
DEFAULT: Cipher Level Resistance Against
Differential Fault Attack

Anubhab Baksi1, Shivam Bhasin2, Jakub Breier3, Mustafa Khairallah1

Thomas Peyrin1, Sumanta Sarkar4, and Siang Meng Sim5

1 Nanyang Technological University, Singapore
2 Temasek Labs NTU, Singapore

3 Silicon Austria Labs, Graz, Austria
4 University of Warwick, Coventry, UK
5 DSO National Laboratories, Singapore

ANUBHAB001@e.ntu.edu.sg, sbhasin@ntu.edu.sg, jbreier@jbreier.com,

mustafa.khairallah@ntu.edu.sg, thomas.peyrin@ntu.edu.sg,

sumanta.sarkar@warwick.ac.uk, crypto.s.m.sim@gmail.com

Abstract. Differential Fault Analysis (DFA) is a well known cryptana-
lytic technique that exploits faulty outputs of an encryption device. De-
spite its popularity and similarity with the classical Differential Analysis
(DA), a thorough analysis explaining DFA from a designer’s point-of-
view is missing in the literature. To the best of our knowledge, no DFA
immune block cipher at an algorithmic level has been proposed so far.
Furthermore, all known DFA countermeasures somehow depend on the
device/protocol or on the implementation such as duplication/comparison.
As all of these are outside the scope of the cipher designer, we focus
on designing a primitive which can protect from DFA on its own. We
present the first concept of cipher level DFA resistance which does not
rely on any device/protocol related assumption, nor does it depend on
any form of duplication. Our construction is simple, software/hardware
friendly and DFA security scales up with the state size. It can be plugged
before and/or after (almost) any symmetric key cipher and will ensure a
non-trivial search complexity against DFA. One key component in our
DFA protection layer is an SBox with linear structures. Such SBoxes
have never been used in cipher design as they generally perform poorly
against differential attacks. We argue that they in fact represent an
interesting trade-off between good cryptographic properties and DFA
resistance. As a proof of concept, we construct a DFA protecting layer,
named DEFAULT-LAYER, as well as a full-fledged block cipher DEFAULT.
Our solutions compare favorably to the state-of-the-art, offering advan-
tages over the sophisticated duplication based solutions like impeccable
circuits/CRAFT or infective countermeasures.

Keywords. differential fault attack, protection, SBox, differential attack, DEFAULT

1 Introduction

Fault Attacks (FA) are considered strong implementation threats rendering many
ciphers vulnerable. Unlike classical cryptanalysis, which assumes no interference



with the internal operations of a cipher, in the case of FA the attacker has
more control over the device where the cipher is currently being executed. As
a result, among other options, he is able to suddenly alter an external input
to the device (such as voltage level, EM radiation, heat, etc.), forcing it to
run under sub-optimal condition. This type of condition can result in incorrect
(faulty) output from the device. This faulty output may then help the attacker
to gain information about the secret key. FA gained much popularity among the
security/cryptography researchers and has been deployed to analyze a variety of
ciphers.

When it comes to analyzing symmetric key cryptographic primitives, the most
popular choice for FA is generally the Differential Fault Analysis or Differential
Fault Attack (DFA) [15]. DFA is very powerful: almost all (if not all) block ciphers
which are considered secure with respect to classical attacks have been shown to
be vulnerable to DFA. Note that, to the best of our knowledge, no cipher has yet
been designed to have a natural DFA immunity, although there were no shortage
of new cipher proposals or new DFA countermeasures in recent years.

The crux of this situation is, as we observe, a lack of theoretical results
towards designing DFA-resistant primitives, akin to its classical counterpart, the
Differential Analysis (DA). Cipher designers have been very careful to design DA
resistant ciphers, but not much attention has been given to design a DFA-resistant
cipher. Indeed, designing a DFA-resistant cipher looks like a very difficult task
as the attacker has enormous power in this setting.

The usual DFA protections lie outside the domain of cipher design. At
one end, some device/protocol level technique is used, while at the other end,
duplication based protection is used (see Section 2.2 for more details). Duplication
based countermeasures assume that the fault can alter the execution within a
predesignated boundary. Thereafter, a comparison (which can be direct or with
an error-detection code) between the two executions is used to detect a fault.
Since device/protocol level solutions are beyond the control of the cipher designer,
the best option to ensure DFA protection is duplication6. Given this scenario,
our work analyzes this problem and proposes a new type of solution, which
is able to ensure a non-trivial search complexity for the attack when using
DFA, solely based on the cipher construction itself. We use the basic design
strategy and components of the lightweight block cipher GIFT-128 [11] and thus
manage to keep our design within low-cost performance figures. Note that the
DFA protection mechanism could be costly and that our design does not need
duplication or any protocol level countermeasure, we believe our work opens up
a new genre of low-cost DFA countermeasure.

Our Contributions. In this work, in order to offer natural DFA protection,
we explore the potential offered by the SBox, one of the basic building blocks
of symmetric-key cryptography algorithms. As the SBox is generally the only
non-linear component in a cipher, it is naturally vulnerable to DFA (as DFA does
not work on a linear component, whereas it works very well on a non-linear one).

6It may still be argued that duplication based protections cannot be guaranteed at
the cipher design level, and hence off-limit to a cipher designer.

2



In a nutshell, strong linearity makes it hard to attack a cipher with DFA, but
too much linearity will of course render a cipher either insecure or not efficient.
The designer’s goal is therefore to try to find a good trade-off.

Since a secure cipher cannot be constructed by using only linear components,
we naturally focus on finding a building block that is somewhat in the middle
ground between an SBox and a linear function. Unsurprisingly, the middle ground
lies in a weak class of SBoxes, whose members behave like a linear function in some
aspects, more precisely by allowing the presence of so-called Linear Structures
(LS). Such SBoxes have properties which are generally considered undesirable
for a cipher construction, which leads to a paradoxical situation: an SBox which
is more resistant against differential attacks is weaker against DFA, while those
which are more resistant against DFA are considered weaker against differential
attacks.

To circumvent this situation, we propose to maintain the main cipher to
be protected (which is presumably secure against classical attacks) untouched,
but to add two keyed permutations as additional layers before and after it,
respectively. These keyed permutations present a special structure that renders
DFA non-trivial on them, naturally allowing the entire construction to be DFA
resistant. Indeed, assuming a certain fault model for DFA, the attacker has to
attack the first or last rounds of the overall cipher to make the attack work. At
the same time, the classical security of the construction, which is guaranteed by
the main cipher, will not be hampered.

To validate our claims, we propose an SPN-based construction of a 128-bit
keyed permutation L, DEFAULT-LAYER, using a 4 × 4 SBox that contains 3 LS.
We show that this keyed permutation can provide safeguard against DFA up to a
non-trivial search complexity (2n/2 for an n-bit block cipher). DEFAULT-LAYER is
hardware/software friendly and any variant of L with a multiple of 16-bit can be
constructed (we recommend it to be at least 128-bit). As the DFA security scales
up with the size of L (which does not happen for classical ciphers), if a 256-bit
variant of L is used it will effectively provide a DFA security of (at least) 2128

computations. In fact, by playing with the number of LS in the SBox chosen, it
is even possible to find trade-offs that go beyond 2n/2 security.

The idea of our keyed permutation is then extended to a complete SPN-based
cipher DEFAULT. It uses a specially crafted component DEFAULT-CORE (which
does not have security against DFA) between two DEFAULT-LAYER instances (to
provide DFA security), in a hope of overall improved performances compared
to a full-fledged cipher sandwiched between two DEFAULT-LAYER blocks. Indeed,
DEFAULT-CORE will provide the extra classical security that is lacking with only
two DEFAULT-LAYER instances.

Using duplication on GIFT-128 cipher, either in the spatial or the temporal
domain, as a reference countermeasure for benchmarking (as duplication is a
widely adopted fault protection method in commercial products), we note that
DEFAULT incurs similar overheads, both in hardware and software. Yet, DEFAULT
has the advantage of resisting a higher number of faults when compared to
duplication. In retrospect, our solution can be considered lightweight compared

3



to more sophisticated duplication countermeasures (such as infection or error-
detecting codes). Infective countermeasures can have ≈ 3× cost increase when
compared to the basic implementation [10]. Moreover, we note that the recent
block cipher CRAFT [14] and FRIET [39] based on error detection codes, leads to
a 2.45× overhead when protecting against single bit faults at the output and
scales even higher for protecting against more faults. CRAFT is proposed as a
block cipher with fault protection as a prime target, designed with carefully
chosen components that incur lower overhead when protected with error detection
codes. FRIET is proposed as a permutation with built-in fault detection based on
error-detection code (like parity-check). DEFAULT, on the other hand, explores an
alternative methodology to design a cipher with natural DFA resistance and is
not limited to a specific number of faults.

As an independent contribution, we also study how to model a cipher which
has an SBox with linear structures when searching for differential and linear
bounds using automated tools.

Outline. We give some background on DFA, explain our fault model and provide
preliminaries on SBoxes properties and notations in Section 2. Then, we explain
how SBoxes with linear structures can provide some DFA resistance in Section 3.
We describe our DFA protection component DEFAULT-LAYER and our entire cipher
proposal DEFAULT (based on DEFAULT-CORE) in Section 4. The rationale behind
the cipher structure and components is provided in Section 5, while detailed
DFA and classical cryptanalysis is performed in Section 6, MILP modeling in
Section 7. Finally, implementations and benchmarks of our designs are given in
Section 8 and we conclude in Section 9.

2 Background and Preliminaries

2.1 Differential Fault Attacks in a Nutshell

As already mentioned, DFA is closely related to DA. In a classical DA, a difference
is introduced in plaintexts (resp., ciphertexts) at the beginning of the cipher
encryption (resp. decryption). Detecting the expected output difference requires
large amount of data, where the data complexity is inversely proportional to
the differential probability. Cipher designers often prove security against DA by
showing that the probability of any differential trail is too low for launching a
DA.

In comparison, in DFA the input difference is inserted in the form of a transient
fault and can be applied anytime during the course of the encryption/decryption.
In practice, faults are injected near the end of the cipher execution, effectively
bypassing most of the rounds designed to resist DA when compounded. This
difference propagates through only a handful of non-linear components, and
based on the output differential value, the adversary is able to reduce the key
search space significantly.

The cryptanalysis procedure in DFA consists of two orthogonal terms, namely,
fault complexity (the number of faulty encryptions) and search complexity
(computational/memory complexity required). The general trend is to reduce the
fault complexity while keeping the search complexity within an acceptable limit.

4



2.2 Differential Fault Attack Protections

The state-of-the-art DFA countermeasures can be broadly classified into the
following categories [6]:

1. A separate, dedicated device that detects (and takes precaution) [25] or a
shield that blocks any potential source of a fault.

2. The underlying communication protocol between Alice and Bob ensures that
a fault does not occur with a significant probability. This can be ensured, e.g.,
by assuming a small portion of the circuit is protected by other means [7].

3. Duplicate the cipher execution followed by implicit/explicit check for the
equality of the executions, so-called duplicated computations. One may refer
to [10] for a study of such countermeasures. Redundancy at the component
level may also be introduced, possibly with error detection/correction codes
[2].

4. Use mathematical solutions to render DFA ineffective/inefficient.

One may notice that the countermeasures in above-mentioned categories 1
and 2 are basically engineering solutions and generally outside the scope of
cryptography design. In a slight contrast, category 3 is somewhat close to what a
cipher designer can specify. Yet, identical faults in the duplicated computations
will result in no differences between the outputs and treated as if no fault is
injected. This tricks the countermeasure to release the faulty output, and works
against state-of-the-art countermeasures like infection [10]. Although relatively
hard to achieve in practice, this type of attack was shown to be feasible in [38]
and we refer to it as duplicate fault. While the device could be protected by using
different encodings for the two executions of the cipher, such methods usually
add additional performance cost. We also mention that sophisticated duplication
countermeasures may require additional components as well as an external source
of randomness [10].

Our work falls under category 4, together with countermeasures like impecca-
ble circuits [2]/CRAFT [14] and FRIET [39]. The authors of [2] proposed an efficient
DFA protection mechanism based on error detection codes and this idea was
later extended to a block cipher, named CRAFT. CRAFT employs error detection
codes, which have different performance figures and fault coverage depending
on the underlying code. Any fault injection that successfully alters the output
beyond the detectable bound will make the DFA protection of CRAFT ineffective.
In comparison, our construction is free from such limitation (more details in
Section 6.4).

2.3 Our Claim

Novel Idea against DFA. At a higher level, most of the countermeasures,
including CRAFT, FRIET and duplicated computation, aim at fault detection which
could be fooled by stronger equipment that makes the faults go undetected. In
comparison, we aim at fault resilience7, meaning we allow the faults to propagate
and even output faulty ciphertexts, but the amount of information that an

7The term “fault injection resilience” was first introduced in [24].

5



adversary can learn from them is limited: we impose a lower bound on the search
complexity of DFA. Even with stronger equipment access, an adversary cannot
overcome the lower bound of the search complexity. In addition, our design is
completely at the algorithmic level, scalable, can be applied to existing ciphers
and does not require an additional source of randomness. These features make our
proposal different from infection-like countermeasures [10] which further corrupt
the injected faults and need a source of randomness for a provable security [12].

Analysis Methods. Instead of enumerating the various fault models and fault
attacks, we consider how an attack gains sensitive information, i.e., the analysis
method. We can broadly categorise the analysis methods into two types:

1. Deduce information from the differential values of the executions.
2. Deduce information from the statistical bias of the executions.

The fundamental reason why our design increases the search complexity of
DFA is due to the larger number of solutions for any given differential (details in
Section 3). Hence, for attacks that gain information from the differential values
(analysis method 1), it is not going to be as effective. We believe that our design
could actually provide protection beyond DFA. In a broader sense:

Our design can protect against DFA and any form of FA that deduces
information from the differential values of the executions.

Other attacks that exploit information leakages from statistical biases un-
der analysis method 2 are beyond our focus. We provide more discussions in
Section 6.5.

2.4 Difference Distribution Table and Related Properties

A Difference Distribution Table (DDT) is an analysis table used in DA. For an
n×n SBox S, it is basically the 2n×2n matrix, where the row δ (= 0, 1, . . . , 2n−1)
and column ∆ (= 0, 1, . . . , 2n − 1), denoted as DDTS [δ,∆], stores the number
of solution(s) x for S(x) ⊕ S(x ⊕ δ) = ∆. Notice that DDTS [0, 0] = 2n as
S(x)⊕S(x⊕ 0) = 0 holds for all x. The maximum entry at the DDT of S, except
the case δ = ∆ = 0, is called the Differential Uniformity (DU).

In order for an SBox to be better resistant against DA, the (non-zero) maximal
values in the DDT have to be small, otherwise DA will be more effective. Thus,
symmetric-key cryptography designers almost exclusively look for SBoxes which
have smaller values in the DDT. However, the situation for DFA is completely
opposite. Here, if the (non-zero) DDT values are small, then the attacker has
fewer solutions for the unknown input when collecting faulty outputs. Thus, he
is able to narrow down the search space more efficiently: a DDT with smaller
(non-zero) values will make the DFA easier. Hence, we see that the strategy to
thwart DA is exactly opposite to that of DFA. This paradoxical situation is
among the challenges to build a cipher level DFA protection.

We call SBoxes S1 and S2 Affine Equivalent (AE) if there exist two affine
permutations A1 and A2 such that S2 = A1 ◦ S1 ◦A2. AE SBoxes have the same
DDT up to a permutation. Therefore, differential uniformity is invariant under
affine equivalence, so are the other cryptographic properties like non-linearity,

6



algebraic degree, etc. It is to be noted that the affine equivalence classification of
all 4× 4 SBoxes has been completed already — there are 302 such classes. We
follow the class representative SBoxes given in [19, Chapter 5.4.2]. For a more
compact representation, an element α ∈ Fn2 will be denoted by its corresponding
integer value from [0, 2n − 1].

Definition 1 (Sα〈δ〉). For the SBox S, the fault δ and the value α, the set of
solutions of the equation S(x)⊕ S(x⊕ δ) = S(α)⊕ S(α⊕ δ) is the set Sα〈δ〉.
Notice that, both α and α⊕ δ ∈ Sα〈δ〉. Basically, the cardinality of Sα〈δ〉 gives
the entry of the DDT at the δth row which contains α, which is at the column
∆ = S(α)⊕ S(α⊕ δ). By applying fault δ, the attacker cannot identify α from
other elements which belong to Sα〈δ〉.
Definition 2 (MinFS(α)). For an n× n SBox S with input α,

MinFS(α) =

{
−1 if

⋂2n−1
δ=1 Sα〈δ〉 6= {α};

t where t = min k such that
⋂k
i=1 Sα〈δi〉 = {α}.

Hence MinFS(α) = −1 means, no matter what fault values that an attacker
chooses, he will be left with more than one choice for α. Also notice that, if
MinFS(α) 6= −1, then it must be ≥ 2.

Definition 3 (MinFS). Given an n× n SBox S, MinFS is defined as:

MinFS =

{
max0≤α≤2n−1 MinFS(α) if MinFS(α) 6= −1, ∀α ∈ {0, 1 . . . , 2n − 1};
−1 otherwise.

The subscript S is dropped if understood from context.

The interpretation of MinFS can be stated as: given an SBox S, it is the
lower bound on the number of faults required to uniquely solve any input.

Definition 4 (Linear Structure). For F : Fn2 → Fn2 , an element a ∈ Fn2 is
called a linear structure of F if for some constant c ∈ Fn2 , F (x)⊕ F (x⊕ a) = c
holds ∀x ∈ Fn2 .

Note that the set of all linear structures of F denoted as L(F ) forms a subspace
of Fn2 and is termed as the linear space of F . If F : Fn2 → Fn2 has a (non-zero)
linear structure then 2n becomes an entry in the corresponding DDT. In that
case DU = 2n, thus F performs worst against differential attacks compared to
all F ’s that do not have a (non-zero) linear structure.

Definition 5 (Coordinate Function and Component Function). Suppose
F : Fn2 → Fn2 is defined as F (x) = (f0(x), . . . , fn−1(x)) for all x ∈ Fn2 , where
fi : Fn2 → F2 for i = 0, . . . , n − 1. Then each fi is called a coordinate function
of F . Furthermore, the linear combinations of fi’s are called the component
functions of F .

Definition 6 (Non-linearity). The non-linearity of the Boolean function f :
Fn2 → F2 is the minimum distance of f to the set of all affine functions. Further-
more, the non-linearity of F : Fn2 → Fn2 is the minimum of the non-linearities of
all the component functions of F .

7



3 Characterizing SBoxes in View of DFA

From now on, we implicitly assume that neither δ or ∆ is 0 and that an SBox S
is a permutation. We denote ∆(α, δ) the output difference for input value α and
input difference δ.

Theorem 1. Let S(x) ⊕ S(x ⊕ δ) = ∆(α, δ) have a solution x = α. Further,
let a be a (non-zero) linear structure of S. Then, (α ⊕ a) is also a solution of
S(x) ⊕ S(x ⊕ δ) = ∆(α, δ), i.e., the coset α ⊕ L(S) is a subset of solutions of
S(x)⊕ S(x⊕ δ) = ∆(α, δ). So, MinFS = −1.

Proof. As a is a linear structure of S, we have that S(x)⊕ S(x⊕ a) is constant.
Taking derivative with respect to δ, ∀x we get S(x) ⊕ S(x ⊕ a) ⊕ S(x ⊕ δ) ⊕
S(x⊕ a⊕ δ) = 0. Using x = α, S(α)⊕ S(α⊕ δ)⊕ S(α⊕ a)⊕ S(α⊕ a⊕ δ) = 0
=⇒ S(α⊕ a)⊕S(α⊕ a⊕ δ) = S(α)⊕S(α⊕ δ) = ∆(α, δ). Hence, (α⊕ a) is also
a solution of S(x)⊕ S(x⊕ δ) = ∆(α, δ). ut

Theorem 1 gives an interesting insight regarding DFA resistance in SBoxes.
If an SBox has a (non-trivial) linear structure, then it is not possible to find the
input to the SBox just by analyzing the effect of faults, no matter how many
faults are injected. In such cases, the attacker has to search exhaustively among
the set of solutions to find the proper input. This increases the search complexity
associated with DFA.

Lemma 1 (Converse of Theorem 1). For the input α to S, if α ⊕ a is a
solution of S(x)⊕ S(x⊕ δ) = ∆(α, δ) for all input differences δ, then a ( 6= 0) is
a linear structure of S.

Remark 1. Theorem 1 and Lemma 1 are valid for all (non-trivial) linear struc-
ture(s) of S. In other words, the larger the number of (non-trivial) linear structures,
the larger the number of candidates that will be in the intersection of solution
sets of all faults.

Lemma 2. Suppose S1 and S2 are two n × n SBoxes having `1 and `2 linear
structures (including the trivial linear structure 0) respectively, then the 2n× 2n
SBox (S1, S2) will have `1`2 linear structures (including the trivial linear structure
(0, 0)).

Lemma 3. Suppose F : Fn2 → Fn2 to be any function and L : Fn2 → Fn2 to be
linear. Then L ◦ F and F have the same number of linear structures.

Theorem 2. Assume that the SBox S does not have any (non-zero) linear
structure and that S(x)⊕ S(x⊕ δ) = ∆(α, δ) has exactly 2m+ 2 solutions. Then
there exist m+ 2 faults {δ, δ′, δ1, . . . , δm} such that the system of equations

S(x)⊕ S(x⊕ δ) = ∆(α, δ),

S(x)⊕ S(x⊕ δ1) = ∆(α, δ1),

S(x)⊕ S(x⊕ δ′) = ∆(α, δ′),

. . . , S(x)⊕ S(x⊕ δm) = ∆(α, δm)

has a unique solution. Hence, MinFS(α) ≤ m+ 2.

8



From Theorem 2, we see that it is possible to uniquely recover the input/output
value of each SBox with no more than DUS/2 + 1 faults (unless there is a linear
structure) when attacking the last round. This gives a provable upper bound on
the number of faults the attacker needs per SBox (if faults values are judiciously
chosen) in order the find out its input uniquely, given that the SBox does not
have a linear structure.

Corollary 1 (From Theorem 2). MinFS ≤
DUS

2
+ 1.

Remark 2. Although it is theoretically possible, we could not find any 4-bit SBox
with MinFS = 3 (refer to Corollary 1). Whether or not this is a tight bound is
left open for future research.

The proof for the Lemmas and Theorems can be found in the long version of
this article [8], together with other relevant results and examples.

Remark 3. Lemma 2 and Lemma 3 give another interesting view-point: if an
unkeyed SPN permutation is constructed by repeating an SBox with l LS m
times (in each round), then the total number of linear structures for the super
SBox (which is the round function) is lm.

In order to better visualize the effect of DFA security with respect to the
number of linear structures for SPN ciphers (for a given SBox size), we present
detailed information in Table 1 for varying state sizes8. Note that the last cases
(i.e, a 4 × 4 SBox with 4 and an 8 × 8 SBox with 128 linear structures) is the
theoretical limit for DFA protection (as any more LS would imply that the SBox
is linear). Hence, in theory we can achieve DFA security up to 264 (for a 128-bit
state) or 2128 (for a 256-bit state) using 4-bit SBoxes; and 2112 (for a 128-bit
state) or 2224 (for a 256-bit state) using 8-bit SBoxes. As a proof of concept, our
instantiation of this DFA protection layer will use a 4-bit SBox with 4 LS (which
can provide DFA security of 264 computations) and it is described in Section 4.

4 Construction of DFA Resistant Layer and Cipher

With the background given in Section 2, we first look at the problem of maximizing
the fault complexity. Note that fault complexity is the highest when the fault
is injected at the last round. Usually, for an SPN block cipher, three faults per
SBox are sufficient as most block ciphers use an SBox with DU = 4 (except
for GIFT SBox [11], where DU is 6). In fact, in many cases, only two faults are
needed to solve for any input. For example, for the SBoxes chosen in AES [33],
PRESENT [16], SKINNY-64 [13] and GIFT [11], the fault values {1, 6} are sufficient
to retrieve all inputs uniquely. Thus, it seems hard to force the fault complexity
to increase significantly.

8DFA security refers to the remaining key search complexity after the fault(s) have
been injected.

9



Table 1: DFA security for SPN ciphers depending on the number of linear structures
in the SBox. Our design DEFAULT-LAYER will use a 4× 4 SBox with 4 linear structures
for a state size of 128 bits, hence ensuring a 264 DFA security.

(a) 4× 4 SBox

] LS
State DFA

Size Security

2
128 232

256 264

4
128 264

256 2128

(b) 8× 8 SBox

] LS
State DFA

Size Security

8
128 248

256 296

64
128 296

256 2192

128
128 2112

256 2224

4.1 Ad-hoc DFA Protection Layer (DEFAULT-LAYER)

Our approach is to tackle the problem of increasing the search complexity instead.
This means that we give the attacker the power to apply as many faults as he
wants in total, but the search space for the analysis should remain very large. As
we already pointed out (Theorem 1), if an SBox S has non-zero linear structure(s),
then the attacker will not be able to uniquely identify the input. Thus, he has
to enumerate the remaining key candidates from the input difference – output
difference relation.

LDEFAULT-LAYER

(DFA is difficult)

EMain cipher

(DFA is easy)

LDEFAULT-LAYER

(DFA is difficult)

(a) Encryption

L−1DEFAULT-LAYER−1

(DFA is difficult)

E−1Main cipher inverse

(DFA is easy)

L−1DEFAULT-LAYER−1

(DFA is difficult)

(b) Decryption

Fig. 1: Main cipher augmented by DEFAULT-LAYER to resist DFA

Now, using an SBox with a linear structure is generally considered undesirable
for a block cipher design, as it makes the classical differential attacks easier (as
explained in Section 2.4). Hence, we arrive at a paradoxical situation: if we want
to design a cipher with better resistance against DFA, it becomes weak against
classical attacks; and vice-versa. In order to find a middle ground, where the
cipher is strong against both DFA and classical attacks, we propose the concept
of prepending/appending an extra layer (that uses SBoxes with linear structures)
to the underlying cipher (henceforth referred to as “main cipher”). Figure 1
visually represents the idea. The layer L, which we name as DEFAULT-LAYER and
describe in Section 4.3, is prepended and appended to the main cipher E, as in
Figure 1(a). For decryption, L−1 is both prepended and appended to the main
cipher inverse (shown in Figure 1(b)), since the ciphertext C = L ◦E ◦L(P ), and

10



the decryption L−1 ◦ E−1 ◦ L−1(C) = (L−1 ◦ E−1 ◦ L−1) ◦ (L ◦ E ◦ L)(P ) = P .
The idea is that the underlying cipher E will have desirable protection against
classical attacks, while the additional layer L will be used to thwart DFA. Since
for DFA the attacker has to slowly peel off the outer rounds of the cipher, we only
have to protect these rounds against DFA, while the inner cipher will provide
all the security we expect from a block cipher in the black-box model (adding a
layer L will not weaken its security).

As we assume the attacker can target both the encryption and decryption
processes, the model described here can thwart DFA on both. If we assume a
constrained model for the attacker, for example where the decryption is done
at a server which is physically protected such that it cannot be accessed (as
in [7, Section III]), then the prepended layer L in Figure 1(a) and the appended
layer L−1 in Figure 1(b) can be removed, which will result in better performance.

4.2 Extension to a Full-Fledged Cipher (DEFAULT)

Aside from an ad-hoc layer which is able to protect any cipher from DFA, it is
also possible to construct a full-fledged block cipher. This is done by sandwiching
the so-called DEFAULT-CORE (this is another keyed permutation described in
Section 4.4) with DEFAULT-LAYER. The DEFAULT-CORE contains an SBox that is
especially resistant to classical linear attacks, and DEFAULT-LAYER uses an SBox
that contains linear structures to resist DFA and its variants. Hence DEFAULT

consists of 2 components (for both the encryption and decryption), as can be
seen in Figure 1(a), replacing E with DEFAULT-CORE.

DEFAULT-CORE also follows a construction similar to GIFT-128, but we do not
reuse GIFT-128 permutation exactly as core permutation because we want to
maximize the security against linear attacks, even if that results in relatively
low security against differential attacks (which will be partially provided by the
DEFAULT-LAYER layers anyway). Thus, we do not use LS SBox, but in contrary
we will use an SBox with excellent linear approximation table (LAT) properties.

Therefore, the advantage of using DEFAULT instead of simply a classical cipher
protected with DEFAULT-LAYER layers, is that since DEFAULT-CORE has been
designed to be especially strong against linear attacks, we can reduce the number
of cryptographic operations globally. In other words, we believe DEFAULT strikes
a better balance in terms of security/efficiency, while using a classical cipher with
DEFAULT-LAYER probably comes with some performance overkill (DEFAULT-LAYER
will provide extra differential attack resistance on top of the main cipher, which
was not needed since the cipher is assumed to be secure already).

4.3 Construction of DEFAULT-LAYER

We detail the 128-bit version of our proposed DFA protecting layer (DEFAULT-LAYER).
It can be used to protect 128-bit block ciphers, but we emphasize that it can be
adapted to any block size that is a multiple of 16.

DEFAULT-LAYER is a 28-round keyed permutation9 that receives a 128-bit
message as the state X = b127b126 . . . b0, where b0 is the least significant bit, and

9We avoid calling it a “cipher” as it is a DFA protecting layer used on top of an
actual cipher.

11



a 128-bit key. The state can also be expressed as X = w31‖w30‖...‖w0, where
wi is a 4-bit nibble word. We do not describe the inverse layer here for the
sake of brevity, but it can be trivially derived. The round function (denoted
by R henceforth) of DEFAULT-LAYER consists of 4 steps (in order): SubCells —
applying a 4-bit SBox to the state, PermBits — permute the bits of the state
(same as in GIFT-128 [11]), AddRoundConstants — XORing a 6-bit constant
as well as another bit to the state (same as in GIFT-128), and AddRoundKey —
XORing the round key to the state.

SubCells. It uses the 4-bit LS SBox S = 037ED4A9CF18B265. This SBox is
applied to every nibble of the state: wi ← S(wi), ∀i ∈ {0, . . . , 31}.
PermBits. The bit-permutation is the same as the permutation P128 in GIFT-128,
which maps bits from bit position i of the internal state to bit position P128(i):
bP128(i) ← bi, ∀i ∈ {0, ..., 127}.
AddRoundConstants. A single bit “1” and a 6-bit round constant C = c5c4c3c2c1c0
are XORed into the cipher state at bit position 127, 23, 19, 15, 11, 7 and 3
respectively: w127 = w127 ⊕ 1, w23 = w23 ⊕ c5, w19 = w19 ⊕ c4, w15 = w15 ⊕ c3.
Table 2 shows the round constants (6-bit) for DEFAULT-CORE and DEFAULT-LAYER.
At each round the value is encoded into a 6-bit word and XORed to the cipher
state, with c0 being the least significant bit.

Table 2: Round constants for DEFAULT
Round Constants ]

DEFAULT-CORE 1, 3, 7, 15, 31, 62, 61, 59, 55, 47, 30, 60, 57, 51, 39, 14, 29, 58, 53, 43, 22, 44, 24, 48, 33, 2, 5, 11 28
DEFAULT-LAYER 1, 3, 7, 15, 31, 62, 61, 59, 55, 47, 30, 60, 57, 51, 39, 14, 29, 58, 53, 43, 22, 44, 24, 48 24

AddRoundKey. A round key k is bitwise XORed to the state: bi ← bi ⊕ kji ,∀i ∈
{0, ..., 127}.
Key Schedule. The 128-bit master key K is used to generate four 128-bit subkeys
K0, K1, K2 and K3 as follows: K0 = K and Ki+1 = R′(R′(R′(R′(Ki)))) for
i ∈ [0, 1, 2], where R′ denotes the R round function with no AddRoundKey layer
and with the AddRoundConstants layer changed to only XORing a single bit
“1” at bit position 127. Alternatively, R′ can be seen as the R function with an
all-zero round key and an all-zero round constant. Then, these four subkeys are
used to generate the round keys as follows: for round i with i ≥ 0, the subkey
Ki mod 4 is used as round key input for AddRoundKey.

4.4 Construction of DEFAULT-CORE (and DEFAULT)

In order to design the full-fledged cipher, we need to describe the middle part
of the cipher (DEFAULT-CORE), for which the SBox does not have any (non-zero)
linear structure. The design of the core is much alike to the DEFAULT-LAYER

(hence omitted here for the sake of brevity), except for the SBox, and it has 24
rounds. The SBox of choice here is 196F7C82AED043B5, based on its very desirable
cryptographic properties against linear attacks (see Section 7.2 for details). In a
nutshell, the overall design of DEFAULT consists of: DEFAULT-LAYER (28 rounds),
followed by DEFAULT-CORE (24 rounds), followed by another DEFAULT-LAYER

12



(28 rounds). Hence DEFAULT is an SPN block cipher with heterogeneous round
structure, consisting of 80 rounds. Therefore, in comparison with time-duplicated
GIFT-128 (which contains 80 rounds in total), DEFAULT has the same number
of rounds. As for the round counter, we use the same from GIFT-128, which is
refreshed at the beginning of DEFAULT-LAYER/DEFAULT-CORE.

5 Design Rationale

The goals of our DEFAULT-CORE/DEFAULT-LAYER designs are clear: (1) to protect
against DFA, (2) applicable to different state sizes as well as to wide variety of
symmetric key ciphers, and (3) simple and lightweight. During its design, various
choices have been made and we discuss those here.

5.1 Design Philosophy

SPN vs Feistel network. Our first decision was to choose between SPN and
Feistel network. Although implementing the inverse of Feistel construction is
simple and does not require the inverse of its f -function, the non-linearity is
introduced to only half of its state in each round and hence usually requires more
rounds (though lighter rounds) to achieve the desired security margin. On the
other hand, SPN introduces non-linearity to the entire state and thus requires
lesser rounds in general. Study is also simpler, so we chose to start with SPN.

Bit Permutation vs Rotational-XOR Diffusion vs Word-mixing Diffu-
sion. For SPN constructions, the diffusion layer is usually either a bit permutation
(like in PRESENT and GIFT), a rotational-XOR layer (like in SMS4 [20], ASCON [22]),
or a word-mixing diffusion (like in AES and SKINNY). Although the latter two
provide a stronger diffusion, they can be costly in hardware and non-trivial to
adopt to different block sizes as it might lead to quite different descriptions. In
hardware, the bit permutation is basically free to implement as it consists simply
of circuit wiring. Moreover, from the design strategy of GIFT, we see that a bit
permutation can be adjusted to various state sizes. Therefore, we choose bit
permutation over other choices of diffusion layer.

5.2 Structure of the DEFAULT PermBits

We recall here the structure of the PRESENT and GIFT bit permutations as this
will be useful later to understand our security guarantees. There are essentially
two levels of permutation within the PRESENT or GIFT bit permutation: the group
mapping and the SBox grouping.

Group Mapping. The mapping of the output bits from a group of 4 SBoxes to
another group of 4 SBoxes in the next round. This is the main difference between
the PRESENT and GIFT permutation. For 4-bit SBoxes, we denote the 4 bits as
bit 0, 1, 2 and 3, where bit 0 is the least significant bit. Within a group, the
PRESENT permutation sends the 4 output bits from the ith SBox (index from
0) to bit i of the 4 SBoxes in the next round, forming a symmetrical structure.
Due to this symmetrical structure, PRESENT has many symmetrical differential
characteristics for a given fixed input and output differences, which results in a
higher differential probability (similar situation for the linear cryptanalysis case).

13



On the other hand, the GIFT permutation sends bit i from the output of the
jth SBox (index from 0) to the bit i of the lth SBox in the next round, where
l = i − j mod 4. Since bit i of an SBox output is always mapped to bit i of
another SBox, it makes the analysis on the propagation of the differences easier
and breaks the symmetry. Therefore, we choose GIFT group mapping.

SBox Grouping. The partitioning of the SBoxes into the groups of 4 SBoxes.
The SBox grouping for the 64-bit block ciphers PRESENT and GIFT-64 are the
same, and the designers of GIFT extended the idea to construct SBox grouping
for 128-bit block size. Similar to [11], we denote the SBoxes in round i as
Si0, S

i
1, . . . , S

i
g−1, where g = n/4 for block size n. These SBoxes can be grouped

in 2 different ways - the Quotient Q and Remainder R groups, defined as Qx =
{S4x, S4x+1, S4x+2, S4x+3} and Rx = {Sx, Sq+x, S2q+x, S3q+x}, where q = g/4,
0 ≤ x ≤ q − 1. The SBox grouping simply maps SBoxes from Qxi to Rxi+1,
where within this group the 16-bit mapping is defined as the group mapping
described above. This is the adaptable component of the bit permutation, as one
can see that the SBox grouping is well-defined as long as n is a multiple of 16.

5.3 Selection of the DEFAULT SBoxes

Here we describe the selection process of the LS SBox (used in DEFAULT-LAYER)
and the non-LS SBox (used in DEFAULT-CORE) providing high resistance against
linear attacks. A summary of various properties of our chosen SBoxes together
with SBoxes from other lightweight ciphers (PRESENT, SKINNY-64 and GIFT) are
shown in Table 3.

As for the size of the SBox, we decided to choose 4-bit. Although there
are better (in terms of DFA security) 8-bit SBoxes (see Table 1), we chose the
4-bit SBoxes for the following main reasons: (1) to lower the cost (similar to
GIFT [11]), (2) making the MILP modelling (described in Section 7) more efficient
as generating the same for 8-bit SBoxes could be costly [41].

Table 3: Properties of the DEFAULT (LS, Non-LS), PRESENT, SKINNY-64 and GIFT 4-bit
SBoxes. DBN is differential branch number, LBN is linear branch number, LS are the
linear structures, DU is the differential uniformity, AD is the algebraic degree of the
coordinate functions and NL is the non-linearity.

DBN LBN LS DU
AD

NL
max min

DEFAULT LS 037ED4A9CF18B265 3 3 0, 6, 9, f 16 2 1 0

DEFAULT Non-LS 196F7C82AED043B5 2 2 0 8 3 2 4

PRESENT [16] C56B90AD3EF84712 3 2 0 4 3 2 4

SKINNY-64 [13] C6901A2B385D4E7F 2 2 0 4 3 2 4

GIFT [11] 1A4C6F392DB7508E 2 2 0 6 3 2 4

LS SBox. From the list of 302 affine equivalence (AE) classes of SBoxes by
De Cannière [19], there are 10 AE classes with non-zero linear structures. Among
these 10 AE classes, 8 of them (#293 — #300) have only one non-zero linear
structure, AE class #301 has three non-zero linear structures and the last AE
class #302 is fully linear (contains the identity permutation). To maximize the

14



number of linear structures and yet to use a non-linear permutation, we chose the
AE class #301 (the representative for this AE class in [19] is 1032456789ABCDEF).

Within this class, we chose an SBox with the following criteria (HW denoting
Hamming weight):
1. Both differential and linear branch number 3.
2. Zero diagonal in the DDT and LAT (except (0, 0)).
3. In the DDT, ∀δi ∈ F4

2 \ {0}, if (δi, δo) = 16, then HW (δi) ≥ 2, HW (δo) ≥ 2.
4. In the LAT, ∀αi ∈ F4

2 \ {0}, if (αi, αo) = 8, then HW (αi) +HW (αo) ≥ 4.

In other words, first we try to optimize the differential and linear diffusion
with branch number 3. Next, we avoid enabling 1-round iterative differential or
linear patterns (hence we look for empty diagonals). Then, for any probability
1 differential transition, we make sure that the input and output difference
Hamming weight is at least 2 (we could not find an SBox for which such transitions
necessarily happen with HW (δi) ≥ 3, or HW (δo) ≥ 3, or HW (δi)+HW (δo) ≥ 5).
Lastly, for any full linear transition, we select an SBox that will maximize the
Hamming weight of the input and output values. The two last criteria are
basically trying to maximize the number of active SBoxes before and after a
probability 1 differential or a full linear transition. In total, we found 240 SBoxes
candidates that satisfy our selection criteria and we ended up choosing SBox
037ED4A9CF18B265.

Any of these 240 SBoxes, combined with our DEFAULT-LAYER bit permutation,
ensures the following properties: for any 5-round differential characteristic,

(P1) there are at least 10 active SBoxes,
(P2) if there are exactly 10 active SBoxes, then each of these active SBoxes has

differential probability 2−1 (which totals to 2−10),
(P3) if there exists one active SBox with differential probability 1, then there are

at least 12 other active SBoxes with differential probability 2−1 each (which
totals to 2−12).

We give a general intuition on how the selection criteria facilitates these
properties (we actually do not really need to prove these properties, since we
will later be using automated tools to guarantee bounds on the differential
characteristics probability in Section 7). First, observe that all the 240 SBoxes
will ensure that ∀δ,∆ ∈ F4

2 \ {0},
(C1) if DDTS [δ,∆] > 0, then HW (δ) +HW (∆) ≥ 3,
(C2) if DDTS [δ,∆] = 16, then HW (δ) +HW (∆) ≥ 4,
(C3) if DDTS [δ,∆] = 16, then HW (δ) ≥ 2 and HW (∆) ≥ 2.

Then, from (C1) one can prove that there will be at least 10 active SBoxes
over 5 rounds (P1) (in Figure 2(a)), which is basically Theorem 1 in [16]. By (C2)
and the first case in the proof of Theorem 1 in [16], one can show that for such a
10-active SBoxes differential characteristic, none of these SBoxes (in Figure 2(a))
can have a differential probability 1 (P2). If there exists an SBox with differential
probability 1, again by (C1) and (C2), there are at least 13 active SBoxes (see
Figure 2(b)). Criterion (C3) enforces that only 1 of these 13 active SBoxes can
potentially have differential probability 1 (P3).

15



(a) 10 active SBoxes with dif-
ferential probability < 2−10

(b) 13 active SBoxes with dif-
ferential probability < 2−12

Fig. 2: 5-round differential characteristics (solid lines are active bits, white boxes are
active SBoxes and red box is SBox with differential probability 1)

From these properties, we can (conservatively) estimate that the probability of
any differential characteristic drops by at least a factor of 22 for every additional
round.

Non-LS SBox. For this SBox candidate, we focused on the linearity of the SBox
as linear attacks will be the most difficult part to protect. Among the 33 AE
classes with the lowest maximum linear bias 2−2, the AE classes #32 (represented
by C0A23547691B8DEF) and #33 (represented by D0A23547691BC8EF) have the
least number of non-zero entries in the LAT. Statistically speaking, this gives us
a higher chance of finding linear branch number 3 SBoxes. However, every 4× 4
SBox with linear branch number 3 has at least one non-trivial linear structure
(belonging to the AE classes #294, #297, #298, #300, #301, #302 of [19]).
Hence, we tried several of those SBoxes and obtained the corresponding linear
bias bounds using the automated technique described in Section 7. However, the
bounds we obtained were not good enough. Thus, our next strategy was to select
an SBox with the following linear properties:

1. ]{((αi, αo)) | HW (αi) = HW (αo) = 1, (αi, αo) 6= 0} = 1.

2. Zero diagonal in the LAT (except (0, 0)).

3. ]{((αi, αo)) | HW (αi) +HW (αo) = 3, (αi, αo) = ±4} = 13.

4. ]{((αi, αo)) | HW (αi) +HW (αo) = 3, (αi, αo) = ±2} = 6.

In other words, first we limit the number of Hamming weight 1→ 1 transitions
to 110. Next, we avoid having a 1-round iterative linear pattern. Lastly, we
minimize the number of possible Hamming weight 1→ 2 and 2→ 1 transitions.
This is to encourage faster and wider propagation of the linear trail. We finally
choose the SBox 196F7C82AED043B5 from the AE class #32.

We note that other considerations could be incorporated in addition to the
ones mentioned in this section, such as side-channel attacks resilient criteria [27],
but we believe this falls out of the scope of our research that tries to focus on
natural immunity to DFA.

10In [36], the authors show that, under their BOGI+ paradigm, when there are
at least 9 consecutive rounds, having only 1 Hamming weight 1 → 1 transition is a
sufficient condition to achieve a theoretic bound of at least 2 active SBoxes per round.

16



5.4 Unbiased Linear Structures

We need an extra security criterion: each bit of the linear structures of S as well
as S−1 must be unbiased. This is to avoid certain undesirable property of the
linear layer. If we assume that the linear structures for S are {0, 1, 2, 3}, the two
MSBs are always 0. One such SBox is 1032456789ABCDEF (the representative for
class #301 in [19]). It has the property that if the first two bits of its input are
known uniquely, then the first two bits of its output are also known uniquely.
The attacker may be able to leverage this property by attacking the penultimate
round of the cipher/protection layer, with attacking the last round. This issue
does not arise when each bit of the linear structures is unbiased (in which case
the attacker is not able to find any bit uniquely). In our chosen LS SBox, the
linear structures being {0, 6, 9, f}, and that of the inverse SBox being {0, 5, a, f},
this criterion is indeed satisfied.

6 Security Analysis

Conducting security analysis on DEFAULT is quite different from conducting secu-
rity analysis on block ciphers, despite having similar structure. This is because
DEFAULT-LAYER is built on top of an existing (and presumably secure against clas-
sical attacks) cipher and only assists in providing the desired security against DFA,
while DEFAULT-CORE is used in conjunction with two instances of DEFAULT-LAYER.
Although classical attacks do not pose any threat against DEFAULT-LAYER, some
cryptanalytic techniques could still be applied to DEFAULT through DFA. For
instance, suppose an attacker injects faults to the output of the main cipher, this
difference will only propagate through the DEFAULT-LAYER and not the entire ci-
pher, creating some form of differential attack on the DEFAULT-LAYER itself. Thus,
we need to ensure that DEFAULT-LAYER is not vulnerable to classical attacks that
could bypass the main cipher using DFA and target DEFAULT-LAYER directly. The
desired security for the classical attacks are summarized in Table 4 and security
evaluation against such attacks are done subsequently in Section 6.2. Detailed
discussion on the classical attacks are omitted here for brevity, but interested
readers may find it for example in [11, Section 4]. It may be noted that more
precise differential and linear bounds are presented in Section 7. The security
against DFA and side-channel attacks are evaluated subsequently (Section 6.1
and Section 6.3, respectively).

Table 4: Security requirement of DEFAULT against classical attacks

DEFAULT-LAYER DEFAULT-CORE

Differential, Algebraic 264 Search Complexity –

Integral, Impossible Diff. – No Distinguisher

Linear 232 Search Complexity 264 Search Complexity

Invariant Subspace – 2128 Search Complexity

As DEFAULT comprises of DEFAULT-CORE and (two layers of) DEFAULT-LAYER,
we specify which component we are analyzing and for which cryptanalysis tech-
nique. The analysis is summarized in Table 5.

17



Table 5: Security analysis of DEFAULT

DEFAULT-LAYER

(28-rounds)

DEFAULT-CORE

(24-rounds)

DEFAULT

(80-rounds)
Ref.

Differential Fault Attacks (64-bit Security)

On DEFAULT-LAYER 264 Bypassed 264

Sec. 6.1On DEFAULT-CORE ≥ 264 Negligible > 264

Double Fault Not applicable

Classical Cryptanalysis (128-bit Security)

Differential ≥ 264 > 224 (Trivial) > 2128

Sec. 6.2

Linear > 240 > 2128 > 2128

Impossible Diff. Main cipher Not vulnerable Not vulnerable

Invariant Subspace Main cipher Not vulnerable Not vulnerable

Algebraic Main cipher Not vulnerable Not vulnerable

6.1 Differential Fault Attacks

First, we look at DFA on DEFAULT-LAYER, when it is used as a protection layer
for other block ciphers. Next, we look at DFA on DEFAULT-CORE or other block
ciphers with DEFAULT-LAYER as protection layer.

DFA on DEFAULT-LAYER. Our chosen SBox has 3 non-trivial linear structures:
6, 9, f. Hence, for any input α ∈ {0, . . . , f}, the attacker cannot uniquely identify
which among {α, α⊕ 6, α⊕ 9, α⊕ f} is the actual input to the SBox. In other
words, the attacker will be able to identify one partition of the input: {{0, 6, 9, f},
{1, 7, 8, e}, {2, 4, b, d}, {3, 5, a, c}}, but will not be able to identify which par-
ticular input is correct. Similarly for the output of the SBox, due to the linear
structures, the attacker will only able to identify the partition to be one of these
{{0, 5, a, f}, {1, 4, b, e}, {2, 7, 8, d}, {3, 6, 9, c}} and not a particular output.

In the last round attack of DEFAULT-LAYER, the attacker has to inject faults
and analyze each of the 32 SBoxes independently. That means, for each SBox
he has to do a brute-force search of 4, leading to a total search complexity of
432 = 264.

DFA on DEFAULT-CORE or other block ciphers with DEFAULT-LAYER. Al-
ternatively, the adversary could still try to launch DFA on the main cipher by
injecting fault(s) to the last round of it and hope that it will propagate nicely
through DEFAULT-LAYER. If so, it boils down to whether the adversary can dis-
tinguish the output difference from the main cipher with less than 264 effort,
otherwise it is better off attacking DEFAULT-LAYER directly (264). Using MILP,
we found that the maximum differential probability of DEFAULT-LAYER is upper
bounded by 2−64 (details in Section 7.2). Thus, the attack complexity is too high
and this alternative strategy is not worthwhile.

Information-combining DFA on DEFAULT-LAYER. An attacker could apply
DFA on multiple rounds and hope to combine these learnt information to further
reduce the number of key candidates. For instance, targeting the last two rounds

18



of DEFAULT, or the first and last round of DEFAULT through DFA on both the
encryption and decryption processes. Such a possibility was first identified for a
previous version of DEFAULT by a reviewer from CRYPTO 2021 and ASIACRYPT
2021 and later confirmed independently by a team of researchers [31]. In order to
avoid this attack vector, we have designed a special key schedule for DEFAULT.

First, assume an idealized DEFAULT-LAYER variant where all round keys
are independent, which can basically be seen as defining a new component
DEFAULT-LAYER with a much larger key input size (128-bit of key material per
round). In this variant, since a fresh new round key is added at every round, the
information-combining attack becomes useless for the attacker.

The goal of the key schedule in DEFAULT is therefore to mimic the behaviour of
this idealized variant for a reasonable performance cost. Namely, we use 4 entire
DEFAULT rounds to generate the next round key, which is chosen to ensure full
diffusion. Then, we limit the number of distinct round keys to 4 (for performance),
since our analysis shows that combining information throughout 4 rounds is very
difficult.

We note that more conservative options could be selected for the key schedule,
with an obvious performance cost during the round key precomputation: for
example one could have 8 distinct rounds keys (instead of 4) and/or use more
entire DEFAULT rounds to generate the next round key.

6.2 Classical Cryptanalysis

In the following, we apply classical cryptanalysis techniques on DEFAULT. Recall
that DEFAULT has a sandwich structure with two DEFAULT-LAYER layers and a
DEFAULT-CORE layer in the middle. For most of the cryptanalysis considered, it
will be sufficient to show that DEFAULT-CORE is resistant against the attack.

Differential Cryptanalysis. Using MILP, we found that the maximum dif-
ferential probability of DEFAULT-LAYER is upper bounded by 2−64 (details in
Section 7.2). Since there are two layers of DEFAULT-LAYER, we already show
that there is no meaningful differential characteristic tracing across two layers of
DEFAULT with differential probability more than 2−128. In addition, DEFAULT-CORE
has 24 rounds and any differential characteristic will involve at least 1 active
SBox per round. Thus, this trivially adds an additional factor of 2−24 to any
differential characteristic. In summary, DEFAULT is not susceptible to differential
cryptanalysis.

Linear Cryptanalysis. Using MILP, we found that the absolute linear bias of
11-round DEFAULT-CORE is upper bounded by 2−33 (details in Section 7.2). Thus,
with a simple concatenation of two 11-round linear characteristics, we can show
that there is no meaningful 22-round linear characteristic in DEFAULT-CORE. In
addition, there are two layers of DEFAULT-LAYER, which will only make the linear
cryptanalysis even harder to realise (even though linear structures are present in
the SBox). In summary, DEFAULT is not susceptible to linear cryptanalysis.

Impossible Differential Attacks. We considered the possible effect of impos-
sible differential attacks against DEFAULT-CORE. As proposed in [37], we generated
MILP instances (Section 7) for all

(
128
1

)
×
(
128
1

)
= 16384 differentials with both the

19



input and output differences of Hamming weight 1 on DEFAULT-CORE and check
if any of these instances were infeasible, which implies impossible differential. For
the 7th round, we observe all instances are feasible (i.e., no impossible differential
exists). Therefore, following the philosophy of [37], we believe the full-round
DEFAULT-CORE is secure against impossible differential attacks.

Invariant Subspace Attacks. In order to simplify the analysis of invariant
subspace attacks, we assume that any (affine) subspaces are preserved over the
entire DEFAULT-LAYER, the PermBits and AddRoundConstants step. Thus, we
focus on subspace transition over the SubCells step in DEFAULT-CORE, namely
the non-LS SBoxes layer.

There is no dimension 3 (affine) subspace transition, and among the dimen-
sion 2 transitions most of them can only propagate up to 3 rounds, except
one: 5⊕ {0, 2, c, e} → 0⊕ {0, 2, c, e}. Notice that this affine subspace will be
preserved over the AddRoundKey step if each nibble of the round key belongs to
{5, 7, 9, b}.

Suppose each nibble of Ki belongs to {5, 7, 9, b}. During the key schedule
update (again we assume that the subspace is preserved over PermBits and
AddRoundConstants), we have (R′)4({5, 7, 9, b})→ {7, 4, d, 8}. Ki+1 will break
the subspace structure unless all nibbles of Ki are 5, resulting in all nibbles of Ki+1

to be 7. However in the next update, all nibbles of Ki+2 will be 4 6∈ {5, 7, 9, b}.
Thus, we believe that no (affine) subspace can be preserved for more than 3
rounds and DEFAULT is not vulnerable to invariant subspace attacks.

Algebraic Attacks. In order to evaluate the security of DEFAULT-CORE against
algebraic attacks, we checked its algebraic properties using Sage11. We are able
to represent DEFAULT-CORE as Boolean expressions up to 4-rounds. We have
observed that the minimum number of monomials is 11101, at least 97 variables
(out of 128) are involved and the minimum algebraic degree is 8. Furthermore,
computing bounds on the maximum algebraic degree for different number of
rounds according to the degree estimate given in [17], we can hope to reach
maximum degree 127 after 8 rounds.

Integral Attacks. Suppose an attacker repeats the encryption multiple times
and injects all possible differential fault values to a specific word in the output of
the main cipher. This is similar to collecting a set of inputs (more precisely the
output from the main cipher) with specific structure to launch an integral attack.
Such model is reported in [34] and [35, Chapter 6.3].

This model is a special case of DFA where all possible faults are considered.
Since the attacker does not get any extra information by using all possible faults,
DEFAULT-LAYER (and hence DEFAULT) is resistant against it.

As for DEFAULT-CORE, we could reuse some of the security analysis of GIFT-128
for our design. In particular, the designers of GIFT evaluated the longest integral
distinguisher for GIFT-128 using the (bit-based) division property [42] to be 11
rounds, and concluded that GIFT-128 is secure against integral attacks. Since

11http://www.sagemath.org/

20

http://www.sagemath.org/


DEFAULT-CORE has 28 rounds, we believe that DEFAULT-CORE is secure against
integral attacks.

Using the SOLVATORE tool [23], we could find a distinguisher for DEFAULT-LAYER
till 12 rounds. Beyond this, no solution is returned in a reasonable time.

6.3 Protection Against Side-Channel Attacks

In essence, DEFAULT-LAYER/DEFAULT is simply a bit permutation based SPN
block cipher and, as such, usual side-channels attacks might apply on it. Usual
countermeasures such as masking can of course be applied on DEFAULT.

We point out that protecting DEFAULT against side-channels attacks should
not make DFA easier. An additional feature of the DEFAULT-LAYER SBox is that
it has lower number of AND operations compared to the usual SBoxes used in
other cipher designs, hence making it easier to mask [29]. One might argue that
the large number of rounds of DEFAULT or DEFAULT-LAYER would be problematic,
but implementation trade-offs would partially avoid this issue (implementing 2 or
4 rounds per clock cycle would greatly improve the throughput while moderately
increase the area).

6.4 Comparison With CRAFT, FRIET and Duplicated Computation

As stated earlier, CRAFT, FRIET and duplication are the most relevant countermea-
sures when comparing with DEFAULT. Under a single fault adversary, duplication
and DEFAULT are all secure against DFA. CRAFT in itself does not protect against
DFA but is designed with a consideration to make it cost effective when integrat-
ing error detection codes. CRAFT only protects against faults that are detectable
by the deployed error detection code and remains vulnerable to faults outside
the detection capability. For an error detection codes with minimum distance
d (i.e. minimum distance between distinct codewords), CRAFT can detect faults
altering up to t(= d− 1) cells12 at once (within one cycle). Note that for low cost
equipment where injected faults are often random, the probability of getting a
fault which is beyond the detection limit of error detection code is non-negligible.
With precise fault injection equipment, an adversary could inject specific dif-
ference large enough (≥ t cells) to change the code to another valid code and
fool the error detection mechanism trivially. On the contrary, DEFAULT is not
bounded by any such t.

FRIET adopts a parity check code to detect a single-limb13 fault in the
computation. Similar to CRAFT, for faults that alter more than one limb are
beyond the detection limit. Again, DEFAULT is not bounded by any such limb.

Regarding duplicate faults, CRAFT claims no security. Duplicated computation
was demonstrated to be broken by injecting two identical faults in the redundant
execution using state of the art fault injection equipment [38]. DEFAULT is not
vulnerable to DFA under duplicate faults as it does not rely on redundancy.

12The “cell” is adopted from the CRAFT paper [14] referring to the word size.
13The “limb” refers to an array of bits within the internal state of FRIET

21



6.5 Other Fault Attacks

Although we do not claim security against attacks that uses analysis method 2, for
completeness we discuss the security of our design against some of such attacks.

Fault Altering Control/Algorithm Flow. Since our solution is at algorithm
level and does not rely on any engineering solutions, it is natural that our security
claim holds under the assumption of the correctness of our algorithm. Therefore,
we do not claim security against faults that alter the execution sequence of the
algorithm. An accomplished attacker could hypothetically skip the execution of
DEFAULT-LAYER completely with a control flow fault and can target the main
cipher with standard DFA.

Hypothetical Multiple Precision Fault Attacks. Consider a multiple pre-
cision fault attack where the adversary injects a fault to introduce a specific
difference just before an SBox and another difference right after the same SBox in
an attempt to precisely cancel the difference. When the cancellation is successful,
it will result in the same output as a fault-free execution, and the adversary can
obtain the possible solutions for that SBox. While this is not effective against our
LS SBoxes, it could still target the main cipher which typically does not have
any LS. Feasibility of such precise multiple faults have never been demonstrated.
In addition, this attack falls under analysis method 2 which is outside of our
fault model.

Precise Bit Flipping Attacks. A single bit flip on a specific bit, though much
harder to achieve, has been reported in practice by lasers [3]. Despite its precision,
bit precision DFA (equivalent to injecting a Hamming weight 1 difference) will
still be ineffective against our design. As described in Section 6.1, any input α
will still lead to multiple solutions thanks to our LS SBox.

Assume that the adversary can target the logic gate component of the SBox,
there could be a statistical attack, but again, we do not make claims against
attacks that fall under analysis method 2.

Other non-DFA models. The Safe Error Attack (SEA) [26, 43, 44] model
has been proposed which utilizes the cases where the faulty and non-faulty
outputs are the same. Among the SEA models, one particular model is known as
Ineffective Fault Attack (IFA) [18]. Another type of fault attack uses statistical
information on the output distribution as it has become biased because of fault
injection [32,45]. Such analysis often are based upon hostile fault models like stuck-
at, permanent or persistent faults which assume a stronger attacker, specially
stuck-at faults which are widely used in the fault analysis literature [21, 32].
Stuck-at faults in electronic devices are generally related to defects in devices
either at manufacturing or due to high-energy radiation in space electronics.
Injecting stuck-at fault intentionally for malicious purpose requires expensive
equipment like precise lasers, ion beams, etc. and thus considered under strong
adversary capability . In comparison, bit flips or random faults are relatively easier
to realise with simple fault injection equipment. A hybrid model – Statistical
Ineffective Fault Attack (SIFA) [21] is proposed. It relies on both ineffective
fault and statistical information of the computation. All these attacks exploit

22



information leakages from statistical biases under analysis method 2, which is
beyond our focus. If needed, specialized countermeasures can be used [5, 9].

7 Automated Bounds for Differential and Linear Attacks

In [30], the authors present a method to find optimal differential and linear
characteristics based on Mixed Integer Linear Programming (MILP), which is
then tuned to work with bit permutation based block ciphers in [41].

Indeed, our special SBox with linear structures has probability 1 differential
transitions (resp., ±1/2 linear bias). For the differential case, the above mentioned
approach will always yield an MEDP bound of εd = 1 (1 is raised to the power
of an integer), which naturally signifies the smallest possible protection against
differential attacks (the attack succeeds with only one chosen input difference
or two chosen inputs). In case of linear cryptanalysis, it can be shown that the
overall bias εl, considering only ±1/2 biases (and assuming mutual independence
of the biases), is 1/2. This is obtained by substituting εi = 1/2 ∀i in [40, Lemma
3.1]. Similar to the differential case, this also leads to the smallest protection
against linear attack (the attack succeeds with roughly 1/ε2l = 4 known inputs).
Naturally, we need to devise a way to count precisely the number of probability
1/2 differential transitions and ±1/4 linear biases.

To overcome this problem, we devise a new strategy which is inspired from
the concept of indicator constraint used in linear programming (also known as
the big M method), where a large constant M is chosen.

The details of our strategy and description of the MILP modeling can be
found in the long version of this article [8].

7.1 Optimizations

Using the idea described in previous section, we construct the MILP problems
and attempt to solve them using the Gurobi14 solver. Being inspired from [28], we
use redundancy in the MILP constraints. Using redundant constraints together
with the usual constraints does not change the problem description, but could
make the execution faster. As for the choice of the heuristics, we use the idea of
Convex Hull (CH) [41].

For the differential case, we use the complete set of the CH inequalities, while
for the linear case we use the greedy algorithm to select a subset of the complete
set of the CH inequalities. The details on generation of the CH inequalities and
the greedy algorithm can be found in [41]. We observe that using the heuristics
the solution time can be improved by almost a factor of 10 compared to the
respective cases where no heuristic was used. For more details on the heuristics,
refer to [4].

7.2 Results

For the LS SBox (used in DEFAULT-LAYER), the bounds obtained from the corre-
sponding MILP programs are: 2−4 at the 5th round for linear, and 2−20 at the
7th round for differential. This translates to around 28 computations for 5 rounds
against classical linear attacks and around 220 computations against differential

14https://www.gurobi.com/

23

https://www.gurobi.com/


attacks. Hence, we believe 28 rounds of DEFAULT-LAYER is enough to provide a
security level of 264 computations against classical differential attacks and of 232

computations against classical linear attacks.
As explained in Section 6.2, we only consider the security against the classical

linear attack against DEFAULT-CORE. For the non-LS SBox (used in DEFAULT-CORE)
196F7C82AED043B5, the bound obtained from the MILP program for the linear
case is 33.00 at the 11th round. Hence, the linear cryptanalysis security at
11 rounds of DEFAULT-CORE is around 266 computations. Hence, we conclude
DEFAULT ensures the required DFA security (of 264 computations) and also the
required classical security (of 2128 computations).

Table 6: Differential and linear bounds (in − log2 notation) for LS and non-LS SBoxes
(a) LS SBox: 037ED4A9CF18B265

Rounds 1 2 3 4 5 6 7

Diff. 0 0 2 6 10 15 20

Linear 0 0 0 1 4 - -

(b) Non-LS SBox: 196F7C82AED043B5

Rounds 1 2 3 4 5 6 7 8 9 10 11

Linear 1 2 4 6 8 12 16 20 25 30 33

More results regarding this can be found in Table 6 (Table 6(a) for differential
and linear bounds for the LS SBox 037ED4A9CF18B265 and Table 6(b) for linear
bounds for the non-LS SBox 196F7C82AED043B5), as obtained from the MILP
instances. Those results are obtained from a workstation with 16× Intel Xeon
E7-8880 physical cores (shared among multiple users), running Gurobi 8.1 on
64-bit Ubuntu 18.04. Due to the time taken by the solver, it would be difficult to
compute the bounds beyond the ones given in Table 6, at least with the current
modelling (and with our computing resource).

8 Performance

In this part we state benchmarks for hardware and software implementations
of DEFAULT. Comparison is done with GIFT-128 and a duplication-protected
GIFT-128 which runs the same computation twice (in space or time) and com-
pares the output. The output is released only if both computations produce same
ciphertext, otherwise it is suppressed. This is the so-called detective counter-
measure [10]. As a side note, it can be mentioned that the current academic
researches have drifted away from the simple detective countermeasure towards
more sophisticated error detection code-based or infection-based countermeasures,
which would incur higher overheads. If such a sophisticated countermeasure is
taken into account, DEFAULT provides much better performance.

8.1 Hardware Benchmark

The area and throughput for DEFAULT, GIFT-128 and AES are given in Table 7.
We also provide the same for GIFT-128 and AES when protected with spatial
or temporal duplication, or with DEFAULT-LAYER. The code is written in Ver-
ilog, and synthesized on Synopsys Design Compiler J-2019 on the TSMC 65nm
standard cell library using compile ultra. The area is given in gate equiva-
lents. The throughput is computed for 2 GHz clock frequency. We assume the
round keys are precomputed for all implementations. The implementations of

24



DEFAULT and the protected ciphers are available online15. For GIFT-128 with
DEFAULT-LAYER, we implemented two versions. The first (v1) is a simple com-
bination of DEFAULT-LAYER with main cipher, while the second one (v2) takes
advantage of the structural similarities between GIFT-128 and DEFAULT-LAYER.
For AES, we noticed that the area required to implement DEFAULT-LAYER is small
compared to the size of the AES circuit. Besides, the AES circuit is the bottleneck
for clock frequency. Hence, we experimented with 3 different architectures for
DEFAULT-LAYER i.e. one round (×1), two round (×2) and four rounds (×4) un-
rolled per clock cycle. In order to put our results into perspective, we implemented
two versions of the simple duplication countermeasure for AES and GIFT-128.
The first version is temporal duplication, where the cipher is implemented once
and called twice, then the outputs are compared. The second version is spatial
duplication, where two instances of cipher are computed in parallel followed by
final comparison.

Table 7: ASIC Synthesis Results on the TSMC 65nm library.

Design
Area

Cycles
Throughput

(GE) (Mbps)

DEFAULT-LAYER 1786 28 9143
DEFAULT 2377 80 3200

GIFT-128 + DEFAULT-LAYER (v1/v2) 2410 96 2667
GIFT-128 1584 40 6400
GIFT-128 temporal duplication 2608 81 3160
GIFT-128 spatial duplication 3680 41 6244

AES + DEFAULT-LAYER (×1) 15692 67 3821
AES + DEFAULT-LAYER (×2) 16861 39 6564
AES + DEFAULT-LAYER (×4) 18889 25 10240
AES 14451 11 23273
AES temporal duplication 15475 23 11130
AES spatial duplication 29414 12 21333

Our results show that for GIFT-128, the area needed to add the DEFAULT-LAYER
is small, where the area needed for the full design is similar to that of DEFAULT,
while the throughput drops by a factor of 2.4×. The area of our design is sig-
nificantly smaller than both types of duplication. This takes advantage of the
similarities between GIFT-128 and DEFAULT, where they share the linear layer
and storage, while differing in only the sbox.

For AES, the cost for adding DEFAULT-LAYER (×1) to AES is also small,
while the DEFAULT-LAYER (×4) architecture leads to the highest throughput.
Unlike GIFT-128, the differences between AES and DEFAULT-LAYER lead to a
smaller advantage over duplication. Temporal duplication behaves better than
AES +DEFAULT-LAYER, while spatial duplication have much higher throughput
but at the cost 55% larger area. While the AES duplication countermeasure is
competitive in terms of performance, the drawbacks of simple duplications were

15https://github.com/mustafa-khairallah/default

25

https://github.com/mustafa-khairallah/default


discussed in details in Section 6.4, which we believe justifies the cost of our
countermeasure.

We have also synthesized our implementations for the Xilinx Kintex 7 FPGA.
We fixed the clock frequency to 200 MHz. Due to the nature of FPGA look-up
tables (LUTs), they are sometimes under-utilized. This makes it possible to add
extra functionality or extra flip-flops to the design for almost no cost. The results
are given in Table 8. Our results show that the DEFAULT-LAYER can be added to
GIFT-128 for no extra LUTs or flip-flops. The throughput drops by a factor of
2.4×. Both types of duplication lead to drop in throughput and increase in both
LUTs and flip-flops.

Table 8: FPGA Synthesis Results on Kintex 7.

Design Cycles LUT FF
Throughput

(Mbps)

DEFAULT-LAYER 28 256 128 914.3
DEFAULT 80 256 128 320.0

GIFT-128 + DEFAULT-LAYER v1 96 358 128 266.7
GIFT-128 + DEFAULT-LAYER v2 96 256 128 266.7
GIFT-128 40 256 128 640.0
GIFT-128 temporal duplication 81 384 256 316.0
GIFT-128 spatial duplication 41 640 256 624.4

AES + DEFAULT-LAYER (×1) 67 918 128 382.1
AES + DEFAULT-LAYER (×2) 39 964 128 656.4
AES + DEFAULT-LAYER (×4) 25 1204 128 1024.0
AES 11 528 128 2327.3
AES temporal duplication 23 656 256 1113.0
AES spatial duplication 12 1184 256 2133.3

In the case of duplication for AES, the ×1, ×2 and ×4 unrolled architectures of
DEFAULT-LAYER have larger overhead compared to duplication. While duplication
is about twice as efficient as our solution when it comes to AES, this is only specific
to AES as its base line cost is relatively reduced on FPGAs, taking advantage of
the large LUTs available. Moreover, the security features of DEFAULT compared
to duplication still makes it interesting for AES on FPGAs.

8.2 Software Benchmark

The software benchmarks for GIFT-128, duplicated GIFT-128 (in time) and
DEFAULT are given in Table 9. The relative overheads compared to GIFT-128 are
shown within parenthesis. The clock cycles were measured by utilizing time()

function from time.h library in C, by averaging over multiple executions. Program
was running on a single core. Compiler optimizations were disabled to produce
a consistent result. Note that the main purpose of this benchmark is to show
the relative performance compared to GIFT in the same setting. It can be seen
that the code size for DEFAULT is slightly more compared to duplicated GIFT-128,
but at the same time DEFAULT is faster. We would also like to note that a new
efficient software representation of GIFT was published recently [1], called the
fixslicing technique, drastically reducing the cycles needed for encryption on ARM

26



Cortex-M family of microcontrollers. The fixsliced implementation of DEFAULT
would have very similar per-round performances as GIFT-128, as the permutation
is the same (which is what the fixslicing technique is trying to optimize), while
the Sboxes have similar cost. Overall, we expect the overheads to be similar as it
scales accordingly to the number of rounds. Generally, this scaling would apply
to other optimizations as well.

Table 9: Software benchmarking for DEFAULT and GIFT-128 with/without duplication
Intel Xeon Silver 4215 Arm Cortex A-53

Speed
(Cycles/Bytes)

GIFT-128 9.7 (1.000×) 61.3 (1.000×)
GIFT-128 Duplicated 21.9 (2.258×) 124.4 (2.029×)
DEFAULT 19.2 (1.979×) 121.9 (1.989×)

Code Size
(Bytes)

GIFT-128 6624 (1.000×) 5593 (1.000×)
GIFT-128 Duplicated 6859 (1.035×) 5818 (1.040×)
DEFAULT 8024 (1.211×) 7085 (1.267×)

9 Conclusion and Future Works

In this paper, we presented the first theoretical study on SBoxes with respect to
their properties against differential fault attacks. We observe that DFA works as
a simplified model of differential attacks, yet the properties of an SBox which
makes DFA harder, will make DA easier, and vice-versa. Our findings enabled us
to propose the first cipher-level countermeasure against DFA. Our construction
does not incur too much overhead and is competitive with state-of-the-art in
terms of performances, while protecting against a larger spectrum of faults. The
core idea is to use a special SBox with linear structures, so that when trying all
possible fault values, the attacker is not able to narrow down the search space
below square root bound. This work opens up a new paradigm of symmetric-key
cipher design, by studying SBoxes with LS, which has not been explored much
yet.

Below we summarize the advantages and limitations of our proposal.

+ First cipher-level protection. This solves the concern raised against ex-
isting DFA countermeasures (Section 2.2). In particular, we remove the DFA
protection from the hand of the cipher implementer to the cipher designer.

+ Scalable to (almost) all symmetric-key primitives as an ad-hoc
layer. Using DEFAULT-LAYER, the basic concept we propose can be scaled to
ensure a non-trivial DFA security on any symmetric-key primitive. We give a
proof of concept for 128-bit state size, but it can be easily adapted to handle
any state size that is multiple of 16 bits (by adjusting the number of rounds).

+ Possibility to get a non-trivial DFA security. The particular instantia-
tion we propose offers up to 2n/2 DFA security where n ≥ 128 is the state
size of a block cipher (without jeopardizing its classical security). However,
this is not a maximum limit as can be seen from Table 1. Note that, attack
complexity of 2n/2 can be considered impractical for fault attacks.

+ Protected against duplicate faults. DEFAULT is not vulnerable to du-
plicate faults, unlike duplication based countermeasure. This remains true

27



regardless of the number of faults, unlike some error detection based protec-
tion where faults are not detected beyond a certain coverage.

+ Extension to any FA that uses differential analysis method. The use
of LS Sboxes increases the number of solutions for any given differential,
which makes any attack under analysis method 1 harder.

+ No need for external randomness/ protected device. The commonly
referred infective countermeasure [10] uses an external source of randomness.
For the protocol level countermeasures, such as [7], a part of the device is
assumed to be off limit to the attacker due some device level protection.
In our case, there is neither a need for an external source of entropy nor a
specially protected device.

− Not full DFA security. It is technically possible to achieve almost full DFA
security (such as 2112 for a 128-bit state, see Table 1). However, it does not
seem possible to achieve a full state-size DFA security by this methodology.

We believe our work opens up a new research direction for ciphers that are
resilient against fault attacks, here are a few potential open problems that would
be interesting to explore in the future. One can look for a self-inverse SBox that
fits our criteria to reduce the hardware cost when both the layer and its inverse
are implemented in the same circuit. As the LS SBox has fewer AND operations,
future ciphers could be designed while leveraging this. Finally, a solution that
would combine fault protection with side-channel resistance would be extremely
valuable. On the attack side, it would be interesting to study how far one could
go with a combined side-channel analysis/DFA against DEFAULT.

Acknowledgments

We would like to thank the anonymous referees for their helpful comments,
especially with regards to information combining attacks.

References

1. Adomnicai, A., Najm, Z., Peyrin, T.: Fixslicing: A New GIFT Representation.
IACR Cryptology ePrint Archive 2020 (2020) 412

2. Aghaie, A., Moradi, A., Rasoolzadeh, S., Shahmirzadi, A.R., Schellenberg, F.,
Schneider, T.: Impeccable circuits. Cryptology ePrint Archive, Report 2018/203
(2018)

3. Agoyan, M., Dutertre, J.M., Mirbaha, A.P., Naccache, D., Ribotta, A.L., Tria, A.:
How to flip a bit? In: 2010 IEEE 16th International On-Line Testing Symposium,
IEEE (2010) 235–239

4. Baksi, A.: New insights on differential and linear bounds using mixed integer linear
programming (full version). Cryptology ePrint Archive, Report 2020/1414 (2020)

5. Baksi, A., Bhasin, S., Breier, J., Chattopadhyay, A., Kumar, V.B.Y.: Feeding Three
Birds With One Scone: A Generic Duplication Based Countermeasure To Fault
Attacks (Extended Version). Cryptology ePrint Archive, Report 2020/1542 (2020)

6. Baksi, A., Bhasin, S., Breier, J., Jap, D., Saha, D.: Fault attacks in symmetric key
cryptosystems. Cryptology ePrint Archive, Report 2020/1267 (2020)

7. Baksi, A., Bhasin, S., Breier, J., Khairallah, M., Peyrin, T.: Protecting block ciphers
against differential fault attacks without re-keying (extended version). Cryptology
ePrint Archive, Report 2018/085 (2018)

28



8. Baksi, A., Bhasin, S., Breier, J., Peyrin, T., Sarkar, S., Sim, S.M.: DEFAULT:
Cipher Level Resistance Against Differential Fault Attack. Cryptology ePrint
Archive, Report 2021/712 (2021)

9. Baksi, A., Kumar, V.B.Y., Karmakar, B., Bhasin, S., Saha, D., Chattopadhyay, A.:
A Novel Duplication Based Countermeasure to Statistical Ineffective Fault analysis.
Information Security and Privacy - 25th Australasian Conference, ACISP (2020)

10. Baksi, A., Saha, D., Sarkar, S.: To infect or not to infect: a critical analysis of
infective countermeasures in fault attacks. J. Cryptogr. Eng. 10(4) (2020) 355–374

11. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
small present - towards reaching the limit of lightweight encryption. In: CHES
2017. (2017) 321–345

12. Barbu, G., Bettale, L., Castelnovi, L., Chabrier, T., Debande, N., Giraud, C.,
Reboud, N.: A high-order infective countermeasure framework. In: FDTC 2021.
(2021)

13. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: CRYPTO 2016. (2016) 123–153

14. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: Lightweight
Tweakable Block Cipher with Efficient Protection Against DFA Attacks. IACR
Trans. Symmetric Cryptol. 2019(1) (Mar. 2019) 5–45

15. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In Kaliski, BurtonS., J., ed.: CRYPTO ’97. Volume 1294 of LNCS. Springer (1997)
513–525

16. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
CHES. Volume 4727., Springer (2007) 450–466

17. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
keccak and Luffa. In Joux, A., ed.: FSE 2011. Volume 6733 of LNCS., Springer
(2011) 252–269

18. Clavier, C.: Secret external encodings do not prevent transient fault analysis. In:
CHES 2007. (2007) 181–194

19. De Cannière, C.: Analysis and Design of Symmetric Encryption Algorithms.
Katholieke Universiteit Leuven, Belgium (2007) PhD Thesis.

20. Diffie, W., (translators), G.L.: SMS4 Encryption Algorithm for Wireless Networks.
Cryptology ePrint Archive, Report 2008/329 (2008)

21. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(3) (2018) 547–572

22. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. CAESAR Final
Portfolio (2014) https://ascon.iaik.tugraz.at/.

23. Eskandari, Z., Kidmose, A.B., Kölbl, S., Tiessen, T.: Finding integral distinguishers
with ease. Cryptology ePrint Archive, Report 2018/688 (2018)

24. Guilley, S., Sauvage, L., Danger, J., Selmane, N.: Fault injection resilience. In:
FDTC 2010. (2010) 51–65

25. He, W., Breier, J., Bhasin, S., Miura, N., Nagata, M.: Ring oscillator under laser:
Potential of pll-based countermeasure against laser fault injection. In: FDTC 2016,
IEEE (2016) 102–113

26. Joye, M., Quisquater, J., Yen, S., Yung, M.: Observability analysis - detecting when
improved cryptosystems fail. In: CT-RSA 2002. (2002) 17–29

29

https://ascon.iaik.tugraz.at/


27. Lerman, L., Veshchikov, N., Picek, S., Markowitch, O.: On the construction of
side-channel attack resilient s-boxes. In Guilley, S., ed.: COSADE 2017. Volume
10348 of LNCS., Springer (2017) 102–119

28. Li, L., Wu, W., Zheng, Y., Zhang, L.: The Relationship between the Construction
and Solution of the MILP Models and Applications. Cryptology ePrint Archive,
Report 2019/049 (2019)

29. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer (2007)

30. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Inscrypt 2011. (2011) 57–76

31. Nageler, M., Dobraunig, C., Eichlseder, M.: Information-Combining Differential
Fault Attacks on DEFAULT (Draft). Personal Communication (September 2021)

32. Nahid Farhady Ghalaty, Bilgiday Yuce, P.S.: Analyzing the efficiency of biased-fault
based attacks. Cryptology ePrint Archive, Report 2015/663 (2015)

33. National Institute of Standards and Technology (NIST): ADVANCED ENCRYP-
TION STANDARD (AES) (2001)

34. Phan, R.C., Yen, S.: Amplifying side-channel attacks with techniques from block
cipher cryptanalysis. In: CARDIS 2006. (2006) 135–150

35. Sakiyama, K., Sasaki, Y., Li, Y.: Security of Block Ciphers - From Algorithm
Design to Hardware Implementation. Wiley (2015)

36. Sarkar, S., Sasaki, Y., Sim, S.M.: On the design of bit permutation based ciphers
- the interplay among s-box, bit permutation and key-addition. In: IWSEC 2020.
Volume 12231 of LNCS., Springer (2020) 3–22

37. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and
cryptanalysis aspects - revealing structural properties of several ciphers. In: EU-
ROCRYPT 2017. (2017) 185–215

38. Selmke, B., Heyszl, J., Sigl, G.: Attack on a DFA protected AES by simultaneous
laser fault injections. In: FDTC 2016. (2016) 36–46

39. Simon, T., Batina, L., Daemen, J., Grosso, V., Massolino, P.M.C., Papagiannopoulos,
K., Regazzoni, F., Samwel, N.: Friet: An authenticated encryption scheme with
built-in fault detection. In: EUROCRYPT 2020, Springer (2020)

40. Stinson, D.R.: Cryptography - theory and practice. Discrete mathematics and its
applications series. CRC Press (2006)

41. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation
and (related-key) differential characteristic search: Application to simon, present,
lblock, DES(L) and other bit-oriented block ciphers. In: ASIACRYPT 2014. (2014)
158–178

42. Todo, Y.: Structural evaluation by generalized integral property. In: EUROCRYPT
2015. (2015) 287–314

43. Yen, S., Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Computers 49(9) (2000) 967–970

44. Yen, S., Kim, S., Lim, S., Moon, S.: A countermeasure against one physical
cryptanalysis may benefit another attack. In: ICISC 2001. (2001) 414–427

45. Zhang, F., Lou, X., Zhao, X., Bhasin, S., He, W., Ding, R., Qureshi, S., Ren, K.:
Persistent fault analysis on block ciphers. IACR Trans. Cryptogr. Hardw. Embed.
Syst. (2018) 150–172

30


	DEFAULT: Cipher Level Resistance Against Differential Fault Attack

