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(b) We propose a technique called Bidirectional Linear Expansions (BLE)
to improve attacks against Salsa. While previous works only consid-
ered linear expansions moving forward into the rounds, BLE ex-
plores the expansion of a single bit in both forward and backward
directions. Applying BLE, we propose the first differential-linear dis-
tinguishers ranging 7 and 8 rounds of Salsa and we improve PNB
key-recovery attacks against 8 rounds of Salsa.

(c) Using all the knowledge acquired studying the cryptanalysis of these
ciphers, we propose some modifications in order to provide better
diffusion per round and higher resistance to cryptanalysis, leading
to a new stream cipher named Forró. We show that Forró has higher
security margin, this allows us to reduce the total number of rounds
while maintaining the security level, thus creating a faster cipher in
many platforms, specially in constrained devices.

(d) Finally, we developed CryptDances, a new tool for the cryptanalysis
of Salsa, ChaCha, and Forró designed to be used in high performance
environments with several GPUs. With CryptDances it is possible
to compute differential correlations, to derive new linear approxi-
mations for ChaCha automatically, to automate the computation
of the complexity of PNB attacks, among other features. We make
CryptDances available for the community at https://github.com/
MurCoutinho/cryptDances.
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1 Introduction

Cryptography is an indispensable tool used to protect information in comput-
ing systems. It is used to protect data at rest and data in motion by billions
of people everyday. For example, cryptography is used in financial transactions,
mobile messaging applications, blockchain technology, authentication systems,
and many other systems and solutions. Among the most important crypto-
graphic primitives, stream ciphers are symmetric algorithms used to encrypt
large amounts of data with high performance both in software and in hardware.

In particular, ARX-based design is a major building block of modern ciphers
due to its efficiency in software. ARX stands for addition, word-wise rotation and
XOR. Indeed, ciphers following this framework are composed of those operations
and avoid the computation of smaller S-boxes through look-up tables. ARX-
based designs are not only efficient but also provide good security properties. The
algebraic degree of ARX ciphers is generally high after only a very few rounds
as the carry bit within one modular addition already reaches almost maximal
degree. For differential and linear attacks, ARX-based designs show weaknesses
for a small number of rounds. However, after some rounds the differential and
linear probabilities decrease rapidly. Thus, the probabilities of differentials and
the absolute correlations of linear approximations decrease very quickly as we
increase the number of rounds.

Salsa [6] is an ARX-based stream cipher designed by Bernstein in 2005 as
a candidate for the eSTREAM competition [27]. The original proposal was for
20 rounds. The 12-round variant of Salsa - Salsa20/12 - was accepted into the
final eSTREAM software portfolio. Salsa is especially important and is used
in practice in several applications, such as DNS implementations, in the Linux
Kernel, Password managers (e.g., KeePassX and MacPass), messaging software
(e.g., Viber and Discord), and many other (see [19] for a huge list of applications,
protocols and libraries using Salsa).

Later, in 2008, Bernstein proposed some modifications to Salsa in order to
provide better diffusion per round and higher resistance to cryptanalysis. These
changes created a new stream cipher, a variant named ChaCha [5]. Although
Salsa was one of the winners of the eSTREAM competition, ChaCha has received
much more attention through the years. Nowadays, we see the usage of this cipher
in several projects and applications.

ChaCha, along with Poly1305 [4], is one of the cipher suites of the new TLS
1.3 [21], which has been used by Google on both Chrome and Android. Not only
has ChaCha been used in TLS but also in many other protocols such as SSH,
Noise and S/MIME 4.0. In addition, the RFC 7634 proposes the use of ChaCha
in IKE and IPsec. ChaCha has been used not only for encryption, but also as a
pseudo-random number generator in any operating system running Linux kernel
4.8 or newer. Additionally, ChaCha has been used in several applications such as
WireGuard (VPN) (see [18] for a huge list of applications, protocols and libraries
using ChaCha).

Related Work. Due to the popularity of both Salsa and ChaCha, it is
important to evaluate their security. Indeed, the cryptanalysis of Salsa is well
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understood and several authors studied its security [17,8,25]. The cryptanalysis
of Salsa was introduced by Crowley [13] in 2005. Later, Aumasson et al. at FSE
2008 [2] presented one of the most important works on the cryptanalysis of these
ciphers with the introduction of the notion of Probabilistic Neutral Bits (PNBs),
showing attacks against Salsa20/7, Salsa20/8, ChaCha20/6 and ChaCha20/7.

After that, several authors proposed small enhancements on the attack of
Aumasson et al. For example, the work by Shi et al. [28] introduced the con-
cept of Column Chaining Distinguisher (CCD) to achieve some incremental ad-
vancements over [2] Salsa and ChaCha. Maitra, Paul, and Meier [24] studied
an interesting observation regarding round reversal of Salsa, but no significant
cryptanalytic improvement could be obtained using this method. Maitra [23]
used a technique of Chosen IVs to obtain certain improvements over existing
results. Dey and Sarkar [15] showed how to choose values for the PNB to further
improve the attack.

Then, in a paper presented at FSE 2017, Choudhuri and Maitra [9] signifi-
cantly improved the attacks by considering the mathematical structure of Salsa
and ChaCha to find differential characteristics with much higher correlations.
Other types of attacks were also studied, such as, related-cipher attacks [16] and
chosen-IV attacks [23].

Recently, several works presented improvements in attack against ChaCha.
First, Coutinho and Souza [10] proposed new multi-bit differentials using the
mathematical framework of Choudhuri and Maitra. In Crypto 2020, Beierle et al.
[3] proposed improvements to the framework of differential-linear cryptanalysis
against ARX-based designs and further improved the attacks against ChaCha.
At Eurocrypt 2021, Coutinho and Souza [11] developed a new technique to
expand linear trails improving the attack against ChaCha even further. However,
these new techniques were not used against Salsa. At Eurocrypt 2022 Dey et al.
[14] improved the analysis of the PNB construction and key recovery attacks
against ChaCha. Finally, in Crypto 2022, rotational-cryptanalysis of ChaCha
was improved [26].

Our Contribution. In this work, we present new attacks against ChaCha
and Salsa. In the case of ChaCha, we propose a simpler way to derive linear
approximations for the cipher. To do so, we view the algorithm in terms of
subrounds. With this approach, we are able to derive the results from previous
works from just 3 simple rules. As a reference, the methods of Coutinho and
Souza [11] at Eurocrypt 2021 encompasses at least 18 different rules to derive
linear approximations for ChaCha. Moreover, with our techniques we are able
to improve the complexity of the best differential-linear distinguisher against
ChaCha, reducing the complexity from 2224 to 2214.

To attack Salsa, we introduce a novel technique called Bidirectional Linear
Expansions (BLE). While previous works only considered linear expansions mov-
ing forward into the rounds, BLE explores the expansion of a single bit in both
forward and backward directions. As we show, BLE is specially useful in situa-
tions that we do not have enough computational power to compute a differential
correlation for the target single bit, but we can do so for each bit derived in

3



backward direction individually, and then combining them using the Piling-up
Lemma. Using BLE we were able to improve attacks against Salsa. In partic-
ular, we improved key recovery attacks, significantly reducing the complexity
from 2244.9 to 2218 for 8 rounds of Salsa. Also, we provide the first differential-
linear distinguishers ranging 7 and 8 rounds of Salsa in the literature. Still using
BLE, we were able to find several new differential for 3.5 rounds of ChaCha.
Unfortunately, we were not able to improve key recovery attacks in this case.

Next, we propose a new modification of Salsa and ChaCha, the stream cipher
Forró. We show that Forró has a higher security margin. For comparison, the best
distinguishers against 5 rounds of Salsa, ChaCha, and Forró, have complexities
of 28, 216, and 2130, respectively. To achieve that we introduce a new design strat-
egy, called Pollination, constructed to speed up confusion and diffusion. Then, we
show that Forró can deliver the same security in less time in several platforms,
specially in constrained devices. Finally, we present a new tool, called Crypt-
Dances (https://github.com/MurCoutinho/cryptDances) designed to allow
researchers to explore the cryptanalysis of ChaCha, Salsa, and Forró in a high
performance environment configured using MPI to distribute the work to several
GPUs. We provide a summary of our cryptanalytic results in Table 1.

Organization of the paper. This paper is organized as follows: in Section
2, we review previous works and techniques. In Section 3, we propose a new
approach to the derivation of linear approximations for ChaCha and present a
new and improved differential-linear distinguisher. Then, in Section 4, we pro-
pose a new technique called Bidirectional Linear Expansions (BLE) and use it
to improve attacks against Salsa. Next, in Section 5, we present the new stream
cipher Forró and in Section 6 we give a brief description of the tool CryptDances.
Finally, in Section 7 we present the conclusions and future works.

2 Specifications and Preliminaries

This section is divided in 5 parts as follows: first in Sections 2.1 and 2.2 we
describe the algorithms Salsa and ChaCha, respectively. Then, in Section 2.3
we review the state-of-the-art differential-linear cryptanalysis, and in Section
2.4 we review the key recovery attacks using PNBs as used to attack Salsa
and ChaCha. Finally, in Section 2.5 we review state-of-the-art techniques to
create linear approximations for ARX ciphers and in particular to Salsa and
ChaCha. To improve readability, we provide a summary of the main notation
used throughout the paper in Table 2.

2.1 Salsa

Salsa operates on a state of 64 bytes, organized as a 4 × 4 matrix with 32-bit
integers, initialized with a 256-bit key k0, k1, ..., k7, a 64-bit nonce v0, v1 and a
64-bit counter t0, t1 (we may also refer to the nonce and counter words as IV
words), and 4 constants c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32
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Rounds Algorithm Type Time Data Reference

3 Forró Distinguisher 219 219 This work

4 ChaCha Distinguisher 26 26 [9]
Forró Distinguisher 237 237 This work

Salsa Distinguisher 28 28 [9]
5 ChaCha Distinguisher 216 216 [9]

Forró Key Recovery 2158 257 This work
Forró Distinguisher 2130 2130 This work

Salsa Distinguisher 232 232 [9]
ChaCha Key Recovery 2139 230 [2]

6 ChaCha Key Recovery 2127.5 237.5 [9]
ChaCha Key Recovery 277.4 258 [3]
ChaCha Distinguisher 2116 2116 [9]
ChaCha Distinguisher 251 251 [11]

Salsa Key Recovery 2137 261 [9]
Salsa Distinguisher 2109 2109 This work

7 ChaCha Key Recovery 2248 227 [2]
ChaCha Key Recovery 2237.7 296 [9]
ChaCha Key Recovery 2230.86 248.8 [3]
ChaCha Key Recovery 2221.95 248.83 [14]
ChaCha Distinguisher 2224 2224 [11]
ChaCha Distinguisher 2214 2214 This work

Salsa Key Recovery 2244.9 296 [9]
8 Salsa Key Recovery 2218 2114 This work

Salsa Distinguisher 2216 2216 This work

Table 1: Time and data complexity for the best attacks against ChaCha, Salsa,
and Forró.

and c3 = 0x6b206574. For Salsa, we have the following initial state matrix:

X(0) =


x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =


c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

 . (1)

The state matrix is modified in each round by a Quarter Round Function
(QRF), named QRSalsa(a, b, c, d), which receives and updates 4 integers in the
following way:

x
(m)
b = x

(m−1)
b ⊕ ((x

(m−1)
d + x

(m−1)
a ) ≪ 7)

x
(m)
c = x

(m−1)
c ⊕ ((x

(m−1)
a + x

(m)
b ) ≪ 9)

x
(m)
d = x

(m−1)
d ⊕ ((x

(m)
c + x

(m)
b ) ≪ 13)

x
(m)
a = x

(m−1)
a ⊕ ((x

(m)
d + x

(m)
c ) ≪ 18)

(2)

One round of Salsa is defined as 4 applications of the QRF. There is a dif-
ference, however, between odd and even rounds. Thus, for odd rounds, when
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Notation Description

X a 4× 4 state matrix

X(m) state matrix after application of m rounds

X [s] state matrix after application of s subrounds

Z output of Salsa, ChaCha or Forró, i.e., Z = X +X(R)

x
(m)
i ith word of the state matrix X(m)

x
(m)
i,j jth bit of ith word of the state matrix X(m)

x
(m)
i [j0, j1, ..., jt] the sum x

(m)
i,j0

⊕ x
(m)
i,j1

⊕ · · · ⊕ x
(m)
i,jt

x+ y addition of x and y modulo 232

Θ(x, y) carry function of the sum x+ y
x⊕ y bitwise XOR of x and y
x ≪ n rotation of x by n bits to the left
∆x XOR difference of x and x′. ∆x = x⊕ x′

ID input difference
OD output difference

Table 2: Notation

m ∈ {1, 3, 5, 7, ...}, X(m) is defined from X(m−1), from QRSalsa(a, b, c, d) with
(a, b, c, d) = {(0, 4, 8, 12), (5, 9, 13, 1), (10, 14, 2, 6), (15, 3, 7, 11)}, and for even
rounds m ∈ {2, 4, 6, ...} from QRSalsa(a, b, c, d) with (a, b, c, d) = {(0, 1, 2, 3),
(5, 6, 7, 4), (10, 11, 8, 9), (15, 12, 13, 14)}.

The output of Salsa20/R is then defined as the sum of the initial state with
the state obtained after R rounds of operations Z = X(0) + X(R). One should
note that it is possible to parallelize each application of the QRF on each round
and that each round is reversible, hence we can compute X(m−1) from X(m).
For more information on Salsa, we refer to [6].

2.2 ChaCha

The stream cipher ChaCha was also proposed by Bernstein [5] as an improvement
of Salsa. ChaCha consists of a series of ARX (addition, rotation, and XOR)
operations on 32-bit words, being highly efficient in software and hardware.
Each round of ChaCha has a total of 16 bitwise XOR, 16 addition modulo 232

and 16 constant-distance rotations.
ChaCha operates on a state of 64 bytes, organized as a 4 × 4 matrix with

32-bit integers, initialized with a 256-bit key k0, k1, ..., k7, a 64-bit nonce v0, v1
and a 64-bit counter t0, t1 (we may also refer to the nonce and counter words as
IV words), and 4 constants c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32
and c3 = 0x6b206574. For ChaCha, we have the following initial state matrix:

X(0) =


x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 t1 v0 v1

 . (3)
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The state matrix is modified in each round by a Quarter Round Func-

tion (QRF), denoted by QRChaCha

(
x
(r−1)
a , x

(r−1)
b , x

(r−1)
c , x

(r−1)
d

)
, which re-

ceives and updates 4 integers in the following way:

x
(r−1)
a′ = x

(r−1)
a + x

(r−1)
b ; x

(r−1)
d′ = (x

(r−1)
d ⊕ x

(r−1)
a′ ) ≪ 16;

x
(r−1)
c′ = x

(r−1)
c + x

(r−1)
d′ ; x

(r−1)
b′ = (x

(r−1)
b ⊕ x

(r−1)
c′ ) ≪ 12;

x
(r)
a = x

(r−1)
a′ + x

(r−1)
b′ ; x

(r)
d = (x

(r−1)
d′ ⊕ x

(r)
a ) ≪ 8;

x
(r)
c = x

(r−1)
c′ + x

(r)
d ; x

(r)
b = (x

(r−1)
b′ ⊕ x

(r)
c ) ≪ 7;

(4)

One round of ChaCha is defined as 4 applications of the QRF. There is,
however, a difference between odd and even rounds. For odd rounds, i.e. r ∈
{1, 3, 5, 7, ...}, X(r) is obtained from X(r−1) by applying QRChaCha(a, b, c, d)
with (a, b, c, d) = {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}, and for even
roundsm ∈ {2, 4, 6, ...} fromQRChaCha(a, b, c, d) with (a, b, c, d) = {(0, 5, 10, 15),
(1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)}.

The output of ChaCha20/R is then defined as the sum of the initial state
with the state after R rounds Z = X(0) + X(R). One should note that it is
possible to parallelize each application of the QRF on each round and also that
each round is reversible. Hence, we can compute X(r−1) from X(r).

Next, we introduce the concept of subrounds for ChaCha which will be very
useful in the rest of this paper. First, we define the Subround Function (SRF),
denoted by

(x[s]
a , x

[s]
b , x[s]

c , x
[s]
d ) = SRChaCha

(
x[s−1]
a , x

[s−1]
b , x[s−1]

c , x
[s−1]
d , r1, r2

)
,

which receives and updates 4 integers giving two rotation distances in the fol-
lowing way:

x
[s]
a = x

[s−1]
a + x

[s−1]
b ; x

[s]
d = (x

[s−1]
d ⊕ x

[s]
a ) ≪ r1;

x
[s]
c = x

[s−1]
c + x

[s]
d ; x

[s]
b = (x

[s−1]
b ⊕ x

[s]
c ) ≪ r2;

(5)

Note that we can define the QRF in terms of the SRF. More precisely, we
have that

QRChaCha(a, b, c, d) = SRChaCha(SRChaCha(a, b, c, d, 16, 12), 8, 7). (6)

Therefore, it is easy to see that we can redefine ChaCha in terms of the SRF. Note
that, giving our notation, for each round of ChaCha we have 2 subrounds being
executed. In other words, if X [2s] denotes the state matrix after 2s subrounds,
then we have that X(s) = X [2s].

2.3 A review of Differential-Linear Cryptanalysis

In this section, we describe the technique of Differential-Linear cryptanalysis as
used to attack ChaCha. Let E be a cipher and suppose we can write E = E2◦E1,
where E1 and E2 are sub ciphers, covering m and l rounds of the main cipher,
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respectively. We can apply an input difference ID ∆X(0) in the sub cipher E1

obtaining an output difference OD ∆X(m) (see the left side of Fig. 1). The
next step is to apply Linear Cryptanalysis to the second sub cipher E2. Using
masks Γm and Γout, we attempt to find good linear approximations covering the
remaining l rounds of the cipher E. Applying this technique we can construct a
differential-linear distinguisher covering all m + l rounds of the cipher E. This
is the main idea in Langford and Hellman’s classical approach [20].

Alternatively the cipher E can be represented as the product of three ciphers,
as follows: E = E3 ◦ E2 ◦ E1. In this scenario, we can explore properties of the
cipher in the first part E1, and then apply a differential linear attack where we
divide the differential part of the attack in two (see the right side of Fig. 1).
Here, the OD from the sub cipher E1 after r rounds, namely ∆X(r), is the ID
for the sub cipher E2 which produces an output difference ∆X(m). For more
information in this regard, see [3].

It is important to understand how to compute the complexity of a differential-
linear attack. We denote the differential of the state matrix as ∆X(r) = X(r) ⊕
X ′(r) and the differential of individual words as ∆x

(r)
i = x

(r)
i ⊕ x

′(r)
i . Let x

(r)
i,j

denote the j-th bit of the i-th word of the state matrix after r rounds and let J
be a set of bits. Also, let σ and σ′ be linear combinations of bits in the set J ,

i.e., σ =
(⊕

(i,j)∈J x
(r)
i,j

)
, σ′ =

(⊕
(i,j)∈J x

′(r)
i,j

)
. Then ∆σ =

(⊕
(i,j)∈J ∆x

(r)
i,j

)
is the linear combination of the differentials. We can write Pr

[
∆σ = 0|∆X(0)

]
=

1
2 (1 + εd), where εd is the differential correlation.

Using linear cryptanalysis, it is possible to go further and find new relations
between the initial state and the state after R > r rounds. To do so, let L denote

another set of bits and define ρ =
(⊕

(i,j)∈L x
(R)
i,j

)
, ρ′ =

(⊕
(i,j)∈L x

′(R)
i,j

)
. Then,

as before, ∆ρ =
(⊕

(i,j)∈L ∆x
(R)
i,j

)
. We can define Pr[σ = ρ] = 1

2 (1+ εL), where

εL is the linear correlation. We want to find γ such that Pr
[
∆ρ = 0|∆X(0)

]
=

1
2 (1 + γ). To compute γ, we write (to simplify the notation we make the condi-

tional to ∆X(0) implicit):

Pr[∆σ = ∆ρ] = Pr[σ = ρ] · Pr [σ′ = ρ′] + Pr[σ = ρ̄] · Pr
[
σ′ = ρ′

]
=

1

2

(
1 + ε2L

)
.

Then, Pr[∆ρ = 0] =
1

2

(
1 + εd · ε2L

)
. Therefore, the differential-linear correla-

tion is given by γ = εd · ε2L, which defines a distinguisher with complexity
O(ε−2

d ε−4
L ). For further information on differential-linear cryptanalysis we re-

fer to [7].

2.4 Probabilistic Neutral Bits

This section reviews the attack of Aumasson et al. [2]. The attack first identi-
fies good choices of truncated differentials, then it uses probabilistic backwards
computation with the notion of Probabilistic Neutral Bits (PNB), and, finally, it
estimates the complexity of the attack. In [2], the ID is defined for a single-bit
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E1 E1

∆X(0)

E2 E2

∆X(m)

p

Γm Γm

Γout Γout

q q

E2

E1

E2

E1

∆X(r)

E3 E3

∆X(m)

p2

Γm Γm

Γout Γout

q q

∆X(0)

p1

Fig. 1: A classical differential-linear distinguisher (on the left) and a differential-
linear distinguisher with experimental evaluation of the correlation p2 (on the
right). E is divided into sub-ciphers E = E2 ◦ E1, or E = E3 ◦ E2 ◦ E1. In the
differential part we may apply an ID ∆X(0) in the sub cipher E1 obtaining an
OD ∆X(m) after m rounds. The next step is to apply Linear Cryptanalysis using
masks Γm and Γout. Applying this technique we can construct a differential-linear
distinguisher of the cipher E. One way to improve attacks is to explore properties
of the cipher in the first part E1 (on the right), and then apply a differential
linear attack where we divide the differential part of the attack in two.

difference ∆x
(0)
i,j = 1 and a single-bit OD after r rounds ∆x

(r)
p,q, such differential

is denoted (∆x
(r)
p,q|∆x

(0)
i,j ) and it has correlation εd.

Assume that the differential is fixed, and we observe outputs Z and Z ′ of
R = l+r rounds for nonce v, counter t and unknown key k. If we guess the key k

we can invert l rounds of the algorithm to get X(r) and X ′(r) and compute∆x
(r)
p,q.

Then, let f be the function which executes this procedure, i.e., f(k, v, t, Z, Z ′) =

∆x
(r)
p,q. Hence, we expect that f(k̂, v, t, Z, Z ′) has correlation εd only if k̂ = k.

Then, if we have several pairs of Z and Z ′, it is possible to test our guesses for
k. Thus, we can search only over a subkey of m = 256−n bits, provided we can
find a function g that approximates f but only uses m key bits as input. Then,
let k̄ correspond to the subkey of m bits of key k and let f to be correlated to
g with correlation εa, i.e., Pr(f(k, v, t, Z, Z

′) = g(k̄, v, t, Z, Z ′)) = 1
2 (1 + εa).

If we denote the correlation of g by ε we can approximate ε by εdεa. The
problem that remains is how to efficiently find such a function g. In [2], this
is done by first identifying key bits that have little influence on the result of
f(k, v, t, Z, Z ′), these are called probabilistic neutral bits (PNBs). This is done
by defining the neutrality measure γi,j of a key bit ki,j . After computing γi,j
(see [2] for a method of estimation), for all i = (0, 1, ..., 7) and j = (0, 1, ..., 31),
we can define the set of significant key bits as Ψ = {(i, j) : γi,j ≤ γ} where γ
is a threshold value, and then define our approximation g as g(kΨ , v, t, Z, Z

′) =

9



f(k∗, v, t, Z, Z ′) where kΨ is defined as the subkey with key bits in the set Ψ and
k∗ is computed from kΨ by setting ki,j = 0 for all (i, j) /∈ Ψ .

We refer to [2] for further information about the estimation of the data and
time complexity of the attack and for further details on the described technique.
We also note that Dey et al. [14] provided new formulas to compute the com-
plexities, correcting some problems with previous formulas.

2.5 Linear approximations for ARX ciphers

To attack Salsa and ChaCha, only two simple approximations to the carry func-
tion have been used. Let Θ(x, y) = x ⊕ y ⊕ (x + y) be the carry function of
the sum x+ y. Define Θi(x, y) as the i-th bit of Θ(x, y). By definition, we have
Θ0(x, y) = 0. Using Theorem 3 of Wallén [29], we can generate all possible lin-
ear approximations with a given correlation. In particular, at Eurocrypt 2021,
Coutinho and Souza [11] used the following linear approximations:

Pr(Θi(x, y) = yi−1) =
1

2

(
1 +

1

2

)
, i > 0. (7)

Pr(Θi(x, y)⊕Θi−1(x, y) = 0) =
1

2

(
1 +

1

2

)
, i > 0. (8)

As Coutinho and Souza explained, by combining Eqs. 7 and 8 when attacking
ARX ciphers we can create a strategy to improve linear approximations when
considering more rounds. The main idea is that when using Eq. 7 in one round
we will create consecutive terms that can be expanded together using Eq. 8.

Next, we review previous linear approximations for Salsa and ChaCha.

Linear Approximations for Salsa In the following, we review the work of [9]
using the notation of Coutinho and Souza [11]. We can write the QRF equations
of Salsa (Eq. 2) as

x
(m)
b,i = x

(m−1)
b,i ⊕ x

(m−1)
a,i−7 ⊕ x

(m−1)
d,i−7 ⊕Θi−7(x

(m−1)
d , x(m−1)

a ) (9)

x
(m)
c,i = x

(m−1)
c,i ⊕ x

(m)
b,i−9 ⊕ x

(m−1)
a,i−9 ⊕Θi−9(x

(m−1)
a , x

(m)
b ) (10)

x
(m)
d,i = x

(m−1)
d,i ⊕ x

(m)
c,i−13 ⊕ x

(m)
b,i−13 ⊕Θi−13(x

(m)
c , x

(m)
b ) (11)

x
(m)
a,i = x

(m−1)
a,i ⊕ x

(m)
d,i−18 ⊕ x

(m)
c,i−18 ⊕Θi−18(x

(m)
d , x(m)

c ) (12)

Inverting these equations and changing to positive indexes, we get:

x
(m−1)
a,i = L(m)

a,i ⊕Θi+14(x
(m)
d , x(m)

c ) (13)

x
(m−1)
d,i = L(m)

d,i ⊕Θi+19(x
(m)
c , x

(m)
b ) (14)

x
(m−1)
c,i = L(m)

c,i ⊕Θi+23(x
(m−1)
a , x

(m)
b )⊕Θi+5(x

(m)
d , x(m)

c ) (15)

x
(m−1)
b,i = L(m)

b,i ⊕Θi+25(x
(m−1)
d , x(m−1)

a )⊕Θi+7(x
(m)
d , x(m)

c )⊕Θi+12(x
(m)
c , x

(m)
b )

(16)

10



where

L(m)
a,i = x

(m)
a,i ⊕ x

(m)
d,i+14 ⊕ x

(m)
c,i+14 (17)

L(m)
b,i = x

(m)
b,i ⊕ x

(m)
a,i+25 ⊕ x

(m)
d,i+7 ⊕ x

(m)
c,i+7 ⊕ x

(m)
d,i+25 ⊕ x

(m)
c,i+12 ⊕ x

(m)
b,i+12 (18)

L(m)
c,i = x

(m)
c,i ⊕ x

(m)
b,i+23 ⊕ x

(m)
a,i+23 ⊕ x

(m)
d,i+5 ⊕ x

(m)
c,i+5 (19)

L(m)
d,i = x

(m)
d,i ⊕ x

(m)
c,i+19 ⊕ x

(m)
b,i+19 (20)

From Eq. (7) and these equations is possible to derive the following result:

Lemma 1. For Salsa’s QRF, the following linear approximations hold

Equation Probability Condition

x
(m−1)
a,18 = L(m)

a,18 1 -

x
(m−1)
a,i = L(m)

a,i ⊕ x
(m)
c,i+13

1
2 (1 +

1
2 ) i ̸= 18

x
(m−1)
d,13 = L(m)

d,13 1 -

x
(m−1)
d,i = L(m)

d,i ⊕ x
(m)
b,i+18

1
2 (1 +

1
2 ) i ̸= 13

x
(m−1)
c,9 = L(m)

c,9 ⊕ x
(m)
c,13

1
2 (1 +

1
2 ) -

x
(m−1)
c,27 = L(m)

c,27 ⊕ x
(m)
b,17

1
2 (1 +

1
2 ) -

x
(m−1)
c,i = L(m)

c,i ⊕ x
(m)
a,i+22

1
2 (1−

1
4 ) i ̸= 9, 27

x
(m−1)
b,7 = L(m)

b,7 ⊕ x
(m)
c,13 ⊕ x

(m)
b,18

1
2 (1 +

1
4 ) -

x
(m−1)
b,20 = L(m)

b,20 ⊕ x
(m)
a,12

1
2 (1−

1
4 ) -

x
(m−1)
b,25 = L(m)

b,25 ⊕ x
(m)
d,17

1
2 (1−

1
4 ) -

x
(m−1)
b,i = L(m)

b,i ⊕ x
(m)
a,i+24 ⊕ x

(m)
b,i+11

1
2 (1−

1
8 ) i ̸= 7, 20, 25

Proof. See Lemmas 2 and 7 of [9]. □

Linear approximations for ChaCha In this section, we review the work
presented in [9], [10], and in [11]. Since there are many results presented in
these papers, here we focus only on the linear approximations that we will need
throughout this paper.

Lemma 2. (Lemma 9 of [9] combined with Lemma 6 of [11]) For one active
input bit in round m−1 and multiple active output bits in round m, the following
holds for i > 0.

x
(m−1)
b,i = x

(m)
b,i+19 ⊕ x

(m)
c,i ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i ⊕ x

(m)
d,i−1, w.p. 1

2

(
1 + 1

2

)
x
(m−1)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i ⊕

x
(m)
b,i+6 ⊕ x

(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−1, w.p. 1

2

(
1 + 1

23

)
x
(m−1)
c,i = x

(m)
a,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i ⊕ x

(m)
d,i+8 ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7 ⊕ x

(m)
d,i−1, w.p. 1

2

(
1 + 1

22

)
x
(m−1)
d,i = x

(m)
a,i ⊕ x

(m)
a,i+16 ⊕ x

(m)
b,i+7 ⊕ x

(m)
c,i ⊕ x

(m)
d,i+24 ⊕ x

(m)
c,i−1 ⊕ x

(m)
b,i+6, w.p.

1
2

(
1 + 1

2

)
Proof. See [9] and [11]. We provide an alternative proof of this lemma in Section
3. □
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Lemma 3. (Lemma 10 of [11]) The following linear approximation holds with
probability 1

2

(
1 + 1

28

)
x
(3)
3,0 ⊕ x

(3)
4,0 = x

(6)
0 [0, 16]⊕ x

(6)
1 [0, 6, 7, 11, 12, 22, 23]⊕ x

(6)
2 [0, 6, 7, 8, 16, 18,

19, 24]⊕ x
(6)
4 [7, 13, 19]⊕ x

(6)
5 [7]⊕ x

(6)
6 [7, 13, 14, 19]⊕

x
(6)
7 [6, 7, 14, 15, 26]⊕ x

(6)
8 [0, 7, 8, 19, 31]⊕ x

(6)
9 [0, 6, 12, 26]⊕

x
(6)
10 [0]⊕ x

(6)
11 [6, 7]⊕ x

(6)
12 [0, 11, 12, 19, 20, 30, 31]⊕

x
(6)
13 [0, 14, 15, 24, 26, 27]⊕ x

(6)
14 [8, 25, 26]⊕ x

(6)
15 [24].

Proof. See [11]. □

3 A more effective approach to derive linear
approximations for ChaCha

In this section, we propose a new approach to the derivation of linear approx-
imations for ChaCha. To do so, instead of considering the QRF as in previous
works, here we will consider the SRF, as defined in Eq. (5). We point out that
we used the techniques of this section to implement automatic linear expansions
of ChaCha in CryptDances.

3.1 New framework: linear approximations to the SRF

From Eq. (5), we can write the SRF equations of ChaCha as

x
[s]
a,i = x

[s−1]
a,i ⊕ x

[s−1]
b,i ⊕Θi(x

[s−1]
a , x

[s−1]
b ); x

[s]
d,i+r1

= x
[s−1]
d,i ⊕ x

[s]
a,i;

x
[s]
c,i = x

[s−1]
c,i ⊕ x

[s]
d,i ⊕Θi(x

[s−1]
c , x

[s]
d ); x

[s]
b,i+r2

= x
[s−1]
b,i ⊕ x

[s]
c,i;

(21)

Inverting these equations, we get:

x
[s−1]
b,i = x

[s]
b,i+r2

⊕ x
[s]
c,i (22)

x
[s−1]
c,i = x

[s]
c,i ⊕ x

[s]
d,i ⊕Θi(x

[s−1]
c , x

[s]
d ) (23)

x
[s−1]
d,i = x

[s]
a,i ⊕ x

[s]
d,i+r1

(24)

x
[s−1]
a,i = x

[s]
a,i ⊕ x

[s]
b,i+r2

⊕ x
[s]
c,i ⊕Θi(x

[s−1]
a , x

[s−1]
b ) (25)

Note that the expansions for x
[s−1]
b,i and x

[s−1]
d,i are deterministic. Therefore, we

only need to focus on expansions for x
[s−1]
a,i and x

[s−1]
c,i . To this end, consider the

following three lemmas:
Lemma 4. Consider the SRChaCha with rotation distances r1 and r2. Then we
have that x

[s−1]
c,0 = x

[s]
c,0 ⊕ x

[s]
d,0 and x

[s−1]
a,0 = x

[s]
a,0 ⊕ x

[s]
b,r2

⊕ x
[s]
c,0.

Proof. The proof follows from Eqs. (23) and (25) and using Θ0(.) = 0. □
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Lemma 5. For one active input bit in subround s− 1 and multiple output bits
in subround s, the following linear approximations hold with probability 1

2 (1+
1
2 )

for the function SRChaCha with rotation distances r1 and r2 when i > 0

x
[s−1]
c,i = x

[s]
c,i ⊕ x

[s]
d,i ⊕ x

[s]
d,i−1,

x
[s−1]
a,i = x

[s]
a,i ⊕ x

[s]
b,i+r2

⊕ x
[s]
c,i ⊕ x

[s]
b,i+r2−1 ⊕ x

[s]
c,i−1.

Proof. The proof follows directly from the application of Eq. (7) in Eqs. (23)
and (25). □

Lemma 6. For two active input bits in subround s− 1 and multiple output bits
in subround s, the following linear approximations hold with probability 1

2 (1+
1
2 )

for the function SRChaCha with rotation distances r1 and r2

x
[s−1]
c,i ⊕ x

[s−1]
c,i−1 = x

[s]
c,i ⊕ x

[s]
d,i ⊕ x

[s]
c,i−1 ⊕ x

[s]
d,i−1,

x
[s−1]
a,i ⊕ x

[s−1]
a,i−1 = x

[s]
a,i ⊕ x

[s]
b,i+r2

⊕ x
[s]
c,i ⊕ x

[s]
a,i−1 ⊕ x

[s]
b,i+r2−1 ⊕ x

[s]
c,i−1.

Proof. The proof follows directly from the application of Eq. (8) after expanding
the left side of the equations with Eqs. (23) and (25). □

As we will show, from these three Lemmas it is possible to reproduce previous
works. Before that, we show an additional lemma that we use to improve previous
results.

Lemma 7. For two active input bits in subround s− 1 and multiple output bits
in subround s, the following linear approximations hold with probability 1

2 (1+
1
2 )

for the function SRChaCha with rotation distances r1 and r2

x
[s−1]
c,i ⊕ x

[s−1]
c,i−1 = x

[s]
c,i ⊕ x

[s]
d,i,

x
[s−1]
a,i ⊕ x

[s−1]
a,i−1 = x

[s]
a,i ⊕ x

[s]
b,i+r2

⊕ x
[s]
c,i.

Proof. See the extended version of this paper. □

Strategies As the reader may have noticed, Lemmas 6 and 7 are actually
expanding the same pair of bits. Then we may ask which is the best choice.
However, it depends on the situation. As a general rule, we always look for min-
imizing the number of active bits in the equations. That is because fewer terms
means fewer expansions which means a higher correlation (usually). From this
assertion, the reader might conclude that Lemma 7 is better. Notice, however,
that adjacent bits are always expanded together (due to Lemma 6) and should
be counted as one. Therefore, the best rule will be the one that results in other
bits being canceled (see the extended version of this paper for a complete ex-
ample). We conclude that each situation needs to be evaluated individually by
considering all options to reach the best possible linear approximation.
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3.2 Deriving linear approximations of previous works using the new
approach

The new framework proposed in Section 3 is simpler to understand and to use
when compared with previous works. For example, the methods of Coutinho and
Souza [11] encompasses at least 18 different rules to derive linear approximations
for ChaCha. Of course, being simpler is not enough, as the proposed framework
should also be at least as effective. Our claim is that using Lemmas 4, 5, and
6 is possible to derive most of the linear approximations (if not all) of previous
works. Of course, proving that to each one of them individually would be an
extremely tedious task. Therefore, here we will just prove this result to Lemma
2 that is the base to generate almost all linear approximations of ChaCha in the
literature, we leave the rest as a conjecture.

Proposition 1. Lemma 2 is a consequence of Lemmas 5 and 6.

Proof. See the extended version of this paper. □

3.3 Improve linear approximations and differential-linear
distinguisher for ChaCha

In this section, we improve the best differential-linear distinguisher against Cha-
Cha by improving its linear part by using the framework of Section 3.1. We high-
light that the improvements are achieved through an intelligent use of Lemma
7. The new result is given by the following lemma

Lemma 8. The following linear approximation holds with probability 1
2

(
1 + 1

253

)
x
[6]
3,0 ⊕ x

[6]
4,0 = x

[14]
0 [0, 3, 4, 7, 8, 11, 12, 14, 15, 18, 20, 27, 28]⊕ x

[14]
1 [0, 5, 7, 8, 10, 14,

15, 16, 22, 23, 24, 25, 27, 30, 31]⊕ x
[14]
2 [7, 9, 10, 16, 19, 25, 26]⊕ x

[14]
3 [6, 7, 8, 24]⊕

x
[14]
4 [0, 2, 3, 5, 18, 22, 23, 27]⊕ x

[14]
5 [1, 2, 9, 10, 13, 14, 18, 21, 22, 25, 29]⊕ x

[14]
6 [0, 2,

3, 7, 10, 11, 13, 14, 19, 22, 23, 25, 27, 31]⊕ x
[14]
7 [1, 2, 13, 25, 26, 30, 31]⊕ x

[14]
8 [8, 11,

13, 20, 25, 27, 28, 30, 31]⊕ x
[14]
9 [2, 3, 6, 7, 11, 14, 15, 18, 23, 27]⊕ x

[14]
10 [0, 3, 4, 6, 8,

12, 13, 14, 18, 20, 23, 25, 27, 28]⊕ x
[14]
11 [6, 14, 15, 18, 19, 23, 24, 27]⊕

x
[14]
12 [3, 4, 6, 11, 13, 22, 23, 24, 26, 27, 30, 31]⊕ x

[14]
13 [1, 2, 6, 7, 8, 13, 14, 16,

18, 20, 22, 23, 24, 25, 26]⊕ x
[14]
14 [0, 7, 13, 14, 15, 16, 17, 18, 23, 24]⊕ x

[14]
15 [16, 25, 26]

Proof. We present just a sketch of the proof, for the complete proof see the ex-
tended version of this paper. We start from the linear approximation of Lemma 3.
Notice that since we are transitioning from round 6 to 7 (subrounds 12 to 14), we
have (a, b, c, d) ∈ {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}. Therefore,
we can divide the bits of the equation in 4 distinct groups:

– Group I - x
[12]
0 [0, 16], x

[12]
4 [7, 13, 19], x

[12]
8 [0, 7, 8, 19, 31], x

[12]
12 [0, 11, 12, 19, 20,

30, 31].

– Group II - x
[12]
1 [0, 6, 7, 11, 12, 22, 23], x

[12]
5 [7], x

[12]
9 [0, 6, 12, 26], x

[12]
13 [0, 14, 15,

24, 26, 27].
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– Group III - x
[12]
2 [0, 6, 7, 8, 16, 18, 19, 24], x

[12]
6 [7, 13, 14, 19], x

[12]
10 [0], x

[12]
14 [8, 25,

26].

– Group IV - x
[12]
7 [6, 7, 14, 15, 26], x

[12]
11 [6, 7], x

[12]
15 [24].

We divide the proof for each group, and the proof for Group I and Group IV
is identical as the one of Lemma 11 of [11], with probabilities 1

2

(
1 + 1

212

)
and

1
2

(
1 + 1

24

)
, respectively. For Group II, it is possible to show that

x
[12]
1 [0, 6, 7, 11, 12, 22, 23]⊕ x

[12]
5 [7]⊕ x

[12]
9 [0, 6, 12, 26]⊕

x
[12]
13 [0, 14, 15, 24, 26, 27] = x

[14]
1 [0, 5, 7, 8, 10, 14, 15, 16, 22, 23, 24, 25, 27,

30, 31]⊕ x
[14]
5 [1, 2, 9, 10, 13, 14, 18, 21, 22, 25, 29]⊕ x

[14]
9 [2, 3, 6, 7, 11, 14,

15, 18, 23, 27]⊕ x
[14]
13 [1, 2, 6, 7, 8, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26],

(26)

with probability 1
2

(
1 + 1

214

)
. And for Group III, we get

x
[12]
2 [0, 6, 7, 8, 16, 18, 19, 24]⊕ x

[12]
6 [7, 13, 14, 19]⊕ x

[12]
10 [0]⊕ x

[12]
14 [8, 25, 26] =

x
[14]
2 [7, 9, 10, 16, 19, 25, 26]⊕ x

[14]
6 [0, 2, 3, 7, 10, 11, 13, 14, 19, 22, 23, 25, 27, 31]⊕

x
[14]
10 [0, 3, 4, 6, 8, 12, 13, 14, 18, 20, 23, 25, 27, 28]⊕

x
[14]
14 [0, 7, 13, 14, 15, 16, 17, 18, 23, 24],

(27)
with probability 1

2

(
1 + 1

215

)
. Aggregating the correlation via the Piling-up Lemma

completes the proof. □

Computational Result 1 The linear approximations of Eqs. (26) and (27)
hold computationally with εL2

= 0.000201 ≈ 2−12.31 and εL3
= 0.000141 ≈

2−12.813, respectively. These correlations were verified using 242 random samples.

Finally, we compute the differential-linear distinguisher. For that, we use
the differential correlation εd = 0.00048 for (a, b) = (3, 4) described in [10],
and the Computational Results 1, 2 and 5 of [11] for linear correlations εL0 =
0.006942, εL1 = 0.000301, and εL4 = 0.0625, respectively. Additionally, we use
our Computational Result 1 for the linear correlations εL2

and εL3
. From that,

we get εd(εL0
εL1

εL2
εL3

εL4
)2 ≈ 2−107 which gives us a distinguisher for 7 rounds

of ChaCha with complexity approximately 2214.

4 Bidirectional Linear Expansions

In this section, we propose a new technique called Bidirectional Linear Expan-
sions (BLE). This section is divided in three parts: in Section 4.1 we present BLE.
In Sections 4.2 and 4.3, we use BLE to study Salsa and ChaCha, respectively.

4.1 Proposed technique

Previous works on the cryptanalysis of Salsa and ChaCha used an intensive
computational approach to find significant correlations for the differential part
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of the attacks. To do so, authors considered an ID ∆X(0) and used several

random simulations to estimate a correlation for a single bit ∆x
(m)
i,j . From this

point, this single bit was expanded into several bits using linear approximations,
like in the following diagram:

∆X(0) ∆x
(m)
i,j

∆x
(m+1)
i1,j1

∆x
(m+1)
i2,j2

. . .

∆x
(m+1)
ip,jp

In this work, we propose a different approach. More precisely, we expand a
single bit in both forward and backward directions. Therefore, in the differential
part we need to find a correlation for a combination of bits instead of just one.
This approach leads to the worst differential correlations, however it improves the
linear correlations. Since the linear part has a higher weight on the complexity of
the attack, the proposed technique leads to better results overall. We illustrate
the proposed technique in the following diagram:

∆X(0) ∆x
(m+1)
i,j

∆x
(m+2)
i1,j1

∆x
(m+2)
i2,j2

. . .

∆x
(m+2)
ip,jp

∆x
(m)
r1,s1

∆x
(m)
r2,s2

. . .

∆x
(m)
rp,sp

This technique is useful to find differentials that reach more rounds. The
reason is that when we try to find differentials experimentally we have two pa-
rameters to set: (1) the number of differentials to be testedD; and (2) the number
of random samples N to estimate the differential. Since for each differential we
need to execute the algorithm two times, then we need 2DN executions to try
to find successful differential correlations. However, as the number of rounds
increases, the correlations decreases, then we have to increase N accordingly.
Because of that, the computation quickly becomes infeasible.

Using BLE we can leverage the backward linear approximation to search for
correlations in the previous round. For example, suppose that we compute all
possible single bit differentials for m rounds of ChaCha and that we have a back-

ward linear approximation x
(m+1)
i,j = x

(m)
r1,s1 ⊕ x

(m)
r2,s2 ⊕ ... ⊕ x

(m)
rp,sp . Then, we can

use the Piling-up Lemma to aggregate the correlation for each single bit from the
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previous round, achieving a differential correlation for further rounds. Mathemat-

ically, if we define Pr(∆x
(m)
rk,sk |ID) = 1

2 (1+εk), and Pr(∆x
(m+1)
i,j |ID) = 1

2 (1+εd),

then we can estimate εd =
∏p

k=1 εk.

4.2 Applying BLE to Salsa

Next, we use the techniques proposed in Section 4.1 to improve the attacks
against Salsa. This section is divided in three parts: first we present the first
single bit differential reaching 5 rounds of Salsa. Then, we present new linear
approximations for Salsa, starting from the proposed differential. Finally, we use
these results to improve attacks against Salsa.

Proposed differential for 5 rounds of Salsa In this section, we present
a new single bit differential correlation for 5 rounds of Salsa, constructed by
applying the technique proposed in the previous section. To do so, first notice

from Eq. (9), that we can write x
(5)
b,7 = x

(4)
b,7⊕x

(4)
a,0⊕x

(4)
d,0, with probability 1, where

(a, b, d) ∈ {(0, 4, 12), (5, 13, 1), (10, 2, 6), (15, 7, 11)}. Using this relationship, we

will find a correlation for a bit in the fifth round x
(5)
b,7 by combining the correlation

of three other bits in the fourth round.
To achieve this result, we start from the single bit ID of ∆x

(0)
7,31 = 1,

proposed by Aumasson et al. [2], which is the one that provides the highest
correlations presented in the literature. However, instead of relying on compu-
tational results only, we expanded the first round theoretically and used the
techniques proposed by Beierle et al. [3] (see Section 2.3) to find differentials
with amplified probabilities. Here, we apply the techniques proposed by Lip-
maa and Moriai on efficient algorithms for computing differential properties of
addition [22]. In the referred work, the authors define the Differential Prob-
ability of Addition (DPA) modulo 2n as a triplet of two input and one out-
put differences, denoted as (α, β → γ), where α, β, γ ∈ Fn

2 , and is defined as
DP+(δ) = DP+(α, β → γ) := Prx,y[(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ].

One important question is how to find γ such that DP+(δ) is maximum given
α and β. In other words, we want to find DP+

max(α, β) := maxγ DP+(α, β → γ).
In [22], the authors provide two important algorithms to compute DP+

max(α, β).
Specifically, Algorithm 3 of [22] returns all (α, β)-optimal output differences γ,
and Algorithm 4 of [22] finds an (α, β)-optimal γ in log-time.

Thus, starting from the ID given by ∆X(0), we propagated the differential
using the algorithms from [22] and chose the one that minimized the hamming
weight, from this we get (in hexadecimal notation):

Ψ = ∆X(1) =


0 0 0 0x00000000
0 0 0 0x80000000
0 0 0 0x00001000
0 0 0 0x40020000

 .

The probability that ∆X(0) leads to ∆X(1) is 2−1. To compute this proba-
bility, we used Algorithm 2 of [22]. At this point, we used the strategy of Beierle
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et al. [3] (see Section 2.3) to find differentials with amplified probabilities. We
may apply this technique because, as with ChaCha, the QRF of Salsa is inde-
pendently applied to each column in the first round. Therefore, when the output
difference of one QRF is restricted, the input of the other three QR functions is
trivially independent of the output difference. It implies that we have 96 inde-
pendent bits, and we can easily amplify the probability of the differential-linear
distinguisher.

We summarize the differential part combined with the backward linear ex-
pansion of the proposed attacks in the diagram of Figure 2.

∆X(0) Ψ ∆x
(5)
b,7

∆x
(4)
b,7

∆x
(4)
a,0

∆x
(4)
d,0

Fig. 2: Differential part of the proposed attack.

Considering Figure 2, we need to estimate the transition probability from Ψ to

∆x
(5)
b,7 . We performed this task computationally, and we achieved the best results

when considering b = 4. Thus, consider the following computational result:

Computational Result 2 The following differentials were found computation-
ally using 245 random samples.

ID OD Correlation

∆X(1) = Ψ ∆x
(4)
0,0 −0.00000159

∆X(1) = Ψ ∆x
(4)
4,7 −0.00085

∆X(1) = Ψ ∆x
(4)
12,0 0.000167

From this result, we can use the Piling-Up Lemma to reach a differential
correlation from round 1 to round 5 of Salsa. More precisely, we can write

Pr(∆x
(5)
4,7 = 0|∆X(1) = Ψ) =

1

2
(1 + εd), (28)

where εd ≈ 2−42.01. Unfortunately, checking this correlation is computationally
infeasible as it would require approximately 284 samples. We note, however,
that we tested if the Piling-up Lemma holds using this technique for ChaCha
and Salsa for smaller correlations in fewer rounds. In our tests, the observed
correlation was always higher than predicted, therefore, our attack using this
correlation is probably better than what we report in this paper.

In the next section, we will present the linear expansion for the bit x
(5)
b,7 to

complete the differential-linear distinguisher.
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New linear approximations for Salsa First, we propose the following Lemma:

Lemma 9. For two active input bits in round m− 1 and multiple active output
bits in round m of Salsa, the following holds for i /∈ I

x
(m−1)
λ,i ⊕ x

(m−1)
λ,i−1 = L(m)

λ,i ⊕ L(m)
λ,i−1, w.p.

1

2

(
1 +

1

2σ

)
,

where (λ, σ, I) ∈ {(a, 1, {18}), (b, 3, {7, 20, 25}), (c, 2, {9, 27}), (d, 1, {13})} and
L is given in Eqs. (17)-(20).

Proof. This proof follows from Eqs. (13)-(16) by noting that always we have pair
with the form Θi(x)⊕Θi−1(x). When i > 1 we apply the approximation of Eq.
(8) to get Θi(x)⊕Θi−1(x) = 0 with probability 1

2 (1+
1
2 ). When i = 1 we use the

fact that Θ0(x) = 0 to get Θ1(x) ⊕ Θ0(x) = Θ1(x) = 0 again with probability
1
2 (1 +

1
2 ). When i = 0, Θi(x)⊕Θi−1(x) ̸= 0, thus we exclude these indexes. All

that is left is to use the Piling-Up Lemma to combine the probabilities. □

Next, we consider new linear approximations to the bit x
(5)
4,7.

Lemma 10. The following linear approximation holds with probability 1
2

(
1− 1

26

)
x
(5)
4,7 = x

(7)
0 [0]⊕ x

(7)
2 [12, 13]⊕ x

(7)
3 [17]⊕ x

(7)
4 [7, 18, 19]⊕ x

(7)
6 [25, 26]⊕ x

(7)
7 [26, 31]⊕

x
(7)
8 [13, 14, 19]⊕ x

(7)
11 [31]⊕ x

(7)
12 [0, 14]⊕ x

(7)
14 [12, 13]⊕ x

(7)
15 [16, 17].

Proof. From x
(5)
4,7 we use the expansion for xd,i of Lemma 1 to get x

(5)
4,7 = x

(6)
4,7 ⊕

x
(6)
6,25 ⊕ x

(6)
6,26 ⊕ x

(6)
7,26, with probability 1

2

(
1 + 1

2

)
. Then, we use the expansion for

xb,7 and xc,i of Lemma 1 to get x
(6)
4,7 = L(m)

4,7 ⊕ x
(m)
8,13 ⊕ x

(m)
4,18 with probability

1
2

(
1 + 1

4

)
, and x

(6)
7,26 = L(m)

7,26 ⊕ x
(m)
15,16 with probability 1

2

(
1− 1

4

)
. Additionally,

using Lemma 9 we get x
(6)
6,25 ⊕ x

(6)
6,26 = L(7)

6,25 ⊕L(7)
6,26, with probability 1

2

(
1 + 1

2

)
.

Finally, using the Piling-Up Lemma to combine the probabilities completes the
proof. □

Lemma 11. The following linear approximation holds with probability 1
2

(
1 + 1

234

)
x
(5)
4,7 = x

(8)
0 [0, 3, 4]⊕ x

(8)
2 [4, 12, 14, 17, 18]⊕ x

(8)
3 [14, 18]⊕ x

(8)
4 [0, 1, 4, 7, 31]⊕

x
(8)
5 [16, 17, 18, 19, 21, 22]⊕ x

(8)
6 [17, 22]⊕ x

(8)
7 [0, 1, 4]⊕

x
(8)
8 [6, 11, 13, 14, 18, 24]⊕ x

(8)
9 [6, 18, 19]⊕ x

(8)
10 [4, 5, 9, 10, 23, 24]⊕

x
(8)
11 [4, 5, 11, 31]⊕ x

(8)
12 [11, 12, 14, 25, 26, 30, 31]⊕ x

(8)
13 [0, 7, 12, 21, 26, 30]⊕

x
(8)
14 [12, 13, 21, 25, 30, 31]⊕ x

(8)
15 [6, 7, 16, 17, 24, 25].

Proof. See the extended version of this paper. □

Additionally, we verified the theoretical results of Lemmas 10 and 11 com-
putationally. In particular, for Lemma 11 the experiment is divided in 4 parts
leading to the correlations εL1 , εL2 , εL3 and εL4 (for more details, see the ex-
tended version of the paper).
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Computational Result 3 The linear approximation of Lemma 10 holds com-
putationally with εL0

= −0.015627 ≈ −2−5.999. This correlation was verified
using 238 random samples.

Computational Result 4 The linear approximations for Lemma 11 hold com-
putationally with correlations εL1 = 0.083980 ≈ 2−3.57, εL2 = 0.007814 ≈ 2−6.99,
εL3

= 0.006368 ≈ 2−7.29, εL4
= 0.002234 ≈ 2−8.81, respectively. These correla-

tions were verified using 238 random samples.

New Attacks against Salsa Using the linear approximations of Lemma 10
and Lemma 11, the differential correlation εd ≈ −2−42.01 given in Eq. (28),
and the estimated correlations from the Computational Results 3 and 4, we
get εd(εL0

)2 ≈ 2−53.99 and εd(εL0
εL1

εL2
εL3

εL4
)2 ≈ 2−107.31 which gives us a

distinguisher for 7 and 8 rounds of Salsa with complexity less than 2−107.98 and
2−214.62, respectively. As in [3], we have to repeat this attack 2 times on average
because of the transition probability from ∆X(0) to ∆X(1) = Ψ . Therefore, we
have a distinguisher with data and time complexity of 2108.98 for Salsa20/7 and
2215.62 for Salsa20/8.

Additionally, it is straightforward to combine the new differential-linear dis-
tinguisher for 5 rounds presented in Eq. 28 with the technique of PNB presented

in Section 2.4. More precisely, to use the differential correlation for ∆x
(5)
4,7, we

used the variation of PNB attack described by Beierle in [3]. Thus, consider

(x
(5)
4,7|∆X(1) = Ψ). To attack 8 rounds, we need to go back 3 rounds to reach

the desired differential. In this case, using γ = 0.3 we found 152 PNBs , and
we obtained εa = 0.000305. As in [3], we have to repeat this attack 2 times on
average because of the transition probability from ∆X(0) to ∆X(1) = Ψ . Thus,
the final attack has data complexity of 2113.14 and time complexity 2217.14.

4.3 Applying BLE against ChaCha

Finding differentials for 3.5 rounds of ChaCha experimentally is very difficult,
only a few have been presented in the literature [3,11]. By searching for all
possible single bit differentials for 3 rounds of ChaCha we were able to find more
than 1000 new differentials using the backward expansion. Unfortunately, we
were not able to improve attacks in this case.

5 Forró: a Novel Latin Dance

Although they have a very similar structure, the literature (including this work)
suggests that ChaCha is safer than Salsa. Therefore, a natural question that
arises is if we can do better with fewer operations, it turns out the answer is
yes, and we show how with the design of a new stream cipher named Forró.
To do that, in Section 5.1 we will introduce a new concept which we call Polli-
nation. Then, in Sections 5.2, 5.3, and 5.4 we present the design, security, and
performance of Forró, respectively.
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5.1 Pollination

In this section, we propose a new technique that we call Pollination. We chose
this name as an analogy to the real Pollination in nature: when a bee collects
nectar from a flower, the pollen sticks to the hairs of her body. When she visits
the next flower, some of this pollen is rubbed off onto the stigma, making fertil-
ization possible. Here, our idea is to use the element that is likely to maximize
confusion and diffusion (we call this best element pollen) to bring non-linearity
and confusion to other elements in the state matrix.

Actually, one of the reasons behind the improved diffusion of ChaCha when
compared to Salsa is, in fact, pollination. Since the QRF function updates one
element after the other, using the previously updated element as input, then it

is a natural consequence that the element updated last (x
(r)
b ) has higher diffu-

sion. In ChaCha, the pattern of application of the QRF actually means that the

elements in the second row (which are the parameter x
(r)
b for each QRF appli-

cation), are used to update the first element in the next round. Salsa does not
have such a property, hence the improved diffusion of ChaCha.

ChaCha achieves pollination from one round to another, however, it fails to do
so within each round because the QRF is applied independently in each column
or diagonal. Thus, it is possible to have more diffusion with fewer operations if
we create a chain of pollination from one application of the QRF to the other.
It can be argued that we will lose parallelism in each round, however, as we
will show later, the improved diffusion will allow the same security in fewer
rounds, reducing the total number of operations. Also, in Section 5.4, we show
that there is another way to explore concurrency inside the processor to achieve
better performance.

5.2 Design

Forró’s Round Function To deliver pollination from one round to the other
we propose to include an extra parameter into the QRF. Nevertheless, we want
to maintain (or to decrease) the number of arithmetic operations to achieve
competitive performance. Notice that each rotation in Eq. (4) actually makes
the same element be updated twice in a row, thus we could update more elements
if we had fewer rotations.

Actually, in [6], Bernstein asked the question of whether there should be
fewer rotations in the QRF, because rotations account for about 1/3 of the
integer operations in Salsa (and also in ChaCha), he wrote:

“If rotations are simulated by shift-shift-xor (as they are on the Ultra-
SPARC and with XMM instructions) then they account for about 1/2 of
the integer operations in Salsa20. Replacing some of the rotations with a
comparable number of additions might achieve comparable diffusion in
less time.”
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With those ideas in mind, we define the subround functionX [m] = SRforro(a,
b, c, d, e,X [m−1]) as the following set of operations over indexes a, b, c, d and e

x
′(m−1)
d = x

(m−1)
d + x

(m−1)
e ; x

′(m−1)
c = x

(m−1)
c ⊕ x

′(m−1)
d ;

x
′(m−1)
b =

(
x
(m−1)
b + x

′(m−1)
c

)
≪ r1;

x
′(m−1)
a = x

(m−1)
a + x

′(m−1)
b ; x

(m)
e = x

(m−1)
e ⊕ x

′(m−1)
a ;

x
(m)
d =

(
x
′(m−1)
d + x

(m)
e

)
≪ r2;

x
(m)
c = x

′(m−1)
c + x

(m)
d ; x

(m)
b = x

′(m−1)
b ⊕ x

(m)
c ;

x
(m)
a =

(
x
′(m−1)
a + x

(m)
b

)
≪ r3;

(29)

where r1 = 10, r2 = 27 and r3 = 8.
Notice that SRforro has a total of 12 operations, just like QRChaCha, but

fewer rotations. Also, notice that SRforro is asymmetric in the sense that of

all elements there is one, namely x
(r)
e that is updated less frequently than the

others. However, this behavior is actually acceptable since x
(r)
e is the element

used for pollination, thus its job is to provide non-linearity and confusion and

not to gain more necessarily. In addition, except in the first subround, x
(r)
e is

always updated in the previous subround. Finally, notice that as the element

x
(r)
a is the last to be updated, then it will likely have the more complex boolean

functions in comparison to x
(r)
b , x

(r)
c , x

(r)
d and x

(r)
e , therefore x

(r)
a will become the

pollen for the next application of SRforro.
We define each round of Forró in terms of its subrounds. More precisely, each

round has 4 subrounds, thus we have X(r) = X [4r] (see Section 2.2). Then, in an
odd round, when r ∈ {1, 3, 5, 7, ...}, X(r) is defined from X(r−1) in the following
manner

X [4r−3] = SR(0, 4, 8, 12, 3, X [4r−4]); X [4r−2] = SR(1, 5, 9, 13, 0, X [4r−3]);
X [4r−1] = SR(2, 6, 10, 14, 1, X [4r−2]); X [4r] = SR(3, 7, 11, 15, 2, X [4r−1]);

(30)
and for even rounds r ∈ {2, 4, 6, 8, , ...} from

X [4r−3] = SR(0, 5, 10, 15, 3, X [4r−4]); X [4r−2] = SR(1, 6, 11, 12, 0, X [4r−3]);
X [4r−1] = SR(2, 7, 8, 13, 1, X [4r−2]); X [4r] = SR(3, 4, 9, 14, 2, X [4r−1]);

(31)

Initialization To initialize the state matrix we have 16 integers available, being
8 key words, 2 nonce words, 2 counter words and 4 constants. All positions in
the state matrix are different in terms of diffusion and whether it is used sooner
or later. Forró’s initialization matrix is defined by

X(0) =


x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =


k0 k1 k2 k3
t0 t1 c0 c1
k4 k5 k6 k7
v0 v1 c2 c3

 . (32)
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When comparing Eqs. (3) and (32), one can notice that Forró’s initialization
is different from ChaCha’s. In differential cryptanalysis usually the attacker is
allowed to choose arbitrary values to t0, t1, v0 and v1, thus it is a good idea to
update these values as soon as possible allowing the differential to be propagated
faster decreasing the probability of a differential characteristic. Thus, we defined
the initialization in such a way that t0, t1, v0 and v1 are used in the first two
columns, however, separated by the application of parts of the key.

Rotations The rotation distances for Forró are set as r1 = 10, r2 = 27 and
r3 = 8. Most authors of ARX algorithms in the literature do not justify the
choice of the rotation distances with a numerical argument. It is generally ar-
gued that it is difficult to find bad rotation distances for ARX. Therefore, authors
tend to choose aligned rotation distances (multiple of 8) because these are much
faster than unaligned rotation distances on many non-64-bit architectures. For
example, many 8-bit microcontrollers have only 1-bit shifts of bytes, so rotation
by 3 bits is particularly expensive. Even 64-bit systems can benefit from align-
ment, for example, when a sequence of shift-shift-xor can be replaced by SSSE3’s
pshufb byte-shuffling instruction [1].

On the other hand, it may be possible to improve the security of the algo-
rithm by carefully studying the behavior of the cipher when each combination
of rotation distances is evaluated. This approach could allow for a reduced num-
ber of rounds to achieve the desired security. Hence, this approach could also
improve performance. For example, in [12] authors showed that changing the ro-
tation distances of ChaCha to (19, 17, 25, 11) improved the resistance of ChaCha
against known attacks.

Here, the rotation distances were defined following a similar approach as
proposed in [12], with some adaptations. First, we define R as the set of all
combinations of rotation distances (note that |R| = 323). Next, we define Algo-
rithm 1, which returns the maximum observed differential correlation among all
single bit differentials (ID,OD) for a given combination of rotation distances
r = (r1, r2, r3) ∈ R when considering N random trials. Then, to define the
optimal rotation distances we executed the following steps:

1. Execute Algorithm 1 for all ri ∈ R, obtaining a list L = {δri}.
2. Compute δmin = min(L).
3. For each δri ∈ L, test the hypothesis Hi : δri = δmin. More precisely, we

used the standard statistical test to compare two proportions by converting
the correlation to a probability pri = (δri + 1)/2. In addition, since we are
dealing with multiple hypothesis tests, we used the Family-Wise Error Rate
(FWER) technique to guard against type-I errors.

4. Discard all rotations distances ri ∈ R that lead to the hypothesis Hi being
rejected. Thus, we are left with a subset of rotation distances R∗ ⊂ R.

5. For each rj ∈ R∗, compute the average neutrality measure γ̄rj using Algo-
rithm 1 of [2]. In this case, we considered an encryption with 5 rounds of
Forró and 3 rounds executed backwards.

6. For each rj ∈ R∗, define the metric µrj = δrj × γ̄rj .
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Algorithm 1 Returns the maximum observed differential correlation for all
possible single bit differentials.

1: INPUT: rotation distances (r1, r2, r3), the number of trials N .
2: Setup Forró with rotation distances (r1, r2, r3).
3: for each single bit input difference ID do
4: for i ∈ {1, 2, ..., N} do
5: Generate random key k, nonce v, and counter t.
6: Initialize Forró’s state matrix X.
7: Execute 2 rounds of Forró from X, obtaining Y .
8: Compute X ′ = ID ⊕X.
9: Execute 2 rounds of Forró from X ′, obtaining Y ′.
10: Compute OD = Y ⊕ Y ′.
11: Update the differential correlation δID,j for each bit of OD, where j ∈

{0, 1, ..., 512}.
12: return max(|δID,j |)

7. Define the rotation distances for Forró as argminrj{µrj}.

We executed these steps using a cluster of 24 NVIDIA GPUs RTX 2080ti.
This setup allowed us to run Algorithm 1 with N = 24 × 220, for all r ∈ R, in
two days of computation. From these, we defined Forró’s rotation distances as
(r1, r2, r3) = (10, 27, 8). See the extended version of this paper for some inter-
esting patterns that could be observed.

Constants Since the choice of the constants does not impact security or per-
formance, we decided to go through a cultural route: the constants correspond
to the ASCII string “voltadaasabranca”, little-endian encoded. “A volta da asa
branca” is the name of a song of the Brazilian singer Luiz Gonzaga. It is a
continuation of the song “asa branca”, one of the greatest classics of Brazilian
music, composed more than 70 years ago. In “asa branca”, Luiz Gonzaga and
Humberto Teixeira tell us the story of a man who lost everything due to the
drought in the Brazilian northeast region and had to leave his home in search of
better living conditions. In “a volta da asa branca”, he returns to his home and
is reunited with his love with whom he intends to marry.

Number of rounds From Table 1, we know that we can attack a maximum
of 7 rounds of ChaCha and 5 rounds of Forró. Therefore, we know that we do
not need 20 rounds of Forró to achieve the security of ChaCha20 against known
attacks. That said, it is not easy to quantify exactly how many rounds would give
that security margin. Assuming that for every 7 rounds of ChaCha we can save 2
rounds in Forró, we recommend using Forró with a total of 14 rounds (Forro14)
to achieve a security margin comparable with ChaCha20. Also, we recommend
Forró with 10 rounds (Forro10) to achieve higher security than ChaCha12.
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5.3 Security

In the extended version of this paper, we present a complete analysis of the
security of Forró when considering the same techniques that are applied against
ChaCha and Salsa. In this version, we only present the main results.

Distinguishers We constructed distinguishers for Forró by following the best
techniques used against ChaCha in the literature [9,11]. More precisely, we looked
for single bit differentials ranging 2 and 3 rounds of Forró. To do so, we tested
all possible single bit input differences (128 possibilities) combined with every
possible single bit output difference (512 possibilities). Hence, we tested a total
of 215 differentials. In each case, we estimated the correlation experimentally
with a total of 234 random samples. We present some examples in Table 3.

ID OD Correlation

∆X
(0)
5 = 218 ∆X

(2)
15 = 27 −0.00379

∆X
(0)
5 = 218 ∆X

(2)
10 = 27 −0.00221

∆X
(0)
5 = 211 ∆X

(2)
15 = 1 −0.00139

∆X
(0)
5 = 211 ∆X

(2)
10 = 1 −0.00053

Table 3: Some of the best single bit differentials for 2 rounds of Forró.

Next, using CryptDances we expanded the linear equations of Forró auto-
matically. Using CryptDances functionalities, we also constructed distinguishers
against Forró for every single differential that had a statistically significant cor-
relation. From this study, we derived the best distinguisher for 3, 4, 5 and 5.25
rounds of Forró. We could not find any distinguishers against 5.5 rounds of Forró
or more. In the following, we present more information about these distinguish-
ers.

Distinguisher against 3 rounds of Forró. In this case, consider that

single bit differential with OD = ∆X
(2)
15 = 1 presented in Table 3. Thus, we have

εd = 0.00139. For the linear part, we have to expand the bit x
(2)
15,0 (or, considering

subrounds, x
[8]
15,0), obtaining x

[8]
15,0 = x

[12]
15,27 ⊕ x

[12]
3,8 ⊕ x

[12]
7,0 , with probability 1.

Clearly, εL = 1, then the complexity of the differential-linear distinguisher for 3
rounds of Forró is 1

ε2d
≈ 218.9814.

Distinguisher against 4 rounds of Forró. In this case, consider that

single bit differential with OD = ∆X
(2)
10 = 1 presented in Table 3. Thus, we have

εd = 0.00053. For the linear part, we have to expand the bit x
(2)
10,0 = x

[8]
10,0, which

results in the following Lemma:

Lemma 12. The following linear approximation holds with probability 1
2

(
1 + 1
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)
x
[8]
10,0 = x

[16]
1 [8]⊕ x

[16]
2 [16]⊕ x

[16]
3 [2, 3, 24]⊕ x

[16]
4 [0, 15, 16, 26, 27]⊕

x
[16]
7 [7, 8]⊕ x

[16]
9 [0]⊕ x

[16]
10 [0]⊕ x

[16]
11 [0]⊕ x

[16]
14 [22, 27]⊕ x

[16]
15 [0, 27].
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Proof. See the extended version of this paper. □

Computational Result 5 The linear approximation of Lemma 12 holds com-
putationally with εL0

= 0.0476 ≈ 2−4.39. This correlation was verified using 238

random samples.

We conclude that the complexity of the differential-linear distinguisher for 4
rounds of Forró is 1

ε2dε
4
L0

≈ 236.55.

Distinguisher against 5 and 5.25 rounds of Forró. For these distin-
guishers, we just keep expanding the equation from Lemma 12. This will lead to
differential-linear distinguishers with complexities 2129.68 and 2176.81 for 5 and
5.25 rounds of Forró, respectively. See the extended version of this paper for a
complete description and proof of these distinguishers.

Attacks Using PNBs In this section, we use the techniques developed by [2]
and later improved by [9] to attack Forró, see Section 2.4. We tested several
different attacks for different values of γ for all differentials presented in Ta-
ble 3. With this approach, the best attack we found against 5 rounds of Forró
uses 2 rounds forward and 3 rounds backwards. The attack uses the differential
(∆

(2)
10,0|∆

(0)
5,11), thus, from Table 3 we get εd = −0.00053. Using γ = 0.25 we get

a total of 155 PNBs. From that, we estimated εa = 0.000068 which leads to an
attack with data complexity of 257 and time complexity of 2158.

5.4 Performance

By design, Forró achieves the same security with less operations than ChaCha,
the implication being that on embedded devices with limited concurrency ca-
pabilities, such as the Raspberry Pi and others used in IoT, Forró naturally
has better performance, see Table 4 for measurements. However, in more ad-
vanced processors, where speculative execution and out-of-order execution are
empowered by large caches, such as modern x86, ChaCha still has an advantage.
It is possible, however, to work around this apparent limitation with a clever
implementation.

In order to pipeline instructions, the processor detects (or speculates) in-
structions that don’t have dependencies on each others output and are nearby
to anticipate them, so while one executes, the other can be fetching, for exam-
ple. In ChaCha, the QRF is applied independently inside a round, and pipelining
occurs without much impediment. In Forró, because of Pollination, every oper-
ation in a round has a dependency on the previous output, causing a serial data
dependency. Meaning that the processor can’t detect independent instructions
to pipeline, or if it guesses the instructions are likely to not retire.

However, just like ChaCha, in order to get the next 512 bits of keystream, the
algorithm needs to be executed from the start with an increment on the counter.
This execution is completely independent of the previous one. Unfortunately, the
processor doesn’t have the foresight to anticipate that, since the code for it is far
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into the future, but that can be bypassed. To take full advantage of pipelining,
whenever there is a need for more than 512 bits of keystream, we implement
it so that the code for the two executions of Forró is in the same scope, a
technique that for this specific use case we kindly named, “Xote”. This strategy
permits that Forró continues to leverage it’s better diffusion to produce better
performance on such processors, which can be seen in our measurements that
are available on Table 4. For reference, the measurements also contain ChaCha
with Xote. We make these implementations available at (https://github.com/
MurCoutinho/forro_cipher).

ARMv7
ARMv7
NEON

ARMv8 Intel x86-64
Intel x86-64

SIMD

Algorithm Cycles Cycles Cycles Cycles Cycles

Salsa20 83689 - 24622 20542 4418

Chacha20 89495 51914 35100 20118 3934

Chacha20 (Xote) 138284 - 36214 19362 4480

Forro14 73230 49575 46700 34472 6244

Forro14 (Xote) 76236 - 31666 20748 4826

Table 4: Performance comparison generating a 4096 bytes keystream between
Salsa, ChaCha and Forró on ARMv7, ARMv7 using NEON, ARMv8 (64 bits),
Intel x86-64 and Intel x86-64 using SIMD (AVX2 and SSE as available).

6 CryptDances: a new tool for cryptanalysis of ARX
ciphers

The final contribution of this work is a tool to perform cryptanalysis of ChaCha,
Salsa and Forró in high performance environments. As a brief summary, in the
current version of CryptDances we have:

– Implementation of most attacks from the literature for Salsa and ChaCha,
in particular from [2,9,3,10,11] (attacks for [14] are not yet available).

– It is easy to test any new differential or linear approximation for Salsa,
ChaCha or Forró.

– Automatic linear expansions for ChaCha and Forró (Salsa in development).
– Given a differential and linear expansion, CryptDances can compute the

complexity of distinguishers and PNB attacks.

CryptDances is available at https://github.com/MurCoutinho/cryptDances.

7 Conclusion

In this work, we provided several contributions for ARX ciphers. In particular,
we provided a new way to derive linear approximations for ChaCha, improving
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the complexity of the best differential-linear distinguisher from 2224 to 2214. In
addition, using the proposed BLE, we improved attacks against Salsa. More
precisely, we presented the first distinguishers against 7 and 8 rounds of Salsa
with complexities 2109 and 2216, and improved key recovery attacks achieving a
complexity of 2212 for 8 rounds when the best know attack so far had complexity
of 2244.9.

Another contribution of this work is a new stream cipher called Forró. We
showed that Forró can achieve the same security as ChaCha with fewer opera-
tions. Because of that, Forró can achieve faster performance in certain platforms,
specially in constrained devices. Finally, we developed CryptDances, a new tool
for the cryptanalysis of Salsa, ChaCha, and Forró designed to be used in high
performance environments with several GPUs, making it available for the com-
munity at https://github.com/MurCoutinho/cryptDances.

For future works, the techniques developed in this paper may be used to
improve cryptanalysis against other ARX primitives, such as Chaskey or the hash
function Blake. Also, the security of Forró should be analyzed further, specially
against other types of attacks, such as rotational cryptanalysis. Finally, the tool
CryptDances can be used by researchers to try to improve further attacks against
Salsa, ChaCha, and Forró.
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S.: Chacha20-poly1305 cipher suites for transport layer security (TLS). RFC
7905, 1–8 (2016). https://doi.org/10.17487/RFC7905, https://doi.org/10.

17487/RFC7905

22. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential prop-
erties of addition. In: Matsui, M. (ed.) Fast Software Encryption, 8th In-
ternational Workshop, FSE 2001 Yokohama, Japan, April 2-4, 2001, Re-
vised Papers. Lecture Notes in Computer Science, vol. 2355, pp. 336–350.
Springer (2001). https://doi.org/10.1007/3-540-45473-X 28, https://doi.org/

10.1007/3-540-45473-X_28

23. Maitra, S.: Chosen IV cryptanalysis on reduced round chacha and salsa. Dis-
cret. Appl. Math. 208, 88–97 (2016). https://doi.org/10.1016/j.dam.2016.02.020,
https://doi.org/10.1016/j.dam.2016.02.020

24. Maitra, S., Paul, G., Meier, W.: Salsa20 cryptanalysis: New moves and revisiting
old styles. IACR Cryptol. ePrint Arch. 2015, 217 (2015), http://eprint.iacr.
org/2015/217

25. Mouha, N., Preneel, B.: A proof that the ARX cipher salsa20 is secure against
differential cryptanalysis. IACR Cryptol. ePrint Arch. 2013, 328 (2013), http:
//eprint.iacr.org/2013/328

26. Niu, Z., Sun, S., Liu, Y., Li, C.: Rotational differential-linear distinguishers of arx
ciphers with arbitrary output linear masks. Cryptology ePrint Archive (2022)

27. Robshaw, M.J.B., Billet, O. (eds.): New Stream Cipher Designs - The eS-
TREAM Finalists, Lecture Notes in Computer Science, vol. 4986. Springer
(2008). https://doi.org/10.1007/978-3-540-68351-3, https://doi.org/10.1007/

978-3-540-68351-3

28. Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved key recovery attacks on reduced-
round salsa20 and chacha. In: Kwon, T., Lee, M., Kwon, D. (eds.) Informa-
tion Security and Cryptology - ICISC 2012. Lecture Notes in Computer Science,
vol. 7839, pp. 337–351. Springer (2012). https://doi.org/10.1007/978-3-642-37682-
5 24, https://doi.org/10.1007/978-3-642-37682-5_24

29. Wallén, J.: Linear approximations of addition modulo 2n. In: Johansson, T. (ed.)
Fast Software Encryption, 10th International Workshop, FSE 2003, Lund, Swe-
den, February 24-26, 2003, Revised Papers. Lecture Notes in Computer Science,
vol. 2887, pp. 261–273. Springer (2003). https://doi.org/10.1007/978-3-540-39887-
5 20, https://doi.org/10.1007/978-3-540-39887-5_20

30

https://doi.org/10.1007/11941378_2
https://doi.org/10.1007/11941378_2
https://ianix.com/pub/chacha-deployment.html
https://ianix.com/pub/chacha-deployment.html
https://ianix.com/pub/salsa20-deployment.html
https://ianix.com/pub/salsa20-deployment.html
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.17487/RFC7905
https://doi.org/10.17487/RFC7905
https://doi.org/10.17487/RFC7905
https://doi.org/10.1007/3-540-45473-X_28
https://doi.org/10.1007/3-540-45473-X_28
https://doi.org/10.1007/3-540-45473-X_28
https://doi.org/10.1016/j.dam.2016.02.020
https://doi.org/10.1016/j.dam.2016.02.020
http://eprint.iacr.org/2015/217
http://eprint.iacr.org/2015/217
http://eprint.iacr.org/2013/328
http://eprint.iacr.org/2013/328
https://doi.org/10.1007/978-3-540-68351-3
https://doi.org/10.1007/978-3-540-68351-3
https://doi.org/10.1007/978-3-540-68351-3
https://doi.org/10.1007/978-3-642-37682-5_24
https://doi.org/10.1007/978-3-642-37682-5_24
https://doi.org/10.1007/978-3-642-37682-5_24
https://doi.org/10.1007/978-3-540-39887-5_20
https://doi.org/10.1007/978-3-540-39887-5_20
https://doi.org/10.1007/978-3-540-39887-5_20

	Latin Dances Reloaded:Improved Cryptanalysis against Salsa and ChaCha, and the proposal of Forró

