propose a general framework to construct NIZK arguments for Lpk,F

where F (χ) can be computed by an efficient algebraic branching program. Let Π
be an ABP that computes F , with the node set V and the edge set E, and let
` = |V | − 1. Given the methodology of [23,24], one can represent Π as an `× `
matrix IK(X), such that det(IK(X)) is equal to the output of the ABP. We show
that such IK(X) is a QDR. Thus, we obtain an efficient computationally-sound
NIZK for Lpk,F under a CED assumption.
Applications. We consider several natural applications of our framework.
Univariate polynomials. Given a univariate polynomial F (X) =

∏
(X − ξi) of

degree-d, for different roots ξi, we construct a simple matrix C(X). The resulting
NIZK argument is about 30% shorter and 20% more computationally efficient
than the set membership proof that stems from [9, Section C]; see the comparison
in Table 1.
Commitments to points on an elliptic curve. We construct a NIZK argument to
prove that the committed point (X,Y ) belongs to the given elliptic curve Y 2 =
X3 + aX + b. Such NIZK proofs are popular in cryptocurrency applications, [4].
The construction of C(X,Y ) is motivated by a classical algebraic-geometric
(possibility) result that for any homogeneous cubic surface F (X,Y, Z), there
exists a 3× 3 matrix of affine maps that has F (X,Y, Z) as its determinant [14].
OR proofs. In Section 6.2, we look at the special case of OR proofs and study
three instantiations of our general protocol to OR arguments. We discuss the
advantages and downsides of each.
Non-Principal Ideals. Importantly, in Section 8, we capture the very general sce-
nario where I(A) has a “nice-looking” generating set (F1, . . . , Fτ ) (i.e. τ is small
and each polynomial has a small degree). Some cryptographically important
examples include arithmetic circuits, R1CS, Boolean circuits, and arithmetic
constraint satisfaction systems. Thus, we obtain efficient NIZKs for NP.
Full Version. Due to the lack of space, a significant amount of additional material
(including all proofs) can be found in the full version of this paper, [10].
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2 Preliminaries

For a matrix A ∈ Zn×np and i ∈ [1, n], let C(i,1) be the submatrix obtained from
C by removing the ith row and the first column.
Cryptography. A bilinear group generator Pgen(1λ) returns p =
(p,G1,G2,GT , ê, [1]1, [1]2), where G1, G2, and GT are three additive cyclic
groups of prime order p, [1]ι is a generator of Gι for ι ∈ {1, 2, T} with [1]T =
ê([1]1, [1]2), and ê : G1 × G2 → GT is a non-degenerate efficiently computable
bilinear pairing. We require the bilinear pairing to be Type-3, that is, we assume
that there is no efficient isomorphism between G1 and G2. We use the additive
implicit notation of [15], that is, we write [a]ι to denote a[1]ι for ι ∈ {1, 2, T}.
We denote ê([a]1, [b]2) by [a]1 • [b]2. Thus, [a]1 • [b]2 = [ab]T . We freely use the
bracket notation together with matrix notation; for example, if AB = C then
[A]1 • [B]2 = [C]T . We also assume that [A]2 • [B]1 := ([B]>1 • [A]>2 )

> = [AB]T .
Let Pν := {[a0]1 +

∑ν
i=0[ai]1Xi : ai ∈ Zp for i ∈ [0, ν]} ⊂ G1[X] be the set

of linear multivariate polynomials over G1 in ν variables.
Algebraic languages [8,9] are parameterized languages of the shape LΓ ,θ =

{x : ∃w,Γ (x) ·w = θ(x)}, where x is the input, w is the witness, Γ and θ are affine
maps, such that x and θ(x) are vectors, and Γ (x) is a matrix. One can construct
Gennaro-Lindell smooth projective hash functions (GL-SPHFs [17,5,3]) for all
algebraic languages.

Let k ∈ {1, 2, . . .} be a small parameter related to the matrix distribution.
In the case of asymmetric pairings, usually k = 1. Let D`k be a probability
distribution over Z`×kp , where ` > k. We denote Dk+1,k by Dk. We use the matrix
distribution, L1, defined as the distribution over matrices ( 1

a ), where a←$Zp.
In the Elgamal encryption scheme, the public key is pk = [1, sk]1, and

Encpk(m; r) = (r[1]1‖m[1]1 + r[sk]1). To decrypt, one computes [m]1 =
Decsk([c]1) ← −sk[c1]1 + [c2]1. In what follows, we denote [c]1 = Enc(m; r)
for a fixed public key pk =

[
1
sk

]
1
. Elgamal’s IND-CPA security is based on

L1-KerMDH, that is, DDH.
The following Extended Kernel Diffie-Hellman assumption ExtKerMDH [9]

generalizes the well-known KerMDH assumption [28]. We also define in parallel
a new, slightly weaker version of this assumption, CED (computational extended
determinant).

Definition 1 (Dk-(`− 1)-ExtKerMDH). Let `, k ∈ N, and Dk be a matrix dis-
tribution. The Dk-(` − 1)-ExtKerMDH assumption holds in Gι relative to Pgen,
if for all PPT adversaries A, the following probability is negligible:

Pr

[
p← Pgen(1λ), [D]ι←$Dk, ([γ‖C]3−ι, [δ]ι)← A(p, [D]ι) : δ ∈ Z(`−1)×k

p ∧
γ ∈ Z`×kp ∧ C ∈ Z`×`p ∧ (γ‖C)

(
D
δ

)
= 0 ∧ rk(γ‖C) ≥ `

]
.

We define Dk-(` − 1)-CED analogously, except that we change the condition
rk(γ‖C) ≥ ` to rk(C) ≥ `.

CED is weaker than ExtKerMDH since a successful adversary has to satisfy a
stronger condition (rk(C) ≥ ` instead of rk(γ‖C) ≥ `). (See the full version [10]
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for a reduction.) CED suffices for the security of all NIZK arguments of the
current paper. Moreover, in Section 10.2, we reduce CED to a gap assumption. It
seems that ExtKerMDH cannot be reduced to the same assumption. Finally, CED
is a natural assumption since we always care about rk(C) and not rk(γ‖C) ≥ `.

Despite the general definition, in the rest of the paper (following [9]), we will
be only concerned with the case k = 1 and Dk = L1.

NIZK Arguments. An adaptive NIZK Π for a family of language distribution
{Dp}p consists of five probabilistic algorithms: (1) Pgen(1λ): generates public
parameters p that fix a distribution Dp. (2) kgen(p): generates a CRS crs and a
trapdoor td. For simplicity of notation, we assume that any group parameters
are implicitly included in the CRS. We often denote the sequence “p← Pgen(1λ);
(crs, td) ← kgen(p)” by (p, crs, td) ← kgen(1λ). (3) P(crs, lpar, x, w): given a
language description lpar ∈ Dp and a statement x with witness w, outputs a
proof π for x ∈ Llpar. (4) V(crs, lpar, x, π). On input of a CRS, a language
description lpar ∈ Dp, a statement and a proof, accepts or rejects the proof.
(5) Sim(crs, td, lpar, x). Given a CRS, the trapdoor td, lpar ∈ Dp, and a
statement x, outputs a simulated proof for the statement x ∈ Llpar.

Note that the CRS does not depend on the language distribution or language
parameters, i.e. we define fully adaptive NIZKs for language distributions. The
following properties need to hold for a NIZK argument.

A proof system Π for {Dp}p is perfectly complete, if

Pr

[
V(crs, lpar, x, π) = 1 | (p, crs, td)←$Kcrs(1

λ); lpar ∈ Supp(Dp);
(x, w) ∈ Rlpar;π←$P(crs, lpar, x, w)

]
= 1

A proof system Π for {Dp}p is computationally sound, if for every efficient A,

Pr

[
V(crs, lpar, x, π) = 1 (p, crs, td)←$Kcrs(1

λ);
∧x /∈ Llpar lpar ∈ Supp(Dp); (x, π)← A(crs, lpar)

]
≈ 0

with the probability taken over Kcrs.
Π for {Dp}p is perfectly zero-knowledge, if for all λ, all (p, crs, td) ∈

Supp(Kcrs(1
λ)), all lpar ∈ Supp(Dp) and all (x, w) ∈ Rlpar, the distributions

P(crs, lpar, x, w) and Sim(crs, td, lpar, x) are identical.

Σ-Protocols. A Σ-protocol [12] is a public-coin, three-move interactive proof
between a prover P and a verifier V for a relation R, where the prover sends an
initial message a, the verifier responds with a random e←$Zp and the prover
concludes with a message z. Lastly, the verifier outputs 1, if it accepts and 0
otherwise. In this work we are concerned with three properties of a Σ-protocol:
completeness, optimal soundness and honest-verifier zero-knowledge.

CH compilation. Couteau and Hartmann [9] compile Σ-protocols to NIZKs
in the CRS model for algebraic languages by letting [e]2 be the CRS. The basic
Couteau and Hartmann compilation is for a Σ-protocol, inspired by [26], for
algebraic languages. We will describe it in Section 9.
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3 Quasideterminantal Representations

Next, we define quasideterminantal representations (QDRs) C(X) of a polyno-
mial F (X). We prove a technical lemma in Section 3.1 which shows how one can
check whether a concrete matrix C(X) is a QDR of F . We use this definition
in Section 4, where, given a QDR C(X), we define the NIZK argument for the
associated language Lpk,F (defined in Eq. (1)), and prove its security.

We first define the class of languages we are interested in. Initially, we are
interested in the case where A = A({F}) for a single polynomial F . Fix p ←
Pgen(1λ). For a fixed Elgamal public key pk, let lpar := (pk, F ). (Implicitly,
lpar also contains p.) Let [ct]1 = Enc([χ]1; r) = (Enc([χi]1; ri))i. We use freely
the notation F (Dec([ct]1)) = F ([χ]1) = [F (χ)]1. In Section 4, we describe a
general technique that results both in efficient NIZK arguments for languages

Lpk,F = {[ct]1 : ∃χ such that Dec([ct]1) = [χ]1 ∧ χ ∈ Z(F )} . (1)

For example, if F (X) = X2 −X, then Lpk,F corresponds to the language of all
Elgamal encryptions of Boolean values under the fixed public key pk.
Intuition. To motivate the definition of QDRs, we first explain the intuition
behind the new NIZK argument. Recall from Definition 1 that an adversary
breaks the L1-(`−1)-CED assumption if, given [D]2 = [ 1e ]2 ←$L1 (i.e., e←$Zp),
he returns ([γ‖C]1 ∈ G`×(`+1)

1 , [δ]2 ∈ G(`−1)×1
2 ), such that rk(C) ≥ ` and

γ +C( eδ ) = 0. (2)

Following [9], in our arguments [e]2 (i.e., [D]2) is given in the CRS and [δ]2
is chosen by the prover. More precisely, the prover sends Enc([γ‖C]1) and [δ]2
(together with some elements that make it possible to verify that Eq. (2) holds
using encrypted values) to the verifier.

The matrix C must have full rank whenever the prover cheats, i.e. F (χ) 6= 0.
We achieve this by requiring that det(C(X)) = F (X). Then, rk(C) = d.

We guarantee that C is efficiently computable by requiring that C(X) is
a matrix of affine maps, and [C]1 = [C(χ)]1 for [χ]1 = Dec([ct]1). This also
minimizes communication since each element of Enc([C(χ)]1) can be recomputed
from Enc([χ]1) by using the homomorphic properties of Elgamal.

On the other hand, assume that the prover is not honest (i.e., det(C(χ)) =
F (χ) 6= 0) but managed to compute Enc([γ]1) and [δ]2 accepted by the verifier.
Assume that the reduction knows sk (the language trapdoor). Then, the reduc-
tion obtains [χ]1 by decryption and recomputes [C(χ)]1. Since det(C(χ)) 6= 0
but the verifier accepts (i.e., Eq. (2)), then one can break the CED assumption
by returning [(γ‖C)(χ)]1 and [δ]2.

3.1 Definition

We now define quasideterminantal representations (QDRs) C(X) of polynomial
F . QDRs are related to the well-known notion of determinantal representation
from algebraic geometry, see the full version [10] for a discussion.
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Definition 2 (Quasideterminantal Representation (QDR)). Let
F (X) ∈ Zp[X] be a ν-variate polynomial. Let ` ≥ 1 be an integer. A matrix
C(X) = (Cij(X)) ∈ Zp[X]`×` is a QDR of F , if the following requirements
hold. Here, C(X) = (h‖T )(X), where h(X) is a column vector.
Affine map: For each i and j, Cij(X) =

∑ν
k=1 PkijXk + Qij, for public

Pkij , Qij ∈ Zp, is an affine map.
F -rank: det(C(X)) = F (X).
First column dependence: For any χ ∈ Z(F ), h(χ) ∈ colspace(T (χ)).
The quasideterminantal complexity qdc(F ) of F is the smallest QDR size of F .
(Clearly, qdc(F ) ≥ deg(F ).)

For example, C(X) =
(

0 X
X−1 1−X

)
is a QDR of F (X) = X(X − 1). The first

column dependence property follows since
(

0
χ−1

)
=
( χ
1−χ

)
w iff (χ,w) = (0,−1)

or (χ,w) = (1, 0), i.e., χ ∈ Z(F ). On the other hand, C(X) =
(
X 0
0 X−1

)
is not a

QDR (of the same F ) since ( χ0 ) =
(

0
χ−1

)
w iff (χ,w) = (0, 0).

The first column dependence property is nicely connected to a computational
requirement we need for our NIZK. However, it can be difficult to check whether
a given matrix satisfies this condition. We now give two alternative conditions
that imply the first column dependence property, and which are easier to check.

Lemma 1. Suppose a matrix C satisfies the affine map and F -rank properties.
If it in addition satisfies one of the following properties, it also satisfies the first
column dependence property.
(1) High right rank: For any χ ∈ Zνp, rk(T (χ)) = `− 1.
(2) Invertible right-submatrix: there exists i, s.t. det(C(i,1)(χ)) 6= 0 for any χ.

E.g., any matrix C(X) that contains non-zero elements on its upper 1-diagonal
and only 0’s above the upper 1-diagonal is automatically a QDR of F (X) :=
det(C(X)). See Sections 5 and 6 for more.

3.2 Corollaries

The affine map property is needed since we use a homomorphic cryptosystem
which makes it possible to compute Enc([Cij(χ)]1) =

∑ν
k=1 PkijEnc([χk]1) +

QijEnc([1]1) given only Enc([χ]1). The F -rank property follows directly from
the definition of CED. The first column dependence property, guarantees that
the QDR C(X) satisfies the following two properties, required later:
Efficient prover: There exist two PPT algorithms that we later explicitly use

in the new NIZK argument (see Fig. 2) for Lpk,F . First, comp1(p,χ,C(X)),
that computes [γ]1 and a state st. Second, comp2(st, [e]2), that computes
[δ]2. We require that if F (χ) = 0, then ([γ]1, [δ]2) satisfy Eq. (2). We denote
the sequential process ([γ]1, st)← comp1(p,χ,C(X)), [δ]2 ← comp2(st, [e]2)
by ([γ]1, [δ]2)← comp(p, [e]2,χ,C(X)).

Zero-knowledge: For ([γ]1, [δ]2)← comp(p, [e]2,χ,C(X)), δ is uniformly ran-
dom. This requirement is needed for the zero-knowledge property of the
resulting NIZK argument.
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comp1(p,χ,C(X)):

Write C(χ) = (h‖T )(χ);y←$Z`−1
p ;

γ ← T (χ)y; st← (p,χ,C(X);y);
return ([γ]1, st);

comp2(st, ψ(e)):

Write C(χ) = (h‖T )(χ);
Compute w such that T (χ)w = h(χ);
ψ(δ)← −(wψ(e) + ψ(y)); return ψ(δ);

Fig. 1. compi algorithms assuming h(χ) ∈ colspace(T (χ)). Here, ψ = id in the case of
the Σ-protocol, and ψ = [·]2 in the case of the NIZK argument.

To be able to construct an efficient Σ-protocol for Lpk,F , we need to replace the
efficient prover assumption with the following assumption.
Efficient prover over integers: as the “efficient prover” requirement, but one

uses e everywhere instead of [e]2, and δ instead of [δ]2.
In all our instantiations, the two variations of comp are related as follows:
comp(p, [e]2,χ,C(X)) is the same as comp(p, e,χ,C(X)) but applies an ad-
ditional [·]2 to some of the variables.

Remark 1. We will explicitly need the independence of [γ]1 from [e]2 for Σ-
protocols and thus for CH-compilation. It is not a priori clear if it is needed for
NIZK arguments in general. However, if γ = f(e) for some non-constant affine
map f , then one cannot efficiently compute [γ]1 given only [e]2, since we rely on
type-III pairings and those two values belong to different source groups. Thus,
independence of [γ]1 from [e]2 seems inherent in the case of type-III pairings.

Lemma 2. Assume F is as in Definition 2 and that C(X) is a QDR of F . Then
(1) C has the efficient-prover property. (2) C has the zero-knowledge property.

Finally, we show that any matrix which satisfies the efficient prover property
as well as the affine map and F -rank properties must satisfy the first column
dependence property. Thus, the latter property is actually needed.

Lemma 3. Let C(X) be a matrix that satisfies the affine map, F -rank and
efficient prover properties. Then C satisfies the first column dependence property.

4 Argument for Algebraic Set of Principal Ideal

Fix p← Pgen(1λ) and define Dp := {lpar = (pk, F )}, where (1) pk is an Elgamal
public key for encrypting inG1, and (2) F is a polynomial with qdc(F ) = poly(λ),
i.e., there exists a poly(λ)-size QDR C(X) of F . (In Sections 5 and 6, we will
show that such QDRs exist for many F -s.)

Before going on, recall that Cij(X) =
∑ν
k=1 PkijXk + Qij for public Pkij

and Qij . To simplify notation, we will use vector/matrix format, by writing
C(X) =

∑ν
k=1P kXk+Q. As always, we denote Enc([a]1; r) := (Enc([ai]1; ri))i.

We often omit χ in notation like [C(χ)]1, and just write [C]1.
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kgen(p, lpar): e←$Zp; return (crs, td)← ([e]2, e) ;

P(crs, lpar, x = [ct]1, w = (χ, r)): ([γ]1, [δ]2)← comp(p, [e]2,χ,C(X));
%←$Z`p; [ctγ ]1 ← Enc([γ]1;%) ∈ G`×21 ;
[z]2 ← %[1]2 + (

∑ν
k=1 rkP k) [

e
δ ]2 ∈ G`2.

Return π ← ([ctγ ]1, [δ, z]2) ∈ G2`
1 ×G2`−1

2 .

V(crs, lpar, x = [ct]1, π): check [ctγ ]1 • [1]2 +
∑ν
k=1 ([ctk]1 • P k [

e
δ ]2) =?

[0, 1]1 • (−Q [ eδ ]2) + pk • [z]2.

Sim(crs, td, lpar, x = [ct]1): δ←$Z`−1p ;
z←$Z`p; [ctγ ]1 ← Enc(−Q( eδ )[1]1; z)−

∑ν
k=1[ctk]1 · P k(

e
δ );

Return π ← ([ctγ ]1, [δ, z]2) ∈ G2`
1 ×G2`−1

2 .

Fig. 2. The new NIZK argument Πnizk for Lpk,F .

4.1 Protocol Description

Let Lpk,F be defined as in Eq. (1). The new Σ-protocol and NIZK argument
for Lpk,F are based on the same underlying idea. Since the new NIZK is a CH-
compilation of the Σ-protocol, it suffices to describe intuition behind the NIZK.

In the new NIZK argument (see Fig. 2), P uses comp1 to compute [γ]1 (to-
gether with state st), encrypts [γ]1 by using fresh randomness %, and then uses
comp2 (given crs = [e]2) to compute [δ]2. If P is honest, then by the definition
of QDRs of F , Eq. (2) holds, i.e., γ +C(χ)( eδ ) = 0. The latter is equivalent to
γ+(

∑
k P kχk)(

e
δ ) = −Q( eδ ). V needs to be able to check that the last equation

holds, while given only an encryption of [γ]1. To help V to do that, P sends a
vector of randomizers [z]2 to V as helper elements that help to “cancel out” the
randomizers used by the prover to encrypt [γ]1 and [χ]1.

The new NIZK argument is given in Fig. 2.

4.2 Efficiency

Next, we estimate of the efficiency of the NIZK argument. Note that if we
use the comp algorithm given in Fig. 1, we see that the algorithm com-
putes w and y such that [δ]2 = −(w[e]2 + y[1]2). This lets us write [ eδ ]2 =(

1
−w
)
[e]2+

(
0
−y
)
[1]2. This allows us to compute [z]2 as (

∑ν
k=1 rkP k)

(
1
−w
)
[e]2+

(%+
∑ν
k=1 rkP k)

(
0
−y
)
[1]2, which can be done with 2` exponentiations in G2.

This leads to the following lemma. Its proof follows by direct observation.

Lemma 4. Consider Πnizk with QDR C. Define TP (C) := |{(i, j) : ∃k, Pkij 6=
0}|, and TQ(C) := |{(i, j) : Qij 6= 0}|. Let c be the time needed to run comp,
eι is the time of an exponentiation in Gι, and p is the time of a pairing. Then
(1) the prover’s computation is dominated by c + 2` · e1 + 2` · e2, (2) the veri-
fier’s computation is dominated by (TP (C) + TQ(C)) · e2 + 2(2 + ν)` · p, (3) the
communication is 2` elements of G1 and 2`− 1 elements of G2.
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For the argument to be efficient, we need comp to be as efficient (according
to Section 3.1, it must be efficient to solve the system T (χ)w = h(χ) for w,
where C(X) = (h‖T )(X)), and the matrices P k and Q to be sparse.

In Section 5, we propose a way to construct C(X) that satisfies these re-
strictions for any F (X) that can be computed by a polynomial-size ABP. In
Section 6, we study other interesting cases.

The estimate in Lemma 4 is often over-conservative. For example, let δ′ =
( eδ ). If Pkij1 = Pkij2 =: P ′ for j1 6= j2, then the verifier has to perform one
exponentiation P ′([δ′j1 ]2 + [δ′j2 ]2) instead of two. The same holds when Qij1 =
Qij2 for some j1 6= j2. Moreover, when the exponent is a small constant (in the
extreme case, 1 or −1), then one does not have to perform a full-exponentiation.

4.3 Security of the NIZK Argument

Theorem 1. Let {Dp}p be the family of language distributions, where Dp =
{lpar = (pk, F )} as before. Here, F (X) is a ν-variate polynomial of degree d,
where ν, d ∈ poly(λ). Let C(X) ∈ Zp[X]`×` be a QDR of F . The NIZK argument
Πnizk for {Dp}p from Fig. 2 is perfectly complete and perfectly zero-knowledge.
It is computationally (adaptive) sound under the L1-(`− 1)-CED assumption in
G2 relative to Pgen.

5 Efficient Instantiation Based on ABP

In this section we construct QDRs, that we denote by IK(X), for any polynomial
F that can be efficiently computed by algebraic branching programs (ABPs).
This results in NIZKs for the class of languages Lpk,F , where F is only restricted
to have a small ABP. However, in many cases, the resulting matrix IK(X) is not
optimal, and this will be seen in Section 7.1. Thus, following sections consider
alternative construction techniques of such matrices.

5.1 Preliminaries: Algebraic Branching Programs

A branching program is defined by a directed acyclic graph (V,E), two special
vertices s, t ∈ V , and a labeling function φ. An algebraic branching program
(ABP, [29]) over a finite field Fp computes a function F : Fnp → Fp. Here, φ
assigns to each edge in E a fixed affine (possibly, constant) function in input
variables, and F (X) is the sum over all s − t paths (i.e., paths from s to t) of
the product of all the values along the path.

Algebraic branching programs capture a large class of functions, including
in particular all log-depth circuits, boolean branching programs, boolean for-
mulas, logspace circuits, and many more. For some type of computations, they
are known to provide a relatively compact representation, which makes them
especially useful. See [23,24] and the references therein.

Ishai and Kushilevitz [23,24] related ABPs to matrix determinants as follows.
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Proposition 1. [24, Lemma 1] Given an ABP abp = (V,E, s, t, φ) computing
F : Fνp → Fp, we can efficiently (and deterministically) compute a function IK(χ)

mapping an input χ ∈ Fνp to a matrix from F`×`p , where ` = |V | − 1, such that:
1. det(IK(χ)) = F (χ),
2. each entry of IK(χ) is an affine map in a single variable χi,
3. IK(χ) contains only −1’s in the upper 1-diagonal (the diagonal above the

main diagonal) and 0’s above the upper 1-diagonal.
Specifically, IK is obtained by transposing the matrix you get by removing the
column corresponding to s and the row corresponding to t in the matrix adj(X)−
I, where adj(X) is the adjacency matrix for abp.

Note that the matrix IK is transposed compared to what is found in [24,
Lemma 1], to ensure consistency with the notation from the CED assumption.

5.2 NIZK for Algebraic Branching Programs

Lemma 5. Let abp = (V,E, s, t, φ) be an ABP that computes a ν-variate poly-
nomial F (X). Then IK(X) is a QDR of F with ` = |V | − 1.

In particular, qdc(F ) ≤ |V | − 1.
Efficiency of comp. We next specialize the general compi algorithms given in
Fig. 1 to ABP. For this, we just have to write down how to efficiently do the
next two steps: (1) Compute γ = T (χ)y. Due to the shape of IK(χ) and thus
of T (χ), one can clearly compute γ as γi ←

∑i−1
j=1 Tij(χ)yj−1 − yi for each

i ∈ [1, `]. (2) Solve T (χ)w = h(χ) for w. Let T ∗ be the matrix obtained from
T (χ) by omitting its last row, and similarly let h∗ be the vector obtained from
h(χ) by omitting its last element. One finds w by solving T ∗w = h∗ by forward
substitution, as follows: wi ←

∑i−1
j=1 Tij(χ)wj − hi(χ) for each i ∈ [1, `− 1].

Lemma 6. Let N(v) be the neighbourhood of a node v in the underlying ABP.
Assuming C(X) = IK(X), the computational complexity of comp is dominated
by 2(|E| − |N(s)|) − |N(t)| field multiplications, ` exponentiations in G1, and
2(`− 1) exponentiations in G2.

6 Applications

6.1 Univariate F (Set-Membership Proof)

Consider an algebraic set A ∈ Zp of size poly(λ), generated by τ univariate
polynomials F1, . . . , Fτ ∈ Zp[X]. As before, we aim to prove that an Elgamal-
encrypted χ satisfies χ ∈ A, i.e., Fi(χ) = 0 for all i. In the univariate case,
all ideals are principal [11, Section 1.5], and thus any ideal can be written as
I = 〈F 〉 for some F . Thus, A = A(F ) for F ← gcd(F1, . . . , Fτ ) [11, Section 1.5].

Moreover, I(A(F )) = I(Fred) [11, Section 1.5], where Fred has the same roots
as F but all with multiplicity one. That is, if F (X) =

∏
(X − ξi)bi , for bi ≥ 1

and mutually different ξi, then Fred =
∏
(X − ξi). This reduced polynomial Fred
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s a1 · · · ad−1 t
X − ξ1 X − ξ2 X − ξd−1 X − ξd IKpath(X) =

(X−ξ1 −1 0 ... 0
0 X−ξ2 −1 ... 0
... ... ... ... ...
0 0 0 ... −1
0 0 0 ... X−ξd

)

Fig. 3. The ABP abpdpath(X, ξ) for F (X) =
∏d
i=1(X − ξi) and IKpath(X)

can be efficiently computed as Fred = F/ gcd(F, F ′), [11, Section 1.5]. Since we
are constructiong NIZKs for algebraic sets, in this section, we will assume that
F (X) = Fred(X) =

∏
(X − ξi) for mutually different roots ξi. (This will be

the case if we assume A = {ξi} for polynomially many ξi.) Thus, it suffices to
prove that F (χ) = 0, where F is a reduced polynomial. As before, for efficiency
reasons, we assume that F has degree poly(λ).

We now apply the ABP-based protocol to a univariate reduced polynomial
F . We depict the ABP abpdpath(X, ξ) in Fig. 3. The ABP consists of a single path
of length d with edges labelled by values X− ξi. Clearly, abpdpath(X, ξ) computes
F (X). The corresponding matrix IKpath(X) is also given in Fig. 3.

Lemma 7. Let F (X) be a univariate reduced polynomial. The ABP-based NIZK
argument for Lpk,F has prover’s computation of at most 3d exponentiations in
G1 and 4d − 2 exponentiations in G2, verifier’s computation of 7d − 1 pairings
and at most d exponentiations in G2, and communication of 2d elements of G1

and 2d− 1 elements of G2.

6.2 Special Case: OR Arguments

In an OR argument, the language is Lpk,X(X−1), that we will just denote by
L{0,1}, assuming that pk is understood from the context. The case of OR argu-
ments is of particular interest because of its wide applications in many different
scenarios. Indeed, one of the most direct applications of [9] is a new OR proof
with the argument consisting of 7 group elements. Due to the importance of
L{0,1}, in the full version [10], we will detail three example NIZK arguments
that are all based on CED-matrices. The first argument is based on abp2path, and
the other two arguments are based on known Σ-protocols from the literature.
Interestingly, the third example is not based on ABPs; the added discussion
clarifies some benefits of using the ABP-based approach.

6.3 Elliptic Curve Points

In Fig. 4, we depict an ABP and IK(X,Y ) for the bivariate function F (X,Y ) =
X3 + aX + b− Y 2 (i.e., one checks if (X,Y ) belongs to the elliptic curve Y 2 =
X3+aX+b). In Section 7.1, we will propose a non-ABP-based QDR for the same
task. ABPs for hyperelliptic curves Y 2 + H(X)Y = f(X) (where deg(H) ≤ g
and deg f = 2g + 1) of genus g can be constructed analogously.
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IK(X,Y ) =

(
X −1 0 0
0 X −1 0
Y 0 0 −1
b a X −Y

)

Fig. 4. ABP example for F (X,Y ) = X3 + aX + b− Y 2.

NIZK arguments that committed (X,Y ) belongs to the curve are interesting
in practice since one often needs to prove in zero-knowledge that a verifier of
some pairing-based protocol accepts. Such a situation was studied in [4], who
proposed to use cycles of elliptic curves, such that the number of points on one
curve is equal to the size of the field of definition of the next, in a cyclic way.
Using the NIZK, resulting from the example of the current subsection, one can
use a bilinear group with group order p to prove that the encrypted coordinates
belong to an elliptic curve where the finite field has size p.
Different normal form. Motivated by [32], we also consider the following less
common normal form for an elliptic curve, F (X,Y ) = (X + aY )(X + bY )(X +
cY ) − X, for mutually different a, b, c. Then, one can construct the following

ABP-based 3× 3 QDR:
(X+aY −1 0

0 X+bY −1
−X 0 X+cY

)
.

7 On Bivariate Case

Dickson [14] proved that for any degree-d bivariate polynomial F (X), there
exists a d × d matrix C(X) of affine maps that has F (X) as its determinant.
Plaumann et al. [32] described efficient algorithms for finding C(X) for some
families of polynomials F ; in their case, C(X) is usually symmetric and can
satisfy some other additional requirement like semidefiniteness. Since the ABP-
based approach often blow ups the dimension of the matrix, we will next use
the results of [14,32] to construct a d× d matrix C(X). However, the resulting
matrix is usually not a QDR, which results in additional complications. We
provide several concrete examples in the case F (X,Y ) describes an elliptic curve.
Plaumann et al. [32] provided also examples for the case d ∈ {4, 5}, noting
however that finding a determinantal representation of F becomes very time-
consuming for d ≥ 5. In the full version [10], we will provide an example for
d = 5. We refer to [32] for algorithms and general discussion.

7.1 Optimized Solutions for Elliptic Curves

Let F (X,Y ) = X3+aX+b−Y 2 be a polynomial that describes an elliptic curve.
In Section 6.3, we described a small ABP for checking that (X,Y ) ∈ E(Zp),
where E(Zp) : F (X,Y ) = 0. However, this resulted in a 4× 4 matrix IK(X,Y ).
Next, we construct 3×3matrices, of correct determinant, for two different choices
of F . In general, there are several inequivalent linear symmetric determinantal
representations of F , [32]. In both cases, we chose the matrix by inspection.
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Case F (X,Y ) = X3 + aX + b − Y 2 for a 6= 0. In the full version [10], we
show that in case there exists a 3× 3 determinantal representation that is not a
QDR, and discuss the possible issues that arise when one tries to use our NIZK
argument in such a case.
Case F (X,Y ) = X3 + b− Y 2. We will tackle this case in the full version [10].

8 Handling Non-Principal Ideals

Next, we extend the new framework to constructing a NIZK argument that an
Elgamal-encrypted χ satisfies χ ∈ A for any algebraic set A = A(I). Namely,
assume that I(A) has a known generating set (F1, . . . , Fτ ) for some τ . We prove
that χ ∈ A by proving that Fi(χ) = 0 for each Fi. Thus, Dp = {(pk,A)}, where
I(A) = 〈F1, . . . , Fτ 〉 and each Fi has qdc(Fi) = poly(λ).

The argument system can be implemented in polynomial time and space,
assuming that (1) we know a generating set with small τ = poly(λ) and with
small-degree polynomials, (2) for each Fi, we know a small QDR Ci(X) of Fi,
and (3) we can construct an efficient NIZK argument system for showing that
det(Ci(X)) = 0. The previous sections already tackled the last two issues. In
this section, we study issue (1). However, the issues are related. In particular,
steps (2) and (3) are most efficient for specific type of polynomials Fi, and when
solving (1), we have to take this into account.

8.1 NIZK for NP

Next, we use the described methodology to implement arithmetic circuits, and
then extend it to R1CS (a linear-algebraic version of QAP [16]) and aCSPs (arith-
metic constraint satisfaction systems), i.e, constraint systems where each con-
straint is a small-degree constant that depends on some small number of inputs.
We also show how to directly use our techniques to implement the Groth-Sahai-
Ostrovsky constraint system [20] that have efficient reductions to correspond-
ing circuits. Interestingly, this seems to result in the first known pairing-based
(random-oracle-less) NIZK for general aCSPs.
Arithmetic circuits. Let C be an arithmetic circuit over Zp, with n gates
(including input gates) and m wires. We construct an algebraic set AC =
(χ1, . . . , χn) ∈ Znp , such that χ ∈ AC iff C(χ) = 0, as follows. First, χ corresponds
to the vector of wire values. As in the case of QAP [16], we assume that each gate
is a weighted multiplication gate that computes Fi : (

∑
j uijχij )(

∑
j vijχij ) 7→

χi for public uij , vij , and ij , where for the sake of efficiency, the sum is taken
over a constant number of values.
1. First, each χi corresponds to the value of the output wire of ith gate, with
χj , j ≤ m0 corresponding to the inputs of the circuit. We also assume that
the last few wire values correspond to the output values of the circuit.

2. Second, for each gate i > m0, we introduce the polynomial Fi(χ) = χi −
(
∑
uijχij )(

∑
vijχij ).
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Then AC = {(χ1, . . . , χm) : Fi(χ) = 0 for all i > m0}. To construct a NIZK
for showing χ ∈ AC, we do as before: (1) We let the prover Elgamal-encrypt χ.
(2) We show that Fi(χ) = 0 for all i by using the NIZK argument from Section 4.
Note that each polynomial in this case is quadratic, and thus one can construct
a 2× 2 QDR C(χ) =

(∑
uijχij −1
−χi

∑
vijχij

)
.

According to [21], the Groth-Sahai proof for this task has commitment length
(2m+1)(|G1|+ |G2|) and argument length (2m+2n+2)(|G1|+ |G2|). The new
NIZK has commitment length 2m|G1| and argument length n(4|G1| + 3|G2|).
Assuming m ≈ n and |G2| = 2|G1|, the new NIZK has 3 times shorter com-
mitments/encrypts and 20% shorter proofs. The new NIZK has approximately
1.5–2 times smaller prover’s and verifier’s computation. Since the computation
in [21] can probably be optimized, we have not included complete comparison.
Extension: R1CS. In R1CS (rank-1 constraint system [16]), one has n con-
straints (

∑
uijχi)(

∑
vijχi) =

∑
wijχi in m variables χi, for arbitrary public

matrices U = (uij), V = (vij), and W = (wij). There is clearly a simple re-
duction from arithmetic circuits to R1CS. The described solution for arithmetic
circuits can be used to construct a NIZK argument system for R1CS, by defining
Fi(χ) = (

∑
uijχi)(

∑
vijχi)−

∑
wijχi and C(χ) =

( ∑
uijχij −1

−
∑
wijχij

∑
vijχij

)
.

Extension: Arithmetic Constraint Satisfaction Problems (aCSPs). Fix
F = Zq. Recall that for a q ≥ 1, a q-aCSP instance F over F is a collection
of functions F1, . . . , Fτ (called constraints) such that each function Fi depends
on at most q of its input locations. That is, for every j ∈ [1, τ ] there exist
i1, . . . , iq ∈ [1, n] and f : Fq → F such that Fj(χ) = f(χi1 , . . . , χiq ) for every
χ ∈ Fn. Then F is satisfiable if Fj(χ) = 0 for each j.

One can extend R1CS to q-aCSP for small constant q, assuming that Fj
are (small-degree) polynomials for which one can construct poly-size QDRs.
Intuitively, F is the generating set for some polynomial ideal I = I(A), and
thus the examples of this subsection fall under our general methodology. One
can possibly use some general techniques (see Section 8.2 for some examples) to
minimize the generating sets so as to obtain more efficient NIZKs.
Specialization: Boolean Circuits. By using techniques from [20], one can
construct a NIZK for any Boolean circuit that, w.l.o.g., consists of only NAND
gates. Intuitively, one does this by showing that each wire value is Boolean,
and then showing that each NAND gate is followed correctly. The latter can
be shown by showing that a certain linear combination of the input and output
wires of the NAND gate is Boolean. Thus, here one only uses polynomials of
type fi(χ) = A(χ)2 −A(χ), where A(χ) =

∑
aijχj for some coefficients aij .

In Table 2, we compare the resulting NIZK with the optimized Groth-Sahai
proof for Boolean circuits by Ghadafi et al. [18]. Here, m is the number of wires
and n is the number of gates. In the case of the AES circuit described in [18],
m = 33880 and n = 34136. Assuming |G2| = 2|G1| and e2 = 2e1, we get that the
NIZK of [18] has commitment length 203283|G1|, argument length 814662|G1|,
prover’s computation 1629324e1, and verifier’s computation 1630336p. The new
NIZK has commitment length 67760|G1|, argument length 680160|G1|, and
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Table 2. Comparison of falsifiable NIZKs for Boolean circuit satisfiability: the Groth-
Sahai proof, as optimized by Ghadafi et al. [18], and the new NIZK from Section 8.1.
Here, |Gι| is the length of one element from Gι

Protocol |crs| |com| |π| P comp. V comp.

Groth-Sahai [18] 4(|G1|+ |G2|) 2(m+ 1)(|G1|+ |G2|) (6m+ 2n+ 2)(|G1|+ |G2|) (12m+ 4n+ 4)(e1 + e2) 16(2m+ n)p

New, Section 8.1 |G2| 2m · |G1| (m+ n)(4|G1|+ 3|G2|) (m+ n)(5e1 + 4e2) 13(m+ n)p

prover’s computation 884208e1, and verifier’s computation 884208p. Hence, the
new NIZK has 3 times shorter commitments, 20% shorter arguments, and 1.84
times smaller prover’s and verifier’s computation.

8.2 Various Examples

Next, we give very generic background on generating sets and after that, we
give some examples of the cases when it pays off directly to work with aCSPs
(and not just arithmetic circuits) and then use the described methodology to
construct the NIZK. We emphasize that one does not need a Gröbner basis and
thus sometimes there exist smaller generating sets. In fact, there exist many
alternative methods for constructing efficient aCSPs not directly related to gen-
erating sets at all; and the Gröbner basis technique is just one of them — albeit
one that is strongly related to our general emphasis on polynomial ideals. As we
see from the examples, the efficiency of NIZK depends on a delicate balance be-
tween the size of the generating set and the degree of the polynomials in that set.
Really, it follows from Lemma 4 that if the generating set contains polynomials
Fi for which QDRs have sizes `i, then the resulting NIZK has communication
complexity (2

∑
`i)(|G1|+ |G2|)− τ |G2|.

Basic Background on Generating Sets. Generating sets of an ideal can
have vastly different cardinality. For example, Z is generated by either {1} or
by the set of all primes. Since a Gröbner basis [7] is, in particular, a generating
set, one convenient way of finding a generating set is by using a Gröbner basis
algorithm; however, such algorithms assume that one already knows a generating
set. Fortunately, the Buchberger-Möller algorithm [27] (as say implemented by
CoCoA8) can compute a Gröbner basis for I(A), given any finite set A.
Worst-Case Multi-Dimensional Set-Membership Proof. We performed
an exhaustive computer search to come up with an example of a 3-dimensional set
of five points that has the least efficient NIZK argument in our framework. One
of the examples we found9 is A = {(2, 5, 1), (2, 4, 2), (2, 5, 3), (1, 2, 4), (3, 1, 5)}.
In this case, we found a reduced degree-lexicographic Gröbner basis{

(y − z − 2)(y + z − 6), 1
18
(6x(3y − 5)− 37y + (z − 4)z + 68),

1
9

(
9x2 − 33x+ y − (z − 4)z + 22

)
, 1
3
(−12x+ 5y + z(z(3z − 23) + 53)− 34)

}
8 http://cocoa.dima.unige.it/
9 In the case of many other sets, the NIZK will be much more efficient. We will provide
one concrete example in the full version [10].

http://cocoa.dima.unige.it/
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that consists of three quadratic and one cubic polynomials. Clearly, here, each
degree-d polynomial has an optimal-size d×d QDR. In the only non-trivial case
(the cubic polynomial), one can use the matrix

C4(x, y, z) =

(
z 1 0

53/3 23/3−z −4
x−5y/12+17/6 0 −z

)
.

Thus, one can construct a NIZK argument with communication of 2(2+ 2+2+
3) = 18 elements of G1 and 18− 4 = 14 elements of G2. Since, usually, elements
of G2 are twice as long as elements of G1, it means that, in the worst case, such
a NIZK argument will only be 4.6 times longer than a single OR proof. This is
also the upper bound on the NIZK communication according to our exhaustive
search, further discussion would be outside the scope of the current paper.

The most efficient known alternative seems to add (structure-preserving)
signatures (SPSs) of 5 points to the CRS, letting the prover encrypt a signature
of the chosen point, and then proving that the encrypted value is a valid signature
of some point. This alternative has both a much larger CRS and worse concrete
complexity compared to our NIZK argument. Moreover, it assumes that the
underlying signature scheme is unforgeable.
Range proofs. In the full version [10], we will show how to use our techniques
to construct range proofs, i.e., proofs that the committed value χ belongs to
some interval [0, N ]. Couteau and Hartmann’s approach can be used to propose
range proofs of efficiency Θ(logN) by using the binary decomposition of χ. In
the full version [10], we note that the use of the NIZK from Section 6.1 helps us
to obtain a NIZK with better verifier’s computation.

9 Back to Algebraic Languages

The well-known methodology of diverse vector spaces (DVSs, [5,3]) has been
used to successfully create efficient smooth projective hash functions (SPHFs)
for algebraic languages. Moreover, by now several constructions of NIZKs based
on such SPHFs are known, [1,9]. For all such constructions, the first step is to
construct language parameters Γ and θ (see Section 2). Unfortunately, existing
constructions of the language parameters are all somewhat ad hoc.

Next, we improve on the situation by proposing a methodology to construct
(Γ ,θ) for any Lpk,A, where A is any algebraic set for which Section 8 results in an
efficient NIZK. We start the process from a QDR Ci of Fi, where 〈F1, . . . , Fτ 〉
is some generating set of I(A), and output concrete parameters (Γ ,θ). The
problem of constructing such Ci was already tackled in the current paper, with
many examples (including the case when Ci is based on an ABP). As the end
result, we construct explicit language parameters (Γ ,θ) for a variety of languages
where no such small parameters were known before. Moreover, even in the simple
case of univariate polynomials, where previous solutions were known [5,9], the
new parameters are smaller than before.

We consider various NIZKs that one can construct for given (Γ ,θ). For every
fixed (Γ ,θ), the NIZK from Section 4 is more efficient than the QA-NIZK of [1]
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and usually more efficient than the CHM NIZK of [9]. Finally, we briefly discuss
resulting GL-SPHFs [17] based on the new language parameters.
Preliminaries.We describe the CHM (Couteau-Hartmann-Maurer) Σ-protocol
and the resulting NIZK in the full version [10]. There, we will also state the
efficiency of their construction as a function of (Γ ,θ). We also restate Theorem
18 from [9] about the security of the CHM NIZK.

9.1 On Algebraic Languages for Elgamal Ciphertexts

Next, we derive language parameters Γ and θ for an arbitrary Lpk,F , such that
θ(x) ∈ colspaceΓ (x) iff x ∈ Lpk,F . In the case where I(A) = 〈F1, . . . , Fτ 〉 is not
a principal ideal, one can then “concatenate” all τ parameters Γ (x) and θ(x).

We start the derivation from the equation T (χ)w = h(χ) in Fig. 1. To
simplify notation, let E(χ; r) := Enc([χ]1; r)

> ∈ G2
1 be a transposed ciphertext.

Let E(T (χ)) (resp., E(h(χ))) denote an element-wise (transposed) encryption
of T (χ) (resp., h(χ)), where χi is encrypted by using randomizer ri (that is, χi
is “replaced” by [cti]>1 ) and constants are encrypted by using the randomizer 0.
We define [Γ (x)]1 and [θ(x)]1 as follows:

[Γ (x)]1 = (E(T (χ))‖E(0d×d; Id)) ∈ G2d×(2d−1)
2 , [θ(x)]1 = E(h(χ)) ∈ G2d

2 . (3)

Thus, [Γ ]1w
∗ = [θ]1 is an “encrypted” version of T (χ)w = h(χ), where [Γ ]1

contains additional columns and w∗ contains additional rows (compared to w)
to take into account the randomizers used to encrypt χi. Note that E(C(χ)) =
E(
∑
P kχk +Q;

∑
P krk).

Example 1. Let F (X) = (X − 0)(X − 1), and thus d = 2. Recall that then
C(χ) =

( χ −1
0 χ−1

)
and thus T (χ) =

( −1
χ−1

)
and h(χ) = ( χ0 ). Since Enc([0]1; 1) =

[1, sk]1 and Enc([0]1; 0) = [0, 0]1, Eq. (3) results in

[Γ ]1 =

(
E(−1; 0) E(0; 1) E(0; 0)
E(χ− 1; r) E(0; 0) E(0; 1)

)
=


0 1 0
−1 sk 0
ct1 0 1

ct2 − 1 0 sk


1

∈ G4×3
1 , [θ]1 =

[
ct1
ct2
0
0

]
1

.

A variation of this [Γ ,θ]1 was given in [5,9]. To motivate Theorem 2, note that
w∗1 = w = −χ is a solution of T (χ)w∗1 = h(χ). Setting ŵ := (w∗2‖w∗3)> =

r
(

1
−w∗

1

)
= r
(
1
χ

)
results in Γw∗ − θ = (0‖0‖0‖ − χ(χ− 1))>, which is equal to

04 iff χ ∈ {0, 1}.

Theorem 2. Lpk,F = LΓ ,θ.

In the full version [10], we will give two more (lengthy) examples to illustrate
how w∗ is chosen.
Handling Non-Principal Ideals. Assume I(A) has a generating set
(F1, . . . , Fτ ) for τ > 1, and that for each Fi, we have constructed the language pa-
rameter Γ i,θi. We can then construct the language parameter for Lpk,A by using
the well-known concatenation operation, setting Γ =

(
Γ 1 ... 0
... ... ...
0 ... Γ τ

)
and θ =

(
θ1
...
θτ

)
.
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On the Couteau-Hartmann Disjunction. In the full version [10], we describe
the Couteau-Hartmann disjunction that results in Γ of size (3d− 1)× (3d− 2)
and compare it to Eq. (3). For the sake of completeness, we also reprove the
efficiency of the CHM NIZK from [9].

9.2 Efficiency of Set-Membership NIZKs: Comparisons

In Table 1 we give a concrete efficiency comparison in the case of set-membership.
This is motivated by the fact that this is probably the most complex language
for which [9] provides a concrete NIZK with which we can compare our results.
Because of the still large dimensions of Γ , using the CHM Σ-protocol as in [9]
for LΓ ,θ = Lpk,F has quite a big overhead. Thus, the NIZK in Lemma 7 is quite a
bit more efficient. However, it compares favorably to [9]. In the following lemma,
we state its efficiency.

Lemma 8. Let F be a univariate degree-d polynomial and let C(X) be the
abppath-based QDR of F from Section 6.1. Let [Γ ]1 be constructed as in Eq. (3).
Then, the CHM NIZK argument requires (5d−3)e1+4de2 from the prover, 7d−1
pairings from the verifier, and 4d− 1 group elements.

Note that the computation of the language parameters Γ ,θ induces some cost.
However, this computation is usually done once in advance. It is also not expen-
sive, both in the case of the new NIZK and the CHM NIZK [9] requiring one to
compute [ξi]1 for each root ξi.

9.3 GL-SPHFs for Algebraic Sets

We give an example of GL-SPHFs (Gennaro-Lindell smooth projective hash
functions, [17]) based on the new lpar = (Γ ,θ). We refer the reader to [13,5,3]
for a formal definition of GL-SPHFs. Briefly, recall that an SPHF is defined for
a language parameter lpar and associated language Llpar. A SPHF consists of
an algorithm hashkg(lpar) to generate the private hashing key hk, an algorithm
projkg(lpar, hk) to generate a public projection key hp from hk, and two different
hashing algorithms: hash(lpar, hk, x) that constructs an hash H, given the input
x and hk, and projhash(lpar, hp, x, w) that constructs a projection hash pH, given
the input x and its witness w. It is required that (1) H = pH when x ∈ Llpar,
and that (2) H looks random when x 6∈ Llpar, given (lpar, hp, x).

In the GL-SPHFs [17], lpar and the projection key hp can depend on x,
while in other types of SPHFs, x is only chosen after lpar and hp are fixed.
In the “DVS-based” constructions of SPHFs of [5], one starts with [Γ ]1 ∈ Gn×t1

and [θ]1 ∈ Gn1 that may or may not depend on x = [Γ ]1w. One samples a
random hk = α←$Znp , and sets hp ← α>[Γ ]1. For x = [Γ ]1w, one computes
pH = projhash(lpar, hp, x, w)← hp · w and H = hash(lpar, hk, x)← hk · x.

For any A(I) for which the NIZK of Section 4 is efficient, one can also con-
struct an efficient SPHF by constructing Γ and θ as in Eq. (3). In the full ver-
sion [10], we will describe a GL-SPHF for the language of elliptic curve points.
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10 On Falsifiability of CED

In the current paper, we significantly expand the class of languages for which
the Couteau-Hartmann framework allows for the construction of efficient NIZKs.
However, for many of these languages, the underlying variant of the CED as-
sumption is not falsifiable. At first sight, even though the Couteau-Hartmann
framework leads to particularly compact NIZKs, relying on a non-falsifiable as-
sumption seems to limit the interest of the result severely: if one is willing to
rely on non-falsifiable in the first place, then there are countless pairing-based
SNARGs and SNARKs which will achieve much more compact proofs (albeit
the prover cost will be much higher in general).

Next, we discuss the falsifiability of the CED assumption. In Section 10.1,
we study the falsifiable CED case, by clarifying for which languages there exist
(algebraic) polynomial-time algorithms to check F (χ) = 0. In particular, we
point out that for many examples of the current paper, the CED assumption is
already falsifiable. After that, we concentrate on the cases when this is not so.

In Section 10.2, we show that despite their unfalsifiability, CED assumptions
are fundamentally different in nature from knowledge-of-exponent assumptions
(which underlie the security of existing SNARK candidates). We will prove that
CED assumptions are implied by a new but natural gap assumption [30] that
KerMDH stays secure in G2 even given a CDH oracle in G1.

In Section 10.3, we modify our NIZKs to make the CED assumption falsi-
fiable by letting the prover additionally encrypt input elements in G2. If the
polynomial F is quadratic, then the soundness reduction can use them to check
whether the prover’s inputs belong to the language or not, thus making CED
falsifiable. Since each gate of an arithmetic circuit is a quadratic polynomial,
one can construct a NIZK for arithmetic circuits under a falsifiable assumption.
The reason why we do not start with this solution is the added cost. First, the
additional elements make the argument longer. Second, as probably expected,
one cannot use Elgamal but has to use the less efficient DLIN cryptosystem [6].

Thus, if CED is falsifiable, then one can use an Elgamal-based solution. Other-
wise, one has a security-efficiency tradeoff: one can either rely on a non-falsifiable
gap-assumption or use a slightly less efficient DLIN-based falsifiable NIZK.

10.1 On Languages for Which CED Is Falsifiable

The CED assumption is falsifiable if there exists an efficient verification al-
gorithm Vf , such that given an arbitrary ciphertext tuple x = [ct1, . . . , ctν ]1
and an sk-dependent trapdoor T, Vf(p, pk, x,T) can efficiently check whether
Decsk([ct1, . . . , ctν ]1) ∈ Lpk,F . As in the rest of the paper, we take T = sk. Thus,
given a ciphertext tuple [ct]1, Vf can use sk to decrypt it and obtain the plaintext
[χ]1. Vf then forms the QDR [C(χ)]1 from [χ]1. If F (χ) 6= 0 (that is, x 6∈ Lpk,F ),
then [C(χ)]1 has full rank. Otherwise, it has rank < `. Thus, if F (X) is such
that it is possible to check efficiently whether F (χ) = 0, given [χ]1, we can
construct an efficient falsifiability check Vf . (Note that this approach is different
from Couteau-Hartmann, who required T to be a matrix.)
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First, if |A| = poly(λ), then Vf just checks if [χ]1 is equal to [a]1 for any a ∈ A.
Thus, the NIZK for the univariate case in Section 6.1 and the NIZK for boolean
circuits in Section 8.1 rely on a falsifiable CED assumption. (This assumes that
all polynomials have degree poly(λ), and the circuits are polynomial-size.) In
general, the NIZK in the case of non-principal ideal, Section 8, is based on
falsifiable CED iff A(I) has polynomial size.

The outliers are the cases of principal ideals of multivariate polynomials (since
then |A(I)| can be exponential as in the set of points (X,Y ) on an elliptic curve)
and some instances of non-principal ideals where |A(I)| is super-polynomial. In
the latter case, we can clarify the situation further. Namely, given a generating
set 〈F1, . . . , Fτ 〉, by Bézout’s theorem, A(I) has at most size

∏
degFi. Assuming

each degFi is poly(λ),
∏

degFi is super-polynomial if τ = ω(1). Thus, constant-
size set-membership arguments in Section 8.2 or aCSPs for constant-size arith-
metic circuits in Section 8.1 are based on falsifiable CED. However, range proofs
and superconstant-size arithmetic circuits are based on non-falsifiable CED.

The super-polynomial size of A(I) does not mean that efficient Vf does not
exist. E.g., assume Fj(X) =

∏
i(Xi − sj) for each j. The ideal 〈Fj〉, for a single

j, has exponential size. However, given [χ]1, one can check if Fj(χ) = 0 by
checking if χi = sj for some j. This can be generalized to the case Fj is a
product of affine multivariate polynomials

∑
aikXk + bik. Clearly, F (χ) = 0

iff one of its affine factors is equal to 0. So, Vf can check if there exists an
i such that

∑
aik[χk]1 + bik[1]1 = [0]1. Generalizing this, one can efficiently

establish whether [C]1 is full-rank if the Leibniz formula for the determinant,
det(C) =

∑
σ∈Sn(sgn(σ)

∏n
i=1 Ci,σi), contains only one non-zero addend.

On the other hand, since Vf has only access to [χ]1, there is not much hope
that the CED assumption is falsifiable if F is a product of irreducible polynomials,
such that at least one of them has a total degree greater than one, unless we add
some additional, carefully chosen, elements to the proof for this purpose. In the
general case, this is not efficient, but the number of additional needed elements
might not be prohibitive for some applications.

Finally, the falsifiability of CED depends only on the polynomial F and not
on the specific C. One could find two different CED-matrices Ci for F , such that
the first one results in a more efficient NIZK argument, but the second one has
a specific structure enabling one to construct efficient Vf .

10.2 CED as a Gap Assumption

We show that CED follows from a new gap assumption, which states that given
p ← Pgen(1λ), even if one finds some structural properties in G1 that allows
breaking CDH over this group, this does in general not guarantee an efficient
algorithm for solving KerMDH [28] over the other group G2. More formally:

Definition 3. Assume that the (exponential-time) oracle O([x, y]1) outputs
[xy]1. D`−1,k-CDHG16⇒KerMDHG2 holds relative to Pgen, if ∀ PPT A,

Pr
[
p← Pgen(1λ);D←$D`−1,k; [c]3−ι ← AO(p, [D]ι) :D

>c = 0k ∧ c 6= 0`−1

]
≈λ 0 .
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Theorem 3. Let ` − 1, k ∈ N. If the Dk-CDHG16⇒KerMDHG2 assumption holds
relative to Pgen, then Dk-(`− 1)-CED holds in G1 relative to Pgen.

Note that in particular, this re-proves the result of [9] that CED is secure in
the generic bilinear group model (since a CDH oracle in G1 does not help to
break any assumption in G2 in the generic bilinear group model).

10.3 DLIN-Based NIZK Based on Falsifiable CED

While constructing a Sub-ZK QA-NIZK, [2] had to check efficiently ifC is invert-
ible, given only [C]1. We will next study whether we can apply their technique.
It is not straightforward to apply it since their case is somewhat different: there,
C is a k × k (in particular, k ∈ {1, 2}) public matrix sampled from Dk and
then given as a part of the CRS. In our case, C can have an arbitrary poly(λ)
dimension, and it is reconstructed from the input to the NIZK argument.

To explain the technique of [2], consider the case [C]1 ∈ G2×2
1 . [2] added

to the CRS certain additional elements in G2 (namely, [C11, C12]2), such that
it became possible to check publicly (by using pairings) whether detC = 0 by
checking whether [C11]1 • [1]2 = [1]1 • [C11]2, [C12]1 • [1]2 = [1]1 • [C12]2, and
[C22]1 • [C11]2 = [C21]1 • [C12]2. One cost of publishing the additional elements
in [2] was that it changed the assumption they used from KerMDH to the less
standard SKerMDH assumption [19]. As we see next, we have to use the DLIN
cryptosystem [6] instead of the Elgamal cryptosystem. However, as a result, we
will obtain a NIZK for any F , computable by a poly-size arithmetic circuit, sound
under a falsifiable CED assumption. Another benefit of it is to demonstrate that
our framework is not restricted to Elgamal encryptions.

Next, we show how to construct a NIZK, based on a falsifiable CED assump-
tion, for the polynomial F (X,Y ) = X2−Y . We ask the prover to also encrypt X
in G2. In the soundness reduction, a CED-adversary uses the latter, after decryp-
tion, to check whether [X]1 • [X]2 = [Y ]1 • [1]2. We must ensure that the verifier
only accepts the proof if [X]2 is correct, i.e., [X]1•[1]2 = [1]1•[X]2. Since Elgamal
is not secure given symmetric pairings, we cannot use the secret key or the same
randomness in both groups. Hence, we use the DLIN encryption scheme (see the
full version [10] for its definition). Given sk = (sk1, sk2) and pkι = [1, sk1, sk2]ι, we
define lpar := (pk1, pk2, F ). Then, Llpar := {([ct1, ct2]1, [ct1]2)}, where [ct1]ι =
Encι(X; r1, r2) = [r1sk1, r2sk2, X + r1 + r2]ι and [ct2]1 = Enc1(Y ; r3, r4) =
[r3sk1, r4sk2, Y + r3 + r4]1. We prove that [ct1, ct2]1 are encryptions of X and Y
such that X2 = Y , by using the QDR C(X,Y ) =

(
X −1
−Y X

)
. The use of the DLIN

encryption scheme just affects the efficiency and the communication size of the
protocol. In addition, one can check that [ct1]1 and [ct1]2 encrypt the same X
in two different groups by checking that [ct1]1 • [1]2 = [1]1 • [ct1]2.

Since the DLIN encryption is doubly-homomorphic like Elgamal, then the
argument of Section 4.1 stays essentially the same, with Elgamal encryptions re-
placed by DLIN encryptions, and the dimensions of randomizers and ciphertexts
increasing slightly. In the soundness proof, given that the prover also outputs
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Enc2(X; r1, r2), the constructed CED adversary obtains plaintexts [X,Y ]1, [Z]2
and, then can efficiently verify if the statement X2 = Y holds.

Combining this idea with the rest of our framework, we can construct a
NIZK for any language of DLIN-encryptions for any F , based on a falsifiable
CED assumption. This is since one can check that F = 0 by checking that an
arithmetic circuit evaluates to 0, and each gate of an arithmetic circuit evaluates
a quadratic function. For example, to prove that Y 2 = X3 + aX + b, one can
encrypt Y , Y ′, X, X ′, and X ′′, and then prove that Y ′ = Y 2, X ′ = X2, X ′′ =
XX ′, and Y ′ = X ′′ + aX + b.
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