
Security Analysis of CPace

Michel Abdalla1,2 , Björn Haase3 , and Julia Hesse4,?

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
michel.abdalla@gmail.com

2 DFINITY, Zürich, Switzerland
3 Endress+Hauser Liquid Analysis

bjoern.haase@endress.com
4 IBM Research Europe, Zürich, Switzerland

jhs@zurich.ibm.com

Abstract. In response to standardization requests regarding password-
authenticated key exchange (PAKE) protocols, the IRTF working group
CFRG has setup a PAKE selection process in 2019, which led to the
selection of the CPace protocol in the balanced setting, in which par-
ties share a common password. In subsequent standardization efforts,
the CPace protocol further developed, yielding a protocol family whose
actual security guarantees in practical settings are not well understood.
In this paper, we provide a comprehensive security analysis of CPace in
the universal composability framework. Our analysis is realistic in the
sense that it captures adaptive corruptions and refrains from modeling
CPace’s Map2Pt function that maps field elements to curve points as an
idealized function. In order to extend our proofs to different CPace vari-
ants optimized for specific elliptic-curve ecosystems, we employ a new
approach which represents the assumptions required by the proof as li-
braries accessed by a simulator. By allowing for the modular replacement
of assumptions used in the proof, this new approach avoids a repeated
analysis of unchanged protocol parts and lets us efficiently analyze the
security guarantees of all the different CPace variants. As a result of our
analysis, all of the investigated practical CPace variants enjoy adaptive
UC security.

1 Introduction

Security analysis and efficient implementation of cryptographic protocols are of-
ten split into separate working groups. As a result, subtle differences between
the actually implemented and analyzed protocols easily emerge, for example
when implementors slightly tweak the protocol to improve efficiency. An exam-
ple where particularly aggressive optimizations for efficiency are implemented
on the protocol level is CPace as specified in current internet drafts [23, 24].
CPace is a password-authenticated key exchange protocol (PAKE) [8], which

? Author supported by the European Union’s Horizon 2020 Research and Innovation
Programme under Grant Agreement No. 786725 OLYMPUS.

https://orcid.org/0000-0002-2447-4329
https://orcid.org/0000-0002-9413-5226
https://orcid.org/0000-0002-2875-6198
mailto:michel.abdalla@gmail.com
mailto:bjoern.haase@endress.com
mailto:jhs@zurich.ibm.com

allows two parties to establish a shared cryptographic key from matching pass-
words of potentially low entropy. PAKEs are extremely useful for establishing
secure and authenticated communication channels between peers sharing short
common knowledge. The common knowledge could be a PIN typed into different
wearables in order to pair them, sensor readings recorded by several cars in order
to create an authenticated platoon or a security code manually entered by an
admin to connect her maintenance laptop with a backbone router.

On a high level, CPace works as follows. Given a cyclic group G, parties
first locally and deterministically compute a generator g ← Gen(pw), g ∈ G
from their passwords in a secure way, so that g reveals as little information
about the password as possible. Then, both parties perform a Diffie-Hellman
key exchange by choosing secret exponents x and y, respectively, exchanging gx
and gy and locally compute K = (gx)y = (gy)x. The final key is then computed
as the hash ofK together with session-identifying information such as transcript.
The currently most efficient implementations of the above blueprint protocol use
elliptic curve groups of either prime or composite order. To securely compute the
generator, the password is first hashed to the finite field Fq over which the curve is
constructed, and then mapped to the curve by a map called Map2Pt. Depending
on the choice of curve, efficiency tweaks such as simplified point verification
on curves with twist security, or computation with only x-coordinates of points
can be applied [22, 23]. Unfortunately, until today, it is not clear how these
modifications impact security of CPace, and whether the protocol can be proven
secure without assuming (Map2Pt ◦ H) to be a truly random function.

A short history of CPace. In 1996, Jablon [30] introduced the SPEKE protocol,
which performs a Diffie-Hellman key exchange with generators computed as g ←
HG(pw), i.e. using a function HG hashing directly to the group. Many variants
of SPEKE have emerged in the literature since then, including ones that fixed
initial security issues of SPEKE. Among them, the PACE protocol [33, 9] aims at
circumventing direct hashing onto the group with an interactive Map2Pt protocol
to compute the password-dependent generators. From this, CPace [22] emerged
by combining the best properties of PACE and SPEKE, namely computing the
generator without interaction while avoiding the need to hash directly onto the
group. More precisely, password-dependent generators are computed as g ←
Map2Pt(H(pw)). In 2020, the IRTF working group CFRG has chosen CPace as
the recommended protocol for (symmetric) PAKE.

Prior work on the security of CPace. Bender et al. [9] conducted a game-based
security analysis of the explicitly authenticated PACE protocol variants used
in travel documents. Their work focusses on different variants of interactive
Map2Pt constructions and hence does not allow for any conclusions about CPace
which uses a (non-interactive) function Map2Pt.

Static security of CPace, including function Map2Pt and some implemen-
tation artifacts such as cofactor clearing, was formally analyzed in [22]. Their
work is the first to attempt a formalization of Map2Pt that allows for a secu-
rity analysis. However, their proof was found to be insufficient by reviews done

2

during the CFRG selection process [37, 28], and indeed, the claimed security
under the plain computational Diffie-Hellman assumption seems to be difficult
to achieve. Besides these issues, their work does not consider adaptive corrup-
tions and implementation artifacts such as twist security or single-coordinate
representations.

Abdalla et al. [1] analyzed static security of several EKE [8] and SPEKE
variants in the UC framework, including SPAKE2 [5] and TBPEKE [34]. They
indicate that their proof for TBPEKE could be extended to CPace with gener-
ators computed as HG(pw) (i.e., without function Map2Pt) if the protocol tran-
script and password-dependent generator is included in the final key derivation
hash. However, in practice it is desirable to avoid unnecessary hash inputs for
efficiency reasons and protection against side-channel attacks.

In a concurrent work, Abdalla et al. [2] formalized the algebraic group model
within the UC framework and proved that the SPAKE2 and CPace protocols are
universally composable in the new model with respect to the standard function-
ality for password-based authenticated key exchange in [15]. Stebila and Eaton
[19] provided a game-based analysis of CPace in the generic group model. As
in [1], these further studies do not deal with adaptive security and only con-
sider a basic version of CPace without Map2Pt and without considering any
implementation artifacts.

The above analyses demonstrate that a basic version of CPace, which essentially
is a Diffie-Hellman key exchange computed on hashed passwords instead of a
public generator, is UC-secure if the attacker is restricted to static corruptions.
Unfortunately, this leaves many open questions. Does this basic protocol remain
(UC-)secure if we use generator Map2Pt(H(pw)) instead, as it is done in practice
to avoid direct hashing onto elliptic curves? Can the protocol handle adaptive
corruptions? Which impact on security do implementation artifacts have, such
as co-factor clearing on a composite-order curve group, or single-coordinate rep-
resentation as used in, e.g., TLS1.3? Can we reduce hash inputs in order to
make the protocol less prone to side-channel attacks? Altogether, it turns out
the security of the actually implemented CPace protocol is not well understood.

Our Contributions. In this paper, we provide the first comprehensive security
analysis of the CPace protocol that applies also to variants of CPace optimized
for usage with state-of-the-art elliptic curves. We identify the core properties of
the deterministic Map2Pt function that allow to prove strong security properties
of CPace. Crucially, we restrict the use of random oracles to hash functions
only and refrain from modeling Map2Pt as an idealized function, as it would
not be clear how to instantiate it in practice. We show that, using some weak
invertibility properties of Map2Pt that we demonstrate to hold for candidate
implementations, CPace can be proven secure under standard Diffie-Hellman-
type assumptions in the random-oracle model and with only minimal session-
identifiying information included in the final key derivation hash. Our security

3

proof captures adaptive corruptions and weak forward secrecy5 and is carried
out in the Universal Composability (UC) framework, which is today’s standard
when analyzing security of password-based protocols. Our work provides the first
evidence that SPEKE-type protocols can handle adaptive corruptions.

We then turn our attention to modifications of CPace and, for each modi-
fication individually, state under which assumptions the security properties are
preserved. In more detail, our analysis captures the following modifications.
– Using groups of composite order c · p, where p is a large prime and c is a

small cofactor coprime to p.
– Realize Gen(pw) generator calculations using Map2Pt with either map-twice-

and-add strategy or as single execution.
– Using single-coordinate-only representations of elliptic-curve points in order

to speed up and facilitate implementation.
– Avoiding computationally costly point verification on curves with secure

quadratic twists such as Curve25519 [10].
To demonstrate the security of these variants, we take a new approach that

saves us from a repeated analysis of unchanged parts of CPace. Namely, we
implement the CDH-type cryptographic assumptions required by CPace as li-
braries which a simulator can access. This allows for modular replacement of
assumptions required in the security proof, and lets us efficiently analyze all the
different CPace variants’ security guarantees. We believe that this new proof
technique might be of independent interest in particular for machine-assisted
proving, since reductions are captured in code instead of textual descriptions
only.

As a side contribution, we identify a common shortcoming in all UC PAKE
security definitions in the literature [15, 31, 29, 1], which impacts the suitability
of these definitions as building blocks in higher-level applications. Namely, all
these definitions allow a malicious party to learn the shared key computed by
an honest party without knowing her password. We strengthen the definition to
prevent such attacks, and demonstrate with our analysis of CPace that our fix
yields a security definition that is still met by PAKE protocols.

In conclusion, our results demonstrate that CPace enjoys strong provable
security guarantees in a realistic setting, and this holds for all its variants that
have been proposed in the different elliptic-curve ecosystems.

1.1 Technical overview of our results

Map2Pt’s impact on security. At its core, the CPace protocol is a SPEKE-type
protocol, meaning that it is simply a Diffie-Hellman key exchange (DHKE) com-
puted with a generator that each party individually computes from her password.
Intuitively, the most secure choice is to compute g ← HG(pw), and indeed this
was proven secure [1, 2] conditioned on H being a perfect hash function (or, put

5 In the case of PAKE, weak forward secrecy is implied by UC security and hence
achieved also by prior work. If key confirmation is added, then this gives a protocol
with perfect forward secrecy as noted in [1].

4

differently, a random oracle (RO)). However, DHKE-type protocols are most
efficient when implemented on elliptic-curve groups, and it is not known how
to efficiently hash directly onto such groups. Recent standardization efforts by
the CFRG [20] show that, in practice, one would always first hash to the finite
field Fq over which the curve is constructed, and then map the field element to
the curve G using some curve-specific mapping Map2Pt : Fq → G. Hence, the
generator in CPace can be assumed to be computed as g ← Map2Pt(H(pw)) for
a H being a hash function such as SHA-3.

In order to analyze how the function Map2Pt impacts CPace’s security, it is
obviously not helpful to abstract Map2Pt ◦ H as a truly random function. In a
first attempt to analyze under which properties of Map2Pt CPace remains se-
cure, Haase et al. [22] assumed Map2Pt to be a bijection. Intuitively, a bijective
Map2Pt function does not “disturb” the “nice” distribution of the prepended hash
function, and in particular does not introduce any collisions. Besides the known
shortcomings in their conducted analysis (the claimed security under CDH does
not seem to hold, and their proof lacks an indistinguishability argument [37, 28]),
it does not cover non-bijective mappings on widely used short-weierstrass curves
such as NIST P-256. Hence, in our work we refrain from assuming Map2Pt to be
a bijection. Instead, we introduce a property of probabilistic invertibility, which
demands that, given an element g in the group G, we can efficiently compute
all preimages h ∈ Fq such that Map2Pt(h) = g. On a high level, this invertibil-
ity property will aid the simulation of CPace since it allows to “tightly” link a
group element g to a previously computed hash h and thus recognize collisions
efficiently. Here, tightly/efficiently means without iterating over all hash queries
in the system. We demonstrate that all mappings used in practice [20] are prob-
abilistically invertible. As a result, we conclude that CPace implemented with
current mappings enjoys strong security guarantees.

Adaptive security. Just like any other PAKE protocol, CPace comes with a large
likelihood for idling. Indeed, in practice it will most likely be the same person
who jumps between the two devices running the PAKE, to manually enter the
same password, PIN or code. This gives room for attackers to corrupt devices
during the run of the protocol, and hence calls for analyzing security of CPace
in the presence of adaptive corruptions. To our knowledge, there is no proof of
adaptive security for any SPEKE-type protocol in the literature. In this work,
we closely investigate CPace’s guarantees under adaptive corruptions and come
to an indeed surprising conclusion:

CPace enjoys adaptive UC security under the same DH-type assumptions
that seem required for static security.

The challenge of proving adaptive security lies in the need to reveal suitable
secret values computed by a previously honest party during the run of the pro-
tocol. For CPace, these are the secret Diffie-Hellman exponents x, y randomly
chosen by parties. A bit simplified, our idea is to start the simulation of an honest
party with gz for a generator g of group G and randomly chosen exponent z, and
hence independent of the actual (unknown) password used by that party. Upon

5

corruption, the simulator learns pw and looks up the corresponding hash value
gr = H(pw) for which it knows r−1 thanks to H being modeled as a random ora-
cle. This allows the simulator to compute the “actual” secret exponent y ← zr−1

that the simulated party would have used if started with actual password pw.
Crucially, no additional assumptions or secure erasures are required and, as we
demonstrate in the body of our paper, this simplified strategy still works when
generators are computed using Map2Pt ◦H. Altogether, our analysis shows that
CPace enjoys UC-security under adaptive corruptions.

Falsifiable assumptions and a new approach to simulation-based proofs. A falsifi-
able assumption can be modeled as an interactive game between an effcient chal-
lenger and an adversary, at the conclusion of which the challenger can efficiently
decide whether the adversary won the game [21]. Most standard cryptographic
assumptions such as CDH, DDH, RSA, and LWE are falsifiable. An example of
a non-falsifiable assumption is the gap simultaneous Diffie-Hellman assumption,
which was used in prior CPace security analyses [1, 2] and features a full DDH
oracle that cannot be efficiently implemented by the challenger. Intuitively, the
DDH oracle seems inherent for proving UC security of CPace since the attacker
(more detailed, the distinguishing environment) determines passwords pw used
by honest parties and also receives their outputs, which is the final key K. More
detailed, the attacker can deterministically compute the generator G used by an
honest party from only pw, and it also receives the honest party’s message gx.
The attacker can now enforce the final key to be a DDH tuple K = gxy by sim-
ply sending gy to the honest party (we omit the final key derivation hash in this
explanation for simplicity). Hence, to correctly simulate the final key output by
an honest party under attack, the simulator relies on a DDH oracle. However, we
observe that this oracle can be limited to specific inputs g, gx that the attacker
cannot influence. This turns out to be an important limitation, because the
restricted DDH oracle DDH(g, gx, ·, ·) can actually be implemented efficiently
using knowledge of trapdoor exponents r, r−1 of g. Thus, our conclusion is that
CPace’s security holds under falsifiable DH-type assumptions.

As another contribution, we define falsifiable assumptions as efficiently im-
plementable libraries that a simulator can call. The advantage of this approach is
that reductions to the underlying assumptions are integrated in the simulator’s
code, which will hence abort and detect itself whenever a query to the library
solves the underlying hard problem. This makes reduction strategies readable
from simulator codes and hence opens a new path for automatic verification
of simulation-based proofs. While we demonstrate this only to work for proofs
conducted in the UC framework and when using variants of strong CDH, we con-
jecture that our approach can be used for simulation-based proofs in arbitrary
frameworks whenever only falsifiable assumptions are used.

Minimal protocol design. For optimal protection against side-channel attacks, we
would like to have parties touch their passwords as little as possible. Optimally,
passwords are only used to compute the generator of the DHKE. Unfortunately,
in simulation-based frameworks a security proof often crucially relies on hashing

6

of secrets, and indeed previous CPace security analysis has relied on the password
being included in the final key derivation hash [1]. In this work we ask what the
minimal set of protocol-related values is that needs to be included in both hash
functions used in CPace. Perhaps surprisingly, we find that CPace’s security can
be proven when (1) the password hash does not get any additional inputs and (2)
the final key derivation hash is over session-specific values and the Diffie-Hellman
key. Regarding (1), we observe that the simulation strategy (described above for
adaptive corruptions) works even if the generator g chosen by the simulator is
used to simulate multiple instances of CPace, and where different parties use the
same password: Choosing fresh secret exponents zA for each such simulated party
A ensures that all the revealed exponents zAr−1 are still uniformly distributed.
Regarding (2), our simulation simply does not need to learn the password from an
adversarial key derivation hash query: The simulator simply reads the simulated
parts gz and adversarial part Y of the transcript from the hash query and checks
consistency of the query’s format by checking whether it is a DDH tuple with
respect to each trapdoor generated upon password hashing. Since there can be
only a polynomial number of such queries, this simulation strategy is tight and
efficient and saves us from hashing the password another time.

Implementation artifacts. Depending on the type of curve CPace is deployed in,
the implementation will vary in certain aspects for which it is not clear how they
will impact CPace’s security. By adopting the security analysis to capture actual
Map2Pt mappings used in practice we already demonstrated how to deal with
the probably most important such artifact above. Closely related to this, we also
analyze security of CPace when implemented on curves of composite order p · c
with a small co-factor c, which needs to be “cleared” in order to ensure that
parties use generators of the large subgroup. We can integrate this modification
by chaining Map2Pt with a co-factor clearing function and by demonstrating
that the resulting mapping is still probabilistically invertible. Technically, we
“lift” our proof of security w.r.t simple Map2Pt described above by letting the
simulator call a co-factor clearing class that ensures that simulated values will
remain in the large subgroup.

A typical implementation pitfall is incorrectly implemented group-
membership verification. As such a failure easily remains unnoticed, optimized
resilient protocols such as X25519 and X448 [32] have been suggested for the con-
ventional Diffie-Hellman use-case. We believe that we are the first to formalize
the exact hardness assumption, the twist CDH problem sTCDH, under which the
claimed resilience regarding group membership omission is actually justified. We
show that under the sTCDH assumption, resilience with respect to incorrectly
implemented point verification can also be achieved for CPace, when instanti-
ated using single-coordinate Montgomery ladders on so-called "twist-secure" [12]
elliptic curves. For details on how to deal with other implementation artifacts
we refer the reader to Section 6 in the main body of the paper.

Roadmap. We introduce the PAKE security model in Section 2 and hardness
assumptions and requirements for Map2Pt in Section 3. Details of the CPace

7

protocol are in Section 4. Then we analyse CPace, first using a simplified CPace
in Section 5 (modeling the map as random-oracle) and then extending the anal-
ysis to real-world instantiations using actually deployed mapping constructions,
composite-order groups, details on twist security and single-coordinate repre-
sentations in Section 6. We defer the reader to the full version of this paper [4]
for proofs, a description of issues with previous UC PAKE functionalities and
implementation recommendations.

2 PAKE Security Model

We use the Universal Composability (UC) framework of Canetti [14] to formu-
late security properties of CPace. For PAKE, usage of the simulation-based UC
framework comes with several advantages over the game-based model for PAKE
introduced by Bellare et al. [7]. Most importantly, UC secure PAKE protocols
preserve their security properties in the presence of adversarially-chosen pass-
words and when composed with arbitrary other protocols. Originally introduced
by Canetti et al. [15], the ideal functionality FpwKE for PAKE (depicted in Fig. 1)
is accessed by two parties, P and P ′, who both provide their passwords. FpwKE

then provides both parties with a uniformly random session key if passwords
match, and with individual random keys if passwords mismatch. Since an adver-
sary can always engage in a session and guess the counterpart’s password with
non-negligible probability, FpwKE must include an adversarial interface TestPwd
for such guesses. Crucially, only one guess against every honest party is allowed,
modeling the fact that password guessing is an online attack and cannot be used
to brute-force the password from a protocol’s transcript. We refer the reader to
[15] for a more comprehensive introduction to the PAKE functionality.

An ideal functionality for the SPEKE protocol family. Unfortunately, FpwKE is
not suitable to analyze SPEKE-like PAKE protocols such as CPace, where ses-
sion keys are computed as hashes of Diffie-Hellman keys (and possibly parts of
the transcript). The reason is that FpwKE’s TestPwd interface allows password
guesses only during a protocol run, which requires a simulator to extract pass-
word guesses from the protocol’s transcript. When the final output is a hash, the
adversary might postpone its computation, keeping information from the simula-
tor that is required for password extraction. To circumvent these issues, recently
a “lazy-extraction PAKE” functionality FlePAKE was proposed and shown useful
in the analysis of SPEKE-like protocols by Abdalla et al. [1]. FlePAKE, which we
also depict in Fig. 1, allows either one online or one offline password guess after
the key exchange was finished. One might argue that usage of keys obtained from
FlePAKE is never safe, since the adversary might eventually extract the key from
it at any later point in time. This however can be easily prevented by adding
a key confirmation round, which keeps an adversary from postponing the final
hash query and guarantees perfect forward secrecy [1]. We refer the reader to [1]
for a thorough discussion of FlePAKE.

8

Our adjustments to FlePAKE. The main difference between our FlePAKE and all
PAKE functionalities from the literature [15, 31, 29, 1] is that we remove a
shortcoming that rendered these functionalities essentially useless as building
blocks for higher-level applications. More detailed, we remove the ability of the
adversary to determine an honest party’s output key in a corrupted session. The
change can be seen in Fig. 1, where the dashed box shows the weakening that
we simply omit in our version of FlePAKE. In reality, nobody would want to use
a PAKE where an adversary can learn (even set) the key of an honest party
without knowing the honest party’s password. This is not what one would expect
from an authenticated key exchange protocol. In the full version of this work [4]
we explain why existing PAKE protocols can still be considered secure, but also
provide an illustrating example how this shortcoming hinders usage of PAKE
functionalities in modular protocol analysis. In this paper, we demonstrate that
CPace can be proven to protect against such attacks.

We also make two minor adjustments, which are merely to ease presentation
in this paper. Namely, we add an explicit interface for adaptive corruptions, and
we omit roles since we analyze a protocol where there is no dedicated initiator.

How many keys can a PAKE functionality exchange? All PAKE functionalities
in Figure 1 produce only a single key for a single pair of parties P,P ′. This
can be seen from the NewSession interface, which takes action only upon the
first such query (from any party P) and the corresponding second query by the
indicated counterparty P ′. The motivation behind this design choice is simplicity
in the security analysis: one can prove security of a PAKE protocol for only a
single session, and then run arbitrary many copies of the PAKE functionality
to exchange arbitrarily many keys (between arbitrary parties). Consequently, by
the UC composition theorem, replacing all those copies with the PAKE protocol
that provably realizes the single-session FpwKE is at least as secure.

3 Preliminaries

3.1 Notation

With ←R we denote uniformly random sampling from a set. With oc(X,Y) we
denote ordered concatenation, i.e., oc(X,Y) = X||Y if X ≤ Y and oc(X,Y) =
Y ||X otherwise. We use multiplicative notation for the group operation in a
group G and hence write, e.g., g · g = g2 for an element g ∈ G. IG denotes
the neutral element in G. To enhance readability, we sometimes break with the
convention of denoting group elements with small letters and write X := gx. We
denote by Gm a subgroup of G of order m, and with Ḡ we denote the quadratic
twist of elliptic curve group G. Throughout the paper, we use λ as security
parameter6.
6 For the hardness assumptions on elliptic curve groups, e.g. for the sCDH and sSDH
problems, where security depends on the group type and the group order p, the bit
size of p implicitly serves also as a further security parameter.

9

Session initiation
On (NewSession, sid ,P,P ′, pw) from P, send (NewSession, sid ,P,P ′) to A. In ad-
dition, if this is the first NewSession query, or if this is the second NewSession
query and there is a record (sid ,P ′,P, pw′), then record (sid ,P,P ′, pw) and mark
this record fresh.

Active attack
– On (TestPwd, sid ,P, pw∗) from A, if ∃ a fresh record 〈sid ,P,P ′, pw, ·〉 then:
• If pw∗ = pw then mark it compromised and return “correct guess”;
• If pw∗ 6= pw then mark it interrupted and return “wrong guess”.

– On (RegisterTest, sid ,P) from A, if ∃ a fresh record 〈sid ,P,P ′, ·〉
then mark it interrupted and flag it tested.

– On (LateTestPwd, sid ,P, pw∗) from A, if ∃ a record 〈sid ,P,P ′, pw,K〉
marked completed with flag tested then remove this flag and do:

• If pw∗ = pw then return K to A;

• If pw∗ 6= pw then return K$ ←R {0, 1}λ to A.

Key generation
On (NewKey, sid ,P,K∗) from A, if ∃ a record 〈sid ,P,P ′, pw〉 not marked
completed then do:
– If the record is compromised, or either P or P ′ is corrupted, then K := K∗.
– If the record is fresh and ∃ a completed record 〈sid ,P ′,P, pw,K′〉 that was

fresh when P ′ output (sid ,K′), then set K := K′.
– In all other cases pick K ←R {0, 1}λ.

Finally, append K to record 〈sid ,P,P ′, pw〉, mark it completed, and output
(sid ,K) to P.

Adaptive corruption
On (AdaptiveCorruption, sid ,P) from A, if ∃ a record 〈sid ,P, ·, pw〉 not marked
completed then mark it completed and output (sid , pw).

Fig. 1. UC PAKE variants: The original PAKE functionality FpwKE of Canetti et al.
[15] is the version with all gray text omitted. The lazy-extraction PAKE functionality
FlePAKE [1] includes everything, and the variant of FlePAKE used in this work includes
everything but the dashed box.

3.2 Cryptographic assumptions

The security of CPace is based on the hardness of a combination of strong and
simultaneous Diffie-Hellman problems. To ease access to the assumptions, we
state them with increasing complexity.

Definition 1 (Strong CDH problem (sCDH) [3]). Let G be a cyclic group
with a generator g and (X = gx, Y = gy) sampled uniformly from (G \ {IG})2.
Given access to oracles DDH (g,X, ·, ·) and DDH (g, Y, ·, ·), provide K such that
K = gxy.

10

We note that sCDH is a weaker variant of the so-called gap-CDH assumption,
where the adversary has access to “full” DDH oracles with no fixed inputs. Next
we provide a stronger variant of sCDH where two CDH instances need to be
solved that involve a common, adversarially chosen element.

Definition 2 (Strong simultaneous CDH problem (sSDH)). Let G be a
cyclic group and (X, g1, g2) sampled uniformly from (G \ {IG})3. Given access to
oracles DDH (g1, X, ·, ·) and DDH (g2, X, ·, ·), provide (Y,K1,K2) ∈ (G \ {IG})×
G × G s. th. DDH (g1, X, Y,K1) = DDH (g2, X, Y,K2) = 1

As a cryptographic assumption sSDH above is justified since sSDH is implied
by the gap simultaneous Diffie-Hellman assumption [34, 1], which allows for
unlimited (i.e., with no fixed input) access to a DDH oracle. Lastly, we state
a variant of the sSDH assumption where generators are sampled according to
some probability distribution. Looking ahead, we require this variant since in
CPace parties derive generators by applying a map which does not implement
uniform sampling from the group. We state the non-uniform variant of sSDH
for arbitrary probability distributions and investigate its relation to “uniform”
sSDH afterwards.

With AdvsCDH
BsCDH

(G) and AdvsSDH
BsSDH

(G), we denote the probabilities that adver-
sarial algorithms BsSDH and BsSDH having access to the restricted DDH oracles
provide a solution for the sCDH and sSDH problems respectively in G when given
a single randomly drawn challenge.

Definition 3 (Strong simultaneous non-uniform CDH problem (DG-
sSDH)). Let G be a group and DG be a probability distribution on G. The strong
simultaneous non-uniform CDH problem DG-sSDH is defined as the sSDH prob-
lem but with (X, g1, g2) sampled using UG × DG × DG, where UG denotes the
uniform distribution on G.

Clearly, UG\{IG}-sSDH is equivalent to sSDH. We show that hardness of uni-
form and non-uniform sSDH are equivalent given that the distribution allows for
probabilistic polynomial time (PPT) rejection sampling, which we now formalize.

Definition 4 (Rejection sampling algorithm for (G,DG)). Let G be a group
and DG be a probability distribution on G. With DG(g) we denote the probability
for point g. Let RS be a probabilistic algorithm taking as input elements g ∈ G and
outputting ⊥ or a value 6=⊥. Then RS is called a rejection sampling algorithm
for (G,DG) if there is a scaling factor k such that Pr[RS(g) 6=⊥] = k · DG(g) for
g ∈ G.

Informally RS is a probabilistic algorithm which accepts (output different
from ⊥) or rejects (output ⊥) a candidate point. When queried multiple times
on the same input g ∈ G, the probability that g will be accepted or rejected
models a scaled distribution that is proportional to DG . In this paper, we are
interested in rejection samplers with “good” acceptance rate, such that they can
be efficiently used to sample elements from the scaled distribution. We formalize
the acceptance rate as follows.

11

Definition 5 (Acceptance rate of a rejection sampler for (G,DG)). Let
G be a group and DG be a probability distribution on G. Let RS be a rejection
sampling algorithm for (G,DG). Let gi ∈ G be a sequence of m uniformly drawn
points and ri = RS(gi). Then RS is said to have an acceptance rate of (1/n) if
the number of accepted points with ri 6=⊥ converges to m/n when m→∞.

Using these definitions, we are able to prove that given some assumptions
on the distribution DG hardness of sSDH and DG-sSDH are equivalent up to the
additional PPT computational effort for the rejection sampling algorithm.

Theorem 1 (sSDH ⇐⇒ DG-sSDH). Let G be a cyclic group of order p and
DG a probability distribution on G. If there exists a PPT rejection sampler RS
for (G,DG) with acceptance rate (1/n) then the probability of PPT adversaries
against DG-sSDH and sSDH of solving the respectively other problem differs by at
most (2D(IG) + (1/p)) and solving sSDH with the help of a DG-sSDH adversary
requires at most 2n executions of RS on average.

Proof. sSDH hard ⇒ DG− sSDH hard: Given an adversary BDG−sSDH against
DG − sSDH with non-negligible success probability ν, we show how to construct
an adversary AsSDH. On receiving an sSDH-challenge (X, g1, g2), first note that
X is uniformly sampled from G \ {IG}. AsSDH uniformly samples r, s ∈ Zp until
RS(gr1) 6=⊥ and RS(gs2) 6=⊥, which requires 2n calls to RS on average. AsSDH
runs BDG−sSDH on input (X, gr1, g

s
2). If B queries DDH(gr1, X, Z, L), A queries his

own oracle with DDH(g1, X, Z, L
1/r) and relays the answer to B (queries gs2 are

handled analogously). On receiving (Y,K1,K2) from BDG−sSDH, AsSDH provides
(Y,K

1/r
1 ,K

1/s
2) as solution in his sSDH experiment.

As RS is a rejection sampler for DG , (X, gr1, g
s
2) is a random DG − sSDH

challenge, and thus B solves it with probability ν. If B provides a solution, then
AsSDH succeeds in solving his own challenge unless gr1 or gs2 = IG or gr1 = gs2
which occurs at most with probability (2DG(IG) + 1/p). As RS executes in PPT,
AsSDH is PPT, uses (2n) calls to RS on average and succeeds with probability
ν(1− 2DG(IG)− 1/p), which is non-negligible since ν is.

sSDH hard ⇒ DG − sSDH hard: Given an adversary AsSDH against sSDH
with non-negligible probability µ we show how to construct a DG − sSDH ad-
versary BDG−sSDH. On receiving a DG − sSDH challenge (X, g1, g2), B samples
r, s ∈ Zp \ 0 and starts AsSDH on input (X, gr1, g

s
2). DDH oracle queries are

handled the same as above. On receiving (Y,K1,K2) from AsSDH, B provides
(Y,K

1/r
1 ,K

1/s
2) as solution to his own challenge.

If A is successful, then B succeeds unless either g1 or g2 = IG or gr1 = gs2 which
occurs at most with probability (2DG(IG) + 1/p). Thus, B is a PPT adversary
against DG − sSDH succeeding with non-negligible probability µ(1− 2DG(IG)−
1/p).

Informally, the assumptions sSDH and DG − sSDH become equivalent if
stepping over an element that gets accepted in the sampling process becomes
sufficiently likely for a randomly drawn sequence of candidates. Secondly, the
probability of accidentally drawing the neutral element from DG needs to be
negligible.

12

3.3 Transforming passwords to points on an elliptic curve

The generators of the Diffie-Hellman exchange in CPace are computed using a
deterministic mapping function Gen(pw). For a given curve group G over a field
Fq, Gen(pw) is calculated with the help of either one (Gen1MAP) or two (Gen2MAP)
invocations of a function Map2PtG : Fq → G and a hash function H1 hashing
to Fq. For the sake of shortened notation, we will drop the G subscript where
the group is obvious from the context. In both cases, security of CPace relies on
Map2Pt meeting the requirements from this section. Informally, we first require
Map2Pt to be “invertible”. That is, for any point on the image of the map, there
must be an efficient algorithm that outputs all preimages in Fq of Map2PtG for
a given group element g. We use the notation Map2PtG .PreImages(g). Details
on how such an inversion algorithm can be efficiently implemented for various
elliptic curve groups are given in [20, 11, 13, 27] and references therein. Secondly,
a bound for the maximum number of preimages nmax that Map2PtG maps to the
same element must be known and this nmax bound needs to be small (we use the
notation Map2PtG .nmax for the bound that applies for a given Map2PtG function
and group G). This is needed in order to construct a rejection sampling algorithm
whose acceptance rate must depend on nmax.

Definition 6. Let G be a group of points on an elliptic curve over a field Fq.
Let Map2Pt : Fq → G be a deterministic function. Then Map2Pt(·) is called
probabilistically invertible with at most nmax preimages if there exists a prob-
abilistic polynomial-time algorithm (r1, . . . , rng) ← Map2Pt.PreImages(g) that
outputs all ng values ri ∈ Fq such that g = Map2Pt(ri) for any g ∈ G; and
∀g ∈ G, nmax ≥ ng ≥ 0.

For a map Map2Pt that fulfills the previous definition with a bound for
the numbers of preimages Map2Pt.nmax, we define an “inversion algorithm”
Map2Pt−1 : G → Fq that, on input g ∈ G, returns one of potentially many
preimages of g under Map2Pt if a biased coin comes up heads. If the coin comes
up tails, the algorithm outputs failure. The “inversion algorithm” also serves
as rejection sampling algorithm for the distribution DG that is produced by
Map2Pt(r) for uniformly distributed inputs r ∈ Fq:

Algorithm 1 Map2Pt−1 : G −→ Fq ∪ {⊥}
On input g ∈ G: Sample i uniformly from {1, . . . ,Map2Pt.nmax}; Then obtain ng ∈
{0, . . . ,Map2Pt.nmax} pre-images (r1, . . . , rm) ← Map2Pt.PreImages(g); If ng < i re-
turn ⊥, else return ri.

Lemma 1. Let Map2Pt : G → Fq be probabilistically invertible with at most
Map2Pt.nmax preimages and let DG denote the distribution it induces on G. Then
Algorithm 1 is a PPT rejection sampler for (G,DG) with average acceptance rate
(|Fq|/|G|)/Map2Pt.nmax.

13

Proof. We first define the average number of preimages nmax ≥ n̄ ≥ 1 as the
quotient of the order of the field Fq and the number of points on the image of the
map, i.e., n̄ = |Fq|/|support(DG)|. When drawing an element g uniformly from
G, the probability that the number of preimages ng for g is nonzero is given by
the quotient of the order of the support of DG and the order of the group. By
the definition of n̄ above this is |Fq|/(n̄|G|).

For any point on the map with a nonzero number ng of preimages, Algo-
rithm 1 returns a result 6=⊥ with probability ng/nmax. As the average value for
the number of preimages for any point on the image of the map is n̄, the average
acceptance rate is (|Fq|/(n̄|G|)) · n̄/nmax = (|Fq|/|G|)/nmax.

Use of Map2Pt−1 for uniformly sampling field elements from Fq. As Map2Pt is
deterministic, each point g from G is characterized by the number of preimages ng
for Map2Pt in Fq with nmax ≥ ng ≥ 0. When generating points Map2Pt(s) ∈ G
for uniformly sampled field elements s ←R Fq, the probability of obtaining a
given point g is (ng/q) and can only take the values of zero or integer multiples
of 1/q up to nmax/q. In order to compensate for this, Map2Pt−1 is constructed
such that the probability of returning r 6=⊥ for a point g increases proportionally
with ng making any actually produced field element r 6=⊥ equally likely in Fq. As
a result, we can use Map2Pt−1 for transforming a sequence of uniformly sampled
group elements gl ∈ G to a sequence of uniformly sampled field elements rl ∈ Fq

Corollary 1. Let Map2Pt be a probabilistically invertible map with at most
Map2Pt.nmax preimages and let gl ←R G. Then rl ← Map2Pt−1(gl) outputs
results rl 6=⊥ with probability p ≥ (|Fq|/|G|)/Map2Pt.nmax and the distribution
of outputs rl 6=⊥ is uniform in Fq.

Moreover as the collision probability when drawing two elements ra, rb from
Fq is 1/q and as there are at most nmax values sl generating the same group
element g = Map2Pt(sl) the collision probability for ga = Map2Pt(ra) and gb =
Map2Pt(rb) is increased at most by n2max.

Corollary 2. When sampling two field elements ra, rb ←R Fq uniformly, we
have Map2Pt(ra) = Map2Pt(rb) with a probability of at most n2max/q.

4 The CPace protocol

The CPace protocol [22] is a SPEKE-type protocol [30] allowing parties to com-
pute a common key via a Diffie-Hellman key exchange with password-dependent
generators. The blueprint of the protocol is depicted in Fig. 2. Informally, a
party P willing to establish a key with party P ′ first computes a generator g
from a password pw. Next, P generates an element Ya = gya from a secret value
ya sampled at random and sends it to P ′. Upon receiving a value Yb from P ′, P
then computes a Diffie-Hellman key K = (Yb)

ya = gyayb and aborts if K equals
the identity element. Finally, it computes the session key as the hash of K and
the exchanged values Ya and Yb.

14

P(pw) public: G, c · p,H2, Gen, P ′(pw′)
ScMul, ScMulVf, ScSam

g ← Gen(pw) g′ ← Gen(pw′)

ya ← ScSam() yb ← ScSam()

Ya ← ScMul(g, ya) Yb ← ScMul(g′, yb)

sid , Yb

sid , Ya

K ← ScMulVf(Yb, ya) K′ ← ScMulVf(Ya, yb)
Abort if K = IG Abort if K′ = IG

ISK ← H2(K||oc(Ya, Yb)) ISK′ ←
H2(K′||oc(Ya, Yb))

Output ISK Output ISK′

Fig. 2. Above: Blueprint protocol CPace[Gen, ScMul, ScMulVf, ScSam] requiring group
G of order c · p with prime p and algorithms for DH generator computation (Gen),
exponentiation (ScMul, ScMulVf) and scalar sampling (ScSam). H2 : {0, 1}∗ → {0, 1}λ
denotes a hash function.
Below: “Basic” CPace CPacebase with c = 1, generators computed from hash function
HG : {0, 1}∗ → G and canonical exponentation, point verification and sampling.

CPacebase :=CPace[GenRO, ScMulbase, ScMulVfbase, ScSamp]

GenRO(pw) : ScMulbase(g, y) : ScMulVfbase(g, y) : ScSamp() :

return HG(pw) return gy if g /∈ G: return IG y ←R {1, . . . , p}
else: return gy return y

In order to allow for efficient instantiations over different types of groups,
most of which are elliptic curves, we present the CPace protocol in form of a
blueprint CPace[Gen, ScMul, ScMulVf,ScSam] in Fig. 2 that provides the follow-
ing generalizations: (1) The blueprint uses a generic algorithm Gen(D)→ G that
turns a password from dictionary D into a group element; (2) The computation
of the yi and Yi values is done with generic algorithms for sampling (SamSc :
0, 1∗ → 0, 1∗) and scalar multiplication (ScMul : G × Z|G| → G); (3) The Diffie-
Hellman key is computed with another generic algorithm ScMulVf : G×Z|G| → G,
in order to allow for additional point verification that is necessary on some curves
(but not on all) to protect against trivial attacks; (4) the blueprint protocol uses
an ordered concatenation function oc so that messages can be sent in any order
and parties do not have to play a specific initiator or responder role. In the re-
mainder of the paper, we will instantiate the CPace blueprint in various ways,
by specifying a set of concrete algorithms Gen,ScMul, ScMulVf,ScSam.

On the necessity of point verification. Many elliptic curve scalar multiplication
algorithms will work correctly independent whether the input operand encodes
a point on the correct curve or not. As a consequence if group membership
is not correctly verified by an implementation various attack scenarios become
feasible. An active attacker may for instance provide a point on a curve of low

15

order on which the discrete-logarithm problem could be solved. The threat for
real-world implementations is that this serious error might remain undetected
as the corresponding verification event is never generated in communications
of honest parties. In order to make CPace resilient to this type of attack and
implementation pitfalls, [22] suggested to first restrict invalid curve attacks to
the quadratic twist (by using a single-coordinate Montgomery ladder) and then
choose a curve where also the twist has a large prime-order subgroup and invalid
curve attacks become impossible. The CPace draft [23] highlights this aspect
on the protocol specification level by introducing a ScMulVf function which is
specified to include point verification.

5 Security of Simplified CPace

In this Section, as a warm-up, we analyze security of a “basic” variant of CPace,
which we call CPacebase and which is depicted in Fig. 2. We instantiate Gen with
a hash function HG that hashes onto the group G. This way, parties compute
generators as g ← HG(pw). Further, we assume G to be a multiplicatively written
group of prime order p where group membership is efficiently decidable. We
instantiate ScMul(g, y) := gy as exponentiation, and ScMulVf(g, y) such that it
returns the neutral element if g is not in the group and gy otherwise, and SamSc
with uniform sampling from {1 . . . p}. A formal description of the protocol is
given in Fig. 2, where the blueprint protocol is instantiated with the algorithms
at the bottom of the Figure.

Theorem 2 (Security of CPacebase). Let λ, p ∈ N with p prime. Let G be
a group of order p, and let H1 : {0, 1}∗ → G,H2 : {0, 1} → {0, 1}λ be two hash
functions. If the sCDH and sSDH problems are hard in G, then protocol CPacebase
depicted in Fig. 2 UC-emulates FlePAKE in the random-oracle model with respect
to adaptive corruptions when both hash functions are modeled as random oracles.
More precisely, for every adversary A, there exist adversaries BsSDH and BsCDH
against the strong CDH (sCDH) and strong simultaneous CDH (sSDH) problems
such that

|Pr[RealZ(CPacebase,A)]− Pr[IdealZ(FlePAKE,S)|
≤ l2H1

/p+ 2l2H1
AdvsSDH

BsSDH
(G) + AdvsCDH

BsCDH
(G)

where lH1 denotes the number of H1 queries made by the adversary A and the
simulator S is depicted in Fig. 3.

Proof (Sketch). The main idea of the simulation is to fix a secret generator
g ∈ G and carry out the simulation with respect to g. Messages of honest parties
are simulated as gz for a fresh exponent z. Queries H1(pw) are answered with gr
for a freshly chosen “trapdoor” r. The simulator might learn an honest party’s
password via adaptive corruption or via an adversarial password guess. The
simulator can now adjust the simulation in retrospective to let the honest party
use gr = H1(pw) by claiming the party’s secret exponent to be zr−1. This already

16

The simulator S samples and stores a generator g ← G.

On (NewSession, sid , Pi, Pj) from FlePAKE:
sample zi ←R Zp
set Yi ← gzi ; store (Pi, zi, Yi,⊥)
send Yi to A intended to Pj

On Z∗ from A as msg to (sid , Pi):
if Z∗ is adversarially generated
and Z∗ ∈ G \ IG :
send (RegisterTest, sid , Pi) to FlePAKE

Upon Pi receiving (sid, Yj) with Yj ∈ G from Pj :
retrieve record (Pi, zi, Yi, ∗)
if ∃ records (H1, pw, r, r

−1, G), (H2,K||oc(Yi, Yj), ISK) s.th. K = Y zir
−1

j :
store (guess, G, Yj); abort if ∃ record (guess, G′, Yj) with G 6= G′;
send (TestPwd, sid , Pi, pw) to FlePAKE;
send (NewKey, sid , Pi, ISK) to FlePAKE and store (Pi, zi, Yi, ISK)

else: sample a fresh random ISK′ and send (NewKey, sid , Pi, ISK
′) to FlePAKE

On H1(pw) from A:
if this is the first such query:
sample r ←R Fp \ {0}
abort if ∃ rec. (H1, ∗, r, ∗, ∗)
store (H1, pw, r, r

−1, gr)
retrieve rec. (H1, pw, ∗, ∗, h)
reply with h

On msg (AdaptiveCorruption, sid) from A to Pi:
send AdaptiveCorruption, sid , Pi) to FlePAKE

retrieve record (sid , pw)
if a msg Yi := gzi already sent to Pj :
if ∃ rec. (H1, pw, r, r

−1, ∗): yi ← zir
−1

else: r ←R Zp; yi ← zir
−1 and

store (H1, pw, r, r
−1, gr)

send (pw, yi) to A
On H2(K||Yi||Yj) from A:
if this is the first such query then
if ∃ rec.(Pi, zi, Yi, ∗), (Pj , zj , Yj , ∗), (H1, ∗) such that Kr = gzizj : abort;
if @ rec.(Pi, ∗, Yi, ∗) or (Pj , ∗, Yj , ∗), or if Ya||Yb 6= oc(Ya, Yb): A←R {0, 1}2k;
if ∃ records (Pi, zi, Yi, ISK) and (H1, pw, r, r

−1, G) s.th. K = Y zir
−1

j :
Record (guess, G, Yj); abort if ∃ rec. (guess, G′, Yj) with G 6= G′.
Send (LateTestPwd, sid , Pi, pw) to FlePAKE. Upon answer K̂ set A← K̂;

if ∃ (Pj , zj , Yj , ISK) with ISK 6= ⊥ and (H1, pw, r, r
−1, G) s.th. K = Y

zj/r

i :
Store (guess, G, Yi); Abort if ∃ record (guess, G′, Yi) with G 6= G′;
Send (LateTestPwd, sid , Pj , pw) to FlePAKE. Upon answer K̂ set A← K̂

if no matching H1 records are found set A←R {0, 1}2k
finally, store (H2,K||Yi||Yj , A) and reply with A

else retrieve record (H2,K||Yi||Yj , A) and reply with A

Fig. 3. Simulator for CPacebase. For brevity we omit the session identifier sid from all
records stored by the simulator.

concludes simulation of honest parties without passwords. Adversarial password
guesses can be read from A injecting X (or, similarly, Y) and then querying
H2(K||X||Y) with K being a correctly computed key w.r.t some generator gr
provided by the simulation. S can now read the guessed password from the H1

list, and submit it as password guess to FlePAKE. In case of success, the simulator
sets the key of the honest party to H2(K||X||Y).

The simulation is complicated by the order of honest parties’ outputs (which
are generated upon receipt of the single message) and the adversary’s computa-

17

tion of final session keys via H2 queries. If the key is generated by FlePAKE before
A computes it via H2 (which constitutes a password guess as detailed above),
then S needs to invoke the LateTestPwd query of FlePAKE instead of TestPwd.
In case of a correct guess, this lets S learn the output key of the honest party,
which S can then program into the corresponding H2 query.

Finally, the simulation can fail in some cases. Firstly, S might find more
than one password guess against an honest party with simulated message
X. In this case, the simulation cannot continue since FlePAKE allows for
only one password guess per party. In this case, however, A would provide
(gr, X, Y,K),(gr

′
, X, Y,K ′) which are two CDH tuples for passwords pw, pw′

with gr ← H1(pw), gr
′ ← H1(pw′). Provided that the simultaneous strong CDH

assumption (sSDH, cf. Definition 2) holds, this cannot happen. Here, the “strong”
property, providing a type of DDH oracle, is required to help S identify CDH
tuples among all queries to H2. A second case of simulation failure occurs when
A wants to compute a key of an uncorrupted session via a H2 query. Since S
does not know such keys, it would have to abort. Using a similar strategy as
above, pseudorandomness of keys can be shown to hold under the strong CDH
assumption, and thus the probability of A issuing such a H2 query is negligible.
The full proof can be found in the full version of this work [4].

Our Theorem 2 demonstrates that adaptive security of CPace can be proven
with only minimal information included in the hashes, i.e., the first hash requires
only the password and the final key derivation hash requires the Diffie-Hellman
key and the unique protocol transcript. We detail now under which circumstances
additional data such as session identifiers needs to be included in the hashes.
We further note that adding additional inputs to hashes, such as the name of a
ciphersuite that an application wants parties to agree on, does not harm security.

On multi-session security and hash domain separation Theorem 2 demonstrates
that CPacebase allows to securely turn a joint password into one key. In practice,
one would of course want to exchange more than one key, and many parties will
end up using the same password. If session identifiers are globally unique, then
the UC composition theorem (more detailed, the composition theorem of UC
with Joint State [16]) allows to turn Theorem 2 into a proof of “multi-session
CPace” by simply appending the unique session identifiers to all hash function
inputs. This ensures that hash domains of individual sessions are separated and
the programming activities of the individual simulators do not clash. To summa-
rize, we obtain a secure multi-session version of CPace by ensuring uniqueness of
session identifiers and including them in hashes. In practice, this can be ensured
by, e.g., agreeing on a joint session identifier to which both users contributed
randomness and in which party identifiers are incorporated (see, e.g., [6]). The
agreement needs to happen before starting CPace, but does not require secrecy
and can thus potentially be piggy-backed to messages sent by the application. As
a last note, applications might choose to add more values to hashes, for example
to authenticate addresses or to ensure agreement on a ciphersuite. We stress that

18

such additional values do not void our security analysis, but care still needs to
be taken in order to protect against side-channel attacks.

5.1 Embedding CDH experiment libraries into the simulator

In this section, we discuss an alternative approach to carrying out reductions
to cryptographic assumptions in the case of CPace/CDH. Both assumptions
required by CPacebase, sCDH and sSDH, allow for an efficient implementation of
experiments in the following sense: the secret exponents that are sampled by the
experiment code (often also called the challenger) are sufficient for answering
the restricted DDH queries allowed by both assumptions. An example for an
assumption that does not allow for such efficient instantiation is, e.g., gap-CDH.
In gap-CDH, the adversary is provided with a “full” DDH oracle that he can query
on arbitrary elements, of which the experiment might not know an exponent for.

Due to this property, we can integrate implementations of the sCDH and
sSDH experiments in the simulator’s code. The simulator implements the DDH
oracles on its own, and abort if at any time an oracle query solves the underlying
assumption. We chose to integrate experiments as libraries (written as objects
in python-style notation in Figure 4) into the simulator’s code. This eases not
only presentation but is also useful for analyzing variants of CPace that require
slightly different assumptions.

The corresponding result for CPacebase is shown in Fig. 5 when the challenge-
generating experiment exp← sSDH(sCDH) is used (Fig. 4). The instance of the
sSDH object first samples a random generator as member s.g and creates a mem-
ber instance s.scdh ← sCDH(g) of the experiment for the sCDH problem. The
sCDH member object produces a challenge consisting of two uniformly drawn
group elements Y1 ← gy1 , Y2 ← gy2 . The limited DDH oracle provided by the
sCDH assumption can only receive inputs w.r.t one of these elements, and thus
it can be implemented efficiently using secret exponents y1, y2. If a correct CDH
solution g, Y1, Y2, g

y1·y2 is provided, the sCDH object aborts. In its implemen-
tation for H1, the sSDH object samples random new generators as R ← (s.g)r

which will be used for simulating password-dependent base points and uses the
s.scdh member and the known exponent r for answering DDH queries by use
of the s.scdh.DDH function. The corrupt queries are implemented likewise and
forwarded to the s.scdh member object. The simulator from Fig. 3 is adapted to
call the experiment. As an example, honest parties’ messages are simulated by
calling the challenge sampling procedure exp.sampleY() from sSDH which itself
calls the corresponding function from its sCDH member.

Proving indistinguishability. With this simulation approach, a proof consists
in demonstrating that ideal and real world executions are indistinguishable ex-
cept for events in which the experiment libraries abort because a challenge was
correctly answered. Compared to our proof of Theorem 2, the indistinguishability
argument becomes simpler because the reduction strategies to both CDH-type
assumptions are already embedded in the corresponding assumption experiment
libraries. Losses such as the factor 2l2H1

in the reduction to sSDH translate to
libraries producing more than one challenge per simulation run, as is the case

19

using python-style notation with self pointer s and _init_ constructor
def class sCDH:
def _init_(s, g): s.g ← g; s.i← 0; s.state← fresh;
def sampleY(s):
if s.i < 2: s.i+ = 1; sample s.yi ←R Fp \ 0; return (s.g)s.yi ;

def corrupt(s,X):
for 1 ≤ m ≤ s.i:
if (X = (s.g)s.ym): s.state← corrupt; return s.ym;

def DDH(s, g, Y,X,K):
if (g 6= s.g): return;
if ({Y,X}={s.Y1, s.Y2}) and (s.state= fresh) and (K = (s.g)s.y1·s.y2):
abort("sCDH(g, Y1, Y2) solved")

for 1 ≤ m ≤ s.i:
if (Y = (s.g)s.ym): return (K = Xs.ym);

def isValid(X): return (X ∈ G \ {IG})

def class sSDH: # using python-style notation [] for list containers
def _init_(s,sCdhExp): # Gets sCDH class; samples g; creates a sCDH instance
s.g ←R G; s.scdh = sCdhExp(s.g); s.records =[]; s.guess = "yet no guess";

def sampleY(s): return (s.scdh).sampleY();
def isValid(s,X): return (s.scdh).isValid(X);
def sampleH1(s):
sample r ←R Fp \ {0};
if (r, ∗) in s.records: abort("Hash to group collision");
else: s.records.append((r, (s.g)r)); return (s.g)r;

def corrupt(s,R, Y):
if there is (r,R) in s.records: return (s.scdh).corrupt(Y 1/r);

def DDH(s,R, Y,X,K):
if there is (r,R) in s.records:
match ← (s.scdh).DDH(s.g, Y,X,K1/r);
if match and (s.guess = "yet no guess"): (s.guess.g,s.guess.X)← (R,X);
elif match and (s.guess.X = X) and (s.guess.g 6= R):
abort("sSDH problem (Y,R, s.guess.g) solved");

return match;

Fig. 4. Libraries implementing sCDH and sSDH experiments.

for the sSDH experiment from Fig. 5. Altogether, the simulation with integrated
CDH experiment libraries is an alternative approach of proving Theorem 2, as
we formalize in the following.

Theorem 3 (Alternative simulation for Theorem 2). The simulator de-
picted in Fig. 5 is a witness for the UC emulation statement in Theorem 2

Proof (Proof sketch.). The output distribution of the simulator S from Fig. 5 is
indistinguishable from the one of the simulator from Fig. 3 as it is obtained from
internal restructuring. S aborts if either the sSDH or the sCDH experiment class
aborts, which occurs iff a correct solution has been provided to the experiment

20

The simulator S(exp) is parametrized by an experiment class exp.

On (NewSession, sid , Pi, Pj) from FlePAKE:
set Yi ← exp.sampleY();
store (Pi, Pj , Yi,⊥);
send Yi to A intended to Pj ;

On Z∗ from A as msg to (sid , Pi):
if Z∗ is adversarially generated
and exp.isValid(Z∗):

send (RegisterTest, sid , Pi) to FlePAKE

Upon Pi receiving (sid, Yj) from Pj : retrieve record (Pi, ∗, zi, Yi, ∗)
if not exp.isValid(Yj): return;
if ∃ records (H1, pw, h), (H2,K||(oc(Yi, Yj), ISK)

such that exp.DDH(h, Yi, Yj ,K) = 1:
send (TestPwd, sid , Pi, pw) to FlePAKE

send (NewKey, sid , Pi, ISK) to FlePAKE and store (Pi, Pj , Yi, ISK)

else sample a fresh random ISK′ and send (NewKey, sid , Pi, ISK′) to FlePAKE

FlePAKE will discard ISK′

On H1(pw)) from A:
if not ∃ record
(H1, pw, h):

h← exp.sampleH1()
store (H1, pw, h)

lookup(H1, pw, h)
reply with h

On (AdaptiveCorruption, sid) from A as msg to Pi:
Lookup (Pi, Pj , Yi, ∗); send (AdaptiveCorruption, sid , Pi)
to FlePAKE and obtain (sid , pw);
if a message Yi was already sent to Pj , then:

query H1(pw) and
retrieve record (H1, pw, h)

send (pw,exp.corrupt(h, Yi))

On H2(sid ||K||Yi||Yj) from A:

lookup (H2, sid ||K||Yi||Yj , h) and send h if it exists;
else if this is the first such query:

if there are no records (Pi, Pj , Yi, ∗) or (Pj , Pi, Yj , ∗), or if Ya||Yb 6= oc(Ya, Yb):
sample A← {0, 1}2k;

if ∃ records (Pi, Pj , Yi, ISK) with ISK 6= ⊥ and (H1, pw, h)

such that exp.DDH(h, Yi, Yj ,K) = 1:
send (LateTestPwd, sid , Pi, pw) to FlePAKE. Upon answer K̂ set A← K̂

if ∃ records (Pj , Pi, Yj , ISK) with ISK 6= ⊥ and (H1, pw, h)

such that exp.DDH(h, Yj , Yi,K) = 1:
send (LateTestPwd, sid , Pj , pw) to FlePAKE. Upon answer K̂ set A← K̂

if no matching H1 records are found set A← {0, 1}2k

finally, store (H2, sid ||K||Yi||Yj , A) and reply with A

Fig. 5. Generic simulator for different CPace variants, embedding challenges generated
by the experiment object exp. The simulator for CPacebase is obtained when using
exp← sSDH(sCDH) from Fig. 4.

implementation or a H1 collision is observed. These cases coincide with the abort
cases in the proof of Theorem 2. As the sSDH object outputs 2l2H1

different
challenges and as it is sufficient for Z to provide a solution to one of these
challenges for distinguishing both worlds, the advantage for solving the sSDH
problem needs to be multiplied by this factor, thus reproducing the bounds
from Theorem 2.

21

Advantages of embedding libraries in the simulation. To clarify, the approach
presented in this section does not allow to prove stronger security statements. As
demonstrated above, it is merely an alternative way of presenting security proofs
in the UC framework or other simulation-based frameworks, and it works when-
ever the underlying cryptographic assumptions are efficiently implementable.
However, we believe that the approach has its merits especially in the following
dimensions.

– Modular security analysis. Slight modifications in the protocol might
require to change the cryptographic assumption. As long as the public inter-
face does not change, our approach allows to switch between assumptions by
simply calling a different library. Cryptographers then need to only analyze
this “local” change in the simulation, which prevents them from re-doing the
whole indistinguishability argument.

– Presentation of reduction strategies. In normal game-based indistin-
guishability arguments [36], reductions to cryptographic assumptions are
hidden within side-long proofs. With our approach, the reduction strategy is
depicted in clear code as part of the simulator’s code. This makes checking
of proofs easier not only for readers but also might make simulation-based
proofs more accessible to automated verification.

In this paper, our motivation is the first dimension. In the upcoming section, the
library-based approach will turn out to be extremely useful to analyze the various
variants of CPace that stem from (efficiency-wise) optimized implementations on
different elliptic curves.

6 Analysis of Real-World CPace

The currently most efficient way to run CPace is over elliptic curves. Therefore,
from this point onwards, we consider G to be an elliptic curve constructed over
field Fq. From a historical perspective, both CPace research and implementation
first focused on prime order curves, such as the NIST-P-256 curve [18]. Sub-
sequently significantly improved performance was shown on Montgomery- and
(twisted-)Edwards curves, notably Curve25519 and Ed448 curves [10, 26], which
both have a small cofactor c in their group order c · p. These approaches con-
sider also implementation pitfalls, e.g., by designing the curve such that there
are no incentives for implementers to use insecure speed-ups. Thirdly, recently
ideal group abstractions have been presented in order to avoid the complexity
of small cofactors in the group order [25, 17], while maintaining all advantages
of curves with cofactor.

For smooth integration into each of these different curve ecosystems, CPace
needs to be instantiated slightly differently regarding, e.g., computation of the
DH generator, group size, multiplication and sampling algorithms. In this sec-
tion, we analyze how such differences impact security. Using our modular ap-
proach with assumption libraries called by a simulator, we are able to present
security in terms of differences from our basic CPace analysis in Section 5 in a
concise way.

22

6.1 CPace without Hashing to the Group

CPace1MAP := CPace[Gen1MAP, ScMulbase,ScMulVfbase, ScSamp]

Gen1MAP(pw) : ScMulbase(g, y) : ScMulVfbase(g, y) : ScSamp() :

return return gy if g /∈ G: return IG y ←R 1 . . . p

Map2Pt(H1(pw)) else: return gy return y

Fig. 6. Protocol CPace1MAP for an elliptic curve group G of prime order p, over fi-
nite field Fq. Generators are computed as Map2Pt(H1(pw)) with a hash function
H1 : {0, 1}∗ → Fq. Differences to CPacebase are marked gray .

We now analyze a variant of the CPace protocol case-tailored for elliptic
curve groups G over finite field Fq. The protocol is depicted in Fig. 6. The only
difference to CPacebase analyzed in the previous section is how parties compute
the generators: now the function H1 hashes onto the field Fq, and generators
are computed as g ← Map2Pt(H1(pw)) for a function Map2Pt : Fq → G. This
way, the H1 outputs can be considered to form an alternative encoding of group
elements, where Map2Pt decodes to the group. ScMul, ScMulVf and SamSc are
as in Section 5.

Security analysis. Compared to the analysis of CPacebase, the security analy-
sis is complicated by the different computation of the generators in essentially
two ways: first, the possibly non-uniform distribution of Map2Pt induces non-
uniformity of DH generators computed by the parties. Second, embedding of
trapdoors no longer works by simply programming elements with known expo-
nents into H1. Instead, the proof will exploit that Map2Pt is probabilistically
invertible, such that preimages of generators with known exponents can be pro-
grammed into H1 instead. Consequently, security of CPace will be based on
the DG − sSDH problem Definition 3 instead of the sSDH problem, where the
distribution DG corresponds to the distribution of group elements Map2Pt(hi)
obtained for uniformly sampled field elements hi ←R Fq. All these changes can
be captured by replacing library sSDH with a new library for DG − sSDH, as we
demonstrate below.

Theorem 4 (Security of CPace1MAP). Let λ, p, q ∈ N with p prime. Let G
an elliptic curve of order p over field Fq. Let H1 : {0, 1}∗ → Fq,H2 : {0, 1}∗ →
{0, 1}λ be two hash functions and Map2Pt : Fq → G probabilistically invertible
with bound Map2Pt.nmax. If the sCDH and sSDH problems are hard in G, then
the CPace protocol depicted in Fig. 2 UC-emulates FlePAKE in the random-oracle
model with respect to adaptive corruptions and both hash functions modeled as
random oracles. More precisely, for every adversary A, there exist adversaries
BsSDH and BsCDH against the sSDH and sCDH problems such that

23

|Pr[Real(Z,A,CPace1MAP)]− Pr[Ideal(FlePAKE,S)]|
≤ (Map2Pt.nmax)lH1

/q + (lH1
)2/p+ (Map2Pt.nmax · lH1

)2/q
+2l2H1

AdvsSDH
BsSDH

(G) + AdvsCDH
BsCDH

(G)

where lH1 denotes the number of H1 queries made by the adversary A and the
simulator S is as in Fig. 5 but using the object distExp (cf. Fig. 7) instead of
the object sSdhExp.

def class DG_sSDH:
def _init_(s,Map2Pt, sSDHExp):
s.sSDH = sSDHExp; s.records = [];
s.nmax = nmax; s.preim = Map2Pt.PreImages;

def sampleY(s): return (s.sSDH).sampleY();
def isValid(X): return (s.sSDH).isValid(X);
def sampleH1(s):
g ← (s.sSDH).sampleH1();
while (1):
r ←R Fp; preimageList = (s.preim)(gr); m←R {0 . . . (s.Map2Pt.nmax − 1)};
if len(preimageList) > m:
if r = 0: abort("Sampled neutral element.");
h←preimageList[m];if h in s.records: abort("H1 collision");
s.records.append(r, gr, h); return h;

def corrupt(s, h, Y):
if there is (r, g, h) in s.records: return (s.sSDH).corrupt(g, Y 1/r);

def DDH(s,h, Y,X,K):
if there is (r, g, h) in s.records: return (s.sSDH).DDH(g, Y,X,K1/r);

Chaining the experiments for CPace on prime order curve, full (x,y) coordinates
sSdhExp = sSDH(sCDH);
distExp = DG_sSDH(Map2Pt,sSdhExp);

Fig. 7. Experiment class definition DG-sSDH using single executions of Map2Pt, where
H1 hashes to Fq.

Proof (Proof Sketch.). Let DG denote the distribution on G induced by Map2Pt.
First note, that if the sSDH is hard in G then the corresponding DG-sSDH
problem is hard by Theorem 1 as Map2Pt−1 (implemented in the body of the
sampleH1 method by the distExp object) is a rejection sampler for DG .

We adjust the simulator for “basic” CPace from Fig. 5 as follows. First,
we embed the reduction strategy from Theorem 1 into an experiment library
that converts sSDH challenges into DG − sSDH challenges and obtain the class
DG_sSDH depicted in Fig. 7. The class DG_sSDH uses the Map2Pt.PreImages
function (passed as a constructor parameter) for implementing the Map2Pt−1 as
defined in Algorithm 1 and an instance of the sSDH class implementing a sSDH
experiment that is assigned to a member variable.

24

Each time the main body of the simulator from Fig. 5 makes calls to its exp
object, the corresponding method of the new DG_sSDH object will be executed,
which itself translates the queries into calls to the sSDH object that was passed
as constructor parameter.

Importantly, DG_sSDH provides the same public API as the sSDH class
with the distinction that sampling for H1 returns results from Fq instead of
G. Moreover DG_sSDH aborts if the code of its sSDH object aborts and, now
additionally, also upon H1 collisions.

We explain now how the indistinguishability argument of Theorem 2 needs
to be adjusted in order to work for Theorem 4 and this new simulator. First,
we ensure that the distribution of points provided by the DG_sSDH object is
uniform in Fq using Corollary 1. Second, we adjust the collision probability
following the derivation from Corollary 2 which is now bound by (nmax · lH1

)2/q
in addition to the previous l2H1

/p probability. The probability that sampleH1
aborts because it samples the identity element from the distribution is bounded
by (Map2Pt.nmax)lH1

/q. Apart of these modification the proof applies without
further changes.

Instantiating Map2Pt. Various constructions have been presented for mapping
field elements to elliptic curve points such as Elligator2 [11], simplified SWU [20]
and the Shallue-van de Woestijne method (SvdW) [35] (see also [20] and refer-
ences therein). When considering short-Weierstrass representations of a curve,
the general approach is to first derive a set of candidate values xl for the x co-
ordinate of a point such that for at least one of these candidates xl there is a
coordinate yl such that (xl, yl) is a point on the curve. Subsequently one point
(xl, yl) is chosen among the candidates. The property of probabilistic invert-
ibility is fulfilled for all of the algorithms mentioned above and those currently
suggested in [20]. The most generic of these algorithm, SvdW, works for all el-
liptic curves, while the simplified SWU and Elligator2 algorithms allow for more
efficient implementations given that the curve fulfills some constraints.

All these mappings have a fixed and small bound nmax regarding the number
of pre-images and come with a PPT algorithm for calculating all preimages. For
instance, Elligator2 [11] comes with a maximum nmax = 2 of two pre-images per
point and nmax ≤ 4 for the simplified SWU and SvdW algorithms [20]. For all
these algorithms, the most complex substep for determining all preimages is the
calculation of a small pre-determined number of square roots and inversions in
Fq which can easily be implemented in polynomial time with less computational
complexity than one exponentiation operation.

6.2 Considering curves with small co-factor

In this subsection, we now additionally consider that the elliptic curve group
G can be of order c · p with c 6= 1, but where Diffie-Hellman-type assumptions
can only assumed to be computationally infeasible in the subgroup of order p,
denoted Gp. Consequently, CPaceco on curves with co-factor c 6= 1 requires all

25

CPaceco :=CPace[Gen1MAP,ScMulco,ScMulVfco,ScSamp]

Gen1MAP(pw) : ScMulco(g, y) : ScMulVfco(g, y) : ScSamp() :

return Map2Pt(H1(pw)) return gc·y if g /∈ G: return IG y ←R 1 . . . p

else: return gc·y return y

Fig. 8. Definition of CPaceco for curves of order p · c. The only difference (marked
gray) to CPace1MAP is that exponents are always multiplied by the cofactor c.

secret exponents to be multiples of c. Hence, CPaceco depicted in Fig. 8 deploys
modified algorithms ScMul, ScMulVf.

using python-style notation with self pointer s
def class cofactorClearer:
"interfaces S to a prime-order experiment class"
def _init_(s, c, p, primeOrderExpInstance ,p̄):
s.c=c; s.i= s.c · integer(1/(s.c2) mod p);s.it= s.c · integer(1/(s.c2) mod p̄);
s.exp = primeOrderExpInstance;

def sampleY(s): return ((s.exp).sampleY())s.c;
def isValid(X): return (s.exp).isValid(Xs.i)
def sampleH1(s): return (s.exp).sampleH1();
def corrupt(s, h, Y): { return (s.exp).corrupt(h, Y s.i); }
def DDH(s,g, Y,X,K):
if X ∈ G: return (s.exp).DDH(g, Y s.i, Xs.i,Ks.i·s.i)
if X on twist: return (s.exp).DDH(g, Y s.i, Xs.it,Ks.it·s.it)

sSdhExp = sSDH(sCDH); ccExp = cofactorClearer(sSdhExp);
ccDistExp = DG_sSDH(Map2Pt,ccExp);

Fig. 9. Cofactor-clearer class definition use for elliptic curves of order p · c with a
quadratic twist having a subgroup of order p̄. Note that the inverses s.i and s.it are
constructed such that they are multiples of c.

Theorem 5 (Security of CPaceco). Let λ, p, q, c ∈ N, p, c coprime with p
prime. Let G be an elliptic curve of order p·c over field Fq and Gp ⊂ G a subgroup
of order p. Let CCc : (g) 7→ ((gc)1/c mod p) be a cofactor clearing function
for c, H1 : {0, 1}∗ → Fq,H2 : {0, 1}∗ → {0, 1}λ be two hash functions and
Map2Pt : Fq → G probabilistically invertible with bound Map2Pt.nmax. Let be the
chained function Map2PtGp := (CCc ◦Map2Pt). Let DGp denote the distribution
on Gp induced by Map2PtGp . If the sCDH and sSDH problems are hard in Gp,
then the DGp-sSDH problem is hard in Gp and CPaceco UC-emulates FlePAKE in
the random-oracle model with respect to adaptive corruptions when both hash
functions are modeled as random oracles. More precisely, for every adversary A,
there exist adversaries BsCDH and BsSDH against the sCDH and sSDH problems
such that

26

|Pr[Real(Z,A,CPaceco)]− Pr[Ideal(FlePAKE,S)]|
≤ (Map2Pt.nmax · c)lH1

/q + 2l2H1
/p+ (Map2Pt.nmax · c · lH1

)2/q

+2l2H1
AdvsSDH

BsSDH
(Gp) + AdvsCDH

BsCDH
(Gp)

where lH1
denotes the number of H1 queries made by the adversary A and the

simulator S is as in Fig. 5 but using class ccDistExp (cf. Fig. 9) instead of object
sSdhExp.

Proof (Proof Sketch.). The full group G has a point g1 of order c with gc1 = IG
where IG denotes the identity element in G, i.e., there are c low-order points
gi1, i ∈ {1 . . . c}. For any point Y ∈ G we can consider the points Yi = Y · gi as
alternative ambiguous representations of the point CCc(Y) ∈ Gp. For any input
point Y ∈ Gp, all these c alternative representations can be easily calculated
using group operations and gi. For any of these c alternative representations of
Y at most Map2Pt.nmax preimages will be returned by Map2Pt.PreImages since
Map2Pt is probabilistically invertible on G. Correspondingly, the probability of
accidently drawing a representation of the identity element needs to be multi-
plied by c and is now bounded by (Map2Pt.nmax · c)lH1

/q. If up to Map2Pt.nmax
preimages exist per point on the full curve, the chained function Map2PtGp is
probabilistically invertible also on Gp. Its preimage function Map2PtGp .PreImages
for Gp can be defined such that it returns all of the preimages of the c am-
biguous representations of an input and the maximum number of preimages
Map2PtGp .nmax is, thus, bounded by Map2PtGp .nmax = c ·Map2Pt.nmax. Since
we are able to provide all preimages for Map2PtGp and a bound for their number
is known Map2PtGp is probabistically invertible. We thus can employ Theorem 1
and show that if the sSDH is hard in Gp then the corresponding DGp -sSDH prob-
lem is also hard.

As ScMulVfco and ScMulco use exponents that are a multiples of c they are
guaranteed to produce a unique result on Gp for all of the c ambiguous rep-
resentations of an input point. The additional factor of c in the exponents is
compensated by the simulation by calling an experiment library using the cc-
Exp class from Fig. 9. 7 The ccExp object forwards queries to a DGp_sSDH
object such that all inputs to the DDH oracle will be in Gp.

6.3 CPace using single-coordinate Diffie-Hellman

Some Diffie-Hellman-based protocols, including CPace, can be implemented also
on a group modulo negation, i.a. a group where a group element Y and its inverse
Y −1 (i.e. the point with I = Y · Y −1) are not distinguished and share the same
binary representation 8.
7 Note that this class also accepts points on the quadratic twist, a feature that will
become relevant only when considering simplified point verification on twist-secure
curves as discussed in the full version of this paper [4].

8 Counter-examples for protocols that cannot be instantiated on a group modulo nega-
tion and require full group structure are, e.g., TBPEKE [34] and SPAKE2 [5]. The
reason is that these protocols require addition of arbitrary points on the group.

27

def class moduloNegationAdapter:
"uses the strip- and reconstruct functions SC and RC."
def _init_(s,, baseExperiment):
s.exp←baseExperiment;s.records← [];

def sampleY(s): Y ← ((s.exp).sampleY())s.c; s.records.append(Y); return SC(Y);
def isValid(X̂):(X0, X1)←RC(X̂); return (s.exp).isValid(X0);
def sampleH1(s): return (s.exp).sampleH1();
def corrupt(s, h, Ŷ):
(Y, Y ∗)← RC(Ŷ); if Y ∗ in s.records: Y ← Y ∗; return (s.exp).corrupt(h, Y);

def DDH(s,g, Ŷ , X̂, K̂):
(Y, Y ∗)← RC(Ŷ); if Y ∗ in s.records: Y ← Y ∗;
(X,X∗)← RC(X̂); (K,K∗)← RC(K̂);
return (s.exp.DDH(g, Y,X,K)) or (s.exp.DDH(g, Y,X,K∗))

Chaining the experiments for prime order curve, single coordinate, single map
sSdhExp = sSDH(sCDH); distExp = DG_sSDH(Map2Pt,sSdhExp);
singleCoorExp = moduloNegationAdapter(distExp)

Fig. 10. Single-coordinate experiment class definition for CPace instantiations on
groups modulo negation.

An elliptic curve in Weierstrass representation becomes a group modulo nega-
tion when only using x-coordinates as representation. We use the notation Ŷ for
such ambiguous encodings and use Ŷ ← SC(Y) for a function returning the
x-coordinate for a point Y and (Y −1, Y) ← RC(Ŷ) for the inverse operation
reconstructing Y and Y −1 in an undefined order.

The major advantage of using this type of ambiguous encoding is that it can
be helpful in practice for all of the following: reducing code size, reducing pub-
lic key sizes and network bandwidth, avoiding implementation pitfalls [10] and
restricting invalid curve attacks to the curve’s quadratic twist. Consequently,
many real-world protocols such as TLS only use this single coordinate for de-
riving their session key, as to give implementers the flexibility to take benefit of
the above advantages.

For the purpose of function definitions by chaining, we introduce a function
RSC(Ŷ , x) that takes one ambigously encoded group element Ŷ in addition to
one scalar x, i.e. takes the same operands as ScMul. We define RSC(Ŷ , x) such
that it returns a tuple (Y, x) such that SC(Y) = Ŷ . With this definition, we can
formalize CPace using single-coordinate scalar multiplications with the chained
functions ScMulx−only := (SC ◦ ScMul ◦RSC), ScMulVfx−only := (SC ◦ ScMulVf ◦
RSC) and Genx−only := SC ◦Gen, such that the ambiguous encodings are used.9

Theorem 6 (Security of CPacex−only). Given a group G, assume
CPace[Gen,ScMul, ScMulVf,SamSc] on G can be distinguished from an ideal-
world run of FlePAKE and S from Fig. 5 with negligible advantage, where S embeds
9 Note that this definition obtained from chaining with SC and RSC for the scalar
multiplications corresponds exactly to the conventional so-called single-coordinate
ladder algorithms.

28

an experiment object exp. Then CPace[SC◦Gen,SC◦ScMul◦RSC,SC◦ScMulVf◦
RSC, SamSc] on the corresponding group modulo negation Ĝ cannot be distin-
guished from FlePAKE running with a simulator Ŝ that is obtained by chaining
exp with moduloNegationAdapter, the adapter class from Fig. 10, and the differ-
ence in the distinguishing advantage is bounded by a factor of 2.

We defer the proof sketch to the full version of this paper [4]. With our
library-based approach to simulation, it is also possible to argue security of
CPace variants which combine several of the aspects above. In a nutshell, this
works by chaining of the experiment classes. We refer the reader to the full
version [4] for details and examples.

References

1. Michel Abdalla, Manuel Barbosa, Tatiana Bradley, Stanislaw Jarecki, Jonathan
Katz, and Jiayu Xu. Universally composable relaxed password authenticated key
exchange. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part I, volume 12170 of LNCS, pages 278–307. Springer, Heidelberg, August 2020.

2. Michel Abdalla, Manuel Barbosa, Jonathan Katz, Julian Loss, and Jiayu Xu. Al-
gebraic adversaries in the universal composability framework. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, LNCS. Springer, Heidelberg,
December 2021.

3. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001,
volume 2020 of LNCS, pages 143–158. Springer, Heidelberg, April 2001.

4. Michel Abdalla, Björn Haase, and Julia Hesse. Security analysis of CPace. Cryptol-
ogy ePrint Archive, Report 2021/114, 2021. https://eprint.iacr.org/2021/114.

5. Michel Abdalla and David Pointcheval. Simple password-based encrypted key
exchange protocols. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of
LNCS, pages 191–208. Springer, Heidelberg, February 2005.

6. Boaz Barak, Yehuda Lindell, and Tal Rabin. Protocol initialization for the frame-
work of universal composability. Cryptology ePrint Archive, Report 2004/006,
2004. https://eprint.iacr.org/2004/006.

7. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer, Heidelberg, May
2000.

8. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In 1992 IEEE Symposium on Security
and Privacy, pages 72–84. IEEE Computer Society Press, May 1992.

9. Jens Bender, Marc Fischlin, and Dennis Kügler. Security analysis of the PACE
key-agreement protocol. In Pierangela Samarati, Moti Yung, Fabio Martinelli, and
Claudio Agostino Ardagna, editors, ISC 2009, volume 5735 of LNCS, pages 33–48.
Springer, Heidelberg, September 2009.

10. Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958
of LNCS, pages 207–228. Springer, Heidelberg, April 2006.

29

https://eprint.iacr.org/2021/114
https://eprint.iacr.org/2004/006

11. Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
967–980. ACM Press, November 2013.

12. Daniel J. Bernstein and Tanja Lange. SafeCurves: Choosing safe curves for elliptic-
curve cryptography. Definition of Twist security. (accessed on 15 January 2019),
2019. https://safecurves.cr.yp.to/twist.html.

13. Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Ran-
driam, and Mehdi Tibouchi. Efficient indifferentiable hashing into ordinary elliptic
curves. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 237–254.
Springer, Heidelberg, August 2010.

14. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

15. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKen-
zie. Universally composable password-based key exchange. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer, Hei-
delberg, May 2005.

16. Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, Heidelberg,
August 2003.

17. H. de Valence, J. Grigg, G. Tankersley, F. Valsorda, I. Lovecruft, and M. Hamburg.
The ristretto255 and decaf448 groups. Rfc, IRTF, 10 2020.

18. Digital Signature Standard (DSS). National Institute of Standards and Technology
(NIST), FIPS PUB 186-4, U.S. Department of Commerce, July 2013. https:
//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

19. Edward Eaton and Douglas Stebila. The “quantum annoying” property of
password-authenticated key exchange protocols. In Jung Hee Cheon and Jean-
Pierre Tillich, editors, Post-Quantum Cryptography - 12th International Workshop,
PQCrypto 2021, volume 12841 of LNCS, pages 154–173. Springer, Heidelberg, July
2021.

20. A. Faz-Hernandez, S. Scott, N. Sullivan, R. Wahby, and C. Wood.
Hashing to elliptic curves, 2019. https://datatracker.ietf.org/doc/
draft-irtf-cfrg-hash-to-curve/.

21. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors,
43rd ACM STOC, pages 99–108. ACM Press, June 2011.

22. Björn Haase and Benoît Labrique. AuCPace: Efficient verifier-based PAKE pro-
tocol tailored for the IIoT. IACR TCHES, 2019(2):1–48, 2019. https://tches.
iacr.org/index.php/TCHES/article/view/7384.

23. Björn Haase. CPace, a balanced composable PAKE, 2020. https://datatracker.
ietf.org/doc/draft-haase-cpace/.

24. Björn Haase and Benoît Labrique. AuCPace: Efficient verifier-based PAKE pro-
tocol tailored for the IIoT. Cryptology ePrint Archive, Report 2018/286, 2018.
https://eprint.iacr.org/2018/286.

25. Mike Hamburg. Decaf: Eliminating cofactors through point compression. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, pages 705–723. Springer, Heidelberg, August 2015.

26. Mike Hamburg. Ed448-goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625, 2015. https://eprint.iacr.org/2015/625.

30

https://safecurves.cr.yp.to/twist.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://datatracker.ietf.org/doc/draft-haase-cpace/
https://datatracker.ietf.org/doc/draft-haase-cpace/
https://eprint.iacr.org/2018/286
https://eprint.iacr.org/2015/625

27. Mike Hamburg. Indifferentiable hashing from elligator 2. Cryptology ePrint
Archive, Report 2020/1513, 2020. https://eprint.iacr.org/2020/1513.

28. Julia Hesse. Review of (security of) remaining candidates. Posting to the
CFRG mailing list, 2020. https://mailarchive.ietf.org/arch/msg/cfrg/
47pnOSsrVS8uozXbAuM-alEk0-s/.

29. Julia Hesse. Separating symmetric and asymmetric password-authenticated key
exchange. In Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20, volume
12238 of LNCS, pages 579–599. Springer, Heidelberg, September 2020.

30. David P. Jablon. Strong password-only authenticated key exchange. Computer
Communication Review, 26(5):5–26, 1996.

31. Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric
PAKE protocol secure against pre-computation attacks. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS,
pages 456–486. Springer, Heidelberg, April / May 2018.

32. A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security. RFC 7748,
IETF, January 2016.

33. Advanced security mechanism for machine readable travel documents (extended
access control (EAC), password authenticated connection establishment (PACE),
and restricted identification (RI)). Federal Office for Information Security (BSI),
BSI-TR-03110, Version 2.0, 2008.

34. David Pointcheval and Guilin Wang. VTBPEKE: Verifier-based two-basis pass-
word exponential key exchange. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza
Sadeghi, and Xun Yi, editors, ASIACCS 17, pages 301–312. ACM Press, April
2017.

35. Andrew Shallue and Christiaan E. van de Woestijne. Construction of rational
points on elliptic curves over finite fields. In ANTS, volume 4076 of Lecture Notes
in Computer Science, pages 510–524. Springer, 2006.

36. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. https://eprint.iacr.org/
2004/332.

37. Björn Tackmann. Updated review of PAKEs. Posting to the CFRG
mailing list, 2020. https://mailarchive.ietf.org/arch/msg/cfrg/
eo8O6JYPmWY6L9TlcIXStFy5gNQ/.

31

https://eprint.iacr.org/2020/1513
https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s/
https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s/
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://mailarchive.ietf.org/arch/msg/cfrg/eo8O6JYPmWY6L9TlcIXStFy5gNQ/
https://mailarchive.ietf.org/arch/msg/cfrg/eo8O6JYPmWY6L9TlcIXStFy5gNQ/

	Security Analysis of CPace

