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Abstract. We give a cryptographic analysis of the Bluetooth Secure
Connections Protocol Suite. Bluetooth supports several subprotocols,
such as Numeric Comparison, Passkey Entry, and Just Works, in or-
der to match the devices’ different input/output capabilities. Previous
analyses (e.g., Lindell, CT-RSA’09, or Troncoso and Hale, NDSS’21) of-
ten considered (and confirmed) the security of single subprotocols only.
Recent practically verified attacks, however, such as the Method Con-
fusion Attack (von Tschirschnitz et al., S&P 21), against Bluetooth’s
authentication and key secrecy property often exploit the bad interplay
of different subprotocols. Even worse, some of these attacks demonstrate
that one cannot prove the Bluetooth protocol suite to be a secure authen-
ticated key exchange protocol. We therefore aim at the best we can hope
for and show that the protocol still matches the common key secrecy
requirements of a key-exchange protocol if one assumes a trust-on-first-
use (TOFU) relationship. This means that the adversary needs to mount
an active attack during the initial connection, otherwise the subsequent
reconnections remain secure. Investigating the cryptographic strength of
the Bluetooth protocol, we also look into the privacy mechanism of ad-
dress randomization in Bluetooth (which is only available in the Low
Energy version). We show that the cryptography indeed provides a de-
cent level of address privacy, although this does not rule out identification
of devices via other means, such as physical characteristics.

1 Introduction

Bluetooth has become an omnipresent standard for short-range wireless com-
munication. It is used in billions of products today, from powerful devices like
computers and smartphones to more limited devices like headsets. The standard
is maintained by the Bluetooth Special Interest Group and its latest specification
of more than 3,000 pages describes version 5.2 [9].

The Bluetooth protocol comes in two major versions, the classical version
(BR/EDR, for basic rate/enhanced data rate) and the low-energy version (BLE).1

1 Strictly speaking, there is another mode, the AMP (Alternative MAC/PHY) alias
HS (high speed) mode, which is also associated to the classical version. We follow
the common terminology to call the classical Bluetooth protocol BR/EDR instead
of BR/EDR/AMP.



The BR/EDR variant is usually used for connections with continuous data
streams like headphones. In contrast, BLE is typically used when power con-
sumption is a concern and data is only transferred periodically, e.g., for fitness
trackers. The modes are not compatible but dual-mode devices are able to use
both technologies.

1.1 Connecting Securely with Bluetooth

To transfer data between two Bluetooth devices securely and bidirectionally,
they need to initially establish the link on a physical and logical level. If this has
happened, then both devices establish a cryptographic key, called the link key in
BR/EDR resp. long-term key in BLE. This key is used to derive a channel key
for communication following the link establishment and to authenticate devices
and derive a new channel key in later reconnections. In the latest version 5.2
of the standard [9], the strongest method to establish such a key is the Secure
Connections (for BR/EDR) resp. LE Secure Connections (for BLE). Previous
versions of (more or less secure) connection methods are nowadays called legacy
protocols.

We note that the main part of the Secure Connections protocol, so-called
Secure Simple Pairing (SSP), has been added to BR/EDR already with version
2.1. With version 4.1, the SSP protocol has been upgraded to the Secure Connec-
tions protocol, using FIPS-approved cryptographic algorithms. BLE has been
introduced in version 4.0, and has not inherited the protocol (and security) from
classical Bluetooth. Only since version 4.2 BLE supports the Secure Connec-
tions pairing. The main difference between the Secure Connections methods in
BR/EDR and BLE in terms of cryptographic operations is that Secure Connec-
tions for BR/EDR uses HMAC for message authentication and key derivation in
the key exchange part, whereas the LE version uses AES-CMAC. In the follow-
ing high-level discussion we thus lump both protocols together under the term
Secure Connections.

The Secure Connections protocol itself is a protocol family, all members shar-
ing an elliptic curve Diffie-Hellman key exchange with key confirmation. Only
the authentication stages differ, depending on the input/output capabilities of
the connecting devices. For example, some devices may be able to display num-
bers, some only allow for a yes/no confirmation, and some may not support
any interaction. Hence, there are four connection modes, also called association
models:

Numeric Comparison: The devices display a short 6-digit number which the
user should compare and confirm by pressing a button.

Passkey Entry: The user enters a 6-digit passkey on both devices (or, one
device displays the passkey and the user enters the value into the other
device).

Out-of-Band: Some device data is exchanged via an alternative channel, e.g.,
via a separate NFC connection between the two devices before the protocol
execution.
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Just Works: The devices connect without any further form of user involve-
ment.

The first three modes (NumCom, PasskeyEntry, and OOB) are referred to
as authenticated, whereas the JustWorks mode is called unauthenticated in
the Bluetooth standard [9].

1.2 A Short History of Attacks

The Bluetooth protocol family has been repeatedly shown to be vulnerable to
attacks. We only discuss here the most recent attacks, especially on the latest
standards, which are also most relevant for our result. One goal of the adversary
is to fool the authentication property of Bluetooth, ideally also allowing to learn
the session key between the devices.

As pointed out by Zhang et al. [27], for example, the PasskeyEntry method
is susceptible to man-in-the-middle attacks. It is based on the different in-
put/output capabilities of devices. In the attack, the user aims to connect a
KeyboardOnly device (in this case, a keyboard) to a DisplayOnly device (in
this case, a screen), allowing the attacker to connect its own keyboard to the
user’s screen, without being detected. This means that PasskeyEntry does not
allow to authenticate devices reliably.

With the Bluetooth Impersonation AttacksS (BIAS) Antonioli et al. [1] have
demonstrated that an adversary can enforce a reconnection for classic Bluetooth
to any of two parties sharing a link key, without the adversary actually knowing
the key. The attack exploits that legacy authentication of BR/EDR does not
enforce mutual authentication of partners and that the request to switch master
and slave role is not protected under the shared key. If this is case, then the
adversary can connect to any of the two parties by asking one to switch roles
and relaying the authentication information. For Secure Connections, the attack
works if the devices support downgrades to legacy security because the request
is not authenticated.

Another problem with the PasskeyEntry protocol has been pointed out by
Troncoso and Hale [23]. They discuss that the initiator- or responder-generated
passkey protocol allows a man-in-the-middle attacker to make two devices con-
nect with the help of the user, but such that the two devices are cryptographically
not partnered. For the user-generated PasskeyEntry case they discuss a “role
confusion” attack wherein both parties accept and believe to be the initiator of
the connection.

The recent paper of von Tschirschnitz et al. [24] introduced the Method Con-
fusion Attack, which allows the adversary to place itself in the middle between
two devices. The adversary establishes two connections with the devices by run-
ning the PasskeyEntry mode in one session and the NumCom mode in the
other one. Since it can ask the user in the first connection (PasskeyEntry
mode) to enter exactly the value used in the second connection (NumCom
mode), the user(s) will confirm both connections. Eventually, the devices are
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thus considered to be connected, although they are each paired with the adver-
sary. The attack is based on the fact that the passkeys both in NumCom and
PasskeyEntry use the same length and alphabet, making it impossible for the
user to distinguish the two modes.

Another active attack on the initial connection has been presented by Claverie
and Lopes-Esteve [12], called BlueMirror. In this attack, the adversary mounts
a man-in-the-middle attack on the passkey subprotocol, reflecting the data in
the execution with the initiator, and eventually making the responder believe to
communicate with the original initiator. Still, the adversary holds the key in the
execution with the responder.

The bad interplay of Bluetooth Classic and Bluetooth Low energy has been
exploited in the so-called BLUR attack [3]. If the devices establish a key in the
classic or in the low-energy mode, then they can convert it to another key for
the complementary mode (cross-transport key derivation), enabling a potential
switch to the other architecture later. In [3], however, it has been demonstrated
that an adversary can use this feature to overwrite the securely established key
by an unauthenticated just-works key via the other connection mode.

The lack of authentication of the negotiation data enabled the “Key Negotia-
tion of Bluetooth” (KNOB) attack [4,2] where the man-in-the-middle adversary
modifies the requested key length. It sets the entry to 1 byte (for session keys
in BR/EDR) resp. 7 bytes for long-term keys in BLE, making the devices use
weak keys that can be recovered by exhaustive search. This attack, as most of the
previously mentioned ones, has also been demonstrated in practical scenarios.

Another downgrade attack is the Bluetooth LE Spoofing Attack (BLESA),
described in [26]. The attack comes in two versions and has also been shown
feasible in practice. One attack version of BLESA is on reactive authentication
and lets the adversary make the partner device switch to an encryption-free
transfer in reconnections. The other version is against proactive authentication,
exploiting that some implementations do not correctly close connections when
being asked to downgrade the encryption level in reconnections. The former is a
shortcoming in the design of the protocol, the latter in the implementations.

We conclude this section by noting that, so far, the OOB mode has not dis-
played major vulnerabilities. But this may have to do with the fact that any
such attack, likewise any positive security result, would need to make additional
assumptions about the extra communication channel. Furthermore, this mode
seems to be also much less prominent than the other modes, as it requires addi-
tional communication means like NFC or optical components to scan QR codes.

1.3 A Short History of Analyses

Despite the attacks above, the literature also reveals a number of affirmative
security results. The mismatch to the above attacks often relies on the fact that
the attacks exploit vulnerabilities between different pairing modes (e.g., associ-
ating PasskeyEntry and NumCom in the Method Confusion Attack [24]), or
between the classic and low energy cross-modes (like the BLUR attack [3]), or
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forcing the devices to switch to weak legacy modes (like the BIAS attack [1]).
In contrast, most cryptographic analysis focus on a single mode only.

In [19] Lindell studies Bluetooth’s Numeric Comparison protocol as a key-
exchange protocol (in Bluetooth specification v2.1 but the cryptographic differ-
ences to the current version are minor). He shows that the NumCom protocol—
as a standalone protocol—is a secure (comparison-based) key exchange protocol
under the DDH assumption and further modest assumptions about the underly-
ing primitives. Noteworthy, the model somehow assumes that user confirmation
of the comparison value also authenticates the Bluetooth addresses, although
these data are transmitted unprotected over the network and are not displayed
to the user.

Sun and Sun [21] extended the result of Lindell to BR/EDR in version
v5.0, for NumCom and OOB as standalone protocols. They reach the same
conclusions in terms of security as [19] for these protocols. Yet, their security
model is more restrictive (e.g., the adversary is not allowed to communicate with
parties after the test query).

We have already mentioned the analysis of Troncoso and Hale [23] in the at-
tack section above. Noting the insecurities in the PasskeyEntry sub protocol,
they give a security proof for two modified versions of PasskeyEntry, also as
a standalone protocol. The first modification, secure hash modification, includes
more data in the hash computation. The other modification, the dual passkey
entry, presumes that both devices allow entering and displaying a passkey. Both
versions are shown to be secure under the DDH assumption, reasonable assump-
tions about the other cryptographic primitives, and a single-query version of the
PRF-ODH assumption [17].

1.4 Bluetooth as a TOFU Key Exchange Protocol

The starting point of our approach originates from the observation that known
attacks show Bluetooth, as a full protocol suite, does not provide authentication
of keys. There is no chance to show security in the common sense of authen-
ticated key exchange. This either leaves us with analyzing a modified protocol
(as in [23])—and strictly speaking thus not giving any security guarantees for
Bluetooth— or to switch to the best security claim “we can hope for”. We decided
for the latter.

We analyze Bluetooth as a trust-on-first-use (TOFU) authenticated key ex-
change protocol according to a BR-like security model. This means we assume
that the adversary is passive in the initial connection and can only mount active
attacks on devices that have been bonded before. Of course, the adversary may
on top bond arbitrarily with all the devices, but such interactions are, by def-
inition, not protected since no trust-relationship has been established. Besides
capturing all possible pairing methods simultaneously, we note that this also
extends previous analyses by the reconnection step.

While the guarantees as a TOFU protocol appear to be quite weak, super-
ficially viewed, it gives quite assuring guarantee for “minimalistic” modes of
operations. That is, suppose that one significantly reduces attack vectors by
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turning off the compatibility features: specifically, no legacy protocols but only
Secure Connections, sufficient key lengths, no cross-transport key derivation be-
tween BR/EDR and BLE. Then the TOFU result says that successful attacks
against session keys can only be mounted if the adversary is present when the
devices are initially connecting.

Our analyses assumes to be “close to the standard”. For instance, the security
analyses in [19,21,23] assume that the parties use a fresh Diffie-Hellman share in
each execution. The Bluetooth v5.2 standard, however, allows the Diffie-Hellman
key to be re-used in several executions [9, Vol 2, Part H, Section 5.1]:

“...a device should change its private key after every pairing (successful
or failed). Otherwise, it should change its private key whenever S + 3F
> 8, where S is the number of successful pairings and F the number of
failed attempts since the key was last changed.”

Note that this explicitly refers to the Elliptic Curve Diffie-Hellman (ECDH)
public-private key pair generated in the first step of the SSP protocol [9, Vol 2,
Part H, Section 7.1]. In particular, in [19] Lindell identifies partnered sessions
via the public Diffie-Hellman shares of the partners. Since two devices may reuse
their shares multiple times but choose different nonces in these initial connections
(and thus derive different keys), strictly speaking, Lindell’s result cannot even
guarantee basic correctness properties for the real Bluetooth protocol.

Another deviation from the standard is that the analyses in [19,21] assume
the entire Diffie-Hellman curve point enters the protocol computations, whereas
the standard only uses the x-coordinate of the elliptic curve point. Being aware
of the possibility to enable attacks by this mapping, such as the fixed coordinate
invalid curve attack [7], Troncoso and Hale [23] correctly use the x-coordinate
in some of the protocol steps.

1.5 Privacy

Bluetooth Low Energy supports a privacy mechanism that should help to dis-
guise the device’s Bluetooth address BD_ADDR during discovery. Essentially, in-
stead of sending the physical MAC address, BLE permits to send a randomized
address, either randomly generated only once during fabrication or each time
when powering up the device, or refreshed in short time intervals. The latter
type are called non-resolvable private random addresses. The protocol also has
an advanced feature called resolvable private random addresses where a previ-
ously bonded device can recognize the pseudorandom address and link it to a
physical address.

In contrast, classic Bluetooth does not support address randomization or any
other other privacy mechanism. According to [14], it was believed that track-
ing devices is hard, due to the larger number of communication channels and
highly frequent channel hopping. This belief has recently been shown to be false
in [14]. The authors demonstrate that one can track devices even over large
distances. Since the (de-)anonymization of BR/EDR devices escapes a crypto-
graphic treatment, we focus here on the privacy mechanisms in BLE.
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We are interested in the address randomization technique and privacy on a
protocol (i.e. transcript) level. Sun et al. [22] provide an analysis of the BLE
protocol, pointing out correctly that re-using the Diffie-Hellman key share in
Secure Connections allows linking executions of different devices. They also pro-
vide a cryptographic analysis of privacy guarantees on the protocol layer, under
the assumption that a fresh Diffie-Hellman value is used in each session. This
analysis, however, neglects that other connection data (such as transmitting the
Bluetooth address) may also allow the adversary to link executions of the same
party. In particular, they do not consider BLE’s address resolution technique
but focus on pairing stage only.

Of course, besides inspecting the payload, an attacker may be able to distin-
guish devices according to physical characteristics. This question recently gained
attention in light of contact tracing via Bluetooth. For instance, Ludant et al. [20]
showed that dual-mode devices supporting classic Bluetooth (sending the plain
address BD_ADDR) and BLE (potentially using randomized addresses) can be
cross-linked by their channel characteristics for each of the two services with
high accuracy. This implies that the privacy mechanism of BLE effectively be-
comes void because of the lack of privacy for classic Bluetooth. Countermeasures
may be to temporarily turn off either of the two unused protocols or to reduce
the transmission power in order to limit the attack radius.

Jouans et al. [18] demonstrated that the address randomization technique
itself can actually be used against privacy: the frequency with which devices
change their addresses can be used to differentiate them. Celosia and Cunche
[10] discuss that between 0.06% and 1.7% of devices using address random-
ization nonetheless transmit linkable cleartext names of devices. Another often
encountered entry in the advertisement data is the Universally Unique Identifier
(UUID) field to identify services and characteristics of the device. These 16, 32
or 128-bit values are usually available in the generic attribute profile (GATT)
of the device and can be transmitted as part of the advertisement. Following
similar attacks on Wi-Fi [25] and BLE [5], it has been pointed out in [11] that
the UUIDs can be used to fingerprint devices and overcome privacy techniques
with address randomization.

Our analysis does not aim to protect against attacks based on the physical
characteristics, but only to ensure that the cryptographic and privacy mecha-
nisms do not support privacy breaches. The other distinctive characteristics must
be taken care of by different means, e.g., using identical address randomization
intervals on each device, or switching off clear name advertisements. We show
that if the Diffie-Hellman values are chosen afresh in each execution, then the
cryptographic technique of address randomization indeed provides the decent
level of privacy.

2 Bluetooth

We start by giving an overview over the Bluetooth protocol along the standard
[9]. The Bluetooth protocol comes in several versions with minor differences.
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The most common protocols are Bluetooth Basic Rate/Enhances Data Rate
(BR/EDR), also called Bluetooth classic, and Low Energy (BLE). From a high-
level cryptographic view point, the only differences are that in the pairing step
BR/EDR uses HMAC-SHA256 to compute the link key whereas BLE uses
AES-CMAC for this computation. In the reconnection step, however, the two
protocols diverge in the way they derive the session keys. Finally, BLE supports
a privacy mechanism to hide the devices’ addresses. We discuss the latter in
Section 5.

We note that both protocols, BR/EDR and BLE, gradually converge to one
protocol, while previous versions (“legacy versions”) had major differences. For
instance, earlier versions of BLE did not use elliptic curve DH mechanisms. Both
subprotocols are incompatible from a technological viewpoint, e.g., they use a
different number of communication channels. Dual-mode devices, which support
both technologies simultaneously, are becoming more and more ubiquitous.

2.1 High-Level Protocol Flow

The flow of two devices connecting in both versions, BR/EDR and BLE, is
identical from an abstract viewpoint but differs in the technological aspects. We
give a description of the relevant protocol parts in Figure 1. Initially both devices
need to connect physically and logically. This is done in an inquiry or discovery
phase and involves the devices exchange their Bluetooth addresses. The address
itself is a 48-bit value. To distinguish cleartext addresses from randomized ones
in BLE, the devices uses the TxAdd and RxAdd (transmission/reception) flags
which we discuss in more detail when investigating the privacy feature.

Then the devices connect on the link layer and can start exchanging device-
specific information, especially the input/output capabilities. Here BR/EDR
and BLE use different commands for this, but we neglect these details here. In
this step, the devices also exchange information about the strength of the con-
nection (e.g., the SC flag in the feature vector in BLE to request Secure Con-
nections, see Section 5.1). We assume that both devices only allow the strongest
version called Secure Connections.

Based on the available IO capabilities, the devices decide on the subproto-
col for Secure Simple Pairing (SSP) protocol, also called the association model.
These IO capabilities determine how the device is able to interact with users. It
can be either of the following five options: DisplayOnly (no input capability, nu-
meric output), DisplayYesNo (yes/no input and numeric output), KeyboardOnly
(keyboard input, no output), NoInputNoOutput (neither output nor input ca-
pabilities, or yes/no input and no output). The BLE protocol also supports
KeyboardDisplay (keyboard input, numeric output). We note that one some-
times considers the exchange of the IO capabilities to be part of the SSP protocol,
but this distinction is irrelevant for us here. The combination of the capabilities
of the two devices determines the SSP subprotocol according to Table 1 (for
Secure Connections only).

We note that either device may set the out-of-band (OOB) flag as part of
the features. In BR/EDR this is part of the IOcap structure, whereas in BLE
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Alice Bob

. . . . . . . . . . . . . . . . . . . Inquiry/Page . . . . . . . . . . . . . . . . . . .

Inquiry/Page(BD_ADDRA, . . . )

Inquiry/Page(BD_ADDRB , . . . )

. . . . . . . . . . . . . . . . . . IO Capabilities . . . . . . . . . . . . . . . . . .

IOCapReq(IOcapA, OOBa, . . . )

IOCapRes(IOcapB, OOBb, . . . )

. . . . . . . . Secure Simple Pairing (BR/EDR) . . . . . . . .

LK LK

. . . . . . . . . .Authentication and Encryption . . . . . . . . . .

kAES kAES

Alice Bob

. . . . . . . . . . . . . . . . . . . . Discovery . . . . . . . . . . . . . . . . . . . .

Adv(TxAddA, RxAddA, BD_ADDRA, . . . )

Adv(TxAddB , RxAddB , BD_ADDRB , . . . )

. . . . . . . . . . . . Pairing Feature Extraction . . . . . . . . . . . .

PairingReq(IOcapA, OOBa, . . . )

PairingResp(IOcapB, OOBb, . . . )

. . . . . . . . . . .Secure Simple Pairing (BLE) . . . . . . . . . . .

LTK LTK

. . . . . . . . . . . . . . . . . . . .Encryption . . . . . . . . . . . . . . . . . . . .

kAES kAES

Fig. 1: Bluetooth Protocol Flow (left: BR/EDR, right: BLE)

this is a flag in the pairing features. If either devices sets the OOB flag, then
the parties use the OOB association model. We note that only one of the two
devices may set this flag, in which case only this device transmit out-of-band
information. The data in the OOB association model contains the Bluetooth
address of a device, commitments of the public keys, and random values that
are used in further execution.

Next, the two devices execute the SSP protocol in the corresponding asso-
ciation model to establish a shared key. The steps are very similar and only
differ in some cryptographic operations. We discuss the details in Section 2.2.
For BR/EDR the derived key is called a link key LK, for BLE it is called a
long-term key LTK. We note that both versions allow to convert the key for
future use in the other type of connection (cross-transport key derivation), but
we do not consider this conversion here. This concludes the initial connection
procedure.

The final step is to derive the key for the authenticated encryption scheme.
We note that this is also the protocol that is executed if the devices have bonded
and created a shared key (i.e. during reconnection), and in this case they skip
the SSP step. Here the two protocols differ, as BR/EDR involves an additional
authentication step. We discuss this part in more detail in Section 2.3.
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Table 1: Mapping of IO capabilities to association models. The last column and row
KeyboardDisplay is only available in BLE.

Initiator
Responder DisplayOnly DisplayYesNo KeyboardOnly NoInputNoOutput KeyboardDisplay

DisplayOnly JustWorks JustWorks PasskeyEntry JustWorks PasskeyEntry
DisplayYesNo JustWorks NumCom PasskeyEntry JustWorks NumCom
KeyboardOnly PasskeyEntry PasskeyEntry PasskeyEntry JustWorks PasskeyEntry
NoInputNoOutput JustWorks JustWorks JustWorks JustWorks JustWorks
KeyboardDisplay PasskeyEntry NumCom PasskeyEntry JustWorks NumCom

2.2 Secure Simple Pairing

We next describe Secure Simple Pairing and its four variants: JustWorks,
OOB, NumCom, and PasskeyEntry. At this point the parties have already
exchanged their 48-bit addresses A and B, their IOcap values (leading to the
agreement on the variant), and the elliptic curve to be used. In BR/EDR, if
both devices agree on the Secure Connections mode, then the devices use the
P-256 elliptic curve, else the P-192 curve. Both curves are FIPS-approved and
defined in the Bluetooth standard. In BLE, only P-256 elliptic curve is used (in
Secure Connections mode). For the elliptic curve operations we use the “simple”
multiplicative presentation. That is, we write ga for the a-fold application of the
group operation to the generator g specified in the standard, without giving any
further reference to the group. When processing elliptic curve points in HMAC
or CMAC in Authentication stage 1 of the SSP protocol, the standard uses the
x-coordinate, i.e., we write [ga]x for the x-coordinate of ga. This x-coordinate is
a 256-bit value for Secure Connections.

To capture both versions of the SSP protocol for BR/EDR and BLE si-
multaneously, we use abstract cryptographic procedures for computing the com-
mitment value (Com), hashing (Hash), MAC key computation (MACKey), MAC
computation (MAC), and link key/long-term key computation (KDF). Roughly,
for BR/EDR these algorithms are initialized by HMAC-SHA256 (except for
Hash, which uses SHA256 directly), and for BLE one uses AES-CMAC. The dif-
ferent implementations of the primitives for BR/EDR and BLE are displayed
in Table 2. For the MAC key computation we note that in BR/EDR the Diffie-
Hellman value, here denoted W , can be used directly as a key in the HMAC
computation MAC, since HMAC is able to process large keys. For AES-CMAC
in BLE, however, the MAC key is computed via CMAC(Salt,W ) for a constant
Salt and then used as a 128-bit key in the AES-CMAC computation of MAC.

Figure 2 shows the Numeric Comparison protocol with the abstract oper-
ations. The NumCom protocol starts with the devices exchanging the Diffie-
Hellman values, followed by Authentication stage 1 wherein the parties exchange
random nonces and involve the user to confirm a 6-digit number Va resp. Vb. For
this the device truncates the hash value over the (x-coordinates of the) public
key parts and the nonces to 32 bits and then converts this to a decimal number.
The last 6 digits correspond to the check values. It is followed by Authentication
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Table 2: Cryptographic operations of BR/EDR and BLE in SSP. Note that T =
CMAC(Salt, W ) for a fixed constant Salt in the standard; kIDBR/EDR = 0x62746C6B
is a 4-octet representing the ASCII string ’btlk’; kIDBLE = 0x62746C65 is a 4-octet
representing the ASCII string ’btle’; for an address A in BLE the address A′ is A
extended by another octet 0x01 for a random address and 0x00 for a public address;
the notation /2128 for BR/EDR means that one takes the leftmost 128 bits of the
SHA256 output.

Function BR/EDR BLE
Com(U, V, X, Y ) HMAC(X, U |V |Y )/2128 CMAC(X, U |V |Y )
Hash(U, V, X, Y ) SHA(U |V |X|Y ) CMAC(X, U |V |Y )
MACKey(W, N1, N2, A1, A2) W CMAC(T, 0x00|kIDBLE|N1|N2|A1|A2|0x0100)
MAC(W, N1, N2, R, I, A1, A2) HMAC(W, N1|N2|R|I|A1|A2)/2128 CMAC(W, N1|N2|I|A1′|A2′)
KDF(W, N1, N2, A1, A2) HMAC(W, N1|N2|kIDBR/EDR|A1|A2)/2128 CMAC(T, 0x01|kIDBLE|N1|N2|A1|A2|0x0100)

stage 2 in which the parties confirm the shared Diffie-Hellman key. Finally, both
parties compute the link key (in BR/EDR) resp. the long-term key (in BLE).

We give more details on the other association models in the full version.
These protocols only differ in the Authentication stage 1 of the SSP framework
which turns out to be irrelevant for our TOFU security analysis. We merely
remark that all association models, among others, exchange random nonces Na
and Nb. We note that, technically, BLE computes the MAC key and long-term
key in one step. We have moved the computation of the long-term key to the
end of the protocol in order to comply with the BR/EDR step for computing
the link key there.

2.3 Deriving the Encryption Key

The encryption key is derived differently in classic Bluetooth and in the Low
Energy version. In the classic setting it corresponds to a mutual challenge-
response authentication protocol for the link key, which also enters the deriva-
tion of the session key (usually called AES encryption key in the Bluetooth
context, although it serves as input to the AES-CCM authenticated encryption
scheme). That is, the parties exchange the 128-bit random values (AU_RAND)
for authentication, and each party computes the so-called 32-bit signed response
(SRES) for authentication. In BLE instead one simply derives the session key
from (concatenated) 64-bit nonces, called session key diversifier (SKD), without
further authentication.

BLE also uses AES-CCM for authenticated encryption of data. Both proce-
dures also produce some initial nonce offset of 64 bits for the encryption process,
denoted as ACO in BR/EDR and IV in BLE. In the latter case, the IV is given
by the concatenation of the two random 32-bit values IVm, IVs, chosen by either
party. From a security viewpoint, while ACO is not transmitted in clear, the IV
in BLE is known by the adversary.

The steps for BR/EDR are described in Table 3 and Figure 3, and for BLE in
Figure 4. We use the common notation of master and slave since the devices may
change roles for reconnections. We note that in BLE the key derivation step and
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Alice (initiator) Bob (responder)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Public Key Exchange (q order of elliptic curve) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a←$ Zq //or reuse a ga b←$ Zq //or reuse b

gb

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Authentication Stage 1 (NumCom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Na←$ {0, 1}128 Nb←$ {0, 1}128

ra← rb← 0128 ra← rb← 0128

Cb Cb← Com([gb]x, [ga]x, Nb, 0x00)

Na

Nb

check Cb

Va← Hash([ga]x, [gb]x, Na, Nb) mod 232 Vb← Hash([ga]x, [gb]x, Na, Nb) mod 232

Proceed if user confirms Va Proceed if user confirms Vb

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Authentication Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mk← MACKey(gab, Na, Nb, A, B) mk← MACKey(gab, Na, Nb, A, B)
Ea← MAC(mk, Na, Nb, rb, IOcapA, A, B) Eb← MAC(mk, Nb, Na, ra, IOcapB, B, A)

Ea check Ea

check Eb Eb

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Link Key/Long-Term Key Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L(T)K← KDF(gab, Na, Nb, A, B) L(T)K← KDF(gab, Na, Nb, A, B)

Fig. 2: Bluetooth Secure Simple Pairing in mode Numeric Comparison. The ses-
sion identifier, here and in all other association models, is given by sid =
(ga, gb, A, B, Na, Nb).

the data (SKDm,IVm resp. SKDs,IVs) are transmitted as part of an encryption
request and response message. In BR/EDR the sequence must be preceded by
an encryption_mode request and response. Noteworthy, in contrast to BLE,
where the key length is negotiated as part of the pairing feature extraction, the
BR/EDR protocol may negotiate the key length only here as well. We assume
in the following that only the maximal key size is enforced by the devices, in
order to prevent attacks like the KNOB attack [4,2].

3 Security Model

In this section we define our security model for TOFU key exchange protocols.
Given the history of successful attacks against Bluetooth, especially against au-
thentication, we aim at very basic security of key secrecy. Since Bluetooth does
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Table 3: Secure Authentication and Computation of Encryption Key in BR/EDR
Secure Connections. HMAC is HMAC with SHA256; kIDDev = 0x6274646B is a 4-octet
representing the ASCII string ’btdk’ (Bluetooth Device Key); kIDAES = 0x6274616B
is a 4-octet representing the ASCII string ’btak’ (Bluetooth AES Key); SRESm, SRESs
are 32 bits each, and ACO (Authentication Ciphering Offset) is 64 bits; the notation
/2128 means that one takes the leftmost 128 bits of the SHA256 output.

Value Function
Device Key dk← HMAC(LK, kIDDev|BD_ADDRA|BD_ADDRB)/2128

Confirmation SRESm|SRESs|ACO← HMAC(dk, AU_RANDm|AU_RANDs)/2128

AES Key kAES ← HMAC(LK, kIDAES|BD_ADDRA|BD_ADDRB |ACO)/2128

Master Slave

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dk← dk←
HMAC(LK,′ btdk′|BD_ADDRA|BD_ADDRB)/2128 HMAC(LK,′ btdk′|BD_ADDRA|BD_ADDRB)/2128

AU_RANDm←$ {0, 1}128 AU_RANDm AU_RANDs←$ {0, 1}128

AU_RANDs

SRESm|SRESs|ACO← SRESm|SRESs|ACO←
HMAC(dk, AU_RANDm|AU_RANDs)/2128 HMAC(dk, AU_RANDm|AU_RANDs)/2128

SRESm check SRESm

check SRESs SRESs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AES Key Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kAES ← kAES ←

HMAC(LK,′ btak′|BD_ADDRA|BD_ADDRB |ACO)/2128 HMAC(LK,′ btak′|BD_ADDRA|BD_ADDRB |ACO)/2128

(output also ACO as IV) (output also ACO as IV)

Fig. 3: Bluetooth BR/EDR Secure Authentication and Encryption Key
Derivation. The session identifier for this subprotocol is given by sid =
(AU_RANDm, AU_RANDs).

not achieve forward secrecy—if the link key resp. long-term key is available then
all previous connections become insecure—we do not incorporate this feature
into our model. We also note that it is convenient to model the initial connec-
tion step with the derivation of the link key resp. long-term key as a separate
session (creating an empty session key but initializing a permanent connection
key), even though usually computation of an encryption key would immediately
follow the initial connection. We let the adversary decide when and how often
devices reconnect.

The TOFU property indicates if the session key should be considered to
be secure. When initializing a new session we declare this session to be not
trustworthy, and only change this later if there is a honest partner session to
which the session here is connected to, i.e., if the adversary has been passive.
All subsequent reconnections of the session then inherit this flag. Overall, we
thus have three flags for keys: isTested for session keys which have been tested,
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Master Slave

SKDm←$ {0, 1}64, IVm←$ {0, 1}32 SKDs←$ {0, 1}64, IVs←$ {0, 1}32

SKDm, IVm

SKDs, IVs

kAES ← AES(LTK, SKDm|SKDs) kAES ← AES(LTK, SKDm|SKDs)
(output also IVm|IVs as IV) (output also IVm|IVs as IV)

Fig. 4: Bluetooth BLE Encryption Key Derivation. The session identifier is given as
sid = (SKDm, SKDs).

isRevealed for session keys which have been revealed, and isTOFU for session keys
which have been derived from a trustworthy initialization step. The latter flags
refine the usual freshness condition for session keys.

3.1 Attack Model

We give a game-based security model in the Bellare-Rogaway style [6]. We as-
sume that parties have some identity. For Bluetooth this will be the 48-bits
Bluetooth device address BD_ADDR of the device, which can be either public or
random. According to the Bluetooth protocol description we sometimes denote
the identities of connecting devices as A and B. Parties know their identity and
also know the intended partner’s id when the cryptographic protocol starts (via
device discovery). We note that Bluetooth addresses can be easily changed on a
device and are usually not authenticated.

As explained in the introduction we are interested in the trust-on-first-use
security of the protocol. We model this by declaring a trustworthy relationship
if two sessions of honest parties are partnered, indicating that the adversary has
been passive in the initial connection. From then on the (now active) adversary
can interact with either of the two parties. We note that the adversary can
still start initial connections with any party and actively participate in these
connection. We do not aim to protect the session keys in such connections but
since parties may re-use secret information like the Diffie-Hellman shares in
multiple executions, we need to account for such attack vectors.

For the re-usable Diffie-Hellman key we assume that each party i, at the
beginning of the game, is initialized with a key pair (ski, pki) ← KGen(1λ). To
model that the the key may or may not be used in several sessions we grant
the adversary access to a NextPK(i) oracle which renews the key pair of party
i. We note that the new key pair will only be used in future sessions, not in the
currently running ones. This means that each session is assigned a unique key
pair. This is modeled by having a counter value pkctri, initialized to 0, which is
incremented with each key rolling.

Sessions. A protocol session lbl = (i, k) is given by a pair consisting of the k-th
session in a protocol run of party with identity i. When the adversary initiates

14



a new session the game assigns the next available integer k. Each such session
lbl holds a set of entries:

– id is the identity i of the party.
– mode, either init or reconnect, describes if this is a new initial connection or

a reconnection.
– aux denotes some auxiliary information like the association model JustWorks,

PasskeyEntry, NumCom or OOB which should be used, and further data
like passkey ∈ {0, 1, . . . , 9}∗ ∪ {⊥} in the passkey entry mode or information
transmitted out of band.

– LinkKey describes the connection or link key (called link key in Bluetooth
Classic and long-term key in Bluetooth Low Energy) which is set during
the initial connection and used later to derive further session keys when
reconnecting. Initialized to ⊥.

– The variable state determines if the session is running, or has accepted or
rejected.

– The Boolean variable isTested determines if the session key has been tested
before. Initialized to false.

– The Boolean variable isRevealed defines if the session has been revealed.
Initialized to false.

– The Boolean variable isTOFU determines if the session key has been derived
following a trustworthy initial connection. Initialized to false.

– pkctr denotes the counter value of key pair used by party i in the session.
When performing protocol steps the party always uses the key pair identi-
fied by this counter value. But the party may actually use different keys in
different sessions concurrently.

– key ∈ {0, 1}∗ ∪ {⊥} describes the session key, initialized to ⊥. Note that for
a successful initial connection in Bluetooth, the session key coincides with
the connection key.

– sid ∈ {0, 1}∗∪{⊥} is the session identifier, the initial value is ⊥. The session
identifier is set only once during an execution.

A central property in key exchange protocols is to define when two sessions
belong to each other. We use here the common approach to say that two (dis-
tinct) sessions are partnered if they hold the same (non-trivial) session identifier:

Definition 1 (Partnered Sessions).We say that two sessions lbl, lbl′ are part-
nered if lbl 6= lbl′ and lbl.sid = lbl′.sid 6= ⊥.

Note that sid 6= ⊥ presumes that the session has accepted.

Adversarial Queries. We consider an active adversary A interacting with the
protocol. The adversary has an access to the following oracle queries:

– InitSession(i, [aux]) establishes a new session at party i (with number k). As-
signs the corresponding values to the entries in lbl = (i, k), i.e., lbl.id← i, the
mode is set to lbl.mode← init, and the optional parameter [aux], if present,
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is stored in lbl.aux (and otherwise this entry is set to ⊥). We set lbl.state←
running, lbl.pkctr← pkctri, as well as lbl.isTested, lbl.isRevealed, lbl.isTOFU←
false, since this establishes a new session in which the active adversary may
interact with party i. Return lbl.

– Reconnect(lbl, [aux]) checks if there exists a session with lbl.LinkKey 6= ⊥. If
so it establishes a new session lbl′ = (i, k′) via calling InitSession(i, [aux]) but
immediately overwrites lbl′.mode← reconnect. The new session inherits the
TOFU characteristic of the preceding session, that is, one sets lbl′.isTOFU←
lbl.isTOFU, and copies the previous connection key, lbl′.LinkKey← lbl.LinkKey.
Return lbl′.

– Send(lbl,m) sends a protocol message m to the session lbl. Returns ⊥ if
the session does not exist or is not established, and the party’s protocol
reply otherwise. When executing the command, the protocol party may set
lbl.sid or change the state lbl.state to accepted or rejected. If lbl.state turns
to accepted then check the following:
• If lbl.mode = init and there exists a partnered session lbl′ to lbl then set

lbl.isTOFU← true and lbl′.isTOFU← true.
• If there exists a partnered session lbl′ with lbl′.isTested = true then set

lbl.isTested← true. This mirrors the property for partnered sessions.
• If there exists a partnered session lbl′ with lbl′.isRevealed = true then set

lbl.isRevealed← true.
– NextPK(i) updates the key pair of party i. That is, increment pkctri and

compute a new key pair (ski[pkctri], pki[pkctri])← KGen(1λ).
– Reveal(lbl) returns the session key key of session lbl, or ⊥ if the session

does not exist, or if lbl.state 6= accepted, or if lbl.isRevealed = true. Sets
lbl.isRevealed← true and also lbl′.isRevealed← true for all partnered sessions
lbl′ with lbl′.sid = lbl.sid.

– Test(lbl) tests the session key key of the session lbl. If the session does not
exist, or lbl.isRevealed = true, or lbl.isTOFU = false, or key = ⊥, or lbl.state 6=
accepted, or lbl.isTested = true, then immediately returns ⊥. Else returns
either the real key key or a random string of length |key|, depending on the
random bit b chosen by the challenger C. Sets lbl.isTested ← true to make
sure that the adversary potentially does not get another random key when
testing this session again. For the same reason it also sets lbl′.isTested← true
for all partnered sessions lbl′ with lbl′.sid = lbl.sid.

When considering attacks against the Bluetooth protocol we assume a set I
of admissible identities. We denote by L the set of session labels lbl activated by
the adversary.

3.2 Security Properties

We state the two common security properties of key exchange protocols. One is
Match-security, covering basic functional guarantees such as honest executions
deriving the same session key, and that the partnering condition is not “too
loose”. The other one is key secrecy. We note that we often define the properties
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in the asymptotic sense for sake of simplicity. But we give concrete security
bounds when analyzing the Bluetooth security suite.

In the definition we give the adversary access to the same oracles as for key
secrecy, e.g., including a Test oracle, albeit not oracles may be relevant for the
attack. This is only to unify both attacks.

Match-Security. Intuitively, Match-security states that, if two sessions are part-
nered then they also hold the same session key (1), and at most two sessions are
partnered (2). For reconnections the former should only hold for sessions which
have been connected before and thus hold the same connection key. We therefore
stipulate that the LinkKey-entry in both executions must be identical if one of
the sessions is in mode mode = reconnect, and split the first requirement into
one for initial connections (if at least one party is in mode mode = init) and one
for reconnections.

Definition 2 (Match-Security). We say that a key exchange protocol Π pro-
vides Match-security if for any PPT adversary A and identity set I we have

AdvMatch
A,Π,I(λ) := Pr

[
ExpMatch

A,Π,I(λ) = 1
]

is negligible, where

ExpMatch
A,Π,I(λ)

b←$ {0, 1}
forall i ∈ I do

pkctri ← 0
(ski[0], pki[0])←$ KGen(1λ)

AInitSession,Reconnect,Send,NextPK,Reveal,Test({(i, pki[0])}i∈I)
return 1 if
∃ pairwise distinct lbl, lbl′, lbl′′ ∈ L :

(1a) lbl.sid = lbl′.sid 6= ⊥ and lbl.mode = init and lbl.key 6= lbl′.key
(1b) lbl.sid = lbl′.sid 6= ⊥ and lbl.mode = reconnect

and lbl.LinkKey = lbl′.LinkKey and lbl.key 6= lbl′.key
(2) lbl.sid = lbl′.sid = lbl′′.sid 6= ⊥

Key Secrecy. Next we define what it means that a session key, derived after
a trustworthy initialization step, remains secret. This should hold even if the
adversary mounts an active attack after the TOFU step. We note that we only
need to check eventually that no session has been tested and revealed (or its
partner session has been revealed). The TOFU property, that only keys which
have been created in a trustworthy way should be kept secret, is ensured by the
attack model (e.g., the Test oracle immediately rejects requests for session keys
with isTOFU = false).
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Definition 3 (Key Secrecy). We say that a key exchange protocol Π provides
Secrecy if for any PPT adversary A and identity set I we have

AdvSecrecyA,Π,I (λ) := Pr
[
ExpSecrecyA,Π,I (λ) = 1

]
− 1

2

is negligible, where

ExpSecrecyA,Π,I (λ)

b←$ {0, 1}
forall i ∈ I do

pkctri ← 0
(ski[0], pki[0])←$ KGen(1λ)

a←$AInitSession,Reconnect,Send,NextPK,Reveal,Test({(i, pki[0])}i∈I)
return 1 if
a = b and there are no sessions lbl, lbl′ ∈ L with

lbl.sid = lbl′.sid but lbl.isRevealed = false and lbl′.isTested = true

4 Security of Bluetooth

In this section we show that the Bluetooth protocol suite (for both BR/EDR and
BLE) provides a secure TOFU key exchange protocol. In the security statements
below we usually refer to the Bluetooth protocol Π, capturing either ΠBR/EDR or
ΠBLE, and only refine the concrete security bounds with respect to the specific
protocol. We note that we view the initial pairing phase as creating a permanent
key, equal to the link key resp. long-term key, but formally no session key. Session
keys are then derived via the corresponding mechanisms in the protocol. This
is valid since the model also allows empty session keys, which trivially satisfy
correctness and security properties.

4.1 Security Assumptions

For our security results we merely need two assumptions. One is the PRF-ODH
assumption to draw conclusions about the re-used Diffie-Hellman value in the
SSP protocol, and the other one is the key derivation in the reconnection steps.

PRF-ODH Assumption. The PRF-ODH assumption states that applying a pseu-
dorandom function PRF to a Diffie-Hellman key guv and an adversarial chosen
string x∗ looks random, even if the adversary learns related outputs of PRF.
The only restriction is that the adversary cannot ask for PRF(guv, x∗) directly.
We work here with the so-called mm setting [8] where the adversary can make
multiple queries for both Diffie-Hellman keys gu and gv. This is necessary since
either Bluetooth device may reuse the key in other sessions. We also assume that
the adversary has access to both Diffie-Hellman parts and oracles at the outset.
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Definition 4 (PRF-ODH Assumption). Let G be a cyclic group of prime
order q = q(λ) generated by g. Let PRF : G×{0, 1}∗ → {0, 1}∗ be a pseudorandom
function, taking a key k ∈ G and a string s as input, and producing a string
PRF(k, s) as output. For a given w ∈ Zq let ODHw : G×{0, 1}∗ → {0, 1}∗ be the
function which takes as input X ∈ G and string s and returns PRF(Xw, s).

We say that the PRF-ODH assumption holds relative to G if for any PPT
adversary A we have

AdvPRF-ODH
A,PRF,G (λ) := Pr

[
ExpPRF-ODH

A,PRF,G

]
− 1

2

is negligible, where
ExpPRF-ODH

A,PRF,G

u, v←$ Zq, b←$ {0, 1}
U ← gu, V ← gv

(x∗, st)←$AODHu(·,·),ODHv(·,·)(U, V )
y0 ← PRF(guv, x∗), y1 ← {0, 1}|y0|

a←$AODHu(·,·),ODHv(·,·)(st, V, yb)
return a = b

where we assume that A never makes a query (A, x) = (V, x∗) to oracle ODHu
resp. (B, x) = (U, x∗) to ODHv.

We note that for Bluetooth Classic the pseudorandom function PRF(W,x)
is HMAC(W,x). For BLE it is a nested CMAC computation, PRF(W,x) =
CMAC(CMAC(Salt,W ), x). It seems plausible to assume that the PRF-ODH
assumption holds for these instantiations. We also note that the PRF-ODH
assumption implicitly stipulates that the Diffie-Hellman problem is hard, i.e.,
small subgroup attacks such as in [7] must be prevented. This is usually done
by checking the validity of the curve points.

Pseudorandom Function. For the reconnection steps we require that the under-
lying function HMAC in BR/EDR and AES in BLE, from which the encryp-
tion keys are derived, behave like pseudorandom functions. For an adversary C
let AdvPRFC,PRF(λ) denote the common security advantage of C distinguishing a
PRF(k, ·) oracle from a random function oracle, the choice which oracle is used
made at a random.

4.2 Match Security

We first argue Match-security of the Bluetooth protocol. Recall that we set the
session identifiers to consist of sid = (ga, gb, A,B,Na,Nb) for the initial connec-
tion, and sid = (AU_RANDm,AU_RANDs,A,B) for BR/EDR reconnections
resp. sid = (SKDm,SKDs) for BLE. Also note that the parties may reuse their
Diffie-Hellman secret across multiple executions; the nonces, however, are fresh
128-bit values, chosen randomly in each session and present in each of the SSP
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subprotocols. Furthermore, recall that the initial connection derives an empty
session key and that the link key resp. long-term key is stored as the permanent
key in entry LinkKey of the session.

Proposition 1 (Match-Security). The Bluetooth protocol Π provides Match-
security. That is, for any adversary A calling at most qs sessions we have

AdvMatch
A,Π,I(λ) ≤ q2

s · 2−|nonce|,

where |nonce| = 128 for BR/EDR and |nonce| = 64 for BLE.

The reason for having different bounds stems from the distinct key derivation
when reconnecting. Both protocol versions use 128-bit nonces for initial connec-
tion, but only BR/EDR uses 128 bit values for reconnections; BLE instead uses
the 64-bit session key diversifiers.

Proof. For the first properties, (1a) and (1b), that partnered sessions have the
same session key, note that the link/long-term key in an initial connection is
computed as KDF(gab,Na,Nb, A,B) such that the output of the (determinis-
tic) key derivation matches for equal session identifiers. Also, session identifiers
for the initial connection and reconnections differ in length such that they can-
not match the other type (in both BR/EDR and BLE). For reconnections the
session identifiers (AU_RANDm,AU_RANDs, A,B) resp. (SKDm,SKDs) fully
specify the derived session keys together with the same link/long-term key, im-
plying a match as well.

For the second property note that if there were three sessions with the same
session identifier sid, then two of them must be in the role of Alice (or Bob).
If we have at most qs sessions in total, there are at most q2

s such pairs of two
Alice- or Bob-sessions. The honest party picks a fresh nonce Na resp. Nb in
each of these two executions (for initial connections in either mode), and fresh
values AU_RANDm,AU_RANDs for reconnections in BR/EDR resp. 64-bit
values SKDm,SKDs in BLE. it follows that each pairs yields a nonce collision
with probability at most 2−|nonce| = 2−128 in BR/EDR resp. ≤ 2−64 in BLE.
The overall threefold collision probability for session identifiers is thus at most
q2
s · 2−|nonce| as stated. ut

4.3 Key Secrecy

As it turns out, key secrecy does not depend on the Authentication stages 1 and
2 of the protocol. As such the analysis easily works for all modes of the protocol
simultaneously.

Proposition 2 (Key Secrecy). The Bluetooth protocol Π provides trust-on-
first-use Secrecy. That is, for any adversary A initiating at most qs sessions
there exists adversaries B and C (with roughly the same run time as A, and C
making at most qs oracle queries) such that

AdvSecrecyA,Π,I (λ) ≤ q3
s ·AdvPRF-ODH

B,PRF,G (λ) + qs ·AdvPRF
C,PRF′(λ) + q2

s · 2−|nonce|.
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where |nonce| = 128, and PRF in the PRF-ODH case is HMAC for BR/EDR
resp. CMAC(CMAC(Salt, ·), ·) for BLE, and PRF′ for reconnections is HMAC for
BR/EDR resp. AES for BLE.

We note that the reduction factor q3
s is indeed large but follows other analyses.

A factor qs comes from the multiple test queries which our model allows, and
the quadratic term q2

s from the need to guess the correct insertion points of
the Diffie-Hellman keys. For instance, Troncoso and Hale [23] also have the
quadratic loss factor for the model with a single-test query. Tighter security
bounds usually require other techniques as used in Bluetooth [16] or to use and
program a random oracle [13,15]. The latter may nonetheless be a viable way to
reduce the loss factor in Bluetooth as well. On the other hand, since Bluetooth is
a short-range technique mounting attacks with an extensive number of sessions
seems to be hard. Indeed, a factor q2

s would disappear if the adversary had to
announce the target in advance.

Proof. The proof proceeds via game hopping. We start with the original attack
on the Bluetooth protocol. Then we gradually change the game till we reach
the point where, independently of the challenge bit b, the adversary only gets to
see random keys. We denote by Pr[Gamej ] the probability that the adversary
wins in the corresponding game (over the guessing probability). In particular,
Pr[Game0 ] = ExpSecrecyA,Π,I (λ)− 1

2 .
Game 0. Is the original attack on the protocol. We assume in the following
without loss of generality that the adversary never reveals or tests an empty
session key of a session in mode mode = init.
Game 1. In Game1 we assume that there are no three sessions (in mode mode =
init) with the same session identifier.

It follows as in the case of Match-security that this happen with probability
at most q2

s ·2−|nonce|. Note that we here have |nonce| = 128 (and not 64) because
both versions, BR/EDR and BLE, use 128-bit nonces in the pairing step.
Game 2. In Game2 we replace the connection key LinkKey in each session lbl in
mode lbl.mode = init upon acceptance as follows: If there is a partnered session
lbl′ which has accepted before—there can be at most one by the previous game
hop—set lbl.LinkKey← lbl′.LinkKey. Else, replace lbl.LinkKey by a random string
of the same length.

Observe that the sessions where we replace keys are those which are con-
sidered to be trustworthy in the sense that they completed an initial execution
with a passive adversary (isTOFU = true). We note that the former step in the
replacement above only ensures consistency; in the protocol execution in Game1
the parties would derive the same LinkKey by construction.

We argue that Pr[Game1 ] ≤ Pr[Game2 ] + q3
s · Adv

PRF-ODH
B,PRF,G (λ). The argu-

ment is via an (interactive) hybrid argument against the PRF-ODH assumption.
Details are omitted here for space reasons; they appear in the full version.
Game 3. In Game3 we can now replace all session keys in sessions lbl.mode =
reconnect and lbl.isTOFU = true by random values, ignoring any consistency
requirement.

21



Note that such sessions are exactly those where we have replaced the con-
nection key LinkKey by a fresh random value. Also observe that the security
game ensures that the key of the partner session of a revealed session key or any
tested session key cannot be obtained again, such that we do not need to take
care of consistency here. It follows now via a straightforward reduction to the
pseudorandomness of HMAC resp. AES, with a hybrid argument over all at most
qs connection keys, that this is indistinguishable from the adversary’s point of
view.

In game Game3 the adversary gets to see a random and independent session
key in either of the two cases of the challenge bit b. Hence, the probability of
predicting b correctly is exactly 1

2 . The claim now follows from collecting all
probabilities. ut

5 Privacy in Bluetooth LE

Bluetooth Low Energy supports address randomization technique to provide
privacy. We show here that this mechanism indeed achieves privacy (against
outsiders) if one neglects other attack possibilities based on physical features or
other observable data.

5.1 Details on Privacy Mechanisms in Bluetooth Low Energy

For the BLE protocol we dive into the Link Establishment process to understand
better the privacy mechanisms.

Private Addresses. To support the privacy mechanism, the standard specifies
four types of Bluetooth addresses BD_ADDR in LE:

Public Addresses: A globally unique device identifier MAC, consisting of a 24-
bit vendor identifier and a local identifier chosen by the vendor.

Static Random Address: A random address which is set once for the device’s
lifetime or can be changed upon reboots. Such addresses carry the most
significant bit values ’11’, what allows distinguishing them from the next
two types.

Non-Resolvable Random Private Addresses: A frequently changed ran-
dom address (with the most significant bits set to ’00’). The standard rec-
ommends to renew random addresses, including this type and the next one,
at least every 15 minutes [9, Vol 3, Part C, App. A].

Resolvable Random Private Addresses: A random address wherefrom a
trusted device can extract the Public or Static Random Addresses. It con-
sists of 24 bits prand that are set randomly—effectively only 22 random bits
since the most significant bits correspond to ’10’— and the other 24 bits are
computed as a (pseudorandom) hash from prand for an Identity Resolving
Keys (IRK). This Identity Resolving Key must have been shared with the
trusted device in a previous connection.
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Generating Resolvable Random Private Addresses. The Identity Resolving Key
IRK is a device-specific 128-bit value. It can be assigned or generated randomly
during manufacturing, but the standard also allows any other methods to create
the IRK. It can be also generated from a 128-bit Identity Root IR as IRK ←
AES(IR, 0x00000000|0x01|0x00). Noteworthy, unlike the IRK, the identity root
IR is supposed to have 128 bits of entropy according to the standard. In fact, if
the IRK is all-zero, then the device does not support resolvable private address.
We assume in the following that the IRK is created randomly and non-zero.

With an IRK, the device can generate a (pseudo)random address as follows:

BD_ADDR← [AES(IRK, 0104|prand) mod 224] | prand,

where the 24-bit value prand consists of the 22 random bits and ’10’. In order
to resolve the obtained random private address BD_ADDR, the receiving device
extracts prand out of the received address. Then the device goes through its list
of stored IRKs and for each entry checks whether the AES-computation with
that IRK for the (padded) value prand matches the BD_ADDR. If so, it can look
up the actual address of the device and the long-term key, stored together with
the IRK. If the device does not find a matching IRK in the list, then it ignores
the PDU from the other party.

Devices achieve privacy only if they have bonded and exchanged the necessary
keys, IRK and CSRK, as well as the identities (either static random addresses
or a public addresses). The exchange of these data happens after the devices
have performed the initial connection and enabled encryption. First the slave
sends its IRK, address, and CSRK. Then the exchange is followed by the master
sending the information in the same order. This means that both parties share
their IRK with any other bonded device, but the exchange is done over a secured
communication channel. The specification also allows IRKs to be pre-distributed.
However, we do not consider this case here since it requires assumptions on the
channel during the pre-distribution procedure.

Discovery Phase. Link Establishment starts with a discovery process. During
this process, two devices in proximity synchronize, by one device advertising
and the other scanning for potential connections. The link layer master is called
the initiator, and the link layer slave is called the responder. The advertising
protocol data unit (PDU) has the following format:

structure Header Payload
field PDUtype RFU ChSel TxAdd RxAdd Length AdvA AD1 AD2 . . .
bits 4 1 1 1 1 8 48 variable variable . . .

The important for privacy information contained in the packets are the Bluetooth
addresses BD_ADDR in the AdvA field in the payload, which can be one of the four
aforementioned types. The flags TxAdd and RxAdd in the header indicate whether
the transmission address (TxAdd) resp. reception address (RxAdd) is random (=
1) or public (= 0). The Payload may contain additional advertisement data (AD)
elements, like the AD type flag and AD data. The latter can be for example a
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human-readable “complete local name”. We simply write AD1,AD2, . . . for these
data elements.

The entries PDUtype contain the advertisement type, RFU is reserved for
future use, ChSel determines whether the device supports an alternative channel
selection algorithm, Length describes the length of the payload.

Pairing Feature Extraction. Once the devices have established the link, the pair-
ing starts with the pairing request and response. This information determines
the features how the two devices can pair. The pairing requests contain the
following information:

field Code IOcap OOB AuthReq MaxEnc InitKey RespKey
sub BF MITM SC KP CT2 Rsrv LTK IRK CSRK LK Rsrv
bits 8 8 8 2 1 1 1 1 2 8 1 1 1 1 4 8

The most relevant for privacy entries here are SC: the bit that indicates
whether the device supports the “Secure Connections” mode. If both parties
have this flag set, then the devices use the P-256 elliptic curve, else they go for
the legacy mode. Bit BF defines whether two pairing devices will create a bond
(i.e. store the security and identity information, such as LTK, IRK CSRK) or not.
The other important entry is the IOcap byte, which describes the input/output
capabilities of the device.

The entry MaxEnc sets the number of octets for encryption keys. The lack
of authentication of the entries enabled the “Key Negotiation of Bluetooth”
(KNOB) attack [4,2] where the man-in-the-middle adversary sets the entry to 7
bytes for long-term keys in BLE, making the devices use a weak key. To prevent
this downgrade attack, devices should only support 128-bit keys. We presume
that this countermeasure is in place.

The further entries are as follows: the entry Code determines whether this is
a request or response, OOB specifies whether OOB data is available; BF says
whether the device supports bonding; MITM determines whether the device
requests to use man-in-the-middle protection (e.g., if neither OOB nor MITM
are set on the devices, then they revert to JustWorks connections; if the OOB
flags are not set and at least one device sets MITM, then they use IOcap to
determine the connection method); KP is the keypress flag used in the passkey
entry mode, CT2 defines what is used as input to AES-CMAC for generation of
an intermediate key when conversing LTK to LK and the other way around.

The initiator and responder distribution key entries InitKey and RespKey
contain information used in the optional “Transport Specific Key Distribution”
phase that determines the data exchanged when bonding. For Secure Connec-
tions, the master or the slave can later send either of the following information:
the “Identity Resolving Key” IRK to resolve pseudorandom addresses when re-
connecting; the public, or static random address; and the “Connection Signature
Resolving Key” CSRK to authenticate (unencrypted) data. We stress that the
flags here only indicate which keys should be distributed; the actual data is
exchanged later.
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We note that all these data are sent in clear. This potentially allows distin-
guishing devices based on their features. This is inevitable, therefore we aim in
the following to protect only devices with identical features and focus only on
the cryptographic transcript part.

5.2 Privacy Requirements

The Bluetooth protocol aims to hide a device’s identity if private address res-
olution is used and against outsiders with which the private address resolution
has not been established [9, Vol 3, Part H, Section 2.4.2.1]:

“The privacy concept only protects against devices that are not part of
the set to which the IRK has been given.”

Since any communication with the adversary controlling some device would re-
veal the IRK, we thus only consider executions between devices in which the
adversary is passive.

To capture this behavior, we give the adversary only a Test oracle which it
can query about three devices. One device serves as the communication partner
with one of the other two devices, where the choice is made at random according
to some challenge bit b. The devices either start a new initial connection or
reconnect, and the adversary gets to learn the transcript of the communication.
The task of the adversary is to predict the bit b. To avoid trivial attacks, we
assume that two devices in question either both share an IRK with the other
device or neither of them.

Formally, the Test oracle takes as input three identities i0, i1, j ∈ I of devices
and a value mode, either equal to init or to reconnect, and some auxiliary in-
formation aux (e.g., describing the requested SSP protocol). The oracle, holding
the random challenge bit b, runs an execution between device ib and j according
to the parameters and returns the transcript to the adversary.

As mentioned before, the distribution of IRK and BD_ADDR happens after
the devices have enabled encryption. Therefore, we extend the initial connection
procedure by forcing the devices to enable encryption and perform the key dis-
tribution step. If this does not happen, the pairing step (and hence the initial
connection) fails and the devices are not considered bonded.

To strengthen the definition, we assume that the adversary learns all actual
addresses of the devices at the outset. We may for simplicity assume that the
identity i of a device equals this address. For initialization we also assume that a
secret key, called IRK here as well, is generated at the beginning of the security
experiment.

Definition 5 (Outsider Privacy). The key exchange protocol Π provides out-
sider privacy if for any PPT adversary A

AdvPrivacyA,Π (λ) := Pr
[
ExpPrivacyA,Π (λ) = 1

]
− 1

2
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is negligible, where
ExpPrivacyA,Π,I (λ)

b←$ {0, 1}
forall i ∈ I do

IRK←$ {0, 1}128 \ {0}
a←$ATest(I)
return 1 if a = b

5.3 Privacy Guarantees of BLE

We say that a device running BLE is in full privacy mode if it uses a non-
resolvable random private address when establishing an initial connection to
some other device, and a resolvable one when reconnecting to that device. Fur-
thermore, we assume devices use a fresh Diffie-Hellman value in each SSP exe-
cution.

Proposition 3 (Outsider Privacy). The Bluetooth LE protocol ΠBLE in full
privacy mode provides outsider privacy. That is, for any adversary A calling at
most qs test sessions, there exists an adversary B (with roughly the same run
time as A) such that

AdvPrivacyA,ΠBLE,I(λ) ≤ q2
s · 2−|prand|+2 + qs ·AdvPRF

B,AES(λ).

where |prand| = 24.

Note that two bits of prand are reserved to signal the address type such that
prand only consists of 22 random bits. We remark that the bound is tight in
the sense that there is an adversary that can link a device (and thus predict the
challenge bit) with probability q2

s · 2−|prand|+2. For this the adversary considers
one device (with identity j) and one target device (with identity t) and initializes
qs other devices. It connects each of the qs + 1 devices to j such that they all
share an individual IRK with device j. Then it calls the Test oracle to reconnect
device j to either device t, or to the next unused additional device. If at some
point the same random address appears twice then the adversary concludes that
the secret bit b is 0 and the target device t is communicating. If no such collision
occurs then the attacker outputs a random bit.

For the analysis note that if the Test oracle always picks the device t with
the same IRK, i.e., b = 0, then a collision on prand implies a collision on the
full address. Hence this happens with probability roughly q2

s · 2−22. For different
devices and fresh IRKs this happens rarely, with probability approximately q2

s ·
2−46, even if the prand values collide. The difference in probabilities is thus still
in the order of q2

s · 2−22. If neither case occurs, then our attacker succeeds with
probability 1

2 by the random guess, such that the overall advantage is close to
q2
s · 2−22.
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Proof (of Proposition 3). We proceed once more by a game-hopping argument.
We denote again by Pr[Gamej ] the probability that the adversary wins in the
corresponding game (over the guessing probability).
Game 0. Game Game0 is the original attack on the privacy.
Game 1. We declare the adversary to lose if the prand parts of the initially
transmitted resolvable addresses in any pair of reconnection calls to Test collide.

Note that since each device chooses 22-bits of the value prand randomly
the probability of such a collision, independently of the question whether the
test oracle uses the left or right device, is given by at most q2

s · 2−22. Hence,
Pr[Game0 ] ≤ Pr[Game1 ] + q2

s · 2−22.
Game 2. In Game2 we replace the most significant 24 pseudorandom bits in this
resolvable private random addresses transmitted or used in a reconnection step
by independent random bits (chosen randomly once but fixed in this execution).
Internally, the receiving party of such a modified address will be told the correct
entry in the list.

Starting with Game1 we first replace the pseudorandom functions AES(IRK, ·)
for each distinct IRK by a random function (but using the same random function
for re-appearing IRK’s). We can do this by a hybrid argument among the (at
most) qs different keys IRK, simulating the other game steps. Note that we
can identify re-appearing IRKs by looking at the identities of devices. This step
occurs a loss of qs · AdvPRFB,AES(λ), where B is the game-simulating adversary.
We now apply a random function to different inputs, since all prand values are
distinct by the previous game hop. This effectively means that all the 24-bit
outputs are random. This corresponds now exactly to Game2.

We finally note that all the cryptographic parts in transcripts generated by
the Test oracle are independent of the device. In initial connections the device ib
in a Test query uses a non-resolvable private random address and a fresh Diffie-
Hellman value, by the assumption about the full privacy mode of the device. All
other protocol steps of an SSP run are neither device-specific. (Note that the
addresses used in the protocol are the now updated values, and that we assume
that the IO capablities of the devices i0, i1 in a Test query must be equal.)

In each reconnection step, the resolvable private random address is now
purely random, and otherwise the parties only exchange random values SKDm, IVm
and SKDs, IVs. It follows that this step does not depend on the device in ques-
tion. Since each Test oracle query in the final game is therefore independent of
any device-specific data, the adversary cannot do better in the final game than
guessing the challenge bit b. ut

6 Conclusion

Our results complement the long list of successful attacks on the Bluetooth pro-
tocol suite. These attacks exploit dependencies between different subprotocols
or even between the BR/EDR and BLE technology, or the possibility to down-
grade the data. We show that if one sticks to the strongest connection model,
then the only attack possibility against key secrecy is to be active during the
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initial connection step. Otherwise the encryption keys are secret, albeit the role
of the parties nor their identity is authenticated.

Based on our experience with the analysis of the Bluetooth standard, we
would like to conclude that the standard is hard to digest, both in terms of size
as well as in terms of clarity. Especially when it comes to the desired security
properties, the standard is rather vague in the sense that the requirements are
not specified or subsumed under imprecise terms. To give an example, the term
“authentication” is used in several contexts with different meanings. It could be
entity authentication in the sense that the devices’ identities are confirmed, or
key authentication in the sense that only intended partner derive the session key,
or a form of protection against man-in-the-middle attacks. The Authentication
Stage 2 in the SSP protocol rather seems to be a key confirmation step.
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