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Abstract. Existing blind signature schemes that are secure for poly-
nomially many concurrent executions of the signing protocol are either
inefficient or rely on non-standard assumptions (even in the random-oracle
model). We show the first efficient blind signature schemes achieving
this level of security based on the RSA, factoring, or discrete logarithm
assumptions (in the random-oracle model). Our core technique involves
an extension and generalization of a transform due to Pointcheval (Euro-
crypt ’98) that allows us to convert certain blind signature schemes that
are secure for (concurrently) issuing logarithmically many signatures into
ones secure for (concurrently) issuing polynomially many signatures.

1 Introduction

A blind signature scheme [6] consists of an interactive protocol executed
between a signer S (holding a secret key sk) and a user U (holding a
messagem and the signer’s public key pk), by which U obtains a signature σ
on m. Blindness ensures that S learns nothing about m, and in fact is
even unable to link (m,σ) to the execution of the protocol in which σ
was generated. One-more unforgeability means that if U executes the
signing protocol ℓ times, it should be unable to generate valid signatures
on more than ℓ messages. Even in the random-oracle model, known
blind signature schemes that support polynomially many signatures are
either inefficient [18, 7, 16, 12, 11], rely on non-standard assumptions or
the algebraic group model [3, 5, 21, 9, 8, 13, 19], or are secure only for
sequential executions of the signing protocol [18, 2, 19]. Known efficient
schemes that rely on standard assumptions such as RSA, factoring, the
hardness of computing discrete logarithms, or the hardness of SIS [23–25,
1, 10, 15] are concurrently secure but their signature size depends linearly
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on the maximum amount of signatures that can be issued. Moreover,
for many schemes this limitation is known to be inherent as there is an
efficient attack [26, 27, 4] when running the scheme concurrently with
shorter signatures.

In an effort to obtain an efficient blind signature scheme secure for issu-
ing polynomially many signatures, Pointcheval [22] showed a transform for
“boosting” the security of the Okamoto-Schnorr blind signature scheme [20,
25]. Specifically, under the assumption that the Okamoto-Schnorr blind
signature scheme is secure for logarithmically many sequential executions
of the signing protocol (which itself can be shown to hold in the random-
oracle model, based on the hardness of computing discrete logarithms), the
transformed scheme is secure for polynomially many sequential executions
of the signing protocol.1 The resulting scheme, however, has a significant
drawback: it requires the signer to refuse to issue any further signatures
if a user is ever caught cheating. Thus, while the scheme could be used
in a setting where the signer interacts with a single user repeatedly (and
thus the signer would be justified in refusing to interact with that user
once that user is caught cheating), the scheme is not appropriate for
standard applications of blind signatures where the signer interacts with
many users, some of whom may collude. Indeed, in the latter setting a
single malicious user could easily carry out a devastating denial-of-service
attack by interacting with the signer once and cheating, thus preventing
the signer from issuing any further signatures. Note further that an abort
by the user during an execution of the signing protocol is considered
cheating, so even transient network failures during an honest execution of
the protocol may lead to the same result.

1.1 Our Contributions

Inspired by Pointcheval’s transform, we show a new transform for boosting
the security of certain blind signature schemes. Our transform has the
following advantages compared to Pointcheval’s result:

1. As with Pointcheval’s transform, our transform boosts security in the
following sense: if the original scheme BS is secure for logarithmically
many executions of the signing protocol, then the transformed scheme
CCBS is secure for polynomially many executions. Importantly, how-
ever, in our case the transformed scheme CCBS does not require the
signer to stop issuing signatures if cheating is detected.

1 We have identified a bug in Pointcheval’s result, in that the transformed scheme does
not satisfy blindness. This is easy to fix, though.



2. Moreover, if BS is secure for (logarithmically many) concurrent execu-
tions of the signing protocol, then CCBS is secure for (polynomially
many) concurrent executions as well. This is in contrast to Pointcheval’s
transform, which is not secure for concurrent executions of the signing
protocol even if the original scheme is concurrently secure.

3. Our transform can be applied to any blind signature scheme BS con-
structed in a certain way from a linear function family [14], in contrast
to Pointcheval’s transform that is specific to the Okamoto-Schnorr
scheme.2 In particular, our transform can be applied to the Fiat-Shamir,
Okamoto-Guillou-Quisquater, and Okamoto-Schnorr blind signature
schemes, all of which can be proven secure (for logarithmically many
executions) under standard assumptions in the random-oracle model.
Our transform can also be applied to the Schnorr blind signature
scheme, which was recently proven secure (for logarithmically many
executions) in the algebraic group model [10].

4. As in Pointcheval’s transform, the size of signatures in the transformed
scheme CCBS is (almost) the same as in the underlying scheme BS.

Overall, then, our work gives the first efficient blind signature schemes
that are secure for polynomially many concurrent executions of the signing
protocol based on standard assumptions (in the random-oracle model).

1.2 Overview

In this section we give a high-level overview of our transform and its proof
of security. Our treatment is deliberately informal, and we refer the reader
to Section 3 for details of our scheme. Throughout this section we let
BS be a blind signature scheme that is secure for logarithmically many
executions of the signing protocol, and for which our transform applies.
This in particular means that the signing protocol BS has a three-round
structure in which the signer sends the first message. We denote the
messages sent in each round of the protocol as R, c, and s, respectively.

Pointcheval’s transform. We begin by recalling Pointcheval’s transform
and its proof of security. (Pointcheval’s transform was only defined for the
Okamoto-Schnorr scheme, but our work shows that it can be applied to a
larger class of schemes.) The basic idea of Pointcheval’s transform is to use
1-out-of-2 cut-and-choose to catch (in a limited sense) cheating behavior
of a user U . In more detail, the transformed scheme works roughly as
follows for a user who wants to obtain a signature on a message m:

2 Pointcheval states that his transform can be adapted to apply to the Okamoto-
Guillou-Quisquater scheme, but does not give details (or a proof).



1. U runs two parallel executions of BS (we refer to each as a ses-
sion) where the messages to be signed are µ1 = H′(m,φ1) and
µ2 = H′(m,φ2), respectively. (Here, H′ is a random oracle and φ1, φ2

are random strings.) The transformed protocol begins by having U
send a commitment com1 to µ1 and its randomness for the first session,
and a commitment com2 to µ2 and its randomness for the second ses-
sion. These commitments also rely on a random oracle, which enables
extraction in the proof of one-more unforgeability (see below).

2. S runs two executions of BS to obtain initial messages R1, R2, which
it sends to U .

3. U responds with c1, c2, which are the second messages of its two
executions of BS.

4. S then chooses a uniform I ∈ {1, 2} and challenges U to open commit-
ment com3−I and thus demonstrate that it behaved honestly in the
corresponding session. If the commitment is opened correctly, then S
sends the final message sI for the unopened session and U uses BS to
compute a signature on µI (which is defined to be a signature on m in
the transformed scheme). If U is caught cheating, then S aborts and
refuses to issue any more signatures (see further discussion below).

It is not difficult to show that the transformed scheme is blind if BS is
blind, and so the main challenge is to prove one-more unforgeability of
the transformed scheme for polynomially many executions. This is shown
by reduction to the one-more unforgeability of BS for logarithmically
many executions. The idea of the reduction is as follows. Each time
the adversarial user U∗ sends its commitments in the first round of the
transformed protocol, the reduction uses the random-oracle queries of U∗

to try to extract the randomness of U∗ for both sessions. If this cannot
be done for either session, then U∗ will not succeed in the cut-and-choose
(except with negligible probability) and so simulation is easy. If extraction
can be done for both sessions, then the reduction will be able to simulate
an execution of BS on its own, regardless of the value of I. The remaining
case is when the reduction is able to extract the randomness for only one
of the two sessions. (In that case, we say U∗ attempts to cheat.) U∗ can
then succeed in the cut-and-choose with probability 1/2 (in which case we
say U∗ successfully cheats), but the reduction will be unable to simulate
BS for the unopened session in that case (since it was unable to extract
the randomness for that session). Instead, in this case the reduction will
interact with the real signer in the underlying scheme BS, forwarding
messages in the obvious way between the signer and U∗. (One must show
that a forgery by U∗ in the transformed scheme implies that the reduction



can compute a forgery in BS with high probability, but this is irrelevant
for the discussion that follows.)

To complete the proof, we must argue that with overwhelming proba-
bility the reduction interacts with the signer for the underlying scheme
BS only logarithmically many times. Although the formal analysis is quite
involved, intuitively this holds because each time U∗ attempts to cheat it
is caught with probability 1/2. Thus, the probability that U∗ successfully
cheats t times (and thus causes the reduction to interact with the signer t
times) is 2−t, and hence t is super-logarithmic in the security parameter
with only negligible probability. This highlights why it is essential that
the signer must refuse to run any more executions of the signing protocol
once it detects cheating: if it did not, then U∗ could attempt to cheat
in polynomially many executions and successfully cheat (in expectation)
in half of those. Since each instance of successful cheating requires the
reduction to interact with the signer in BS, this would mean that the
transform would then at best be able to double the number of executions
of the signing protocol that can be supported.

Our transform. We follow a template similar to Pointcheval’s transform,
but since we wish to support an unbounded (polynomial) number of
executions of the signing protocol we need to modify things to bound
the number of times an adversarial user U∗ can successfully cheat in the
cut-and-choose. Our key insight is that we can do this by using 1-out-
of-N cut-and-choose, where N increases with the number of executions.3

That is, we consider following Pointcheval’s general approach, but in the
(N − 1)st execution of the transformed protocol we instead use 1-out-of-N
cut-and-choose on the underlying scheme BS. The probability that U∗

can successfully cheat in the (N − 1)st execution is now 1/N , so even if
U∗ attempts to cheat in every one of its p executions of the transformed
protocol, the expected number of times it can successfully cheat is

1

2
+

1

3
+ · · ·+ 1

p+ 1
< ln(p+ 1).

An appropriate concentration bound implies that for any polynomial p
(which bounds the number of executions U∗ runs) the probability that U∗

successfully cheats super-logarithmically many times is negligible.
We remark that although the complexity of our signing protocol grows,

the other parameters of the scheme—namely, the size of the keys, the size
of the signatures, and the cost of verification—are fixed and essentially the

3 In fact, it suffices to have N depend linearly on the number of times cheating is
detected (cf. Section 3.3), but we ignore this optimization in our informal overview.



same as in the original scheme BS. The round complexity of our signing
protocol is also constant.

Comparison with generic constructions. The complexity of the
signing protocol in our scheme is (roughly) N times the complexity of
the signing protocol in BS, where N is linear in the number of executions.
(But see footnote 3.) One might therefore wonder whether our scheme
is better than a generic construction of a blind signature scheme where
signing involves running a secure two-party computation (2PC) protocol for
computing any (standard) signature [18]. (The details are more complex,
but are unimportant for the purposes of this discussion.) This generic
approach, however, has several drawbacks compared to our scheme.

1. Such a generic construction would not be concurrently secure without
additional complexity and/or without assuming some form of trusted
setup or non-standard hardness assumptions.

2. The efficiency of such a generic construction (even restricting attention
to sequential security) is unclear, but we conservatively estimate (based
on work of Jayaraman et al. [17]) that secure 2PC of an Okamoto-
Schnorr signature at the 96-bit security level would have communica-
tion complexity at least 109× that of our protocol when N = 2. Thus,
our signing protocol would have better communication complexity
for N < 109. The comparison would be even more favorable for our
scheme at higher security levels.

3. Efficient and provably secure signature schemes rely on the random-
oracle model, but secure computation of a signature would require a
circuit for the hash function instantiating the random oracle. Security
of the resulting protocol in this case is unclear.

Notwithstanding the above, we note that the generic approach does have
two advantages compared to our scheme: First, the signer is stateless,
whereas in our scheme the signer is required to maintain (a small amount
of) state. Second, the signatures produced in the generic scheme are
identical to signatures in the underlying scheme, whereas in our scheme
(as in Pointcheval’s) signatures include an additional random value.

Another generic construction of blind signatures is given by Fischlin [7].
Roughly, in his scheme the signer signs a commitment to m; the signature
computed by the user consists of a non-interactive zero-knowledge proof of
knowledge (NIZKPoK) of a signed commitment on m. Fischlin’s scheme is
concurrently secure. Nevertheless, the signatures produced by his scheme
are much larger than standard signatures (even if SNARKs are used for
the NIZKPoK); also, as with the generic construction discussed above,



the concrete efficiency of this approach—especially if one wants to rely on
standard assumptions—is unclear.

2 Preliminaries

We give definitions for blind signature schemes and linear function families,
and recall a generic construction of blind signature schemes secure for
logarithmically many signatures from the latter.

Notation. We denote the security parameter by κ. We write a← S to
denote that a is drawn uniformly from set S. For a randomized algorithm A
we write y ← A(x) to denote that A returns y when run on input x. For
a positive integer N we let [N ] = {1, . . . , N}.

2.1 Blind Signatures

We define the syntax of a blind signature scheme, followed by definitions
of blindness and one-more unforgeability.

Definition 1 (Blind signature scheme). A blind signature scheme is a
tuple of algorithms BS = (Gen,S,U ,Vrfy) such that:

– The key-generation algorithm Gen takes as input the security parame-
ter 1κ and outputs a public/secret key pair (pk, sk) as well as initial
state stS .

– The signer algorithm S is an interactive algorithm that takes as input
a secret key sk and can (atomically) read/write a global variable stS
during its execution. At the end of its execution, it outputs either ⊥
(indicating an abort) or 1 (indicating a successful execution). When S
outputs 1 at the end of an execution we call that execution complete.

– The user algorithm U is an interactive algorithm that takes as input a
public key pk and a message m. At the end of its execution, it either
outputs ⊥ (indicating an abort) or a signature σ.

– The verification algorithm Vrfy takes as input a public key pk, a mes-
sage m, and a signature σ, and outputs a bit b indicating “accept”
(b = 1) or “reject” (b = 0).

We require perfect correctness: for all (pk, sk) output by Gen and all mes-
sages m, if S(sk) and U(pk,m) execute the protocol honestly then S out-
puts 1 and the signature σ output by U satisfies Vrfypk(m,σ) = 1.

The above definition allows the signer to be stateful, and this will be
the case for our construction. For simplicity, however, we leave the state
implicit in our definitions.



Definition 2 (Blindness). For blind signature scheme BS = (Gen, S,
U , Vrfy) and an adversary A, consider the following experiment:

1. A(1κ) outputs a public key pk and a pair of messages m0,m1. A
uniform bit b← {0, 1} is also chosen.

2. Run AU(pk,mb),U(pk,m1−b)(1κ), where A may run one execution with
each of its oracles, but may arbitrarily interleave its oracle calls.

3. When both executions are completed, let σb, σ1−b be the (local) outputs
of the respective oracles. If σ0 =⊥ or σ1 =⊥, then A is given ⊥;
otherwise, A is given σ0, σ1. Finally, A outputs b′.

4. A succeeds iff b′ = b.

The advantage of A is the probability that it succeeds in the above ex-
periment minus 1/2. We say BS satisfies blindness if for all probabilistic
polynomial-time A, the advantage of A is negligible.

The above definition allows the malicious signer to use a maliciously
generated public key pk. A weaker definition that is often considered in
the literature assumes pk is generated honestly using the key-generation
algorithm of BS. We refer to the corresponding notion of security as
blindness for honestly generated keys.

Definition 3 (One-more unforgeability). Let ℓ : N → N. For blind
signature scheme BS = (Gen, S, U , Vrfy) and adversary A, consider the
following experiment:

1. Generate keys (pk, sk)← Gen(1κ).

2. Run AS(sk)(pk), where A may initiate an arbitrary number of executions
with its oracle (arbitrarily interleaving its oracle calls), so long as S
completes at most ℓ = ℓ(κ) of those executions.

3. A outputs ℓ+ 1 message-signature pairs (m1, σ1), . . . , (mℓ+1, σℓ+1).

4. A succeeds if all {mi} are distinct and Vrfypk(mi, σi) = 1 for all i.

BS satisfies ℓ-one-more unforgeability if for all probabilistic polynomial-
time A, the probability that A succeeds is negligible. BS satisfies one-more
unforgeability if it is ℓ-one-more unforgeable for all polynomial ℓ.

The above definition allows concurrent executions of the signing pro-
tocol. A weaker definition considers only sequential executions. (Formally,
this would mean that if A initiates a new session with its oracle S(sk),
then the oracle terminates the currently active session.) We refer to the
corresponding notion of security as sequential (ℓ-)one-more unforgeability.



2.2 Linear Function Families

A linear function family [14] is a tuple of probabilistic polynomial-time
algorithms LF = (PGen,F, Ψ). The parameter-generation algorithm PGen
takes as input the security parameter 1κ and returns parameters par that,
in particular, define abelian groups S, D, and R (written additively), with
|S|, |R| ≥ 22κ. (These correspond to a set of “scalars,” a “domain,” and a
“range,” respectively). We require the existence of a “scalar multiplication”
map · : S × D → D such that for all s ∈ S and x, x′ ∈ D we have
s · (x+ x′) = s · x+ r · x′ and 0 · x = s · 0 = 0. (We stress that it is not
necessarily the case that (s+ s′) · x = s · x+ s′ · x; see further below.) We
also require a map · : S ×R → R with analogous properties. Finally, it
should be possible to efficiently sample uniform elements from S and D.

For concreteness, the reader may want to keep in mind the linear
function family where S = D = Zq and R is a cyclic group G of prime
order q (written multiplicatively). (Looking ahead to the next section, this
is the linear function family that underlies the Schnorr blind signature
scheme.) We have scalar multiplication maps s · x = s · x (mod q) for
s, x ∈ Zq and s · g = gs for g ∈ G. We give other examples of linear
function families in Appendix A.

The linear evaluation function F = Fpar takes as input a point x ∈ D
and returns an element y ∈ R. We require that for all s ∈ S and x, y ∈ D,
it holds that F(s · x+ y) = s · F(x) + F(y). We also assume that F has has
min-entropy at least 2κ, i.e., that the min-entropy of F(x) is at least 2κ
when x is uniform in D. We say LF has a pseudo torsion-free element in
the kernel if there exists z∗ ∈ D such that (1) F(z∗) = 0, and (2) for all
distinct s, s′ ∈ S, we have s · z∗ ̸= s′ · z∗. (Note this implies z∗ ̸= 0.)

Returning to our running example: if par includes a uniformly selected
generator g ∈ G we can define F(x) = gx, which is clearly linear. In
this example, however, the linear function family does not have a pseudo
torsion-free element in the kernel.

The distributor function Ψ = Ψpar takes as input an element y ∈ R
and points s, s′ ∈ S, and outputs a point in D. For all y in the range of F
and s, s′ ∈ S, we require

(s+ s′) · y = s · y + s′ · y + F(Ψ(y, s, s′)).

Intuitively, the distributor function Ψ outputs a correction term that
corrects for the fact that the group operation in S may not distribute
over R. (Thus, the distributor function is the zero function whenever the
scalar multiplication map does distribute, as in our running example).

We define two security properties for linear function families.



Definition 4 (Preimage resistance). For a linear function family LF
and an adversary A consider the following experiment:

1. Generate parameters par← PGen(1κ) and choose x← D.
2. Run A(par,F(x)) to obtain x′ ∈ D.
3. A succeeds if F(x′) = F(x).

LF is preimage resistant if for all probabilistic polynomial-time A, the
probability that A succeeds is negligible. LF is (t, ϵPRE)-preimage resistant if
every A running in time at most t succeeds with probability at most ϵPRE
in the above experiment.

Definition 5 (Collision resistance). For a linear function family LF
and an adversary A consider the following experiment:

1. Generate parameters par← PGen(1κ).
2. Run A(par) to obtain x1, x2 ∈ D.
3. A succeeds if F(x1) = F(x2) and x1 ̸= x2.

LF is collision resistant if for all probabilistic polynomial-time A, the prob-
ability that A succeeds is negligible. LF is (t, ϵCR)-collision resistant if every
A running in time at most t succeeds with probability at most ϵCR in the
above experiment.

The linear function family in our running example is preimage resistant
if the discrete-logarithm problem is hard in G, and trivially collision
resistant (since F is a bijection).

2.3 Blind Signatures from Linear Function Families

Hauck et al. [14] showed that several blind signature schemes from the
literature, including the Schnorr, Okamoto-Schnorr, Fiat-Shamir, and
Okamoto-Guillou-Quisquater schemes, can be viewed as being derived
from linear function families. We recall their generic construction of a
blind signature scheme BS[LF] from a linear function family LF. The secret
key is a uniform element sk ← D and the corresponding public key is
pk := F(sk). The signing protocol, where U holds a message m, proceeds
as follows. (See Figure 1.) In the first step, S samples r ← D and sends
R := F(r) to U . Then U samples blinding parameters α← D and β ← S
that it uses to compute a “blinded commitment” R′ := R+ F(α) + β · pk,
computes c′ := H(m,R′), and sends the blinded challenge c := c′ + β
to S. In the last round of the protocol, S replies with s := r + c · sk,
and U checks that F(s) = R + c · pk. (If not, U aborts). Finally, U



S(sk, pk) U(pk,m)

r ← D

R := F(r)
R−−−−−−−−−−−−−→ α← D; β ← S

R′ := R+ F(α) + β · pk
c′ := H(m,R′)

c←−−−−−−−−−−−− c := c′ + β

s := r + c · sk s−−−−−−−−−−−−→
if F(s) ̸= R+ c · pk

abort

s′ := s+ α+ Ψ(pk, c,−c′)
σ := (c′, s′)

output σ

Fig. 1. The signing protocol for blind signature scheme BS[LF], where LF is a linear
function family and H : {0, 1}∗ → S is modeled as a random oracle.

computes s′ := s+α+Ψ(pk, c,−c′) and outputs the signature σ := (c′, s′).
Verification is done by checking whether c′ = H(m,F(s′)− c′ · pk).

If both parties follow the protocol honestly, then

s′ = s+ α+ Ψ(pk, c,−c′) = c · sk+ r + α+ Ψ(pk, c,−c′).

Thus,

F(s′)− c′ · pk = F(c · sk+ r + α+ Ψ(pk, c,−c′))− c′ · pk
= c · pk− c′ · pk+ F(Ψ(pk, c,−c′)) + F(r) + F(α)

= (c− c′) · pk+ F(r) + F(α)

= β · pk+R+ F(α) = R′,

and so verification succeeds. This demonstrates correctness of the scheme.

Hauck et al. [14] show that BS[LF] is statistically blind for honestly gen-
erated keys. Their proof extends to full blindness (i.e., even for maliciously
generated keys) when BS[LF] corresponds to the Schnorr or Okamoto-
Schnorr blind signature scheme. More interestingly, BS[LF] is ℓ-one-more
unforgeable for any ℓ = O(log κ):

Theorem 1 ([14]). Let LF = (PGen,F, Ψ) be a collision-resistant linear
function family with a torsion-free element in the kernel, and let H be



modeled as a random oracle. Then BS[LF] is ℓ-one-more unforgeable for
any ℓ = O(log κ).

Concretely, if there is an adversary against ℓ-one-more unforgeability
of BS[LF] that runs in time t, initiates at most p ≥ ℓ executions, makes
at most qH queries to H, and has success probability ϵ, then there is an
adversary against collision resistance of LF running in time t′ = 2t and
having success probability at least

ϵ′ = Ω

((
ϵ

2
− (qH · (p− ℓ))ℓ+1

|S|

)3

· 1

q2H · ℓ3

)
.

Theorem 1 requires LF to have a pseudo torsion-free element in
the kernel, and thus applies to the Okamoto-Schnorr, Okamoto-Guillou-
Quisquater, and Fiat-Shamir blind signature schemes. (See Appendix A.)
However, there are examples of other schemes matching the template of
Figure 1 that can be proven secure without relying on Theorem 1. In
particular, recent work [10] has shown that the Schnorr blind signature
scheme is ℓ-one-more unforgeable for any ℓ = O(log κ) in the algebraic
group model under the one-more discrete logarithm assumption.

3 Boosting Security of Blind Signatures

We now present our cut-and-choose blind signature scheme CCBS[LF]. (We
assume the reader has read the informal overview in Section 1.2.) As in
BS[LF], the secret key is a uniform element sk← D and the corresponding
public key is pk := F(sk). Now, however, the signer S additionally maintains
a counter N that is initialized to 1. The signing protocol for a message m
then proceeds as follows (cf. Figure 2):

1. S atomically increments its counter (see further discussion below) and
sends the updated counter N to the user U .

2. Informally, U runs N executions of BS[LF], using the “message” µi =
H′(m,φi) in the ith execution. (We refer to each execution of the
underlying scheme BS[LF] as a session.) Here, φi ∈ {0, 1}κ is a uniform
string and H′ is modeled as a random oracle. Thus, in the first step, for
i ∈ [N ] the user chooses randomness αi, βi for the ith session of BS[LF]
and sends a commitment comi = H′(αi, βi, µi, γi), where γi ∈ {0, 1}κ
is another uniform string.

3. S runs N sessions of BS[LF] to obtain initial messages R1, . . . , RN ,
which it sends to U . In response, U computes c1, . . . , cN using BS[LF]
and the randomness it chose earlier.



4. S then chooses a uniform index I ∈ [N ] and sends it to U . The
user reveals (αi, βi, µi, γi) for all i ̸= I (thus opening all but its Ith
commitment), and S verifies that U behaved honestly in all the opened
sessions. If cheating is detected, then S aborts the entire execution.

5. If U behaved honestly in the opened sessions, S uses BS[LF] to compute
a response s := rI − cI · sk for the Ith (unopened) session.

6. U computes a signature (c′I , s
′
I) on µI using BS[LF]. It then outputs

the signature (c′I , s
′
I , φI) on m.

A signature σ = (c′, s′, φ) on a messagem is verified by checking that (c′, s′)
is a valid signature on µ = H′(m,φ) in the underlying scheme BS[LF].

The counter is used to ensure that each execution of the protocol uses
a different value for the cut-and-choose parameter N . (In Section 3.3,
we show that it is possible to do better.) In the concurrent setting, it is
therefore important to ensure that the counter is incremented atomically
so that this property holds across all the concurrent executions.

Theorem 2. Let LF be a linear function family that is preimage resistant
and let H,H′ be modeled as random oracles. If BS[LF] satisfies blindness (for
honestly generated keys), then CCBS[LF] satisfies blindness (for honestly
generated keys). If BS[LF] is (sequentially) ℓ-one-more unforgeable for any
ℓ ∈ O(log κ), then CCBS[LF] is (sequentially) ℓ-one-more unforgeable for
any ℓ = poly(κ).

We separately consider blindness and one-more unforgeability in the
sections that follow.

3.1 Blindness

This section is dedicated to a proof of the following:

Theorem 3. Let H′ be modeled as a random oracle. If BS[LF] satisfies
blindness (resp., blindness for honestly generated keys), then CCBS[LF]
satisfies blindness (resp., blindness for honestly generated keys).

Concretely, if there is an adversary A against blindness of CCBS[LF]
that runs in time t, makes at most qH′ queries to H′, uses counters NL, NR

in its executions with the user, and has advantage ϵ, then there is an
adversary B against blindness of BS[LF] that runs in time t′ ≈ t and has

advantage at least 1
NL·NR ·

(
ϵ− 2·(NL+NR)·qH′

22κ

)
.

Proof. We consider the case of blindness for maliciously generated keys,
but the proof holds also for honestly generated keys. Fix an adversary A



S(sk, pk); state N U(pk,m)

atomically increment N
N−−−−−−−−−−−−−→ for i ∈ [N ] :

αi ← D; βi ← S
φi, γi ← {0, 1}κ

µi := H′(m,φi)

for i ∈ [N ]:
com1, . . . , comN←−−−−−−−−−−−−− comi := H′(αi, βi, µi, γi)

ri ← D

Ri := F(ri)
R1, . . . , RN−−−−−−−−−−−−−−−→ for i ∈ [N ] :

R′
i := Ri + F(αi) + βi · pk

c′i := H(µi, R
′
i)

c1, . . . , cN←−−−−−−−−−−−− ci := c′i + βi

I ← [N ]
I−−−−−−−−−−−−−→

{(αi, βi, µi, γi)}i̸=I←−−−−−−−−−−−−−−−−
for i ∈ [N ] \ {I} :

R′
i := Ri + F(αi) + βi · pk

if ∃i ∈ [N ] \ {I} s.t
comi ̸= H′(αi, βi, µi, γi)

or ci ̸= H(µi, R
′
i) + βi

abort

sI := rI + cI · sk
sI−−−−−−−−−−−−−→ if F(sI) ̸= RI + cI · pk

abort

s′I := sI + αI + Ψ(pk, cI ,−c′I)
σ := (c′I , s

′
I , φI)

output σ

Fig. 2. The signing protocol for blind signature scheme CCBS[LF], where LF is a linear
function family and H : {0, 1}∗ → S, H′ : {0, 1}∗ → {0, 1}2κ are modeled as random
oracles.



attacking blindness of CCBS[LF], let SuccA be the event that A succeeds,
and let ϵ = ϵ(κ) be the advantage of A so that Pr[SuccA] =

1
2 + ϵ. In an

execution of the experiment used to define blindness of CCBS[LF], the
adversary interacts with two instances of U ; we use superscripts L,R to
denote variables used in the left and right interactions, respectively. Let
NL, NR be the values of the counters that A sends in its two interactions
with U , and let Bad be the event that A makes any H′-queries of the
following form:

– H′(⋆, φL
i ) for i = 1, . . . , NL (resp., H′(⋆, φR

i ) for i = 1, . . . , NR). (In the
case of φL

IL
, φR

IR
, this must occur before those values are revealed to A

as part of the signatures output by U .)
– H′(⋆, ⋆, ⋆, γLi ) for i = 1, . . . , NL (resp., H′(⋆, ⋆, ⋆, γRi ) for i = 1, . . . , NR)
before γLi (resp., γRi ) is sent by U to A in round 6.

In particular, since γL
IL

(resp., γR
IR
) is not sent in round 6, event Bad occurs

if A makes a query of the form H′(⋆, ⋆, ⋆, γL
IL
) (resp., H′(⋆, ⋆, ⋆, γR

IR
)) at

any point during the experiment. If qH′ denotes the number of queries A
makes to H′, it is immediate that

Pr[SuccA ∧ Bad] ≥ 1

2
+ ϵ− 2 · (NL +NR) · qH′

22κ
.

We now construct an adversary B attacking blindness of BS[LF]. Intu-
itively, B simulates A’s oracle calls by locally running all-but-one of the
sessions of BS[LF] honestly, and using its own oracles (which correspond to
two executions of the user algorithm for BS[LF]) to simulate the remaining
instance. B works as follows:

1. Throughout, H′-oracle calls made by A are handled in the natural
way.4 If event Bad occurs, B aborts and outputs a uniform bit.

2. B runs A to obtain pk,m0,m1. It then chooses uniform µ0, µ1 ∈ {0, 1}κ
and outputs pk, µ0, µ1.

3. B handles the interaction of A with its left oracle by playing the role
of U in an execution of CCBS[LF], as follows:
(a) When A sends NL, choose uniform iL ∈ [NL] and uniform values

γL
iL
, φL

iL
, comL

iL
∈ {0, 1}κ. For i ∈ [NL] \ {iL}, run U honestly to

obtain comL
i . Send comL

1, . . . , com
L
NL to A.

(b) When A sends RL
1 , . . . , R

L
NL , then B forwards RL

iL
to its own left

oracle to receive response cL
iL
. For i ∈ [NL]\{iL}, it runs U honestly

to obtain cLi , and then sends cL1, . . . , c
L
NL to A.

4 We do not need to model H as a random oracle; our proof holds as long as BS[LF] is
secure when using H. For this reason we do not mention how calls to H are handled.



(c) When A sends IL, then B aborts and outputs a uniform bit if
IL ̸= iL. Otherwise, it responds in the natural way.

(d) When A sends the final message sL
IL
, then B forwards this to its

own left oracle.
B handles the interaction of A with its right oracle in an exactly
analogous manner.

4. When B is given the output of its own oracles, it does the following.
If the output was ⊥, it gives ⊥ to A. Otherwise, B is given signature
(c′0, s

′
0) on µ0 and signature (c′1, s

′
1) on µ1; it gives (c′0, s

′
0, φ

L
iL
) and

(c′1, s
′
1, φ

R
iR
) to A and programs H′(m0, φ

L
iL
) = µ0 and H′(m1, φ

R
iR
) = µ1.

Finally, it outputs whatever bit is output by A.

First observe that the probability of event Bad is unchanged in the
above. Let Guess be the event that IL = iL and IR = iR. If Bad does not
occur by the time A sends the latter of IL or IR, then the view of A at that
point is independent of iL, iR and so Pr[Guess] = 1/NLNR. Furthermore,
if Guess occurs and Bad does not occur then the simulation provided by
B is perfect, and B succeeds iff A succeeds. Letting SuccB be the event
that B succeeds, we thus have

Pr[SuccB] =
1

2
· Pr[Guess ∨ Bad] + Pr[SuccA ∧ Guess ∧ Bad]

≥ 1

2
+

1

NL ·NR
·
(
ϵ− 2 · (NL +NR) · qH′

22κ

)
.

Since the advantage of B must be negligible (by blindness of BS[LF]), and
NL, NR, qH′ are polynomial,5 we conclude that ϵ must be negligible.

3.2 One-More Unforgeability

In this section we show:

Theorem 4. Let LF be a linear function family that is preimage resistant
and let H,H′ be modeled as random oracles. If BS[LF] is (sequentially) ℓ-
one-more unforgeable for any ℓ ∈ O(log κ), then CCBS[LF] is (sequentially)
ℓ-one-more unforgeable for any ℓ = poly(κ).

Concretely, assume LF is (t, ϵPRE)-preimage resistant and there is an
adversary against (sequential) ℓ-one-more unforgeability of CCBS[LF] that
runs in time t, initiates p executions, makes at most qH queries to H

5 Technically, we can enforce that NL, NR are polynomial by requiring the counter N
sent by S to be represented in unary (so NL, NR are bounded by the running time
of A). In practice one might fix a large polynomial bound B and require N ≤ B.



and qH′ queries to H′, and has success probability ϵ. Then there is an
adversary against (sequential) λ-one-more unforgeability of BS[LF], where
λ = 3 ln(p+ 1) + ln(2/ϵ), that runs in time t′ ≈ t, initiates p executions,
makes at most qH queries to H, and has success probability at least

ϵ′ =
ϵ

2
−

q2H′ + p · qH′ + p2 · (p2 + qH)

22κ
− p · ϵPRE.

Proof. Let A be an adversary attacking the one-more unforgeability of
CCBS[LF] and having success probability ϵ. We let qH, qH′ denote the
number of queries A makes to H,H′, respectively, let ℓ denote the number
of complete executions of the signing protocol run by A, and let p denote
the total number of executions of the signing protocol by A, including
ones that are aborted early by S. (These are all polynomial in the security
parameter, but we leave this dependence implicit.) For simplicity, we make
some assumptions about the behavior of A that are without significant loss
of generality; specifically, we assume that if A sends αi, βi, µi, γi during an
execution of the signing protocol where the corresponding message from
the signer was Ri then it had previously queried H′(αi, βi, µi, γi) as well
as H(µi, Ri + F(αi) + βi · pk), and that if A outputs a message/signature
pair (m, (c′, s′, φ)) then it had previously queried H′(m,φ).

We prove the theorem via a sequence of hybrid experiments.

Expt G0. This is the one-more unforgeability experiment where A
interacts with the transformed scheme CCBS[LF].

When A sends a commitment com as part of the second message of
an execution of the signing protocol, we say com is extractable if it was
previously returned as output from a query of the form H′(α, β, µ, γ).

Expt G1. This experiment is identical to G0 except that it aborts (and A
does not succeed) if (1) at any point in the experiment, there is a collision
in H′ or (2) in some execution of the signing protocol, some commitment
comi sent by A is not extractable, but later in the same execution I ̸= i
and the signer does not abort (so, in particular, A sends αi, βi, µi, γi for
which H′(αi, βi, µi, γi) = comi). The probability of the first event is at
most q2H′/22κ. Focusing on the least i ̸= I in each execution of the signing
protocol for which comi is not extractable (if one exists), we see that the
probability of the second event is at most p · qH′/22κ. Hence, A’s success
probability in G1 is at least ϵ− (q2H′ + p · qH′)/22κ.

Note that in G1 and all subsequent experiments, as long as the exper-
iment is not aborted, any extractable commitment com was previously
returned as output from a unique query of the form H′(α, β, µ, γ). We say
that α, β, µ are associated with com in that case.



In an execution of the signing protocol, we say A successfully cheats if
the signer does not abort the execution (nor does the experiment itself
abort), yet either (1) some commitment sent by A in that execution
was not extractable or (2) for some i, the commitment comi sent in
that execution was extractable with associated values αi, βi, µi, but ci ̸=
H(µi, Ri + F(αi) + βi · pk) (where Ri is the value sent by the signer in
the corresponding session). In G1, the only way A can successfully cheat
in some execution is if A sends a single non-extractable commitment
comi and/or a single incorrect ci in that execution, and the challenge I
sent by the signer is equal to i. For an integer N , we let cheatN be the
indicator variable that is equal to 1 iff A successfully cheats in the (unique)
execution of the signing protocol that uses cut-and-choose parameter N .
Let cheat∗ =

∑p+1
N=2 cheatN be the number of times A successfully cheats

in the entire experiment. By the observation made a moment ago, we have
E[cheatN ] ≤ 1/N for all N , and so

E[cheat∗] ≤
p+1∑
N=2

1

N
≤ ln(p+ 1).

Expt G2. This experiment is identical to G1 except that it aborts (and
A does not succeed) if cheat∗ > 3 ln(p+ 1) + ln(2/ϵ). As the cheatN are
(dominated by) independent Bernoulli variables, and cheat∗ is their sum,
we can apply the Chernoff bound to conclude that

Pr[cheat∗ > 3 ln(p+ 1) + ln(2/ϵ)] ≤ ϵ/2.

(We defer the full calculation to Appendix B). Hence, A’s success proba-
bility in G2 is at least ϵ/2− (q2H′ + p · qH′)/22κ.

Expt G3. Here, we change the way each execution of the signing protocol
is run. Now, for each execution of the signing protocol—say, using cut-
and-choose parameter N—first choose uniform j ∈ [N ]. Then:

– For i ∈ [N ], if comi is not extractable then compute Ri (and si, if
needed) as before. Set Ci :=⊥. (The purpose of Ci will be clear later.)

– For i ∈ [N ]\{j}, if comi is extractable with associated values αi, βi, µi,
then compute Ri as before and set R′

i := Ri+F(αi)+βi ·pk. If H(µi, R
′
i)

is already defined (before Ri is sent to A), the experiment aborts and
A does not succeed. Otherwise, set H(µi, R

′
i) to a uniform value and

set Ci := H(µi, R
′
i) + βi. Compute si (if needed) as before.



– If comj is extractable with associated values αj , βj , µj , we refer to j
as a programmed session. In this case, choose rj ← D and Cj ← S,
compute Rj := F(rj) +Cj · (−pk) and R′

j := Rj + F(αj) + βj · pk, and
program H(µj , R

′
j) := Cj − βj . (This programming is done before Rj

is sent to A.) If H(µj , R
′
j) is already defined, the experiment aborts

(and A does not succeed).
Later in the execution, if I = j and neither the execution nor the
experiment is aborted, compute and send sj := rj +Cj · (−sk) + cj · sk,
where cj is the corresponding value sent by A.
Ignoring for a moment the aborts introduced in this experiment, we

claim that the view of the adversary in each execution of the signing
protocol is identical to its view in G2. This is immediate for all but a
programmed session. But it can be verified that in a programmed session j,
the joint distribution of sj and Rj is identical to the distribution of those
values in G2. Moreover, Cj is uniform even conditioned on sj , Rj , and so
H(µj , R

′
j) is programmed to be a uniform value. The latter can be seen as

follows. As long as cj has not been sent by A, Rj is uniform, and hence
so is Cj . After cj is sent by A, sj and cj together fully determine Rj as
Rj = F(sj)− cj · pk. Hence, for all values of cj , conditioning on sj , Rj is
the same as conditioning on only sj . Since sj = rj + Cj · (−sk) + cj · sk
and rj is a uniform value, Cj is also uniform.

As for the aborts introduced in G3, note that whenever the experiment
checks whether H(µ,R′) is already defined it is the case that R′ has min-
entropy at least 2κ. (This follows because R = F(r) for uniform r and F
has min-entropy at least 2κ.) Thus, the probability that G3 aborts where
G2 would not is at most p2 · (p2 + qH)/2

2κ. We conclude that A succeeds
in G3 with probability at least ϵ/2− (q2H′ + p · qH′ + p2 · (p2 + qH))/2

2κ.

Expt G4. Here, we again change each execution of the signing proto-
col. Consider an execution with cut-and-choose parameter N , and let
j, {Ci}i∈[N ] be as in the previous experiment. After A sends c1, . . . , cN ,
if it holds that (c1, . . . , cn) = (C1, . . . , Cn) then set I := j; otherwise, set
I := j + 1 (mod N). The rest of the execution is as in G3.

We claim that A’s view in G4 is identically distributed to its view
in G3, and hence its success probability is unchanged. Indeed, in any
particular execution of the protocol, the value of j is independent of both
the view of A before I is sent as well as the {Ci}i∈[N ]. Thus, regardless
of whether (c1, . . . , cn) is equal to (C1, . . . , Cn) or not, I is uniformly
distributed in [N ] in experiment G4 just as in experiment G3.

In an execution of the signing protocol, we say the programmed session
is completed if I = j and the signer does not abort during the remainder



of the execution of the signing protocol. Note that when the programmed
session is completed, cj = Cj and hence

sI = sj = rj + Cj · (−sk) + cj · sk = rj = rI .

Thus, the only time sk is needed when executing the signing protocol in G4

is when A successfully cheats, in which case the programmed session is
not completed.

For a valid message/signature pair (m,σ) = (m, (c′, s′, φ)) output by A,
let R′ = F(s′)− c′ · pk and µ = H′(m,φ); we say this message/signature
pair is fake if there is a programmed session in which H was programmed
at the point (µ,R′) and, if so, we associate (m,σ) with the unique such
session. (There cannot be more than one programmed session where H′

is programmed at the same point, or else the experiment aborts.) A fake
message/signature pair can thus be associated with a particular commit-
ment comj having associated values αj , βj , µj = µ (recall that a session is
only programmed if the corresponding commitment is extractable), as well
as values rj , Rj , Cj defined by the experiment. Since (c′, s′, φ) is a valid
signature on m, we have c′ = H(µ,R′); we also have H(µ,R′) = Cj−βj (by
definition of how programming is done) and thus βj = Cj − c′. Therefore

F(s′) = R′ + c′ · pk
= Rj + F(αj) + βj · pk+ c′ · pk
= Rj + Cj · (−pk) + F(αj) + (Cj − c′) · pk+ c′ · pk
= Rj + Cj · (−pk) + F(αj)

+ Cj · pk− c′ · pk+ F(Ψ(pk, Cj ,−c′)) + c′ · pk
= Rj + Cj · (−pk) + F(αj) + Cj · pk+ F(Ψ(pk, Cj ,−c′))
= Rj + F(αj) + F(Ψ(pk, Cj ,−c′)),

and so

F(s′ − αj − Ψ(pk, Cj ,−c′)) = Rj . (1)

There is at most one fake message/signature pair associated with any
programmed session (since the distinct {mi} in A’s output correspond
to distinct {µi = H′(mi, φi)} or else the experiment aborts), and so the
number of fake pairs is at most the number of programmed sessions.

Expt G5. Experiment G5 aborts (and A does not succeed) if the number
F of fake pairs exceeds the number of completed, programmed sessions.
Before we bound the probability of this event, note that the number of



completed, programmed sessions is at most ℓ− cheat∗; therefore, if F is at
most the number of completed, programmed sessions, then if A succeeds
the number of valid message/signature pairs that are not fake is

(ℓ+ 1)− F ≥ (ℓ+ 1)− (ℓ− cheat∗) = cheat∗ + 1.

Claim. The probability (in G4) that A succeeds and the number of fake
message/signature pairs exceeds the number of completed, programmed
sessions is at most p · ϵPRE.

Proof. Let E be the event that A succeeds and the number of fake
message/signature pairs exceeds the number of completed, programmed
sessions. We construct an adversary C attacking preimage resistance of LF
that succeeds with probability at least Pr[E]/p. The claim follows.

C is given parameters par and a challenge R ∈ R. It honestly generates
(pk, sk) and runs experiment G5 with A with the following exception:

– For a uniformly chosen execution of the signing protocol (say, the kth
execution), C sets Rj := R+ Cj · (−pk) in the programmed session of
that execution. If in that execution, I = j and sj must be sent to the
adversary (so the programmed session is to be completed), C aborts.

Note that when C does not abort, C never needs to use a preimage of R.
At the end of the experiment, C aborts if E has not occurred. If E
has occurred, C finds the first fake message/signature pair (m, (c′, s′, φ))
associated with a non-completed, programmed session and aborts if that
pair is not associated with the programmed session in execution k. If C has
not aborted, C has values αj , Cj , used as part of the programmed session
in execution k, such that s′ − α− Ψ(pk, C,−c′) is a preimage of R (using
Equation (1)). The probability that C does not abort is precisely Pr[E]/p.

Using the above claim, we see that A succeeds in G5 with probability
at least ϵ/2− (q2H′ + p · qH′ + p2 · (p2 + qH))/2

2κ − p · ϵPRE.

Bounding A’s success probability in G5. To conclude the proof,
we show that the success probability of A in G5 is negligible. We do
so by defining an adversary B that runs A as a subroutine and attacks
the λ-one-more unforgeability of BS[LF], where λ = 3 ln(p+ 1) + ln(2/ϵ).
Adversary B works as follows:

1. B is given a public key pk as well as access to a signing oracle for BS[LF]
and an oracle H. It runs A on pk, and simulates experiment G5 for A
as described below. Queries that A makes to H′ are answered by B



with uniform values in the natural way. Queries that A makes to H are
in general answered by simply relaying those queries to B’s oracle H,
except that in programmed sessions B programs H to a different value
(as described in G3).

2. B simulates an execution of the signing protocol for A using cut-and-
choose parameter N as follows. B selects a uniform j ← [N ] and
initiates an interaction with its signing oracle for BS[LF]. Let R∗ be
the value that B receives from its signing oracle in the first round.
When A sends com1, . . . , comN , then:

– B sets Rj+1 := R∗ and generates the remaining {Ri}i ̸=j+1 as in G5.
It then sends these values to A.

– B then continues to run the signing protocol as in G5. If I = j + 1
and B needs to send sI (i.e., neither the current execution of
the signing protocol nor the experiment itself is aborted) then
B forwards cI to its signing oracle for BS[LF], and returns the
response s∗ to A.

3. At the end of the experiment, if A outputs ℓ+1 valid message/signature
pairs (m, (c′, s′, φ)) (where validity is determined relative to CCBS[LF]
and the oracles H,H′ that B simulated for A), then B aborts if the
number of fake message/signature pairs exceeds the number of com-
pleted, programmed sessions. Assuming it has not aborted, B identifies
cheat∗ + 1 valid message/signature pairs that are not fake, and for
each such pair (m, (c′, s′, φ)) outputs (H′(m,φ), (c′, s′)).

The simulation provided by B is perfect, and thus the probability that
A succeeds when run by B is exactly the probability that A succeeds
in G5. The number of executions of the signing protocol that B initiates
with BS[LF] is p, while the number that B completes is exactly cheat∗

and so is at most 3 ln(p+ 1) + ln(2/ϵ). Finally, whenever A succeeds then
for any message/signature pair (m, (c′, s′, φ)) output by A that is not
fake, the message/signature pair (H′(m,φ), (c′, s′)) output by B is a valid
message/signature pair relative to BS[LF] and the oracle H provided to B;
additionally, the messages H′(m,φ) are distinct since no collisions were
found in H′. We conclude that the success probability of B is equal to the
success probability of A in G5, which is negligible since BS[LF] is secure.
This completes the proof of the theorem.

3.3 Improving the Complexity of the Signing Protocol

The complexity of the signing protocol is linear in the cut-and-choose
parameter N , and it is therefore important to minimize that parameter.



In the scheme analyzed thus far, N is incremented each time the signing
protocol is executed. Here, we argue that it suffices to increment the
cut-and-choose parameter only when cheating is detected. Not only is
this strictly better in theory (assuming at least some interactions are
with honest users), but we expect that this optimization would have a
significant impact on efficiency in practice where (1) the signer would
likely know the identity of each user executing the protocol, and could
ban any user the first time they are caught cheating, and (2) we expect
that a majority of users are honest.

The discussion that follows assumes familiarity with the high-level
overview from Section 1.2 and/or the proof of one-more unforgeability from
the previous section. We focus our treatment on the sequential setting,
and briefly discuss at the end how it can be extended to handle concurrent
executions of the protocol.

Recall that in an execution of the signing protocol of our transformed
scheme, we say the adversary successfully cheats if it cheats in a single
session and is not caught by the signer. In a given execution using cut-and-
choose parameter N , the adversary successfully cheats with probability at
most 1/N . For the proof of one-more unforgeability, it is crucial that (over
the course of the entire experiment) the adversary successfully cheats at
most logarithmically many times, except with negligible probability.

Let cheatN be a random variable denoting the number of times, over
the course of the entire one-more unforgeability experiment, the adversary
successfully cheats when the cut-and-choose parameter is N . In the scheme
analyzed thus far, each value of the cut-and-choose parameter is used
only once and so E[cheatN ] ≤ 1/N . Thus, assuming the attacker runs p
executions of the signing protocol overall, the expected number of times
the attacker successfully cheats is

p+1∑
N=2

E[cheatN ] ≤
p+1∑
N=2

1

N
≤ ln(p+ 1).

Consider now what happens if we modify our scheme so that the
counter is only incremented when cheating is detected. (We also assume
for simplicity that the attacker cheats in exactly one session each time
it runs the protocol; it is clear that this maximizes the number of times
it can successfully cheat.) Then cheatN is equal to the number of times
the attacker successfully cheats (when the cut-and-choose parameter is N)
before being caught. This is one less than the number of trials (when the
cut-and-choose parameter is N) until the adversary is caught. (Recall that
here we are assuming sequential executions of the signing protocol only.)



Since the probability of being caught in each such trial is (N − 1)/N , we
now have

E[cheatN ] =
N

N − 1
− 1 =

1

N − 1
,

and so if the attacker runs p executions of the signing protocol overall,
the expected number of times the attacker successfully cheats is at most

p+1∑
N=2

E[cheatN ] =

p+1∑
N=2

1

N − 1
≤ 1 + ln p.

Proceeding as in6 the proof of Theorem 4, we can show that the adver-
sary successfully cheats at most logarithmically many times, except with
negligible probability.

Handling concurrent executions. The optimization described above
does not work when there may be concurrent executions of the signing
protocol. (To see what goes wrong, consider the case where the adversary
runs p parallel executions, all using cut-and-choose parameter N = 2. Then
the adversary successfully cheats in roughly half those executions before the
signer detects cheating and has any chance to increment the counter.) For
the argument outlined above to work, the key property we need to ensure
is that the adversary can successfully cheat at most once for each value of
the cut-and-choose parameter. To enforce this, the signer just needs to
make sure that any currently active executions of the signing protocol use
distinct values of the cut-and-choose parameter; moreover, once cheating is
detected in an execution using cut-and-choose parameter N , no subsequent
executions may use cut-and-choose parameter N . So, for example, the
signer can store the largest value of the cut-and-choose parameter N∗ for
which cheating has been detected, and then when initiating an execution
of the signing protocol can use as the cut-and-choose parameter the least
value N > N∗ that is not currently being used by any active execution.
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A Additional Examples of Linear Function Families

In Section 2.2 we defined linear function families, and described the linear
function family that underlies the Schnorr blind signature scheme. Here
we recall additional examples of linear function families from the work of
Hauck et al. [14].

Okamoto-Schnorr. Here, par defines a cyclic group G of prime order q ≥
22κ, and also includes uniformly selected generators g1, g2 ∈ G. We let
S = Zq, D = Z2

q , and R = G, with the scalar multiplication maps
s · (x, y) = (s ·x, s · y) (for s, x, y ∈ Zq) and s · g = gs (for g ∈ G). Defining
F(x, y) := gx1 · g

y
2 , a pseudo torsion-free element in the kernel is given

by z∗ = (−1, logg2 g1). Since scalar multiplication between S and R is
distributive, Ψ is the zero function. Finally, LF is preimage resistant and
collision resistant under the discrete logarithm assumption in G.

Okamoto-Guillou-Quisquater. Here, par contains N = pq for distinct
primes p, q, along with a uniform value a ∈ Z∗

N and a prime λ with
gcd(φ(N), λ) = gcd(N,λ) = 1 and of size at least 22κ. We define S = Zλ

under addition modulo λ; define R = Z∗
N under multiplication modulo N ;



and define D = Zλ × Z∗
N with group operation given by

(x1, y1) ◦ (x2, y2) :=
(
x1 + x2 mod λ, y1 · y2 · a⌊

x1+x2
λ

⌋ mod N
)
.

(It can be shown [14] that this is indeed a group.) Scalar multiplication
maps s · b for b ∈ R or b ∈ D are defined as s-fold iteration of the
corresponding group operation. Moreover, define F(x, y) := axyλ mod N

and Ψ(x, s, s′) := (0, x⌊−
s+s′
λ

⌋ mod N). A pseudo torsion-free element in
the kernel is given by z∗ = (λ − 1, aλ

−1−1 (mod N)), where λ−1 is the
inverse of λ modulo φ(N). LF is preimage resistant and collision resistant
under a suitable version of the RSA assumption.

Fiat-Shamir. Here, par contains N = pq for distinct primes p, q, and we
define S = Zk

2, D = R = (Z∗
N )k for k ≥ 22κ. The scalar multiplication

maps are
(s1, . . . , sk) · (x1, . . . , xk) = (xs11 , . . . , xskk ).

Let F(x1, ..., xk) := (x21 (mod N), ..., x2k (mod N)), and define Ψ(x⃗, r⃗, s⃗)

component-wise with Ψ(xi, ri, si) := x
−(ri>si+ri (mod 2))
i (where ri > si+ri

(mod 2) denotes the predicate that returns 1 iff ri = si = 1 (mod 2).
A pseudo torsion-free element in the kernel is z∗ = (−1, ...,−1). LF is
preimage resistant and collision resistant under the factoring assumption.

B Deferred Calculations

Let X be a sum of independent {0, 1}-random variables with µ = E[X].
The multiplicative Chernoff bound states that for all δ > 0

Pr[X ≥ (1 + δ) · µ] ≤ exp

(
− µδ2

2 + δ

)
.

Let X = cheat∗ =
∑p+2

N=2 cheatN . Then for any s > ln(p+ 1) ≥ E[cheatN ]
we have

Pr[cheat∗ ≥ s] = Pr

[
cheat∗ ≥

(
1 +

(
s

µ
− 1

))
· µ
]

≤ exp

(
− µ(s/µ− 1)2

2 + (s/µ− 1)

)
.

Using the fact that x2/(2 + x) > x− 2 for all x ≥ 0, the above is at most

exp

(
−µ
(
s

µ
− 3

))
= exp(3µ− s)

If we set s = 3 ln(p+ 1) + ln(2/ϵ), the above equals ϵ/2.


