Improved Programmable Bootstrapping with
Larger Precision and Efficient Arithmetic
Circuits for TFHE

Ilaria Chillotti!, Damien Ligier!, Jean-Baptiste Orfila!, and Samuel Tap!

Zama, Paris, France - https://zama.ai/
{ilaria.chillotti,damien.ligier,jb.orfila,samuel.tap}@zama.ai

Abstract. Fully Homomorphic Encryption (FHE) schemes enable to
compute over encrypted data. Among them, TFHE [8] has the great
advantage of offering an efficient method for bootstrapping noisy cipher-
texts, i.e., reduce the noise. Indeed, homomorphic computation increases
the noise in ciphertexts and might compromise the encrypted message.
TFHE bootstrapping, in addition to reducing the noise, also evaluates
(for free) univariate functions expressed as look-up tables. It however
requires to have the most significant bit of the plaintext to be known a
priori, resulting in the loss of one bit of space to store messages. Further-
more it represents a non negligible overhead in terms of computation in
many use cases.

In this paper, we propose a solution to overcome this limitation, that we
call Programmable Bootstrapping Without Padding (WoP-PBS). This
approach relies on two building blocks. The first one is the multiplication
@ la BFV [13] that we incorporate into TFHE. This is possible thanks
to a thorough noise analysis showing that correct multiplications can be
computed using practical TFHE parameters. The second building block
is the generalization of TFHE bootstrapping introduced in this paper. It
offers the flexibility to select any chunk of bits in an encrypted plaintext
during a bootstrap. It also enables to evaluate many LUTs at the same
time when working with small enough precision. All these improvements
are particularly helpful in some applications such as the evaluation of
Boolean circuits (where a bootstrap is no longer required in each evalu-
ated gate) and, more generally, in the efficient evaluation of arithmetic
circuits even with large integers. Those results improve TFHE circuit
bootstrapping as well. Moreover, we show that bootstrapping large pre-
cision integers is now possible using much smaller parameters than those
obtained by scaling TFHE ones.

Keywords: FHE - TFHE - Bootstrapping.

1 Introduction

Fully Homomorphic Encryption (FHE) is a family of encryption schemes al-
lowing to perform computation over encrypted data. FHE schemes use noisy
ciphertexts for security reasomns, i.e., ciphertexts containing some randomness.

https://zama.ai/

2 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

This noise grows after every performed homomorphic operation, and, if not con-
trolled, can compromise the message and prevent the user from decrypting cor-
rectly. A technique called bootstrapping and introduced by Gentry [14] allows
to reduce the noise, by mean of a public key called bootstrapping key. By using
bootstrapping frequently, thus reducing the noise when needed, one can perform
as many homomorphic operations as she wants, but it remains an expensive
technique, both in terms of execution time and memory usage.

Nowadays, the most practical FHE schemes are based on the hardness as-
sumption called Learning With Errors (LWE), introduced by Regev in 2005 [20],
and on its ring variant (RLWE) [22,19]. Even if bootstrapping is possible for all
these schemes, some of them (such as BGV [3], BFV [2,13] and CKKS [(]) ac-
tually avoid it because the technique remains a bottleneck. These schemes make
use of RLWE ciphertexts exclusively and adopt a leveled approach, which consists
in choosing parameters that are large enough to tolerate all the noise produced
during the computation. These schemes take advantage of SIMD encoding [21]
to pack many messages in a single ciphertext and perform the homomorphic
evaluations in parallel on all of these messages at the same time, and they natu-
rally perform homomorphic multiplications between RLWE ciphertexts by doing
a (tensor) product followed by a relinearization/key switching.

TFHE [7,8,9] is also an (R)LWE-based FHE scheme which differentiates
from the other (R)LWE-based cryptosystems because it supports a very effi-
cient bootstrapping technique. TFHE was originally proposed as an improve-
ment of FHEW [12], a GSW [15] based scheme with a fast bootstrapping for
the evaluation of homomorphic Boolean gates. Apart from improving FHEW
bootstrapping, TFHE also introduces new techniques in order to support more
functionalities than the ones proposed by FHEW and to improve homomorphic
evaluation of complex circuits. TFHE efficiency comes in part from the choice of
a small ciphertext modulus which allows to use CPU native types to represent
a ciphertext both in the standard domain and in Fourier domain. This is what
we call the TFHE context.

TFHE encrypts messages in the most significant bits, meaning a message
m € 7Z is rescaled by a factor A € Z before being reduced modulo g. The small
noise e € Z is added in the least significant bit, so a noisy plaintext looks like
A-m+e mod ¢. In this paper, when we refer to bits of precision, we mean the
quantity p = log,(%). We illustrate this in Figure 1. Note that if m > 2P some
of the information in m will be lost because of the modulo g.

TFHE bootstrapping is very efficient, but also programmable, meaning that
a univariate function can be evaluated at the same time as the noise is being
reduced. It is often called programmable bootstrapping [10,11] and noted PBS.
The function to be evaluated is represented as a look-up table (LUT) and the
bootstrapping rotates this table (stored in an encrypted polynomial) in order
to output the correct element in the table. The LUT has to have redundancy
(each coefficient is repeated a certain amount of time consecutively) in order to
remove the input ciphertext noise during the PBS.

Improved PBS with Larger Precision in TFHE 3

precision = 7 bits
m e

=

vso BRI NN NN -

Fig. 1. In TFHE, messages are encoded in the most significant bits (MSB), and so it
is rescaled by a scaling factor A, while the error appears in the least significant bits
(LSB). The precision is log, (%), i.e 7 bits in the figure.

A multi-output version of the PBS is described in [1] allowing the evalu-
ation of multiple (negacyclic) functions {f;}; over one encrypted input. Each
function f; is encoded as a LUT in a polynomial P;. One can find a shared
polynomial @ such that we can decompose each P; as @ - P/ and compute
CTout < PBS(ctin, BSK, Q). Then, one needs to multiply CToy by each of P/
and sample extract the resulting ciphertexts. One would have obtained the eval-
uation of each function. One drawback of this method is that the noise inside
the i-th output ciphertexts depends on P;.

A recent paper revisits the TFHE bootstrapping [16]. It gives two algorithms
and a few optimizations to compute programmable bootstrapping on large pre-
cision ciphertexts encrypting one message decomposed in a certain base. Those
algorithms could be used to homomorphically compute multivariate functions if
we call them with the right lookup tables.

The BGV/BFV/CKKS leveled approach is very convenient when the circuit
that has to be homomorphically evaluated is small in terms of multiplicative
depth, but also known in advance. When multiple inputs have to be evaluated
with the same circuit at once, this approach is also very good in terms of amor-
tized computation time. However, when the circuit is deep and unknown a priori,
the TFHE approach is more convenient.

A recent work by Boura et al., called Chimera [1], tries to take advantage of
both approaches, by building bridges between FHE schemes (TFHE, BFV and
CKKS), in order to switch between them depending on which functionality is
needed.

TFHE and its fast PBS are very powerful, but have some limitations:

A In general, to correctly bootstrap a ciphertext, its encrypted plaintext needs
to have its first Most Significant Bit (MSB) set to zero (or at least known).
The only exception is when the univariate function evaluated is negacyclic.

B One cannot bootstrap efficiently a message with a large precision (e.g., more
than 6 bits). The number of bits of the message we bootstrap is strictly
related to the dimension N of the ring chosen for the PBS. This means
that the more we increase the precision, the more we have to increase the
parameter N, and the slower the computation is.

C The PBS algorithm is not multi-thread friendly. Indeed, it is a loop working
on an accumulator.

4 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

D There exists no native multiplication between two LWE ciphertexts. There
are two approaches to multiply LWE ciphertexts: (¢) use two programmable
bootstrappings to evaluate the function x — % so we can build the mul-

2 2
tiplication z -y = % - %; (#4) use 1 or more TFHE circuit boot-

strappings [3, Alg. 6] in order to convert one of the inputs into a GGSW
(if not given as input) and then performing an external product. Since both
techniques use PBS, they both suffer from limitations A and B.

E Because of limitations A and B it is not possible, in an efficient manner,
to homomorphically split a message contained in a single ciphertext into
several ciphertexts containing smaller chunks of the original message.

F The PBS can evaluate only a single function per call. Using the [4] trick, we
can evaluate multiple Look-Up Tables at the same time, but the output will
have an additional amount of noise which depends on the function evaluated.

G TFHE gate bootstrapping represents a very easy solution for evaluating ho-
momorphic Boolean circuits. However, this technique requires a PBS for each
binary gate, which results in a costly execution. Furthermore, when we want
to apply a similar approach to the arithmetic circuit with bigger integers
(more than 1 bit), TFHE does not provide a solution.

H TFHE circuit bootstrapping requires £ PBS followed by many key switchings
which is quite time consuming.

Contributions. In this paper we overcome the above-mentioned TFHE limita-
tions. First, we generalize TFHE PBS so it can evaluate several functions at
once without additional computation or noise. This approach is possible when
the message to bootstrap is small enough. It overcomes limitation F and enables
to compute a single generalized PBS when computing a circuit bootstrapping
instead of £ PBS, overcoming limitation H. Circuit bootstrapping is particularly
interesting in the leveled evaluation of Look-Up Tables, as shown in [3].

Furthermore, we thoroughly study the noise growth when computing a ten-
sor product followed by a relinearization (i.e., the BFV-like multiplication) and
found parameters compatible with the TFHE context representing a new way of
computing LWE multiplications in TFHE. This multiplication is efficient and
does not require a PBS which overcomes limitation D. We also propose a packed
use of this algorithm to compute several LWE products at once or a sum of sev-
eral LWE products at once. Our noise analysis is also valid for BFV-like schemes
and can help estimate the noise growth there.

From this multiplication, we define a new PBS procedure that does not require
the MSB to be set to zero, overcoming limitation A. This new procedure is
composed of few generalized PBS that can be computed in parallel which makes
it more multi-thread compatible (limitation C). Observe that, differently from
Chimera, which builds bridges to move between different schemes, we add the
support for a BFV-like multiplication into TFHE, in order to remove some of
the TFHE limitations. In this way, we don’t need to switch between schemes,
and we can remain all the time in the TFHE context.

From this new PBS we are able to homomorphically decompose a plaintext
from a single ciphertext into several ciphertexts encrypting blocks of the input

Improved PBS with Larger Precision in TFHE 5

plaintext, overcoming limitation E, and also relax the need for PBS at every
gate in the gate bootstrapping and its generalization, overcoming limitation G.

From this new decomposition algorithm and the Tree-PBS algorithm [16], we
are able to create a fast PBS for larger input messages, overcoming limitation B.
We can also in an even faster manner refresh the noise (bootstrap, not PBS) in
a ciphertext from this new decomposition algorithm.

2 Background and Notations

The parameter ¢ is a positive integer and represents the modulo for the integers
we are working with. We note Z the ring Z/qZ. The parameter N is a power of 2
and represents the size of polynomials we are working with. We note R, the ring
Zy[X] /(XN +1). A Gaussian distribution with a mean set to zero and a standard
deviation set to o is written x,. We use the symbol || for concatenation. When
¢ is an integer, we note by [-], the reduction modulo ¢ and by |-], the rounding
then the reduction modulo ¢. We refer to the most (resp. least) significant bits
of an integer as MSB (resp. LSB). We alse refer to look-up tables as LUT. The
(computational) complexity of an algorithm Alg, potentially dependent on some
parameters pi, - - -, Pn, is denoted (C’/i}g’"' P

Remark 1. Observe that in this paper we use different notations compared to
TFHE [7,8,9]. In TFHE, the message and ciphertext spaces are expressed by
using the real torus T = R/Z. On a computer, they implemented T by using
native arithmetic modulo 232 or 264, which means that they work on Z, (with
q = 23 or ¢ = 2%). This is why we prefer to use Z, instead of T, as already
adopted in [10]. It is made possible because there is an isomorphism between Z,
and %Z/Z as explained in [I, Section 1].

LWE, RLWE & GLWE Ciphertexts. A GLWE ciphertext of a message M € R,
with the scaling factor A € Z, under the secret key S € ‘ﬁ’; is defined as follows:

k
CT= (A1, , A, B=)_ A;-Si+ M- Al + E) = GLWEg(M - A) € RET!

i=1

such that S = (Sy,---, %) € 9‘{’; is the secret key with coefficients either sampled
from a uniform binary, uniform ternary or Gaussian distribution, {A4;}*_; are
polynomials in 93, with coefficients sampled from the uniform distribution in Z,
E is an noise (error) polynomial in %R, such that its coefficients are sampled from
a Gaussian distributions .. The parameter k is a positive integer and represents
the number of polynomials in the GLWE secret key. To simplify notations, we
sometimes define Si4; as —1.

A GLWE ciphertext with N = 1 is an LWEFE ciphertext and in this case we
consider the parameter n = k for the size of the LWE secret key and we note
both the ciphertext and the secret with a lower case e.g. ct and s. A GLWE
ciphertext with £k =1 and N > 1 is an RLWEFE ciphertext.

6 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*
Lev, RLev & GLev Ciphertexts. A GlLev ciphertext with the base 8 € N* and

£ € N* levels, of a message M € R, under the GLWE secret key S & 9%]; is
defined as the following vector of GLWE ciphertexts:

CT = (CTy, -+ ,CTy) = Glevg (M) € RE*(EHD

where CT,=GLWEg (M-) is a GLWE ciphertext.
A GLev ciphertext with N = 1is a Lev ciphertert and in this case we consider
the parameter n = k for the size of the LWE secret key. A GLev ciphertext with

k=1and N > 11is a RLev ciphertext.

Decomposition Algorithms. The decomposition algorithm in the integer base
B € N* with ¢ € N* levels is written dec®* and takes as input an integer
x € Zy and output a decomposition vector of integers (z1,---,x¢) € Zf; such
that:

(dec® @), (oo L)) = P%ﬂ L ez,

Note that this decomposition starts from the MSB. When we apply this
decomposition on a vector of integers, we end up with a vector of decomposition
vector of integers.

We can also decompose an integer polynomials X € R, into a decomposition
vector of polynomials (X1, -, X;) € R such that:

(dec™0(x), (o L)) = {Xﬁﬁ e,

When we apply this decomposition on a vector of polynomials, we end up
with a vector of decomposition vectors of polynomials.

Key Switching. A technique that is often used in FHE, called key switching,
allows to change parameters and keys in the ciphertext. The key switching makes
the noise grow and is performed using a so-called key-switching key which is a
public key composed of encryptions of secret key elements.

There are different types of key switchings: we will quickly list and describe the
ones that are interesting for the understanding of the paper. The LWE-to-GLWE
key-switching key is noted KSK and is equal to Ksk={CT,=GLev3 “(s:)}, _._ , Where
s = (s1,-..,8n) € Zy is the input LWE secret key and S’:(S{,...,S;Jezk’; is the
output GLWE secret key.

— ’CTout + PrivateKS({ct; }ic(1,... p}, KSK) ‘: allows to apply a private lin-

ear function f:(z/qz)» —2z/qz[x] over p LWE ciphertexts {ct;=LWEs(m1)}ic(1... .0}
and creates a GLWE ciphertext CTo.=GLWEg/ (f(m1,--,m;)). For more details
check [8, Algorithm 2].

Improved PBS with Larger Precision in TFHE 7

- ’CTout « PublicKS({cti}ic(1.),
vious key switching, i.e., a key switching with a public linear function f. For
more details check [3, Algorithm 1]. The key switching used in TFHE PBS
is a public key switching, where the function f is the identity function and
the output GLWE is instantiated with &k = n’ and N =1 (i.e., as an LWE
instance).

— | CTout + PackingKS({ct;}/_, {i;};_;,KSK) | is a (public) key switching
procedure enabling to pack several LWE ciphertexts into one GLWE. It
takes as input a set of p LWE ciphertexts as well as a set of p indexes.
Given the set of inde);es {i]-}g:l, the function f has the following shape:
f({mj}§:1)_)2?:1 m;-X"7.

KSK, f) ‘: is a public version of the pre-

GSW, RGSW & GGSW Ciphertexts. A GGSW ciphertext with the base B € N*
and ¢ € N* levels, of a message M € M, under the GLWE secret key s=(s1,-,5%)¢
mF is defined as the following vector of GLev ciphertexts:

CT= (ﬁla e 7ﬁk+1) = GGSW(S%’D(M) c m((zk+1)x1€x(k+1)

where CT,=GLev(®'¥(—5;-M) is a GLev ciphertext. Remember that we note
Spp1=—1.

A GGSW ciphertext with N =1 is a GSW ciphertext, and a GGSW cipher-
text with k=1 and N > 1 is a RGSW ciphertext.

TFHE PBS. The bootstrapping of TFHE has a double functionality: it reduces
the noise in the ciphertexts and at the same time evaluates a univariate function.
We call it PBS for programmable bootstrapping. In order to be performed, the
PBS uses a so called bootstrapping key, i.e., a list of GGSW encryptions of the
elements of the secret key used to encrypt the input LWE (noisy) ciphertext of
the PBS. The procedure is composed of three major steps:

— Modulus Switching: the input LWE ciphertext in ZZH is converted into a
ciphertext in Zgj{,l;

— Blind Rotation: a GLWE encryption of a redundant LUT"' is rotated (by
using a loop of CMux operations [9]) according to the LWE ciphertext pro-
duced in the previous step and the public bootstrapping key;

— Sample Extraction: the constant coefficient of the GLWE output of the pre-
vious step is extracted as a LWE ciphertext.

Y A redundant LUT is a LUT corresponding to a function f, whose entries are re-
dundantly represented inside the coefficients of a polynomial in $R,. In practice, the
redundancy consists in a r times (with r a system parameter) repetition of the entries
£(i) of the LUT with a certain shift: Py = X~7/2. 2 NV/r=1 xir. (z;;g £(i) - Xj).
The redundancy is used to perform the rounding operation during bootstrapping.

8 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

TFHE Circuit Bootstrapping. In 2017, TFHE authors propose a technique called
citcuit bootstrapping [, Alg. 6], to convert an LWE ciphertext into a GGSW
ciphertext, and to reduce its noise at the same time. The circuit bootstrapping
is composed by a series of ¢ TFHE PBS, followed by a list of (k + 1)¢ private key
switching procedures. The goal is to build one by one all the GLWE ciphertexts
composing the output GGSW.

3 Building Blocks

In this section we describe two building blocks: the LWE multiplication, that
uses an existing GLWE multiplication together with some key switchings and
sample extraction, and a generalized version of TFHE PBS. Both techniques are
necessaries in order to build our constructions in the rest of the paper.

3.1 LWE Multiplication

We first recall the multiplication algorithm for GLWE ciphertexts in Algorithm 1.
It is composed of a tensor product followed by a relinearization and is widely
used in the literature [13] (we recall the GLWE [3] algorithm, instead of the
more limited RLWE version). Since this algorithm is largely used in the rest
of the paper, we thoroughly study its noise growth and provide a formal noise
analysis where var(s) is the variance of a GLWE secret key polynomial S € R,
Var(SL,..) (resp. Var(sly,)) is the variance of even (resp. odd) coefficients in 52 and
var(S”) is the variance of coefficients in s,-s; which is the product between two
independent secret key polynomials S5;,S5; € 9R,. We provide concrete crypto-
graphic parameters depending on the precision and the multiplicative depth in
the Table 3.1.

Precision |1|2|3[4|5|6|7[8]9|10{11|12(13|14|15]16{17|18|19|20|21|22|23|24
Max. depth|32|16({16| 8 |8 |8 |8 |4 |4 (4|4 (4[4 |2]2|2|2(2|2[2|2]|2|2|2
log,(N) |12{11}12|11|11{12{12|11|11{11{12{12|12|11{11{11|11|11|11|11{12|12|12|12
log,(B) |8|5]|8(12|10| 8|8 |20(17|15(17|17| 8 |30|30|20|20|20|20|20|20|20{20|20

L 8110{8|4|5|8[8[2|3|3[3[3|8|1|1(2(2|2]|2]2(2|2]|2]|2

Table 1. Parameters depending on the GLWE multiplicative depth and the precision.

Theorem 1 (GLWE multiplication). Let cTi=GLWEs(PT,)ent! and CT.=
GLWEs (PT2)ent*! be two GLWE ciphertexts, encrypting respectively PTi=M;A1eR,
and PTo=MaAreR,, under the same secret key S=(S1,...,Sr)eRr®, with noise sampled

. J— 1<j<i
respectively from X,, and Xo,. Let RLK:{CTM:GLevf'“(Si~S,~)e£¥%§x<’°“>}15;c be a

relinearization key for the GLWE secret key S, with noise sampled from X e -
Algorithm 1 computes a new GLWE ciphertext CT encrypting the product
PT1-PTy/AcR, where A=min(A1,45) (a scaling factor), under the secret key S, with

Improved PBS with Larger Precision in TFHE 9

a noise variance Vararwema: eStimated by the following formula:

vargLwEMult= 2% (A7 1M1 112,03+ A3 1M2 |12 0F +0F03) +

2_
+Aﬂg (‘1 - (1+kNVar(s)+kN[E2(s))+%Vay(s)+%<1+kmms))2)(a%+a§)+

1 kN 2 2 3. k(k—1)N 2 _qy. 7 2ot i ”
+ﬁ+m-(m —1)-(Var(S)+E (s))+3 Var(S)>+m2— ((A 1) (Var(S Y+E2(S))+3 Var(S))+
2
+ 550 (A2 = 1) (Var(S gg)+Var(SLyen) +2E2 (Sfpgan)) +3 (Var(Sgq) +Var(Slyen))) +heN oy - S B2y
2
EN (712?321" —ﬁ)((k—l)-(Var(S”)+E2(Sr/\,{ean))+\/ar(Sédd)+\/ar(Séven)+2]E2(Sr/nean))+

2
%-((k—1)-Var(s”)+Var(sédd)+Var(se/ven)),

1)
Let p*=EEED gnd p+=C0DEE2) - The complexity of the algorithm is:

(b, 0n,N) _ ~(k,N) (k,0,N) .
(CGLWEﬁuIt - CTensovProduct + (CReIin ’ with
C%’sﬁ%mduct = 2(k + 1)Crer + kT Cieer + (k + 1)? NCrurer + k* NCagarrr, and

Cé’;}f‘N) = NLk™Cyec + k™ £Crer + k™ L(k + 1) NCrurrrr + (k™€ — 1) (k + 1) NCagarer + (k + 1)Ciger
(2)

Proof (sketch). In the proof, we compute the decryption of the resulting cipher-
text, obtaining the message plus the noise so we can estimate its variance. The
detailed computation leading us to the aforementioned noise formula is provided
in the full version of the paper. a

The same Algorithm 1 can be adapted in order to perform a GLWE square:
the square is more efficient since R;’j and A are computed with a single mul-
tiplication instead of two. For more details, we refer to the full version of the

paper.

3.1.1 Single LWE Multiplication We now define Algorithm 2 for homo-
morphically multiply two LWE ciphertexts. It requires the sample extraction pro-
cedure, which is an algorithm adding no noise to the ciphertext and consisting
in simply rearranging some of the coefficients of the GLWE input ciphertext to
build the output LWE ciphertext encrypting one of the coefficients of the input
polynomial plaintext. The sample extraction is described in [9, Section 4.2] for
RLWE inputs, and can be easily extended to GLWE ones. Due to page con-
straint, this algorithm is described in the the full version of the paper.

Theorem 2 (LWE-to-GLWE Packing Key Switch). We start with the
simplest case were we pack a single LWE ciphertext. Let cti=LWEs(m-A)ezi ' be an
LWE ciphertext encrypting m-Aez,, under the LWE secret keys = (s1,...,8,) €
Ly, with noise sampled respectively from x,. Let S’ be a GLWE secret key such
that 8'=(8],...,S;,)eRrET!. Let KSK={CTT;=GLev *(s;)ent*F+1} be a key switch-
ing key from s to S’ with noise sampled from X ooy -

There are two different variances after a packing key switch: one for the

coefficient we just filled written Varg, and another for the empty coefficients
Varemp. Those variances are estimated by:

1<i<n

2 2
q 1 n BT+ 2
Vary) = 0% 40 (12%2/5 - E) (Var(s0) + B3(s0)) + - Varlsi) 4 £ oy =
j ®)
B 2
Vargi‘i =n-¥ UESK 7+

10 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

Algorithm 1: CT + GLWEMult (CTy, CT2, RLK)

S =(S1,...,5k) € D’ig : a GLWE secret key
A = min (Ay, Ag) € Zg

Context:
PTi = M1A; € Ry
PT2 = M2 Az € Ry
CT; = GLWEs (PT1) = (Al,l, s ,A17)¢, Bl) € 9%’;‘*’1
Input: CT2 = GLWEs (PT2) = (A2,1, -+ , A2k, B2) € 9‘%2*1
_ &= (B,0) L a. 1<j<i . . .
RLK = {CTL] = Glevg (S; Sj)}lgq‘,gk : a relinearization key for S
. _ PT{ -PT k+1
Output: CT = GLWEg (%) € Rk
1 begin
/* Tensor product */
2 for 1 <i< kdo
s T H\[Al,i'zz,i]Q—H
q
4 end
5 for1<i<k,1<j<ido
[41,i-42,5+41,5-42,4]
SR =y
a
7 end
8 for 1 <i<kdo
9 Al [{[Alvi'32+jl'A2,i]Q1}
q
10 end
[B1-B2]
11 B’ « HiA QH
q
/* Relinearization */
12 CT «
(AL, A B+ 38 <ﬁmdec<%.z> (T1,()> + Z}?;i <ﬁ, . dec(B.0) (R;,j)>
13 end

When we pack 1 < o < N LWE ciphertexts, we have Var(? =Var{)) +(a—1)-Var(l)
and Var&)=a-varl) The complezity of the algorithm is:

Céﬁiﬁé’;’é\’) = alnCgec + aln(k + 1)NCpu + ((abn — 1)(k + 1)N + &) Caaq

Proof (sketch). In the proof, we compute the decryption of the resulting cipher-
text, obtaining the message plus the noise so we can estimate the two variances.
The detailed computation leading us to the aforementioned noise formulas are
provided in the full version of the paper. a

Theorem 3 (LWE Multiplication). Let ct™ =LWE,(m1-A1) and ct® =LWE,(ma-As)
be two LWE ciphertexts, encrypting respectively m,-A, and ms-Aq, both encrypted
under the LWE secret key s = (81, ..., 8n), with noise sampled respectively from
Xoy @nd Xo,. Let Ksk={CT;=GLev3“(s:)} _ _ a key switching key from s to S’
where 8'=(51.....8},), with noise sampled from X Let RLK be a relinearization

key for S’, defined as in Theorem 1.
Algorithm 2 computes a new LWE ciphertext ctoy, encrypting the product
m1-ma- Ao, WhETe Agw=maz(A1,A5), under the secret key s’. The variance of the

Improved PBS with Larger Precision in TFHE 11

Algorithm 2: ctos < LWEMult (cty, cto, RLK, KSK)

s=(s1,"+,8n) €Z; : the LWE input secret key
s’ = (s}, ,skn) € Z(’;N : the LWE output secret key
Context: S’ = (S{7 Ce S,’C) [%Z : a GLWE secret key

VI<i<k, 8 =310 sti i1y vy X €9y
Agut = max(Aq, Ag) € Zg

ct1 = LWEg(mq - Ar) € 27!

cty = LWEg(m2 - Az) € zg“

Input: RLK : a relinearization key for S’ as defined in algorithm 1
KSK = {ﬁl = GLevS’Z (Si)}lsign : a key switching key from s to S’
Output: ctoyy = LWE / (m1 - mo - Aout) € ZZ;N'H
1 begin
/* KS from LWE to GLWE */
2 CT; = GLWEg/ (m1 - A1) < PackingKS({ct;}, {0}, KSK) ;
3 CT2 = GLWEg/ (m2 - Az) < PackingKS({ct2}, {0}, KSK) ;
/* GLWE multiplication: Tensor product + Relinearization */
4 CT = GLWEg/ (m1 - ma - Aow) GLWEMult(CTy, CTo, RLK)
/* Sample extract the constant term */
Ctoyt = LWE/ (m1 - ma - Aout) < SampleExtract (CT,0)
6 end

noise in Ctoyr can be estimated by replacing the variances o1 and oo in the RLWE
multiplication (Formula 1, Theorem 1) with the variance estimated after a pack-
ing key switch (Formula 3, Theorem 2). The complezity is:

(tks fRL-n.k,N) _ (1,6Kg.m,k,N) (k,¢RL n,N) (N)
Clwenar =2 (CPacangKS + Corwemar + CSampleExtract

3.1.2 Packed Products & Packed Sum of Products It is possible to use
algorithm 2 to compute with a single multiplication several products, or several
squares, or a sum of several products, or even a sum of several squares.

These four functionalities can be easily achieved by slightly modifying Al-
gorithm 2. In the case of PackedMult and PackedSumProducts, the algo-
rithm take in input two sets of LWE ciphertexts {ct{" } ={iWe,(m{"-a1)} and

, , 0<i<a

{ctg)}:{LWES(mE).AQ)}O§i<O(:

1. PackedMult: the goal is to compute LWE encryptions of the products
m{".mP. Ay, where Agi=maz(A;,4,). The two input sets are packed with a
packing key switch into two GLWE ciphertexts with indexes £,={0,1,2,-- ,a—1}
and 2,={0,a,2a,--,(a—1)a} respectively. The resulting GLWE ciphertexts are
multiplied with the GLWE multiplication (Algorithm 1) and finally all the
coefficients at indexes i - (a + 1) (for 0 < i < «) are extracted.

2. PackedSumProducts: the goal is to compute a LWE encryption of the sum
of products 07! m{P.m®. A, where A,=maz(A;,45). The two input sets are
packed with a packing key switch into two GLWE ciphertexts with indexes
2,={0,1,2,-- ,a—1} and La={a—1,a—2,a—3,---,0} respectively. The resulting GLWE
ciphertexts are multiplied with the GLWE multiplication (Algorithm 1) and
finally the coefficient at index v — 1 is extracted.

12 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

Note that it is possible to compute packed squares and a packed sum of
squares if the two LWE input sets are equal. It is also possible to compute
squares and a sum of squares by computing a RLWE multiplication between an
RLWE ciphertext and itself. In that case, a single set of LWE input in provided

{cti} = {LWEs(m; - A>}0§i<o¢:

1. PackedSquares: the goal is to compute LWE encryptions of the squares
m? - A. The input set is packed with a packing key switch into a GLWE
ciphertext with indexes #={2°—1,2'—1,22—1,... 2*~'—1}. The resulting GLWE
ciphertext is squared by using the GLWE square algorithm and finally all
the coefficients at indexes 2¢t! — 2 (for 0 < i <) are extracted.

2. PackedSumSquares: the goal is to compute a LWE encryption of the
sum of squares 27! m?.24. To achieve this goal, the input set is packed
with a packing key switch into a GLWE ciphertext with redundancy, using
two indexes sets ¥,={0,1,2,--,a—1} and #,={2a—1,2a—2,2a—3,--- ,a}. The result-
ing GLWE ciphertext is squared by using the GLWE square algorithm and
finally the coeflicient at index 2a — 1 is extracted.

Note that we could also compute packed products and a packed sum of
products with a GLWE square algorithm by changing £, £; and £, and also
extracting different coefficients. Also note that for these four algorithms, there
are restrictions regarding the maximum value that « can take each time. We
provide more details in the the full version of the paper.

3.2 Generalized PBS

We propose a more versatile algorithm for the PBS where we are able to boot-
strap a precise chunk of bits, instead of only the MSB as described in TFHE,
and to also apply several function evaluations at once. We describe this gen-
eralization in Algorithm 3. We introduce two new parameters, » and 1, which
redefine the modulus switching step of TFHE PBS. In particular, s defines the
number of MSB that are not considered in the PBS, while 2¥ defines the number
of functions that can be evaluated at the same time in a single generalized PBS.

The two parameters s and ¢ are illustrated in Figure 2, where “input” rep-
resents the plaintext (with noise) that is encrypted the input ciphertext of the
modulus switching, and “output” illustrates the plaintext (with noise) that is
encrypted inside the output ciphertext (after modulus switching). The first »
MSB will not impact the following steps of the generalized PBS and 9 bits will
be set to 0 in order to encode 2V functions in the LUT stored in Py (see Sec-
tion 4.3 for more details). Observe that the case (3¢,9) = (0,0) corresponds to
the original TFHE PBS.

We also define the “plaintert modulus switching” function written PTModSwitch
to recover the plaintext of the encrypted output of a modulus switching algo-
rithm. Let m € Z, be a message, A € Z, its scaling factor, » € Z and ¥ € N the
parameters of a modulus switching. We define ¢’ = 4Z=. The case where 5 > 0
is illustrated in Figure 3. We defined (8,m’)«PTModSwitch,(m,A,,9)e{0,1}xN as
follow:

Improved PBS with Larger Precision in TFHE 13

Input: IIIIIIIDDDDD]DIIIIIIIIIIIIIIIIII
output: SN | MM 1]

V)

Fig. 2. Modulus switching operation in the generalized PBS (Algorithm 3): on top of
the figures we illustrate the data (7, m,e), on the bottom the dimensions (s, 2N, ¥).

’ q ’
If > 0: me=m mod2/ Else : m‘—m .
if m mod ¢’ < %, B=0, else =1 B is a random bit

m
f—
output: [FIREEL T HEM]]
| N —

Y

Fig. 3. Plaintext after the modulus switching from the generalized PBS (Algorithm 3)
where 3 > 0: on top of the figure we illustrate the data(m, 3, m’), on the bottom the
dimensions (2N, 9).

Note that for simplicity purpose, we provide the generalized PBS noise for-
mula only for binary secret keys. However, in the full version of the paper we
provide formulas as well as proofs for more key distributions (binary, ternary
and Gaussian).

Theorem 4 (Generalized PBS). Let s=(s1,,sn)€Ll be a binary LWE se-
cret key. Let s'=(si....s;)emt be a GLWE binary secret key such that sj=
SN Sty v X7, and 8" = (s, ,s,y) be the corresponding binary LWE
secret key. Let Py be a r-redundant LUT for a function fz—z and Aou be the
output scaling factor. Let (3,49) be the two integer variables deﬁning (along
with N) the window size to be modulus switched, such that 23 <2N, and let
(B,m")=PTModSwitch,(m,A,,,9)€{0,1}xN.

14 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

Then Algorithm 3 takes as input a LWE ciphertext ct,=LWEs(m-Ai,)ez+* with
noise distribution from X, a bootstrapping key BSK:{ﬁi:GGSW&‘f,'Z(si)}i1 from

s to S’ and a (possibly trivial) GLWE encryption of P;-Aa, and returns an LWE
ciphertest ctoy under the secret key s', encrypting the message (—=1)%-f(m’)-Aou

. 2 2 2
if and only if the input noise has variance aﬁ<ﬁ;g—ﬁ+ﬁ—%7%, where I'

18 a variable depending on the probability of correctness defined as P:erf(%),
w=2N-2"" and ¢'=q¢-2*.
The output noise after the generalized PBS is estimated by the formula:

B2 42 q? — B EN nkN n EN\ 2
Var(PBS) = nl(k + 1)N Var(BSK = (14 = 4 —(1-=) .
ar(PBS) = nt(k +1) 2 v)+n 2492¢ (+2>+ 32+16(2)

The complexity of Algorithm 3 is the same as the complexity of TFHE boot-
strapping [9], i.e.,

C(n,l,k,N) _ ~(n) (n,Z.k,N)C(N)

GenPBS = “ModulusSwitching + nCeyux SampleExtract with

CIE/IZZ;I\;:S]V\?t:hing =(n+ 1)C5cale&R0un]dV

Chmge ™ = (k+1)(n + 1)Clodion + 2n(k + 1) NCauss +

Clmtok N)
ExternalProduct

c(n.LE.N)
ExternalProduct

= nl(k + 1)NCqec + nl(k + 1)Crrr + n(k + 1)€(k + 1) NCrurrrr+
+n(k 4+ 1)(€(k + 1) — 1) NCadarrr + n(k 4 1)Cirrr

Proof (sketch). In the proof, we compute the decryption of the resulting cipher-
text, obtaining the message plus the noise so we can estimate its variance. The
detailed proof of this theorem is provided in the full version of the paper. a

4 Upgraded Bootstrapping

This section describes our main contributions, i.e., the WoP-PBS (PBS without
a bit of padding) and the PBS evaluating multiple look-up tables at the same
time (we call this algorithm PBSmanyLUT).

4.1 WoP-PBS first version

A big constraint with TFHE PBS is the negacyclicity of the rotation of the LUT.
It implies a need of a padding bit (as mentioned in Limitation A). We propose a
solution to remove that requirement, by using the aforementioned LWE multi-
plication (Algorithm 1) and the generalized PBS (Algorithm 3). This new boot-
strapping is called the programmable bootstrapping without padding (WoP-PBS)
and a first version is described in Algorithm 4.

Theorem 5 (PBS Without Padding (V1)). Let s=(s1,.s0)€z? be a bi-
nary LWE secret key. Let s'=(sj,...s;)emt be a GLWE secret key such that
8= sty N1 X ERg, and §'=(s},,s,n)EZEY be the corresponding binary
LWE key. Let pPrem, (resp. Piem,) be a r-redundant LUT for the function

Improved PBS with Larger Precision in TFHE 15

Algorithm 3: cto +— GenPBS (ctin, BSK, CTy, 5, 9)

s=(s1,"+,8n) €Z; : the LWE input secret key
s’ = (s}, ,skn) € Z(’;N : the LWE output secret key
S = (S{7 ey S,’C) € %Z : a GLWE secret key
- r_ N—-1 _/ j
Context: VISi<h 55 =2Y520 sG-1 01X’ €Rg
Py € Ry : a r-redundant LUT for z — f(x)
Aout € Zg : the output scaling factor
f:Z — Z : a function
(B, m') = PTModSwitchy(m, Ain, 3,9) € {0,1} x N
ctip, = LWES(m . Ain) = (al, crt yQn, Gntl = b) S ZZ+1
BSK = {ﬁ,i = GGSW2¢ (si)}n : a bootstrapping key from s to S’
Input: S i=1

CT} = GLWEg, (Py - Aw) € AT
(22,9) € Z x N : define along with N the chunk of the plaintext to bootstrap
Output: cto,e = LWE/ ((71)‘3 - f (m') . Aout> if we respect requirements in Theorem 4
1 begin

/* modulus switching */

2 for 1 <i<n+1do
SaN.2> =0 9
NI [PSP
2N

4 end

/* blind rotate of the LUT */
5 CT « BlindRotate (CTf, {a}}rHh BSK) ;

/* sample extract the constant term */
6 ctout < SampleExtract (CT,0)
7 end

[Z— Z, (resp. the constant function x — 1) and Agye € Zg be the output scal-
ing factor. Let CTs be a (possibly trivial) GLWE encryption of Ps-Aa: and CTy
be a trivial GLWE encryption of Pi-Aw. Let (32,9) € Z x N be the two integer
variables defining (along with N) the chunk of the plaintext that is going to be
bootstrapped, such that %<2N, and let (3,m")=PTModSwitch, (m,Aj,s,9)€{0,1} xN.

Let KSK:{ﬁi:GLevé,%’g)(s;)}lsls" be a key switching key from s to
S’, with noise sampled respectively from x,a) and X 2. Let RLK=

— B0 1< <i . . . / .
{CTi,j:GLev(S, ’(Sgs_;)}KKk be a relinearization key for S’, defined as in The-

orem 1. Let BSK:{?FGGSWS‘B,’Z(&) . be a bootstrapping key from s to S'.

Then the Algorithm 4 takes in input a LWE ciphertest ctn=LWEs(m-A,)€Z+!
where ctin=(a1,,an,ant1=b), With noise sampled from X, and returns an LWE
ciphertest ctonczENt1 under the secret key s’ encrypting the messages f(m’)- Ao
if and only if the input noise has variance verifying Theorem 3.

The output ciphertext noise variance verifies Var(WoP-PBS;)=Var(LWEMult)
with input variances for the LWE multiplication (Algorithm 2) defined as o;=
Var(GenPBS), for i € {1,2}.

The complexity of Algorithm 4 is:

Proof (Sketch). We only provide a proof of correctness of the algorithm, consid-
ering that the noise and the complexity are directly deduced from the GenPBS

16 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

Algorithm 4: ctor +— WoP-PBS; (ctin, BSK, RLK, KSK| Py, Aoy, 52, 9)

s=(s1,""",8n) €EZ]

s’ = (sh,--,shn) € 25N

s = s’(1>,‘.‘,s’<’“>) € m¥

Vi<i<k, 8 =3 sl 1) vy X € Ry

Context: f:Z — 7 : a function

Py € Ry ¢ aredundant LUT for z +— 1

(B,m') = PTModSwitch,(m, A, 5,9) € {0,1} x N

CTy = GLWEg/ (Py - Aowt) € %§+1 (might be a trivial encryption)
CTy € %Z+1 : a trivial encryption of Py - Agyut

ctin = LWES(m . Ain) = (al, ctt yQn, Gn4l = b) S ZZ+1

BSK = {BSKT; = GGSW{(Z:H) (5l)} : a bootstrapping key from s to S’
S 1<i<n

__ 1<j<i

RLK = {CTi.j = GLev(S?’Z) (S: . S;)} ;J; : a relinearization key for S’
’ ' 1<i<k

Input: : a key switching key from s’ to S’

i

T — GLey®D
KsK = {CT = GLev(; (s’.)}lgigw

Py € R : aredundant LUT for x — f(x)
Aoyt € Zg : the output scaling factor
(32,9) € Z x N : define along with N the window size

Output: ctow = LWE,/ (f(m’) - Aou) if we respect requirements in Theorem 5
1 begin

/* Compute two PBS in parallel: */
2 cty = LWE,/ ((—=1)? - f(m') - Aow) + GenPBS (ctin, BSK, CTf, 2 — 1,9) ;
3 Ctsign = LWEg/ ((—=1)” - Aou) < GenPBS (cti,, BSK, CTy, 2 — 1,9) ;

/* Compute the multiplication */
a Ctoyt <— LWEMult(cts, ctgign, RLK, KSK);
5 end

and LWEMult algorithms. Both of the GenPBS are applied with the same
parameters except for the evaluated function (P or Py). Thus, in both cipher-
texts cty and ctgign the value of 5 is the same. Then, cto.=LWEs((—1)%?-f(m’)-Aout)=
LWEq (£ (m)- Aoue)- O

Remark 2. Observe that, in Algorithm 4 we set KSK as a key switching key for
s’ to S’ where s’ is the LWE secret key composed of the coefficients in S’. In
practice, the key switching can be done to a key S”, that has nothing to do with
s’. In this case, the RLK should be adapted as well to the key S”.

It shall be noticed that in Algorithm 4:

— The two GenPBS have the same input ciphertext. To make the evaluation
more efficient (evaluating a single bootstrapping instead of two), it is possible
to use either the multi-value bootstrap described in [4], which will be faster
but at the cost of a higher output noise. Another option would be to take
advantage of the PBSmanyLUT, that we describe in detail in Algorithm 6
if the input message is small enough (¢f. Remark 3).

— There could be only one key switching done in LWEMult (instead of two)
if one of the two inputs is provided as a GLWE ciphertext (one GenPBS
does not perform the final sample extraction).

— The LWEMult on line 4 can be replaced be a MultSquareLWE which is
faster.

Improved PBS with Larger Precision in TFHE 17

These improvements could impact both increase the noise but improve the
complexity of the algorithm.

4.2 WoP-PBS second version

Another big constraint with TFHE PBS is that the polynomial size is directly
linked to the size of the message we want to bootstrap (as mentioned in Limita-
tion B). The smallest growth of the polynomial size slows down the computation
by more than a factor 2 as TFHE PBS complexity is proportional to the FFT
complexity: N log,(N) with N the polynomial size. Keeping that in mind, we
offer a different way to perform a bootstrap without padding in Algorithm 5
which can be more efficient in a multi-threaded machine. The main idea behind
this Algorithm is to write a message m as B||m’ with 5 the most significant bit
and m’ the rest of the message. The function f to be computed is broken into
two functions: fy and fi;. We want fj if 8 is equal to 0 and f; if 8 = 1. We use 3
as an encrypted decision bit, so we can choose between fo(m') or fi(m') thanks
to the LWEMult algorithm.

We give the complete set of cryptographic parameters for different precisions
in the full version of the paper. In a nutshell, for precisions from 1 to 5 bits, we
use log,(N) = 11 and for 6 and 7 bits of precisions, we use log,(N) = 12.

Theorem 6 (PBS Without Padding (V2)). Let fy and f1 be the two func-
tions representing f such that fo(x) = f(x) = fi(x—p) for a certainp € N. Then,
under the same hypothesis of Theorem 5, the Algorithm 5 takes in input a LWE
ciphertext ctin=LWEs(m-An)=(a1,,an,ant+1=b), With noise from X, and returns in
output a LWE ciphertext ctoy under the secret key s’ encrypting the messages
F(m") Ao if and only if the input noise has variance verifying the Theorem 5.
The output ciphertext noise variance verifies Var(WoP-PBS;)=2-Var(LWEMult)

with input variances for the LWEMult defined as o;=Var(GenPBS), fori € {1,2}.
The complexity of Algorithm 4 is:

C&ﬁif,l%ss’s’f;’Nl’EKS’KRL'kQ'Nz) = 3C{pEBS FU MY g (K8 IRLNE2N2) 4 (N, 4 3)Coua
Proof (Sketch). We have ctg,=LWE, (2 ((-1)°+1)). If 8 = 0, then ctg,=

LWE (Aouw) €lse ctg,=LWE,, (0). Then, cts,=LWE, ((1-8)Acx). Similarly, we obtain
ctg, =LWE, ((—8) Aer). The output ciphertext ctoye is then equal to Lwe, (((-1)%(1—
B) Aout fo(m")+(—=1)P (—B) Ao f1 (m”). Thus, if 8 = 0, ctou=rfo(m’) €else ctou=f1(m’), as ex-
pected. a

It shall be noticed that in Algorithm 5:

— The three GenPBS have the same input ciphertext. As we observed for
Algorithm 4, to make the evaluation more efficient by evaluating a single
bootstrapping instead of three, it is possible to use either the multi-value
bootstrap described in [4] or to take advantage of the PBSmanyLUT (Al-
gorithm 6 and c¢f. Remark 3).

— We could remove two key switches (among four) as explained for the
WoP-PBS;.

18 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

Algorithm 5: ctor +— WoP-PBSs(ctin, BSK, RLK, KSK| Py, Aoy, 52, 9)

s=(s1,""+,sn) €Z
s':(s'l,<-<,s;€N)€Z§N
r_ 7(1) 1(k) k
s = (M. . .. 5)emq

Vi<i<k, 8’ =N sl 1) vy X € Ry
Context: fo(z) = f(z) = f1(xz — p) for a certain p
(B,m') = PTModSwitch,(m, A, 5,9) € {0,1} x N
Py € Ry : as defined in Algorithm 4
CTy, = GLWEg/ (Pfi - Aout) € 9%§+1 (might be a trivial encryption)
CT; € 9%2'*'1 1 a trivial encryption of Py - %
Pyy, Pr; € Rq : redundant LUTSs of the two halves of Py
ctin, = LWES(TTL . Ain) = (al, crt yQp, Gp4l = b) S Z:;+1
BSK, KSK, RLK : as defined in Algorithm 4
Input: Py € Ry : a redundant LUT for = — f(x)
Aout € Zq : the output scaling factor
(22,9) € Z x N : define along with N the window size

Output: ctoss = LWE,/ (f(m”) - Aou) if we respect requirements in Theorem 6
1 begin

/* Compute in parallel 3 PBS: */
2 cty, = LWES/((—I)B - Aout - fo(m')) + GenPBS(ctjy, BSK, CTsy,2,9) ;
3 cty, = LWEy ((=1)? + Ague - f1(m')) < GenPBS(ctin, BSK, CTy, , 5, 9) ;
4 Ctsign = LWE/ ((—=1)7 - 2gut) « GenPBS(ctin, BSK, CT1, 5, 9) ;
/* Compute two sums in parallel: */
5 ctgy = LWEy (1 — B) - Aowt) — Ctsign + (0, 2t) ;
6 ctg, = LWEy (=8 - Aou) < Ctsign — (0, 22u) ;
/* Compute two multiplications in parallel: */
7 ctg.fy LVV]’EMult(tho,Ctgo7 RLK, KSK) ;
8 ctg.f; + LWEMult(cte, , ctg, , RLK, KSK) ;
/* Add the previous results: */
9 Ctout Ct[j.fo + Ctﬁ.fl 3
10 end

— To improve both performance and noise, in practice, we can do a lazy re-
linearization as described in [18], i.e., the step of relinearization of the two
LWEMult will be done after the final addition.

— The two LWEMult followed by the final addition can be replaced by a
PackedSumProducts (described in the full version of the paper).

These improvements could increase the noise but also improve the complexity
of the algorithm.

4.3 A multi-output PBS

We are able to extract any chunk of the encrypted plaintext with ¢, >z and N.
When possible, one can define a smaller chunk for the plaintext by trimming
the bound in the LSB using a 9 > 0. It means that after the modulus switching
there are 9 LSB set to 0. More formally, after the modulus switching, a plaintext
m* will be of the form m* =m - A +e-2Y € Z,.

Improved PBS with Larger Precision in TFHE 19

Thank to the ¥ LSB set to 0 in the plaintext, one can evaluate 2¥ functions
at the cost of only one GenPBS without increasing the noise compared to a
regular TFHE PBS. The procedure is described in Algorithm 6.

Algorlthm 6:cty,... ,Ctyy < PBSmanyLUT(ct;n, BSK, P(f1,<--f219)7 Aout, >, 19)

Context:
s:(sl,...,sn)ezg o~
s’ = (3/11'“75;”\/) S Zq
§ = (50,5 € ut
) . N_)
VI<i<k, 8D =N Vsl) npsaXT €Ry
fiooo fo0 12— L
(B, m") = PTModSwitchy(m, A, 5,9) € {0,1} x N
(SLECT fa) = GLWEg, (P(fl ,,,,, Fu0) Aout) (might be a trivial encryption)
ctin = LWEs(m - Ain) = (a1, ,an,ant1 = b) € Z:]L+1
BSK = ¢BSK; = GGSW(Z-H) ;
Input: { s (s)}1§i§n
P(f1=~-~»f219) : a redundant LUT for : = — fl(I)H L. Hf219 (x)

(32,9) € Z x N : define along with N the window size
Output: cty,...,ct,y such that ct; = LWE, ((—1)ﬁ S fimy - Acut)

1 begin

/* modulus switching */
2 for 1 <i<n+1do

CoN.gE—D
s af HL] .20]
2N

4 end

/* blind rotate of the LUT */
5 CT « BlindRotate (CT(_fL_._ tyo0 {aihgignin, BSK) ;

/* sample extract the first 2Y terms (coeffs. from 0 to 27 — 1) */
6 for 1 < j <2 do
7 | ct; + SampleExtract; ; (CT)
8 end
9 end

The form of the LUT polynomial is set accordingly to the ¢ parameter so that
it contains up to 27 functions. As for TFHE bootstrapping, one needs to have
redundancy in the LUT to remove the input noise. Each block of functions (i.e.,
the sequence of fi,i € [1,2”] coefficients) is repeated all along the polynomial.
The LUT can be build as follow:

N

NPl N pﬂ_l 1921971 .
P(flv--rfzﬂ) — X 2p E xp E X E fi+1(])Xl-, WlthpziA. Y
j=0 k=0 i=0 n

By doing so, one can sample extract at the end 2V coefficients which leads
to 2Y output ciphertexts, one for each evaluated functions. By neglecting the
computational cost of the ¥ sample extractions, the complexity is the same than
for a PBS evaluating only one function. The noise is also not impacted.

This method is particularly efficient when the polynomial size is constrained
by the desired output noise. If the polynomial size is chosen large enough, there

20 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

will be bits set to zero between the modulus switching noise and the message.
This new method allows to exploit these bits to compute different functions on
the same input ciphertext.

Theorem 7 (Multi-output PBS). Let s = (s1,---,8,) € Zy be a bi-
nary LWE secret key. Let s'=(sj,....s;)ent be a GLWE secret key such that
8= N sty Ny 41 X ER,, and §'=(s}, s},)€ZEN be the corresponding LWE key.
Let P(fy..5y9) ERa be a r-redundant LUT for the functions wes fi(z)||...|| £, () and
Aout € Zg be the output scaling factor. Let (»,9) € Z x N be the two integer
variables defining (along with N) the window size to be modulus switched, such
that 427 <2N, and let (5,m’)=PTModSwitch,(m,Aj,x.).

Then, the Algorithm 6 takes in input a LWE ciphertext ctin=LWEs(m-A;)=
(a1, an,ant1=b), With noise distribution from X, a bootstrapping key BsK=
{ﬁi:GGSWge(s")}ll from s to S' and a (trivial) GLWE encryption of Pj-A,

and returns in output 2° LWE ciphertexts {ct;};cr0.00) Under the secret key s’ en-
crypting the messages (—1)°-f;(m’)- Ao if and only if the input noise has variance
verifying the Theorem 3.

The complexity of the algorithm is:

(n,8,k,N,9) _ r(n,t,k,N) 9 ~(N)
(CPBSmanyLUT - (CGenPBS +2 CSampleExtract

Proof. The proof is the mainly the same as the one from the GenPBS (provided
in the full version of the paper). Let p = 4—2=1 be the number of possible values

for each f;,i € [0,2”]. Let m € [0,p — 1] be a plaintext value. The polynomial
Py, .1,0) encodes the following LUT:

e F1OM), ey fy9 (M) ey (M) ey fyg (M), S1(m 4 1), ey o (M 1), ey f1(m 1)y o (m+ 1), e

N/p elements N/p elements

p blocks

From the GenPBS, ¥ bits are set to 0. Then, by construction of the LUT,
LUT (g, gy [+i)=fia (m") for i € [0,2” — 1], so that sample extracting gives the
expected result. a

Remark 3. Observe that PBSmanyLUT and WoP-PBS algorithms can be
combined in two different ways:

1. Using PBSmanyLUT to improve WoP-PBS: In WoP-PBS;, the ctg;gy
and each cty, resulting from distinct GenPBS can be evaluated at once by
using a single PBSmanyLUT. Similarly, in WoP-PBS,, ctg;4, and each
cty,, and cty, ; could be evaluated at once. In both cases, this variant can be
applied only if the polynomial size chosen for the WoP-PBS is large enough
to allow multiple LUT evaluations (i.e, if precision is not yet a bottleneck
condition): this variant of the WoP-PBS will improve the complexity of the
algorithm, without impacting the noise growth.

2. Using WoP-PBS to improve PBSmanyLUT: The PBSmanyLUT al-
gorithm implicitly performs a GenPBS with a special modulus switching.

Improved PBS with Larger Precision in TFHE 21

This GenPBS can actually be replaced by a WoP-PBS (with the same
special modulus switching) as a WoP-PBS performs the same operation as
GenPBS, without the bit of padding constraint. This technique is what we
call WoPBSmanyLUT.

Remark 4. A technique to evaluate many LUTSs at the same time by performing
a single TFHE bootstrapping (plus a bunch of polynomial multiplications per
LUT) has been already proposed in [1] and used in [16]. Their technique does not
impose a strong constraint on the polynomial size used for the bootstrapping,
however it results in a larger output noise, that strictly depends on the function
that is evaluated. If the noise constraints at the output of the bootstrapping are
a problem, the technique of [1] will require to increase the polynomial size.

Our new PBSmanyLUT is a better alternative to this technique in some
situations as the output noise will be independent of the function evaluated. But
this comes at the cost of having enough space for the evaluation of the different
LUTs (i.e., ¥ bits on the modulus switching to evaluate 2V functions so a large
enough polynomial size N must be chosen). If we already are working with large
enough polynomials, there is no computation overhead nor noise growth when
replacing a GenPBS by a PBSmanyLUT.

5 Applications

In this section we present some of the applications that take advantage from our
new techniques. In particular, we show that:

— Using a combination of LWEMult and GenPBS improves the gate boot-
strapping technique of TFHE [9], because it allows to perform leveled binary
operations between bootstrappings (instead of bootstrapping every single
gate).

— The improved gate bootstrapping technique can be extended in order to
evaluate arithmetic circuits with larger precision, by using a combination of
LWEMult and WoP-PBS (or its variants).

— Using the PBSmanyLUT technique allows to improve the Circuit Boot-
strapping of TFHE by a factor ¢, without affecting the noise growth.

— The WoP-PBS technique (and its variants) can be used to bootstrap on
larger precision inputs.

5.1 Fast Arithmetic

We start by describing an improvement of FHE Boolean circuit evaluation. Then,
we extend it to arithmetic circuits dealing with integers encoded in more than a
single bit. Finally, we describe how to use the later to build exact computation
on bigger encrypted integers.

22 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

5.1.1 Fast Boolean Arithmetic In TFHE [7], authors improve techniques
proposed in FHEW [12] to perform fast homomorphic evaluation of Boolean
circuits and called this feature gate bootstrapping. It is very easy to use, because it
performs one bootstrapping for each bivariate Boolean gate evaluated: there is no
need to be careful with the noise management anymore because each gate reset
the noise systematically. This also makes the conversion between the cleartext
Boolean circuits and the encrypted circuits quite straightforward in practice.

However, performing a bootstrapping at each bivariate Boolean gate is very
expensive when we want to evaluate large circuits and seem unnecessary. One
idea to make the evaluation more efficient would be to mix the bootstrapping
with some leveled operations, at the cost of loosing the ease of not caring about
noise growth. But this idea cannot be immediately applied when it comes to
gate bootstrapping: in fact, the bootstrapping also takes care of ensuring a fixed
encoding in the ciphertexts, that may not be ensured if we introduce leveled
operations. Furthermore, TFHE can only evaluate linear combinations between
LWE ciphertexts; non linear operations would require the use of bootstrapping
or of a non native product between LWE ciphertexts (e.g., an external product
which is not composable because it makes use of different input ciphertext types).
This is especially problematic when we want to evaluate an AND gate, for
instance.

To be more clear, in gate bootstrapping, messages are encoded with what we
call one “bit of padding”: meaning that we know that the MSB of the plaintext
(without noise) is set to zero. This bit is used to perform a linear combination
while preserving the (plaintext) MSB of this combination so we can bootstrap it
(the function is negacyclic, so do not need an additional bit of padding) and get
a correct result. Roughly speaking, the initial linear combination evaluates the
linear part of the gate and consumes the bit of padding, while the bootstrapping
takes care of the evaluation of the non-linear part of the gate, reduces the noise
and brings the bit of padding back to be able to perform a future operation.

We propose a novel approach based on the GenPBS and LWEMult which
removes both the constraint of padding bits and the difficulties with the non-
linear leveled evaluations. Thus, this offers the possibility of computing series
of Boolean gates without the need of computing a bootstrap for every gate.
A GenPBS should only be computed to reduce the noise when needed. In
Lemma 1, we only describe some of the most common Boolean gates (i.e.,
XOR,NOT and AND), whose combination offers functional completeness. The
other gates can be obtained by combining these operations.

Lemma 1. Let b; € {0,1} such that cti=lWE(b;-%)ezr+*, for i € {1,2}. Let
(O,%) S Z;H‘l be a trivial LWE ciphertext. Then, the following equalities be-
tween Boolean gates and homormorphic operators hold:

cty XOR cty = cty + cto

ct; AND ct, = LWEMult(cty, ct2, RLK, KSK)

NOTct; =ct; + (0, %)

Improved PBS with Larger Precision in TFHE 23

Proof (Sketch). A bit is naturally encoded as a 0 (resp. 2) if its value is O (resp.
1). Then the Boolean gates XOR and NOT stem from that encoding. The
AND is a direct application of the LWEMult. a

The noise increases after each computed gate since no bootstrap is performed.
Then, after chaining many of them, a noise reduction might be required. We
propose two simple processes exploiting the GenPBS with the (negacyclic) sign
function.

Lemma 2. Let ctj, be a LWE ciphertext resulting from a Boolean circuit with
gates defined as in Lemma 1. Then, each of the following operators allows to
bootstrap the ciphertext during the Boolean circuit evaluation:

Ctout GenPBS(ctin, BSK, Py - XN/2, Agy = %, =00 =0)+ (o, %) (4)
2N

Ctowt GenPBS(ctin, BSK, Py = > X', Agye = g = 1,9 =0) (5)
N
I

Proof. The first method 4 uses GenPBS with the parameters Aq.=%,=0,9=0 and
P;=P;xX"N/2. The output of the GenPBS gives ctom,=LWEs(+2). Then, depending
on the sign, the term ctymp+(0,%) is equal to LWES(0) O ctymp=LWEs(%).

The second approach 5 uses other parameters for the modulus switching
which can be seen as shifted of one bit, i.e., 2 = —1, 9 = 0 and Agy = £. In
this case, the sign does not impact the value of the encoded bit, since 0 = 0
and =% = . Then, evaluating GenPBS with the function Pf:Zj:TN%ﬂX”’ and

Agr=2%, we obtain cto,=LWEs(4+0) O LWEs(+1). a

5.1.2 Modular Power of 2 Arithmetic We generalize the faster Boolean
circuit method (described in Lemma 1) to any power of two modular integer
circuits. This enables a more efficient exact arithmetic modulo 2? for some integer
p. For i € {1,2}, let ct; = LWEgs(m; - 55) be a LWE ciphertext encrypting
the message m; € [0,2P[(i.e., m; has a precision of p bits). As in the case
of faster Boolean arithmetic, we define three natural homomorphic operators
to mimic modular 27 arithmetic: the addition (Addgs) that is evaluated as an
homomorphic LWE addition, the multiplication (Mulgs) that is evaluated as a
LWEMult, and the unary opposite (Opps») that is obtained by simply negating
the LWE input.

When we deal with integers encoded with more than one bit, functions we
have to apply during a PBS are no longer negacyclic. It means that without a
WoP-PBS we would have to have at least 2 bits of padding (one for a linear
combination and another one for the PBS with non-negacyclic function evalua-
tion). This results in a big N when we want to work with larger powers of two.
With a WoP-PBS, we do not need to have bits of padding. Then, we can simply
compute leveled additions and multiplications, and only use a WoP-PBS when
we have to reset the noise to a lower level.

24 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

5.1.3 From Power of 2 Modular Arithmetic to Exact Integer Arith-
metic We now present some operators allowing to extend homomorphic com-
putation modulo a power of two modular to bigger integer arithmetic. To do so,
we will use a few LWE ciphertexts to represent a single big integer. These re-
quired operations offer the possibility to compute an exact integer multiplication
between two LWE ciphertexts as in 5.1.2 and keeping the LSB of the compu-
tation. However, we also need to be able to recover the MSB of additions and
multiplications for carry propgation when we deal with big integers encrypted
with several ciphertexts. The operators keeping the MSB of the computation be-
tween two messages mi,m2€[0,2° are defined as: Add}F®:(m1,ma)— | 52 | mod 27
and Mul}f®:(mq,ma)—| “55"2 | mod 2¢ and their implementation is described in
Algorithm 7.

In Algorithm 7, to improve efficiency, we can remove both PublicKS and
include them in the relinearization steps of the previous WoP-PBS. If param-
eters allow it, one might also replace Lines 6 and 7 of Algorithm 7 by a single
‘WoP-PBS to extract the MSB directly.

Lemma 3 (MSB operations). For i € {1,2}, let ct;=LWE,(m;-A) be two LWE
ciphertexts, encrypting m; - A with 0 < m; < 2P and A=%, both encrypted
under the same secret key s = (s1,...,8,) € Lq , with noise sampled in x,,. Let
BSK, KSK, RLK be defined as in Theorem 5.

Then, Algorithm 7 is able to compute a new LWE ciphertext ctoy, encrypting
the MSB of the sum, i.e., the carry, [| ™55"2]] A (resp. a new LWE ciphertext
Ctout, encrypting the MSB of the product [L%J]QP-A), under the secret key
s’. The variance of the noise of ctoy can be estimated by composing the noise
formulas of the different operations composing the algorithm.

The complexity of Algorithm 7 is:

c(mtpBs k1. N1 tks LRL-F2:N2) _ go(n.tpBs k1, N1.tKs LRL-F2,N2) + ol tKs k2 N2, 1,m)
Ada}iSB = 9YwoP-PBS PublicKS
2

+2(N2 + 1)Cagq

c(mtPBs k1. N1 tks LRL-F2:N2) _ go(n.tpBs k1, N1.tKks LRL k2, N2) + ol tKs k2 N2, 1,m)
MulMSB = 9LwopP-PBS PublickS
2

(6)

s AR ko No,1, ko N.
+ (N2 4 1)Caga + Cl S RL F2 2oL k2 N2)

Proof (sketch). The first two WoP-PBS of the algorithm send the two messages
my and my to a lower scaling factor 5&;. This way, when the leveled addition
(resp. the LWEMult) operation is performed, the new precision 2p will be able
to store the entire (both MSB and LSB) exact result. The third WoP-PBS
is used to extract only the LSB of the result, that will be subtracted from the
result of the previous computation to obtain an encryption of the MSB at scaling
factor g, i.e, ready to be used in the following computation. Observe that the
PublicKS are used in order to switch the secret key in order to be compatible

with the following operation. ad

5.2 Faster Circuit Bootstrapping

In TFHE [8], authors present a technique called circuit bootstrapping, that allows
to convert an LWE ciphertext into an GGSW ciphertext. The circuit bootstrap-

Improved PBS with Larger Precision in TFHE 25
. === Rl
Algorithm 7: ct,« LAddg/{)SBJ (ct1 ,cta,BSK,KSK1 ,KSK2,RLK)
s= (51, ,5n) € LI
s’ = (sh,--,shy) € 28N
r__ 7(1) 1(k) k
8 = (M, 5M) e Rt
. h ; N-1 j
Context: v1<i<k, s/ — Zj:u SE’i—1)4N+j+1XJ € Ry
A=55 €2,
0 <my,ma <2°
Py : a redundant LUT for z — z (identity function)
ct; = LWEg(my - A) € zg“
cty = LWEs(mz - A) € 27!
BSK = {BSKT; = GGSW(S(‘,B’#‘) (5l)} cicn a bootstrapping key from s to S’
1<i<n
Input: { KSK; = {CiTl = GLev(>"® (si)} . a key switching key from s’ to S’
s 1<i<kN
KSKy = {El = Levé%’z) (S;)}lgigkN :<a<key switching key from s’ to s
i 1<5<i
RLK = {CTi j= GLev(?’L]) (S; . S".)} =72 4 relinearization key for S’
’ S 1) Vi<i<k
o T oo m oo Rl
Output: ' cto, = LWE, (H%Hzp FA) 1] ctou = LWE, ([| 5572]],, - A)
Lom e e oI 1
1 begin
/* add p bits of padding */
2 ct! + WoP-PBS(ct;, BSK, RLK, KSKy, P4, A/27,0,0);
3 ct), + WoP-PBS(cts, BSK, RLK, KSKy, P4, A/27, 0, 0);
/* compute the operation */
| it A
4 tct’ < ct] +cth1 | ct’ + LWEMult(ct], cth, RLK, KSK1) | ;
R 1
/* key switch */
5 ct” + PublicKS(ct’, KSKs, Id) ;
/* extract the LSB */
6 ctigp < WoP-PBS(ct”, BSK, RLK, KSK1, P4, A/27, p, 0);
/* subtract the LSB to only keep the MSB */
7 ct + ct’ —ctigp ;
/* key switch */
s Ctour + PublicKS(ct, KSKa, Id) ;
9 end

ping is necessary for leveled evaluations using the external product: the latter’s
inputs are both GLWE and GGSW ciphertexts, while its output is a GLWE
ciphertext. To sum up, circuit bootstrapping allows to build a new GGSW ci-
phertext from an LWE ciphertext so one can use it as input to an external
product for instance.

The authors of [3] observe that a GGSW ciphertext, encrypting a message
i € Z (p is binary in their application) under the secret key s=(si,...,S%,8,_1=—1),
is composed by (k 4 1)/ GLWE ciphertexts encrypting p - S; - 525, for 1 <4 <
k+1and 1 < j < ¢ As already mentioned in Section 2, the goal of circuit
bootstrapping is to build one by one all the GLWE ciphertexts composing the

output GGSW. In order to do that, it performs the following two steps:

— The first step performs ¢ independent TFHE PBS to transform the input
LWE encryption of x into independent LWE encryptions of - 555

26 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

Gate Bootstrap |[Binary arithmetic (p = 1) Integer arithmetic (p > 1)
TFHE as in Sec. 5.1.1 generalization in Sec. 5.1.3
Oppyp Negation Addition with a constant Negation
Add,p Bootstrapped XOR Homomorphic Add Homomorphic Add
Ada)iSB Bootstrapped AND MultLWE 3 WoPBS + 2 Homomorphic Add

+ 2 public key switch

Mulsp Bootstrapped AND MultLWE MultLWE

Mulg/{,SB x — 0 x — 0 3 WoPBS + MultLWE 4+ Homomorphic Add

+ 2 public key switch

Noise reduction PBS at PBS WoPBS

frequency each gate when necessary when necessary

Table 2. Generalization of TFHE gate bootstrapping.

— The second step performs a list of (k+ 1)¢ private key switchings from LWE
to GLWE to multiply the messages 11 - 5 obtained in the first step by the
elements of the secret key S;, and so to obtain the different lines of the

output GGSW.

Here, we propose a faster method based on the PBSmanyLUT algorithm
(Algorithm 6). In a nutshell, the idea is to replace the ¢ PBS of the first step by
only one PBSmanyLUT (that costs exactly the same as a one of the ¢ original
PBS and do not increase the noise). Since the most costly part of the circuit
boostrapping is due to the PBS part, the overall complexity is then roughly
reduced by a factor £. In [8], £ = 2, so we have an improvement of a factor 2 on
the PBS part, without any impact on the noise.

Lemma 4. Let consider the circuit boostrapping algorithm as described in [8,
Alg. 11]. The ¢ independent bootstrappings (line 2) could be replaced by:

{cti}ic(1.g < PBSmanyLUT(ctiy, BSK, P - XN/2°™ 1 5. — 0, p = [log, (0)])
Vi€ 1,4, ct; + (o, ﬁ)

N
op —laop_1

with P(X) = 3 S0 x4,
i=0 j=0 2%

Proof. By calling PBSmanyLUT with p = [log,(¢)], we are able to compute
¢ PBS in parallel. The polynomial P represents the LUT:

q q q q q q
72%1""772%2’07'”70’72%1""’T%WO““’O""’2%17""72%14’

2P elements 2P elements 2P elements

0,...,0

N’/=N/2P elements

In the end, for i € [1, /], ct;=LWEs (+5%;), with the sign depending on the plaintext
value. By adding the trivial ciphertext (0,;4;) to the ct;, we either get cti=

LWEs (5%) O LWEs(0), as expected. O

Improved PBS with Larger Precision in TFHE 27

5.3 Large Precision Without Padding (Programmable)
Bootstrapping

We first describe a way to efficiently bootstrap an LWE ciphertext with larger
precision and then show how to also compute a PBS on such ciphertexts. These
algorithms do not require the input LWE ciphertext to have a bit of padding.

5.3.1 Larger Precision Without Padding Bootstrapping We introduce
a new procedure in Algorithm 8 to homomorphically decompose a message en-
crypted inside a ciphertext in « ciphertexts each encrypting a small chunk of
the original message. The key of the efficiency of this algorithm is to begin by
extracting the least significant bits instead of the most significant bits. To do
so, we use the previously introduced parameter > to remove some of the most
significant bits of the input message m and apply the bootstrapping algorithm
on the remaining bits as described in subsection 3.2. The bootstrapping algo-
rithm must be a WoP-PBS (Algorithm 4 or 5) as the value of most significant
bit is not guaranteed to be set to zero. This procedure allows us to obtain an
encryption of the least significant bits of the message. Next, by subtracting this
result to the input ciphertext, we remove the least significant bits of the input
message. This gives a new ciphertext encrypting only the most significant bits
of the input message. From now on, this procedure is then repeated on the re-
sulting ciphertext until we obtain « ciphertexts, each encrypting m;A; such that
min Ain=3""3" m; A;. This process is somehow similar to the approach called Digit
Eztraction applied on the BGV/BFV schemes, presented in [17,5].

This entails a significantly better complexity than the solution explained in
the Limitation E as each bootstrap only needs a ring dimension big enough to
bootstrap correctly the number of bits of each chunk instead of having to be big
enough to bootstrap correctly the total number of bits of the input ciphertext.

Efficiency might be improved within the multiplication inside each WoP-PBS
by adding a keyswitching during the relinearization step to reduce the size of
the LWE dimension. As the complexity of the WoP-PBS depends on this LWE
dimension, this will result in a faster version of Algorithm 8.

Lemma 5. Let cti,=LWE.(min-Ain)€Z2 ! be a LWE ciphertext, encrypting mi, An€Z,.
under the LWE secret key s = (81,...,8n) € L, with noise sampled from
Xo- Let BSK,KSK and RLK as defined in Theorem 5. Let 2={di};c(0,a—1 With
dEN" st Ap2Zico di<q be the list defining the bit size of each output chunk.
Algorithm 8 computes a € N* new LWE ciphertexts {Ctout,i}ic[o,a—1), Where
Y5214

each one of them encrypts mi;-A;, where A;=A,-2 , under the secret key
!/

s’. The wvariances of the noise is Var(ctos,:)=Var(WoP-PBS). The complexity is:
C("vePBSvklle«eKSrZRLvO‘):aC(”»ZPBSJCllevZKSleLvlv">+a(n+1)Cadd+(a(ﬁ;rl))Cadd'

Decomp ‘WoP-PBS;
An immediate application of Algorithm 8 is a high precision bootstrap algo-
rithm. By using the decomposition and then adding each ctqy,i, one can get -
with the right parameters- a noise smaller than the one of the input ciphertext.

28 Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

Algorithm 8: cto,: + Decomp(ctin, BSK, RLK, KSK, &)

s=(s1,""+,sn) €Zg
s’ =(s], -, sy) GZZ'N
S = (M, ..., 8™ e nk
Context: (V1 <i<k, ' =3 1sl,)y, ;X €Ry

{Py; }icio,a—1) : LUTs for the functions f;
i—1
Vie[la—1],4; = Ap-25i=1% < ¢
Ao = A, minAin = 3750 mi A
ctin = LWEs (min - Apn) € Z2T
Input: BSK, KSK, RLK : as defined in Algorithm 4
= {di}ie[ﬂ,a—l] with d; € N*
Output: {Ctout,i = LWESI (’n’L1 . Ai)}ie[o,a—l]
begin
ct « ctj,
for i € [0, — 1] do
2 E?:ZIJA dj
Ctoyt,i +— WoP-PBS(ct, BSK, RLK, KSK, Py, , A;, 5;,0)
ct <— ct — ctout, i

end
end

® N o a A ®NH

5.3.2 Larger Precision WoP-PBS The Tree-PBS and the ChainPBS
algorithms introduced in [16] allow to compute large precision programmable
bootstrappings assuming that the input ciphertexts are already decomposed in
chunks. In a nutshell, the idea behind the Tree-PBS is to encode a high-precision
function in several LUTs. The first input ciphertext is used to select a subset
among all the LUTs. This subset is then rearranged thanks to a key switching
to build new encrypted LUTs. The previous steps can be repeated on the second
input ciphertext, and so on. The Tree-PBS relies on the multi-output bootstrap
from [4].

Thanks to the Algorithm 8, we are able to efficiently decompose a ciphertext.
This allows to quickly switch from one representation (one ciphertext for one
message) to another (e.g., several ciphertexts for one message) before calling the
Tree-PBS or the ChainPBS algorithms. Moreover, we can replace the calls to
PBS in both of the algorithms by a WoP-PBS. This relaxes the need to call
Tree-PBS or ChainPBS with ciphertexts having a bit of padding. We call these
two algorithms respectively the Tree-WoP-PBS and the Chained-WoP-PBS.
Note that these algorithms can also be used to implement the Add12v;[,SB and
Mulgf,SB operators.

6 Conclusion

This paper extends TFHE by exceeding some of its limitations. In particular,
we present a new technique that allows to bootstrap messages without requiring
a bit of padding, taking advantage of the GLWE multiplication (tensor product
plus relinearization) and of our generalized version of TFHE’s PBS. The latter

Improved PBS with Larger Precision in TFHE 29

additionally allows to evaluate multiple LUTs in a single PBS for free when pos-
sible. These two techniques are particularly interesting when used to improve
both the gate bootstrapping and the circuit bootstrapping techniques of TFHE.
Thank to this new programmable bootstrapping, there is no need to compute a
systematic PBS in every homomorphic Boolean gates as leveled additions and
multiplications can be evaluated between when noise allows it. Additionally, the
evaluation of Boolean circuits can be extended in order to support the evalua-
tion of larger powers of 2 modular arithmetic and exact integer arithmetic. The
circuit bootstrapping can be drastically improved, by replacing the evaluation
of multiple PBS in the algorithm by a single PBSmanyLUT (that costs ex-
actly as a PBS), without affecting the noise growth. Finally, we introduce two
new efficient methods to bootstrap ciphertexts with large precision: a bootstrap-
ping method to bring the noise down as well as a programmable bootstrapping
evaluating univariate functions.

Open problems. All the new techniques proposed improve the state of the
art by adding new features to TFHE and getting rid of some of its constraints.
However, many enhancements could be added. In particular, one of the major
bottleneck concerns the computation of the negacyclic convolutions of polyno-
mials. The most efficient method based on the FFT inherently adds noise to
ciphertext due to the use of floating points over 64 bits. When applied with
larger floating point representation, the performances collapse. Thus, the study
of alternative methods compatible with the TFHE parameters might improve
the practical performances.

References

1. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: CHIMERA: combining ring-lwe-
based fully homomorphic encryption schemes. J. Math. Cryptol. 14(1) (2020)

2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. IACR Cryptology ePrint Archive 2012 (2012), http://eprint.iacr.org/
2012/078

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: Innovations in Theoretical Computer Science
2012, Cambridge, MA, USA, January 8-10, 2012 (2012)

4. Carpov, S., Izabachéne, M., Mollimard, V.: New techniques for multi-value input
homomorphic evaluation and applications. In: Cryptographers’ Track at the RSA
Conference. Springer (2019)

5. Chen, H., Han, K.: Homomorphic lower digits removal and improved fhe boot-
strapping. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer (2018)

6. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-
metic of approximate numbers. In: Advances in Cryptology - ASIACRYPT 2017
(2017)

7. Chillotti, I., Gama, N., Georgieva, M., Izabachéne, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Advances in Cryptology -
ASTACRYPT 2016 (2016)

http://eprint.iacr.org/2012/078
http://eprint.iacr.org/2012/078

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Tlaria Chillotti', Damien Ligier', Jean-Baptiste Orfila', and Samuel Tap*

Chillotti, I., Gama, N., Georgieva, M., Izabachéne, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Advances in Cryptol-
ogy - ASTACRYPT 2017 (2017)

Chillotti, I., Gama, N., Georgieva, M., [zabachéne, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1) (2020)

Chillotti, I., Joye, M., Ligier, D., Orfila, J.B., Tap, S.: Concrete: Concrete oper-
ates on ciphertexts rapidly by extending tfhe. In: WAHC 2020-8th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography. vol. 15 (2020)
Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: Cyber Security Cryptogra-
phy and Machine Learning - 5th International Symposium, CSCML 2021. Lecture
Notes in Computer Science, vol. 12716. Springer (2021)

Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Advances in Cryptology - EUROCRYPT 2015 (2015)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012 (2012), http://eprint.iacr.org/2012/144

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009 (2009)

Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. IACR Cryp-
tology ePrint Archive 2013 (2013), http://eprint.iacr.org/2013/340

Guimaraes, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in
TFHE. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2) (2021)

Halevi, S., Shoup, V.: Bootstrapping for helib. In: Annual International conference
on the theory and applications of cryptographic techniques. Springer (2015)

Lee, Y., Lee, J., Kim, Y.S., Kang, H., No, J.S.: High-precision and low-complexity
approximate homomorphic encryption by error variance minimization. Cryptology
ePrint Archive, Report 2020/1549 (2020), https://eprint.iacr.org/2020/1549
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010.
Lecture Notes in Computer Science, vol. 6110. Springer (2010)

Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, 2005. ACM (2005)

Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptography 71(1) (2014)

Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: Matsui, M. (ed.) Advances in Cryptology - ASTACRYPT
2009. Lecture Notes in Computer Science, vol. 5912. Springer (2009)

http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2013/340
https://eprint.iacr.org/2020/1549

	Improved Programmable Bootstrapping with Larger Precision and Efficient Arithmetic Circuits for TFHE

