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Abstract. We propose three constructions of classically verifiable non-
interactive zero-knowledge proofs and arguments (CV-NIZK) for QMA
in various preprocessing models.
1. We construct a CV-NIZK for QMA in the quantum secret parame-

ter model where a trusted setup sends a quantum proving key to the
prover and a classical verification key to the verifier. It is information
theoretically sound and zero-knowledge.

2. Assuming the quantum hardness of the learning with errors problem,
we construct a CV-NIZK for QMA in a model where a trusted party
generates a CRS and the verifier sends an instance-independent
quantum message to the prover as preprocessing. This model is the
same as one considered in the recent work by Coladangelo, Vidick,
and Zhang (CRYPTO ’20). Our construction has the so-called dual-
mode property, which means that there are two computationally in-
distinguishable modes of generating CRS, and we have information
theoretical soundness in one mode and information theoretical zero-
knowledge property in the other. This answers an open problem left
by Coladangelo et al, which is to achieve either of soundness or zero-
knowledge information theoretically. To the best of our knowledge,
ours is the first dual-mode NIZK for QMA in any kind of model.

3. We construct a CV-NIZK for QMA with quantum preprocessing
in the quantum random oracle model. This quantum preprocessing
is the one where the verifier sends a random Pauli-basis states to
the prover. Our construction uses the Fiat-Shamir transformation.
The quantum preprocessing can be replaced with the setup that
distributes Bell pairs among the prover and the verifier, and therefore
we solve the open problem by Broadbent and Grilo (FOCS ’20) about
the possibility of NIZK for QMA in the shared Bell pair model via
the Fiat-Shamir transformation.

1 Introduction

1.1 Background

The zero-knowledge [GMR89], which ensures that the verifier learns nothing
beyond the statement proven by the prover, is one of the most central con-
cepts in cryptography. Recently, there have been many works that constructed
non-interactive zero-knowledge (NIZK) [BFM88] proofs or arguments for QMA,
which is the “quantum counterpart” of NP, in various kind of models [ACGH20,



CVZ20, BG20, Shm21, BCKM21, BM21]. We note that we require the honest
prover to run in quantum polynomial-time receiving sufficiently many copies of
a witness when we consider NIZK proofs or arguments for QMA. All known
protocols except for the protocol of Broadbent and Grilo [BG20] only satisfy
computational soundness. The protocol of [BG20] satisfies information theoret-
ical soundness and zero-knowledge in the secret parameter (SP) model [Ps05]
where a trusted party generates proving and verification keys and gives them
to the corresponding party while keeping it secret to the other party as setup.3

A drawback of their protocol is that the prover sends a quantum proof to the
verifier, and thus the verifier should be quantum. Therefore it is natural to ask
the following question.

Can we construct a NIZK proof for QMA with classical verification assuming
a trusted party that generates proving and verification keys?

In addition, the SP model is not a very desirable model since it assumes
a strong trust in the setup. In the classical literature, there are constructions
of NIZK proofs for NP in the common reference string (CRS) model [BFM88,
FLS99, PS19] where the only trust in the setup is that a classical string is
chosen according to a certain distribution and then published. Compared to
the SP model, we need to put much less trust in the setup in the CRS model.
Indeed, several works [BG20, CVZ20, Shm21] mention it as an open problem
to construct a NIZK proofs (or even arguments) for QMA in the CRS model.
Though this is still open, there are several constructions of NIZKs for QMA
in different models that assume less trust in the setup than in the SP model
[CVZ20, Shm21, BCKM21]. However, all of them are arguments. Therefore, we
ask the following question.

Can we construct a NIZK proof for QMA with classical verification in a model
that assumes less trust in the setup than in the SP model?

The Fiat-Shamir transformation [FS87] is one of the most important tech-
niques in cryptography that have many applications. In particular, NIZK can
be constructed from a Σ protocol: the prover generates the verifier’s challenge
β by itself by applying a random oracle H on the prover’s first message α, and
then the prover issues the proof π = (α, γ), where γ is the third message gen-
erated from α and β = H(α). It is known that Fiat-Shamir transform works in
the post-quantum setting where we consider classical protocols secure against
quantum adversaries [LZ19, DFMS19, DFM20]. On the other hand, it is often
pointed out that (for example, [Shm21, BG20]) this standard technique cannot
be used in the fully quantum setting. In particular, due to the no-cloning, the
application of random oracle on the first message does not work when the first
message is quantum like so-called the Ξ-protocol constructed by Broadbent and
Grilo [BG20]. Broadbent and Grilo left the following open problem:

Is it possible to construct NIZK for QMA in the CRS model (or shared Bell
pair model) via the Fiat-Shamir transformation?

3 The SP model is also often referred to as preprocessing model [DMP90].
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Note that the shared Bell pair model is the setup model where the setup dis-
tributes Bell pairs among the prover and the verifier. It can be considered as a
“quantum analogue” of the CRS [Kob03].

1.2 Our Results

We answer the above questions affirmatively.

1. We construct a classically verifiable NIZK (CV-NIZK) for QMA in the QSP
model where a trusted party generates a quantum proving key and classical
verification key and gives them to the corresponding parties. We do not
rely on any computational assumption for this construction either, and thus
both soundness and the zero-knowledge property are satisfied information
theoretically. This answers our first question. Compared with [BG20], ours
has an advantage that verification is classical at the cost of making the
proving key quantum. The proving key is a very simple state, i.e., a tensor
product of randomly chosen Pauli X, Y , or Z basis states. We note that
we should not let the verifier play the role of the trusted party for this
construction since that would break the zero-knowledge property.

2. Assuming the quantum hardness of the learning with errors problem (the
LWE assumption) [Reg09], we construct a CV-NIZK for QMA in a model
where a trusted party generates a CRS and the verifier sends an instance-
independent quantum message to the prover as preprocessing. We note that
the CRS is reusable for generating multiple proofs but the quantum message
in the preprocessing is not reusable. In this model, we only assume a trusted
party that just generates a CRS once, and thus this answers our second
question. This model is the same as one considered in [CVZ20] recently,
and we call it the CRS + (V → P ) model. Compared to their work, our
construction has the following advantages.
(a) In their protocol, both soundness and the zero-knowledge property hold

only against quantum polynomial-time adversaries, and they left it open
to achieve either of them information theoretically. We answer the open
problem. Indeed, our construction has the so-called dual-mode prop-
erty [GOS12, PS19], which means that there are two computationally
indistinguishable modes of generating CRS, and we have information
theoretical soundness in one mode and information theoretical zero-
knowledge property in the other. To the best of our knowledge, ours
is the first dual-mode NIZK for QMA in any kind of model.

(b) Our protocol uses underlying cryptographic primitives (which are lossy
encryption and oblivious transfer with certain security) only in a black-
box manner whereas their protocol heavily relies on non-black-box usage
of the underlying primitives. Indeed, their protocol uses fully homomor-
phic encryption to homomorphically runs the proving algorithm of a
NIZK for NP, which would make the protocol extremely inefficient. On
the other hand, our construction uses the underlying primitives only in
a black-box manner, which results in a much more efficient construction.
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Table 1. Comparison of NIZKs for QMA.

Reference Soundness ZK Ver. Model Assumption Misc

[ACGH20] comp. comp. C SP LWE + QRO
[CVZ20] comp. comp. Q+C CRS + (V → P ) LWE AoQK
[BG20] stat. stat. Q SP None
[Shm21] comp. comp. Q MDV LWE reusable

[BCKM21] comp. comp. Q MDV LWE
reusable and
single-witness

[BM21] comp. stat. C CRS iO + QRO (heuristic)
Section 3 stat. stat. C QSP None

Section 4
stat.
comp.

comp.
stat.

Q+C CRS + (V → P ) LWE dual-mode

Section 5
comp.
(query)

comp.
(query)

C V → P/Bell pair QRO

In column “Soundness” (resp. “ZK”), stat., and comp. mean statistical, and computational soundness
(resp. zero-knowledge), respectively. Also, comp.(query) means that only the number of queries should
be polynomial. In column “Ver.”, “Q” and “C” mean that the verification is quantum and classical,
respectively, and “Q+C” means that the verifier needs to send a quantum message in preprocessing but
the online phase of verification is classical. QRO means the quantum random oracle.

We note that black-box constructions have been considered desirable for
both theoretical and practical reasons in the cryptography community
(e.g., see introduction of [IKLP06]).

(c) The verifier’s quantum operation in our preprocessing is simpler than
that in theirs: in the preprocessing of our protocol, the verifier has only
to do single-qubit gate operations (Hadamard, bit-flip or phase gates),
while in the preprocessing of their protocol, the verifier has to do five-
qubit (entangled) Clifford operations. In their paper [CVZ20], they left
the following open problem: how far their preprocessing phase could be
weakened? Our construction with the weaker verifier therefore partially
answers the open problem.

On the other hand, Coladangelo et al. [CVZ20] proved that their protocol is
also an argument of quantum knowledge (AoQK). We leave it open to study
if ours is also a proof/argument of knowledge.

3. We construct a CV-NIZK for QMA with quantum preprocessing in the
quantum random oracle model. This quantum preprocessing is the one where
the verifier sends a random Pauli-basis states to the prover. Our construction
uses the Fiat-Shamir transformation. Importantly, the quantum preprocess-
ing can be replaced with the setup that distributes Bell pairs among the
prover and the verifier. The distribution of Bell pairs by the setup can be
considered as a “quantum analogue” of the CRS. This result gives an an-
swer to our third question (and the second question as well). (Note that
both the soundness and zero-knowledge property of the construction are
computational one, but it does not mean that we use some computational
assumptions: just the oracle query is restricted to be polynomial time.)
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Comparison among NIZKs for QMA. We give more comparisons among our and
known constructions of NIZKs for QMA. Since we already discuss comparisons
with ours and [BG20, CVZ20], we discuss comparisons with other works. A
summary of the comparisons is given in Table 1.

Alagic et al. [ACGH20] gave a construction of a NIZK for QMA in the
SP model. Their protocol has an advantage that both the trusted party and
verifier are completely classical. On the other hand, the drawback is that only
computational soundness and zero-knowledge are achieved, whereas our first two
constructions achieve (at least) either statistical soundness or zero-knowledge.
Their protocol also uses the Fiat-Shamir transformation with quantum random
oracle like our third result, but their setup is the secret parameter model, whereas
ours can be the sharing Bell pair model, which is a quantum analogue of the
CRS model.

Shmueli [Shm21] gave a construction of a NIZK for QMA in the malicious
designated-verifier (MDV) model, where a trusted party generates a CRS and
the verifier sends an instance-independent classical message to the prover as
preprocessing. In this model, the preprocessing is reusable, i.e., a single prepro-
cessing can be reused to generate arbitrarily many proofs later. This is a crucial
advantage of their construction compared to ours. On the other hand, in their
protocol, proofs are quantum and thus the verifier should perform quantum com-
putations in the online phase whereas the online phase of the verifier is classical
in our constructions. Also, their protocol only satisfies computational soundness
and zero-knowledge whereas we can achieve (at least) either of them statistically.

Recently, Bartusek et al. [BCKM21] gave another construction of a NIZK for
QMA in the MDV model that has an advantage that the honest prover only
uses a single copy of a witness. (Note that all other NIZKs for QMA including
ours require the honest prover to take multiple copies of a witness if we require
neglible completeness and soundness errors.) However, their construction also
requires quantum verifier in the online phase and only achieves computational
soundness and zero-knowledge similarly to [Shm21].

Subsequently to our work, Bartusek and Malavolta [BM21] recently con-
structed the first CV-NIZK argument for QMA in the CRS model assuming
the LWE assumption and ideal obfuscation for classical circuits. An obvious
drawback is the usage of ideal obfuscation, which has no provably secure instan-
tiation.4 They also construct a witness encryption scheme for QMA under the
same assumptions. They use the verification protocol of Mahadev [Mah18] and
therefore the LWE assumption is necessary. If our CV-NIZK in the QSP model is
used, instead, a witness encryption for QMA (with quantum ciphertext) would
be constructed without the LWE assumption, which is one interesting applica-
tion of our results.

4 In the latest version, they give a candidate instantiation based on indistinguishability
obfuscation and random oracles. However, the instantiation is heuristic since they
obfuscate circuits that involve the random oracle, which cannot be done in the
quantum random oracle model.
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1.3 Technical Overview

Classically verifiable NIZK for QMA in the QSP model. Our starting point is
the NIZK for QMA in [BG20], which is based on the fact that a QMA lan-
guage can be reduced to the 5-local Hamiltonian problem with locally simulatable
history states [BG20, GSY19]. (We will explain later the meaning of “locally sim-
ulatable”.) An instance x corresponds to an N -qubit Hamiltonian Hx of the form

Hx =
∑M
i=1 pi

I+siPi

2 , where N = poly(|x|), M = poly(|x|), si ∈ {+1,−1}, pi > 0,∑M
i=1 pi = 1, and Pi is a tensor product of Pauli operators (I,X, Y, Z) with at

most 5 nontrivial Pauli operators (X,Y, Z). There are 0 < α < β < 1 with
β−α = 1/poly(|x|) such that if x is a yes instance, then there exists a state ρhist

(called the history state) such that Tr(ρhistHx) ≤ α, and if x is a no instance,
then for any state ρ, we have Tr(ρHx) ≥ β.

The completeness and the soundness of the NIZK for QMA in [BG20] is
based on the posthoc verification protocol [FHM18], which is explained as fol-
lows. To prove that x is a yes instance, the prover sends the history state to the
verifier. The verifier first chooses Pi with probability pi, and measures each qubit
in the Pauli basis corresponding to Pi. Let mj ∈ {0, 1} be the measurement result
on jth qubit. The verifier accepts if (−1)⊕jmj = −si and rejects otherwise. The
probability that the verifier accepts is 1 − Tr(ρHx) when the prover’s quantum
message is ρ, and therefore the verifier accepts with probability at least 1−α if x
is a yes instance and the prover is honest whereas it accepts with probability at
most 1−β if x is a no instance. (See Lemma 2.3 and [FHM18].) The gap between
completeness and soundness can be amplified by simple parallel repetitions.

The verifier in the posthoc protocol is, however, not classical, because it has
to receive a quantum state and measure each qubit. Our first idea to make the
verifier classical is to use the quantum teleportation. Suppose that the prover
and verifier share sufficiently many Bell pairs at the beginning. Then the prover
can send the history state to the verifier with classical communication by the
quantum teleportation. Though this removes the necessity of quantum commu-
nication, the verifier still needs to be quantum since it has to keep halves of Bell
pairs and perform a measurement after receiving a proof.

To solve the problem, we utilize our observation that the verifier’s measure-
ment and the prover’s measurement commute with each other, which is our
second idea. In other words, we can let the verifier perform the measurement at
the beginning without losing completeness or soundness. In the above quantum-
teleportation-based protocol, when the prover sends its measurement outcomes
{(xj , zj)}j∈[N ] to the verifier, the verifier’s state collapses to XxZzρhistZ

zXx

where ρhist denotes the history state and XxZz means
∏N
j=1X

xj

j Z
zj
j . Then the

verifier applies the Pauli correction XxZz and then measures each qubit in a
Pauli basis. We observe that the Pauli correction can be applied even after the
verifier measures each qubit because X

xj

j Z
zj
j before a Pauli measurement on the

jth qubit has the same effect as XOR by zj or xj after the measurement (see
Lemma 2.2). Therefore, if a trusted party generates Bell pairs and measures half
of them in random Pauli basis and gives the unmeasured halves to the prover as
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a proving key while the measurement outcomes to the verifier as a verification
key, a completely classical verifier can verify the QMA promise problem.

The last remaining issue is that the distribution of bases that appear in Pi
depends on the instance x, and thus we cannot sample the distribution at the
setup phase where x is not decided yet. To resolve this issue, we use the following
idea (which was also used in [ACGH20]). The trusted party just chooses random
bases, and the verifier just accepts if they are inconsistent to Pi chosen by the
verifier in the online phase. Since there are only 3 possible choices of the bases
and Pi non-trivially acts on at most 5 qubits, the probability that the randomly
chosen bases are consistent to Pi is at least 3−5.5 Therefore we can still achieve
inverse-polynomial gap between completeness and soundness.

The zero-knowledge property of the NIZK for QMA in [BG20] uses the local
simulatability of the history state. It roughly means that a classical description
of the reduced density matrix of the history state for any 5-qubit subsystem can
be efficiently computable without knowing the witness. Broadbent and Grilo
[BG20] used this local simulatability to achieve the zero-knowledge property

as follows. A trusted party randomly chooses (x̂, ẑ)
$← {0, 1}N × {0, 1}N , and

randomly picks a random subset SV ⊆ [N ] such that 1 ≤ |SV | ≤ 5. Then it gives
(x̂, ẑ) to the prover as a proving key and gives {(x̂j , ẑj)}j∈SV

to the verifier as
a verification key where x̂j and ẑj denote the j-th bits of x̂ and ẑ, respectively.
The prover generates the history state ρhist and sends ρ′ = X x̂Z ẑρhistZ

ẑX x̂ to
the verifier as a proof. The verifier then measures each qubit as is done in the
posthoc verification protocol. This needs the quantum verifier, but as we have
explained, we can make the verifier classical by using the teleportation technique.

An intuitive explanation of why it is zero-knowledge is that the verifier can
access at most five qubits of the history state, because other qubits are quan-
tum one-time padded. Due to the local simulatability of the history state, the
information that the verifier gets can be classically simulated without the wit-
ness. This results in our classically verifiable NIZK for QMA in the QSP model.
In our QSP model, the trusted setup sends random Pauli basis states to the
prover and their classical description to the verifier. Furthermore, the trusted

setup also sends randomly chosen (x̂, ẑ)
$← {0, 1}N × {0, 1}N to the prover, and

{(x̂j , ẑj)}j∈SV
to the verifier with randomly chosen subset SV .

Classically verifiable NIZK for QMA in the CRS + (V → P ) model. We want to
reduce the trust in the setup, so let us first examine what happens if the verifier
runs the setup as preprocessing. Unfortunately, such a construction is not zero-
knowledge since the verifier can know whole bits of (x̂, ẑ) and thus it may obtain
information of qubits of ρhist that are outside of SV , in which case we cannot rely
on the local simulatability. Therefore, for ensuring the zero-knowledge property,
we have to make sure that the verifier only knows {(x̂j , ẑj)}j∈SV

. Then suppose
that the prover chooses (x̂, ẑ) whereas other setups are still done by the veri-
fier. Here, the problem is how to let the verifier know {(x̂j , ẑj)}j∈SV

. A naive

5 There is a subtle issue that the probability depends on the number of qubits on
which Pi non-trivially acts. We adjust this by an additional biased coin flipping.
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solution is that the verifier sends SV to the prover and then the prover returns
{(x̂j , ẑj)}j∈SV

. However, such a construction is not sound since it is essential
that the prover “commits” to a single quantum state independently of SV when
reducing soundness to the local Hamiltonian problem. So what we need is a pro-
tocol between the prover and verifier where the verifier only gets {(x̂j , ẑj)}j∈SV

and the prover does not learn SV . We observe that this is exactly the function-
ality of 5-out-of-N oblivious transfer [BCR87].

Though it may sound easy to solve the problem by just using a known two-
round 5-out-of-N oblivious transfer, there is still some subtlety. For example, if
we use an oblivious transfer that satisfies only indistinguishability-based notion
of receiver’s security (e.g., [NP01, BD18]),6 which just says that the sender can-
not know indices chosen by the receiver, we cannot prove soundness. Intuitively,
this is because the indistinguishability-based receiver’s security does not prevent
a malicious sender from generating a malicious message such that the message
derived on the receiver’s side depends on the chosen indices, which does not force
the prover to “commit” to a single state.

If we use a fully-simulatable [Lin08] oblivious transfer, the above problem
does not arise and we can prove both soundness and zero-knowledge. However,
the problem is that we are not aware of any efficient fully-simulatable 5-out-of-N
oblivious transfer based on post-quantum assumptions (in the CRS model). The
LWE-based construction of [PVW08] does not suffice for our purpose since a CRS
can be reused only a bounded number of times in their construction. Recently,
Quach [Qua20] resolved this issue, and proposed an efficient fully-simulatable
1-out-of-2 oblivious transfer based on the LWE assumption.7 We can extend
his construction to a fully-simulatable 1-out-of-N oblivious transfer efficiently.
However, we do not know how to convert this into 5-out-of-N one efficiently
without losing the full-simulatability. We note that a conversion from 1-out-of-
N to 5-out-of-N oblivious transfer by a simple 5-parallel repetition loses the
full-simulatability against malicious senders since a malicious sender can send
different inconsistent messages in different sessions, which should be considered
as an attack against the full-simulatability. One possible way to prevent such
an inconsistent message attack is to let the sender prove that the messages in
all sessions are consistent by using (post-quantum) CRS-NIZK for NP [PS19].
However, such a construction is very inefficient since it uses the underlying 1-
out-of-N oblivious transfer in a non-black-box manner, which we want to avoid.

We note that the parallel repetition construction preserves indistinguishability-
based receiver’s security and fully-simulatable sender’s security for two-round
protocols. Therefore, we have an efficient (black-box) construction of 5-out-of-N
oblivious transfer if we relax the receiver’s security to the indistinguishability-
based one. As already explained, such a security does not suffice for proving
soundness. To resolve this issue, we add an additional mechanism to force the
prover to “commit” to a single state. Specifically, instead of directly sending

6 The indistinguishability-based receiver’s security is also often referred to as half-
simulation security [CNs07].

7 Actually, his construction satisfies a stronger UC-security [Can20, PVW08].
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(x, z) by a 5-out-of-N oblivious transfer, the prover sends a commitment of (x, z)
and then sends (x, z) and the corresponding randomness used in the commit-
ment by a 5-out-of-N oblivious transfer. When the verifier receives {xj , zj}j∈SV

and corresponding randomness, it checks if it is consistent to the commitment
by recomputing it, and immediately rejects if not. This additional mechanism
prevents a malicious prover’s inconsistent behavior, which resolves the problem
in the proof of soundness.

Finally, our construction satisfies the dual-mode property if we assume appro-
priate dual-mode properties for building blocks. A dual-mode oblivious transfer
(in the CRS model) has two modes of generating a CRS and it satisfies statis-
tical (indistinguishability-based) receiver’s security in one mode and statistical
(full-simulation-based) sender’s security in the other mode. The construction of
[Qua20] is an instantiation of a 1-out-of-2 oblivious transfer with such a dual-
mode property, and this can be converted into 5-out-of-N one as explained
above. We stress again that it is important to relax the receiver’s security to
the indistinguishability-based one to make the conversion work. A dual-mode
commitment (in the CRS model) has two modes of generating a CRS and it is
statistically binding in one mode and statistically hiding in the other mode. We
can use lossy encryption [BHY09, Reg09] as an instantiation of such a dual-mode
commitment. Both of dual-mode 5-out-of-N oblivious transfer and lossy encryp-
tion are based on the LWE assumption (with super-polynomial modulus for the
former) and fairly efficient in the sense that they do not rely on non-black-box
techniques. Putting everything together, we obtain a fairly efficient (black-box)
construction of a dual-mode NIZK for QMA in the CRS + (V → P ) model.

NIZK for QMA via Fiat-Shamir transformation. Finally, let us explain our
construction of NIZK for QMA via the Fiat-Shamir transformation. It is based
on so-called the Ξ-protocol for QMA [BG20], which is equal to the standard
Σ-protocol except that the first message is quantum. Because the first message is
quantum, the Fiat-Shamir technique cannot be directly applied. Our idea is again
to use the teleportation technique: if we introduce a setup that sends random
Pauli basis states to the prover and their classical description to the verifier, the
first message can be classical. We thus obtain a (classical) Σ-protocol in the QSP
model, where the trusted setup sends random Pauli basis states to the prover and
their classical description to the verifier. This task can be, actually, done by the
verifier, not the trusted setup, unlike our first construction. We therefore obtain
a (classical) Σ-protocol with quantum preprocessing (Definition 5.2), where the
verifier sends random Pauli basis states to the prover as the preprocessing.

We then apply the (classical) Fiat-Shamir transformation to the Σ-protocol
with quantum preprocessing, and obtain the CV-NIZK for QMA in the quantum
random oracle plus V → P model (Definition 5.1), where V → P means the
communication from the verifier to the prover as the preprocessing. Note that
we are considering a classical Σ-protocol with quantum preprocessing differently
from previous works. By a close inspection, we show that an existing security
proof for classical Σ-protocol in the QROM [DFM20] also works in our setting.
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Importantly, in this case, unlike the previous two constructions, the quantum
preprocessing can be replaced with the setup that distributes Bell pairs among
the prover and the verifier. As a corollary, we therefore obtain NIZK for QMA
in the shared Bell pair model (plus quantum random oracle). The distribution of
Bell pairs by a trusted setup can be considered as a “quantum analogue” of the
CRS, and therefore we can say that we obtain NIZK for QMA in the “quantum
CRS” model via the Fiat-Sharmir transformation.

2 Preliminaries

2.1 Quantum Computation Preliminaries

Here, we briefly review basic notations and facts on quantum computations.
For any quantum state ρ over registers A and B, TrA(ρ) is the partial trace

of ρ over A. We use I to mean the identity operator. (For simplicity, we use the
same I for all identity operators with different dimensions, because the dimension
of an identity operator is clear from the context.) We use X, Y , and Z to mean

Pauli operators i.e., X :=

(
0 1
1 0

)
, Z :=

(
1 0
0 −1

)
, and Y := iXZ. We use H to

mean Hadamard operator, i.e., H := 1√
2

(
1 1
1 −1

)
. We also define the T operator

by T :=

(
1 0
0 eiπ/4

)
. The CNOT := |0〉〈0|⊗I+ |1〉〈1|⊗X is the controlled-NOT

operator.

We define V (Z) := I, V (X) := H, and V (Y ) := 1√
2

(
1 1
i −i

)
so that

for each W ∈ {X,Y, Z}, V (W ) |0〉 and V (W ) |1〉 are the eigenvectors of W
with eigenvalues +1 and −1, respectively. For each W ∈ {X,Y, Z}, we call
{V (W ) |0〉 , V (W ) |1〉} the W -basis.

When we consider an N -qubit system, for a Pauli operator Q ∈ {X,Y, Z},
Qj denotes the operator that acts on j-th qubit as Q and trivially acts on all
the other qubits. Similarly, Vj(W ) denotes the operator that acts on j-th qubit
as V (W ) and trivially acts on all the other qubits. For any x ∈ {0, 1}N and

z ∈ {0, 1}N , XxZz means
∏N
j=1X

xj

j Z
zj
j .

We call the state 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) the Bell pair. We call the set

{|φx,z〉}(x,z)∈{0,1}2 the Bell basis where |φx,z〉 := (XxZz ⊗ I) |0〉⊗|0〉+|1〉⊗|1〉√
2

. Let

us define U(X) := V (X), U(Y ) := V (Y )X, and U(Z) := V (Z).

Lemma 2.1 (State Collapsing). If we project one qubit of a Bell pair onto
V (W )|m〉 with W ∈ {X,Y, Z} and m ∈ {0, 1}, the other qubit collapses to
U(W )|m〉.

Lemma 2.2 (Effect of XxZz before measurement). For any N -qubit state
ρ, (W1, ...,WN ) ∈ {X,Y, Z}N , and (x, z) ∈ {0, 1}N × {0, 1}N , the distributions
of (m′1, ...m

′
n) sampled in the following two ways are identical.
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1. For j ∈ [N ], measure j-th qubit of ρ in Wj basis, let mj ∈ {0, 1} be the
outcome, and set

m′j :=

 mj ⊕ xj (Wj = Z),
mj ⊕ zj (Wj = X),

mj ⊕ xj ⊕ zj (Wj = Y ).

2. For j ∈ [N ], measure j-th qubit of XxZzρZzXx in Wj basis and let m′j ∈
{0, 1} be the outcome.

The proofs of the above lemmas are straightforward. The following lemma is
implicit in previous works, e.g., [MNS18, FHM18].

Lemma 2.3. Let H := 1
2

[
I + s(

∏
j∈SX

Xj)(
∏
j∈SY

Yj)(
∏
j∈SZ

Zj)
]

be an N -

qubit projection operator, where s ∈ {+1,−1}, and SX , SY , and SZ are disjoint
subsets of [N ]. For any N -qubit quantum state ρ, suppose that for all j ∈ SW ,
where W ∈ {X,Y, Z}, we measure j-th qubit of ρ in the W -basis, and let mj ∈
{0, 1} be the outcome. Then we have Pr

[
(−1)

⊕
j∈SX∪SY ∪SZ

mj = −s
]

= 1 −
Tr(ρH).

2.2 QMA and Local Hamiltonian Problem

For any QMA promise problem L = (Lyes, Lno) and x ∈ Lyes, we denote by
RL(x) to mean the (possibly infinite) set of all quantum states w such that
Pr[V (x, w) = 1] ≥ 2/3.

Recently, Broadbent and Grilo [BG20] showed that any QMA problem can
be reduced to a 5-local Hamiltonian problem with local simulatability. (See also
[GSY19].) Moreover, it is easy to see that we can make the Hamiltonian Hx be

of the form Hx =
∑M
i=1 pi

I+siPi

2 where si ∈ {+1,−1}, pi ≥ 0,
∑M
i=1 pi = 1, and

Pi is a tensor product of Pauli operators (I,X,Z, Y ) with at most 5 nontrivial
Pauli operators (X,Y, Z). Then we have the following lemma.

Lemma 2.4 (QMA-completeness of 5-local Hamiltonian problem with
local simulatability [BG20]). For any QMA promise problem L = (Lyes, Lno),
there is a classical polynomial-time computable deterministic function that maps
x ∈ {0, 1}∗ to an N -qubit Hamiltonian Hx of the form Hx =

∑M
i=1 pi

I+siPi

2 ,

where N = poly(|x|), M = poly(|x|), si ∈ {+1,−1}, pi > 0,
∑M
i=1 pi = 1, and

Pi is a tensor product of Pauli operators (I,X, Y, Z) with at most 5 nontrivial
Pauli operators (X,Y, Z), and satisfies the following: There are 0 < α < β < 1
such that β − α = 1/poly(|x|) and

– if x ∈ Lyes, then there exists an N -qubit state ρ such that Tr(ρHx) ≤ α, and
– if x ∈ Lno, then for any N -qubit state ρ, we have Tr(ρHx) ≥ β.

Moreover, for any x ∈ Lyes, we can convert any witness w ∈ RL(x) into a state
ρhist, called the history state, such that Tr(ρhistHx) ≤ α in quantum polyno-
mial time. Moreover, there exists a classical deterministic polynomial time algo-
rithm Simhist such that for any x ∈ Lyes and any subset S ⊆ [N ] with |S| ≤ 5,

11



Simhist(x, S) outputs a classical description of an |S|-qubit density matrix ρS
such that ‖ρS − Tr[N ]\Sρhist‖tr = negl(λ) where Tr[N ]\Sρhist is the state of ρhist

in registers corresponding to S tracing out all other registers.

2.3 Classically-Verifiable Non-Interactive Zero-knowledge Proofs

Definition 2.1 (CV-NIZK in the QSP model). A classically-verifiable
non-interactive zero-knowledge proof (CV-NIZK) for a QMA promise problem
L = (Lyes, Lno) in the quantum secret parameter (QSP) model consists of algo-
rithms Π = (Setup,Prove,Verify) with the following syntax:

Setup(1λ): This is a QPT algorithm that takes the security parameter 1λ as
input and outputs a quantum proving key kP and a classical verification key
kV .

Prove(kP , x, w
⊗k): This is a QPT algorithm that takes the proving key kP , a

statement x, and k = poly(λ) copies w⊗k of a witness w ∈ RL(x) as input
and outputs a classical proof π.

Verify(kV , x, π): This is a PPT algorithm that takes the verification key kV , a
statement x, and a proof π as input and outputs > indicating acceptance or
⊥ indicating rejection.

We require Π to satisfy the following properties for some 0 < s < c < 1 such
that c− s > 1/poly(λ). Especially, when we do not specify c and s, they are set
as c = 1− negl(λ) and s = negl(λ).

c-Completeness. For all x ∈ Lyes ∩ {0, 1}λ, and w ∈ RL(x), we have

Pr
[
Verify(kV , x, π) = > : (kP , kV )

$← Setup(1λ), π
$← Prove(kP , x, w

⊗k)
]
≥ c.

(Adaptive Statistical) s-Soundness. For all unbounded-time adversary A,

we have

Pr
[
x ∈ Lno ∧ Verify(kV , x, π) = > : (kP , kV )

$← Setup(1λ), (x, π)
$← A(kP )

]
≤ s.

(Adaptive Statistical Single-Theorem) Zero-Knowledge. There exists a
PPT simulator Sim such that for any unbounded-time distinguisher D, we have∣∣∣Pr

[
DOP (kP ,·,·)(kV ) = 1

]
− Pr

[
DOS(kV ,·,·)(kV ) = 1

]∣∣∣ = negl(λ)

where (kP , kV )
$← Setup(1λ), D can make at most one query, which should be

of the form (x, w⊗k) where w ∈ RL(x) and w⊗k is unentangled with D’s internal
registers,8 OP (kP , x, w

⊗k) returns Prove(kP , x, w
⊗k), and OS(kV , x, w

⊗k) returns
Sim(kV , x).

8 Though our protocols are likely to remain secure even if they can be entangled,
we assume that they are unentangled for simplicity. To the best of our knowledge,
none of existing works on interactive or non-interactive zero-knowledge for QMA
[BJSW20, CVZ20, BS20, BG20, Shm21, BCKM21] considered entanglement between
a witness and distinguisher’s internal register.
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It is easy to see that we can amplify the gap between completeness and
soundness thresholds by a simple parallel repetition. Moreover, we can see that
this does not lose the zero-knowledge property. Therefore, we have the following
lemma.

Lemma 2.5 (Gap Amplification for CV-NIZK). If there exists a CV-
NIZK for L in the QSP model that satisfies c-completeness and s-soundness, for
some 0 < s < c < 1 such that c−s > 1/poly(λ), then there exists a CV-NIZK for
L in the QSP model (with (1− negl(λ))-completeness and negl(λ)-soundness).

3 CV-NIZK in the QSP model

In this section, we construct a CV-NIZK in the QSP model (Definition 2.1).
Specifically, we prove the following theorem.

Theorem 3.1. There exists a CV-NIZK for QMA in the QSP model (without
any computational assumption).

Our construction of a CV-NIZK for a QMA promise problem L is given in
Figure 1 where Hx, N , M , pi, si, Pi, α, β, and ρhist are as in Lemma 2.4 for L
and Vj(Wj) is as defined in Section 2.1.

To show Theorem 3.1, we prove the following lemmas.

Lemma 3.1 (Completeness and Soundness). ΠNIZK satisfies
(
1− α

N ′

)
-

completeness and
(

1− β
N ′

)
-soundness where N ′ := 35

∑5
i=1

(
N
i

)
.

Lemma 3.2 (Zero-Knowledge). ΠNIZK satisfies the zero-knowledge property.

Since
(
1− α

N ′

)
−
(

1− β
N ′

)
= β−α

N ′ ≥ 1/poly(λ), by combining Lemmas 2.5,

3.1 and 3.2, Theorem 3.1 follows.
In the following, we give proofs of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. We prove this lemma by considering virtual protocols that
do not change completeness and soundness. First, we consider the virtual proto-
col 1 described in Figure 2. There are two differences from the original protocol.
The first is that kV includes the whole (x̂, ẑ) instead of {x̂j , ẑj}j∈SV

. This differ-
ence does not change the (possibly malicious) prover’s view since kV is not given
to the prover. The second is that the setup algorithm generates N Bell pairs and
gives each halves to the prover and verifier, and the verifier obtains (m1, ...,mN )
by measuring his halves in Pauli basis. Because the verifier’s measurement and
the prover’s measurement commute with each other, in the virtual protocol 1,
the verifier’s acceptance probability does not change even if the verifier chooses
(W1, ...,WN ) and measures ρV in the corresponding basis to obtain outcomes
(m1, ...,mN ) before ρP is given to the prover. Moreover, conditioned on the

above measurement outcomes, the state in P collapses to
⊗N

j=1(U(Wj)|mj〉)
(See Lemma 2.1). Therefore, the virtual protocol 1 is exactly the same as the
original protocol from the prover’s view, and the verifier’s acceptance probability

13



Setup(1λ): The setup algorithm chooses (W1, ...,WN )
$← {X,Y, Z}N , (m1, ...,mN )

$←
{0, 1}N , (x̂, ẑ)

$← {0, 1}N × {0, 1}N , and a uniformly random sub-
set SV ⊆ [N ] such that 1 ≤ |SV | ≤ 5, and outputs a proving

key kP :=
(
ρP :=

⊗N
j=1(U(Wj)|mj〉), x̂, ẑ

)
and a verification key kV :=

(W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV ).
Prove(kP , x, w): The proving algorithm parses (ρP , x̂, ẑ) ← kP , generates the history

state ρhist for Hx from w, and computes ρ′hist := X x̂Z ẑρhistZ
ẑX x̂. It measures j-th

qubits of ρ′hist and ρP in the Bell basis for j ∈ [N ]. Let x := x1‖x2‖...‖xN , and z :=
z1‖z2‖...‖zN where (xj , zj) ∈ {0, 1}2 denotes the outcome of j-th measurement. It
outputs a proof π := (x, z).

Verify(kV , x, π): The verification algorithm parses
(W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV ) ← kV and (x, z) ← π, chooses
i ∈ [M ] according to the probability distribution defined by {pi}i∈[M ] (i.e., chooses
i with probability pi). Let

Si := {j ∈ [N ] | jth Pauli operator of Pi is not I}.

We note that we have 1 ≤ |Si| ≤ 5 by the 5-locality of Hx. We say that Pi is
consistent to (SV , {Wj}j∈SV ) if and only if Si = SV and the jth Pauli operator of
Pi is Wj for all j ∈ Si. If Pi is not consistent to (SV , {Wj}j∈SV ), it outputs >. If Pi
is consistent to (SV , {Wj}j∈SV ), it flips a biased coin that heads with probability
1− 3|Si|−5. If heads, it outputs >. If tails, it defines

m′j :=


mj ⊕ xj ⊕ x̂j (Wj = Z),
mj ⊕ zj ⊕ ẑj (Wj = X),

mj ⊕ xj ⊕ x̂j ⊕ zj ⊕ ẑj (Wj = Y )

for j ∈ Si, and outputs > if (−1)
⊕

j∈Si
m′j = −si and ⊥ otherwise.

Fig. 1. CV-NIZK ΠNIZK in the QSP model.

of the virtual protocol 1 is the same as that of the original protocol ΠNIZK for
any possibly malicious prover.

Next, we further modify the protocol to define the virtual protocol 2 described
in Figure 3. The difference from the virtual protocol 1 is that instead of setting
m′j , the verification algorithm applies a corresponding Pauli Xx⊕x̂Zz⊕ẑ on ρV ,
and then measures it to obtain m′j . By Lemma 2.2, this does not change the
distribution of (m′1, ...,m

′
N ). Therefore, the verifier’s acceptance probability of

the virtual protocol 2 is the same as that of the virtual protocol 1 for any possibly
malicious prover.

Therefore, it suffices to prove (1− α
N ′ )-completeness and (1− β

N ′ )-soundness
for the virtual protocol 2. When x ∈ Lyes and π is honestly generated, then
ρ′V is the history state ρhist, which satisfies Tr(ρhistHx) ≤ α, by the correctness
of quantum teleportation. For any fixed Pi, the probability that Pi is consis-
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Setupvir-1(1λ): The setup algorithm generates N Bell-pairs between registers P and V
and lets ρP and ρV be quantum states in registers P and V, respectively. It chooses

(x̂, ẑ)
$← {0, 1}N × {0, 1}N . It chooses a uniformly random subset SV ⊆ [N ] such

that 1 ≤ |SV | ≤ 5, and outputs a proving key kP := (ρP , x̂, ẑ) and a verification
key kV := (ρV , SV , x̂, ẑ).

Provevir-1(kP , x, w): This is the same as Prove(kP , x, w) in Figure 1.

Verifyvir-1(kV , x, π): The verification algorithm chooses (W1, ...,WN )
$← {X,Y, Z}N ,

and measures j-th qubit of ρV in the Wj basis for all j ∈ [N ], and lets
(m1, ...,mN ) be the measurement outcomes. The rest of this algorithm is the same
as Verify(kV , x, π) given in Figure 1.

Fig. 2. The virtual protocol 1 for ΠNIZK

Setupvir-2(1λ): This is the same as Setupvir-1(1λ) in Figure 2.
Provevir-2(kP , x, w): This is the same as Prove(kP , x, w) in Figure 1.
Verifyvir-2(kV , x, π): The verification algorithm parses (ρV , SV , x̂, ẑ)← kV and (x, z)←

π, computes ρ′V := Xx⊕x̂Zz⊕ẑρV Z
z⊕ẑXx⊕x̂, chooses (W1, ...,WN )

$← {X,Y, Z}N ,
measures j-th qubit of ρ′V in the Wj basis for all j ∈ [N ], and lets (m′1, ...,m

′
N ) be

the measurement outcomes.
It chooses i ∈ [M ] and defines Si ⊆ [N ] similarly to Verify(kV , x, π) in Figure 1.
If Pi is not consistent to (SV , {Wj}j∈SV ), it outputs >. If Pi is consistent to
(SV , {Wj}j∈SV ), it flips a biased coin that heads with probability 1 − 3|Si|−5. If

heads, it outputs >. If tails, it outputs > if (−1)
⊕

j∈Si
m′j = −si and ⊥ otherwise.

Fig. 3. The virtual protocol 2 for ΠNIZK

tent to (SV , {Wj}j∈SV
) and the coin tails is 1

N ′ . Therefore, by Lemma 2.3 and
Lemma 2.4, the verifier’s acceptance probability is 1− 1

N ′Tr(ρhistHx) ≥ 1− α
N ′ .

Let A be an adaptive adversary against soundness of virtual protocol 2.
That is, A is given kP and outputs (x, π). We say that A wins if x ∈ Lno and
Verify(kV , x, π) = >. For any x, let Ex be the event that the statement output
by A is x, and ρ′V,x be the state in V right before the measurement by Verify
conditioned on Ex. Similarly to the analysis for the completeness, by Lemma 2.3
and Lemma 2.4, we have

Pr[A wins] =
∑
x∈Lno

Pr[Ex]

(
1− 1

N ′
Tr(ρ′V,xHx)

)
≤
∑
x∈Lno

Pr[Ex]

(
1− β

N ′

)
≤ 1− β

N ′
.

Proof of Lemma 3.2. We describe the simulator Sim below.

Sim(kV , x): The simulator parses (W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV
) ←

kV and does the following.
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1. Generate the classical description of the density matrix ρSV
:= Simhist(x, SV )

where Simhist is as in Lemma 2.4.
2. Sample {xj , zj}j∈SV

according to the probability distribution of out-
comes of the Bell-basis measurements of the corresponding pairs of qubits

of
(∏

j∈SV
X
x̂j

j Z
ẑj
j

)
ρSV

(∏
j∈SV

Z
ẑj
j X

x̂j

j

)
and

⊗
j∈SV

(U(Wj) |mj〉). We

emphasize that this measurement can be simulated in a classical proba-
bilistic polynomial time since |SV | ≤ 5.

3. Choose (xj , zj)
$← {0, 1}2 for all j ∈ [N ] \ SV .

4. Output π := (x, z) where x := x1‖x2‖...‖xN and z := z1‖z2‖...‖zN .

We prove that the output of this simulator is indistinguishable from the real
proof. For proving this, we consider the following sequences of modified simula-
tors. We note that these simulators may perform quantum computations unlike
the real simulator.

Sim1(kV , x): The simulator parses (W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV
)←

kV and does the following.
1. Generate the classical description of the density matrix ρSV

:= Simhist(x, SV )
where Simhist is as in Lemma 2.4. (This step is the same as the step 1 of
Sim(kV , x).)

2. Generate ρ̃′hist :=
(∏

j∈SV
X
x̂j

j Z
ẑj
j

)
ρSV

(∏
j∈SV

Z
ẑj
j X

x̂j

j

)
⊗ I[N]\SV

2|[N]\SV |
.

3. Measure j-th qubits of ρ̃′hist and ρP :=
⊗N

j=1(U(Wj)|mj〉) in the Bell
basis for j ∈ [N ], and let (xj , zj) be the j-th measurement result.

4. Output π := (x, z) where x := x1‖x2‖...‖xN and z := z1‖z2‖...‖zN .

Clearly, the distributions of {xj , zj}j∈SV
output by Sim(kV , x) and Sim1(kV , x)

are the same. Moreover, the distributions of {xj , zj}j∈[N ]\SV
output by Sim(kV , x)

and Sim1(kV , x) are both uniformly and independently random. Therefore, out-
put distributions of Sim(kV , x) and Sim1(kV , x) are exactly the same.

Next, we consider the following modified simulator that takes a witness w ∈
RL(x) as input.

Sim2(kV , x, w): The simulator parses (W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV
)←

kV and does the following.
1. Generate the history state ρhist for Hx from w.

2. Generate (x̂j , ẑj)
$← {0, 1}2 for j ∈ [N ] \ SV and let x̂ := x̂1‖...‖x̂N and

ẑ := ẑ1‖...‖ẑN .
3. Compute ρ′hist := X x̂Z ẑρhistZ

ẑX x̂.

4. Measure j-th qubits of ρ′hist and ρP :=
⊗N

j=1(U(Wj)|mj〉) in the Bell
basis for j ∈ [N ], and let (xj , zj) be the j-th measurement result.

5. Output π := (x, z) where x := x1‖x2‖...‖xN and z := z1‖z2‖...‖zN .

We have ρ′hist =
(∏

j∈SV
X
x̂j

j Z
ẑj
j

)
TrN\SV

[ρhist]
(∏

j∈SV
Z
ẑj
j X

x̂j

j

)
⊗ I[N]\SV

2|[N]\SV |

from the view of a distinguisher that has no information on {x̂j , ẑj}j∈[N ]\SV
.

By Lemma 2.4, we have ‖ρSV
−Tr[N ]\SV

ρhist‖tr = negl(λ). Therefore, we have

‖ρ̃′hist − ρ′hist‖tr = negl(λ). This means that Sim1(kV , x) and Sim2(kV , x, w)
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are statistically indistinguishable from the view of a distinguisher that makes
at most one query.
Finally, noting that the output distribution of Sim2(kV , x, w) is exactly the
same as that of Prove(kP , x, w), the proof of Lemma 3.2 is completed.

4 Dual-Mode CV-NIZK with Preprocessing

In this section, we extend the CV-NIZK given in Section 3 to reduce the amount
of trust in the setup at the cost of introducing a quantum preprocessing and rely-
ing on a computational assumption. In the construction in Section 3, we assume
that the trusted setup algorithm honestly generates proving and verification
keys, which are correlated with each other, and sends them to the prover and
verifier, respectively, without revealing them to the other party. Here, we give a
construction of CV-NIZK with preprocessing that consists of the generation of
common reference string by a trusted party and a single instance-independent
quantum message from the verifier to the prover. We call such a model the CRS
+ (V → P ) model. We note this is the same model as is considered in [CVZ20].
Moreover, our construction has a nice feature called the dual-mode property,
which has been considered for NIZKs for NP [GS12, GOS12, PS19].

4.1 Definition

We give a formal definition of a dual-mode CV-NIZK in the CRS + (V → P ) model.

Definition 4.1 (Dual-Mode CV-NIZK in the CRS + (V → P ) Model).
A dual-mode CV-NIZK for a QMA promise problem L = (Lyes, Lno) in the CRS
+ (V → P ) model consists of algorithms Π = (CRSGen,Preprocess,Prove,Verify)
with the following syntax:

CRSGen(1λ,mode): This is a PPT algorithm that takes the security parameter
1λ and a mode mode ∈ {binding, hiding} as input and outputs a classical
common reference string crs. We note that crs can be reused and thus this
algorithm is only needed to run once by a trusted third party.

Preprocess(crs): This is a QPT algorithm that takes the common reference string
crs as input and outputs a quantum proving key kP and a classical verification
key kV . We note that this algorithm is supposed to be run by the verifier
as preprocessing, and kP is supposed to be sent to the prover while kV is
supposed to be kept on verifier’s side in secret. We also note that they can
be used only once and cannot be reused unlike crs.

Prove(crs, kP , x, w
⊗k): This is a QPT algorithm that takes the common reference

string crs, the proving key kP , a statement x, and k = poly(λ) copies w⊗k of
a witness w ∈ RL(x) as input and outputs a classical proof π.

Verify(crs, kV , x, π): This is a PPT algorithm that takes the common reference
string crs, the verification key kV , a statement x, and a proof π as input and
outputs > indicating acceptance or ⊥ indicating rejection.
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We require Π to satisfy the following properties for some 0 < s < c < 1 such
that c− s > 1/poly(λ). Especially, when we do not specify c and s, they are set
as c = 1− negl(λ) and s = negl(λ).

c-Completeness. For all mode ∈ {binding, hiding}, x ∈ Lyes ∩ {0, 1}λ, and
w ∈ RL(x), we have

Pr

Verify(crs, kV , x, π) = > :

crs
$← CRSGen(1λ,mode)

(kP , kV )
$← Preprocess(crs)

π
$← Prove(crs, kP , x, w

⊗k)

 ≥ c.
(Adaptive) Statistical s-Soundness in the Binding Mode For all unbounded-

time adversary A, we have

Pr

x ∈ Lno ∧ Verify(crs, kV , x, π) = > :

crs
$← CRSGen(1λ, binding)

(kP , kV )
$← Preprocess(crs)

(x, π)
$← A(crs, kP )

 ≤ s.
(Adaptive Multi-Theorem) Statistical Zero-Knowledge in the Hiding Mode.

There exists a PPT simulator Sim0 and a QPT simulator Sim1 such that for any
unbounded-time distinguisher D, we have∣∣∣Pr

[
DOP (crs,·,·,·)(crs) = 1 : crs

$← CRSGen(1λ, hiding)
]

− Pr
[
DOS(td,·,·,·)(crs) = 1 : (crs, td)

$← Sim0(1λ)
]∣∣∣ ≤ negl(λ)

where D can make poly(λ) queries, which should be of the form (kP , x, w
⊗k) where

w ∈ RL(x) and w⊗k is unentangled with D’s internal registers,9 OP (crs, kP , x, w
⊗k)

returns Prove(crs, kP , x, w
⊗k), and OS(td, kP , x, w

⊗k) returns Sim1(td, kP , x).

Computational Mode Indistinguishability. For any non-uniform QPT dis-
tinguisher D, we have

|Pr [D(crsbinding) = 1]− Pr [D(crshiding) = 1]| ≤ negl(λ)

where crsbinding
$← CRSGen(1λ, binding) and crshiding

$← CRSGen(1λ, hiding).

Though Definition 4.1 does not explicitly require anything on soundness in
the hiding mode or the zero-knowledge property in the binding mode, we can
easily prove that they are satisfied in a computational sense.

Finally, we note that we can amplify the gap between the thresholds for
completeness and soundness by parallel repetitions similarly to CV-NIZK in the
QSP model as discussed in Section 2.3. As a result, we obtain the following
lemma.

9 We remark that kP is allowed to be entangled with D’s internal registers unlike w⊗k.
See also footnote 8.
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Lemma 4.1 (Gap amplification for dual-mode CV-NIZK in the CRS
+ (V → P ) model). If there exists a dual-mode CV-NIZK for L in the CRS
+ (V → P ) model that satisfies c-completeness and s-soundness, for some 0 <
s < c < 1 such that c − s > 1/poly(λ), then there exists a dual-mode CV-
NIZK for L in the CRS + (V → P ) model (with (1− negl(λ))-completeness and
negl(λ)-soundness).

Since this can be proven similarly to Lemma 2.5, we omit a proof.

4.2 Building Blocks

We introduce two cryptographic bulding blocks for our dual-mode CV-NIZK in
the CRS + (V → P ) model.

Lossy Encryption Intuitively, a lossy encryption scheme is a public key encryp-
tion scheme with a special property that we can generate a lossy key that is
computationally indistinguishable from an honestly generated public key, for
which there is no corresponding decryption key.

Dual-Mode Oblivious Transfer The second building block is a k-out-of-n dual-
mode oblivious transfer. Though this is a newly introduced definition in this
paper, 1-out-of-2 case is already implicit in existing works on universally com-
posable (UC-secure) [Can20] oblivious transfers [PVW08, Qua20]. Due to the
space limitation, we only give its syntax and intuitive explanations for the secu-
rity requirements.

Definition 4.2 (Dual-mode oblivious transfer (sketch) ). A (2-round) k-
out-of-n dual-mode oblivious transfer with a message space M consists of PPT
algorithms ΠOT = (CRSGen,Receiver,Sender,Derive).

CRSGen(1λ,mode): This is an algorithm supposed to be run by a trusted third
party that takes the security parameter 1λ and a mode mode ∈ {binding, hiding}
as input and outputs a common reference string crs.

Receiver(crs, J): This is an algorithm supposed to be run by a receiver that takes
the common reference string crs and an ordered set of k indices J ∈ [n]k as
input and outputs a first message ot1 and a receiver’s state st.

Sender(crs, ot1,µ): This is an algorithm supposed to be run by a sender that takes
the common reference string crs, a first message ot1 sent from a receiver and
a tuple of messages µ ∈Mn as input and outputs a second message ot2.

Derive(crs, st, ot2): This is an algorithm supposed to be run by a receiver that
takes a receiver’s state st and a second message ot2 as input and outputs a
tuple of messages µ′ ∈Mk.

We require the following properties.
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Correctness For all mode ∈ {binding, hiding}, J = (j1, ..., jk) ∈ [n]k, and
µ = (µ1, ..., µn) ∈Mn, we have

Pr

Derive(crs, st, ot2) = (µj1 , ..., µjk) :

crs
$← CRSGen(1λ,mode)

(ot1, st)
$← Receiver(crs, J)

ot2
$← Sender(crs, ot1,µ)

 ≥ 1− negl(λ).

Statistical Receiver’s Security in the Binding Mode Intuitively, this se-
curity requires that the indices chosen by a receiver are information theoretically
hidden from a sender in the binding mode.

Statistical Sender’s Security in the Hiding Mode Intuitively, this secu-
rity requires that we can extract the indices of messages which a (possibly mali-
cious) receiver tries to learn by using a trapdoor in the hiding mode.

Computational Mode Indistinguishability. This requires that common ref-
erence strings generated in binding and hiding modes are computationally indis-
tinguishable.

Lemma 4.2. If the LWE assumption holds, then there exists k-out-of-n dual-
mode oblivious transfer for arbitrary 0 < k < n that are polynomial in λ.

Proof (sketch). First, we can see that the LWE-based UC-secure OT by Quach
[Qua20] can be seen as a 1-out-of-2 dual-mode oblivious transfer. This construc-
tion can be converted into 1-out-of-n dual-mode oblivious transfer by using the
generic conversion for an ordinary oblivious transfer given in [BCR86] observing
that the conversion preserves the dual-mode property.10 By k-parallel repetition
of the 1-out-of-n dual-mode oblivious transfer, we obtain k-out-of-n dual-mode
oblivious transfer.

4.3 Construction

In this section, we construct a dual-mode CV-NIZK in the CRS + (V → P ) model.
As a result, we obtain the following theorem.

Theorem 4.1. If the LWE assumption holds, then there exists a dual-mode CV-
NIZK in the CRS + (V → P ) model.

Let L be a QMA promise problem, and Hx, N , M , pi, si, Pi, α, β, and ρhist

be as in Lemma 2.4 for the language L. We let N ′ := 35
∑5
i=1

(
N
i

)
similarly to

Lemma 3.1. Let ΠLE = (InjGenLE, LossyGenLE,EncLE,DecLE) be a lossy encryption
scheme over the message space MLE = {0, 1}2 and the randomness space RLE.
Let ΠOT = (CRSGenOT,ReceiverOT,SenderOT,DeriveOT) be a 5-out-of-N dual-
mode oblivious transfer over the message space MOT =MLE ×RLE . Then our
dual-mode CV-NIZK ΠDM = (CRSGenDM,PreprocessDM,ProveDM,VerifyDM) for
L is described in Figure 4.

Then we prove the following lemmas.

10 Alternatively, it may be possible to directly construct 1-out-of-n dual-mode oblivious
transfer by appropriately modifying the construction by Quach [Qua20].
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CRSGenDM(1λ,mode): The CRS generation algorithm generates crsOT
$←

CRSGenOT(1λ,mode).

– If mode = binding, then it generates (pk, sk)
$← InjGenLE(1λ).

– If mode = hiding, then it generates pk
$← LossyGenLE(1λ).

Then it outputs crsDM := (crsOT, pk).
PreprocessDM(crsDM): The preprocessing algorithm parses (crsOT, pk) ← crsDM and

chooses (W1, ...,WN )
$← {X,Y, Z}N , (m1, ...,mN )

$← {0, 1}N , and a uniformly
random subset SV ⊆ [N ] such that 1 ≤ |SV | ≤ 5. Let J = (j1, ..., j5) ∈ [N ]5

be the elements of SV in the ascending order where we append arbitrary in-

dices when |SV | < 5. It generates (ot1, st)
$← ReceiverOT(crsOT, J) and out-

puts a proving key kP :=
(
ρP :=

⊗N
j=1(U(Wj)|mj〉), ot1

)
and a verification key

kV := (W1, ...,WN ,m1, ...,mN , SV , st).
ProveDM(crsDM, kP , x, w): The proving algorithm parses (crsOT, pk) ← crsDM and

(ρP , ot1) ← kP , generates (x̂, ẑ)
$← {0, 1}N × {0, 1}N , generates the history state

ρhist for Hx from w, and computes ρ′hist := X x̂Z ẑρhistZ
ẑX x̂. It measures j-th

qubits of ρ′hist and ρP in the Bell basis for j ∈ [N ]. Let x := x1‖x2‖...‖xN , and
z := z1‖z2‖...‖zN where (xj , zj) denotes the outcome of j-th measurement. For

j ∈ [N ], it generates ctj := EncLE(pk, (x̂j , ẑj);Rj) where Rj
$← RLE and x̂j and

ẑj denote the j-th bits of x̂ and ẑ, respectively. It sets µj := ((x̂j , ẑj), Rj) for

j ∈ [N ] and generates ot2
$← SenderOT(crsOT, ot1, (µ1, ..., µN )). It outputs a proof

π := (x, z, {ctj}j∈[N ], ot2).
VerifyDM(crsDM, kV , x, π): The verification algorithm parses (crsOT, pk) ← crsDM,

(W1, ...,WN ,m1, ...,mN , SV , st) ← kV , and (x, z, {ctj}j∈[N ], ot2) ← π. It runs

µ′
$← DeriveOT(crsOT, st, ot2) and parses (((x̂′1, ẑ

′
1), R′1), ..., ((x̂′5, ẑ

′
5), R′5)) ← µ′. If

EncLE(pk, (x̂′i, ẑ
′
i);R

′
i) 6= ctji for some i ∈ [5], it outputs ⊥. Otherwise, it recovers

{x̂j , ẑj}j∈SV by setting (x̂ji , ẑji) := (x̂′i, ẑ
′
i) for i ∈ [|SV |]. It chooses i ∈ [M ] ac-

cording to the probability distribution defined by {pi}i∈[M ] (i.e., chooses i with
probability pi). Let

Si := {j ∈ [N ] | jth Pauli operator of Pi is not I}.

We note that we have 1 ≤ |Si| ≤ 5 by the 5-locality of Hx. We say that Pi is
consistent to (SV , {Wj}j∈SV ) if and only if Si = SV and the jth Pauli operator of
Pi is Wj for all j ∈ Si. If Pi is not consistent to (SV , {Wj}j∈SV ), it outputs >. If Pi
is consistent to (SV , {Wj}j∈SV ), it flips a biased coin that heads with probability
1− 3|Si|−5. If heads, it outputs >. If tails, it defines

m′j :=


mj ⊕ xj ⊕ x̂j (Wj = Z),
mj ⊕ zj ⊕ ẑj (Wj = X),

mj ⊕ xj ⊕ x̂j ⊕ zj ⊕ ẑj (Wj = Y )

for j ∈ Si, and outputs > if (−1)
⊕

j∈Si
m′j = −si and ⊥ otherwise.

Fig. 4. Dual-Mode CV-NIZK ΠDM.
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Lemma 4.3. ΠDM satisfies
(
1− α

N ′ − negl(λ)
)
-completeness.

Proof. By the correctness of ΠOT, it is easy to see that the probability that an
honestly generated proof passes the verification differs from that in ΠNIZK in
Figure 1 only by negl(λ). Since ΠNIZK satisfies

(
1− α

N ′

)
-completeness as shown

in Lemma 3.1, ΠDM satisfies
(
1− α

N ′ − negl(λ)
)
-completeness.

Lemma 4.4. ΠDM satisfies the computational mode indistinguishability.

Proof. This can be reduced to the computational mode indistinguishability of
ΠOT and ΠLE in a straightforward manner.

Lemma 4.5. ΠDM satisfies statistical
(

1− β
N ′ + negl(λ)

)
-soundness in the bind-

ing mode.

Lemma 4.6. ΠDM satisfies the statistical zero-knowledge property in the hiding
mode.

By combining Lemmas 4.1 to 4.6 and(
1− α

N ′
− negl(λ)

)
−
(

1− β

N ′
+ negl(λ)

)
=
β − α
N ′

− negl(λ) =
1

poly(λ)
,

we obtain Theorem 4.1.
In the following, we give proof sketches of Lemmas 4.5 and 4.6.

Soundness in the binding mode. For a cheating prover, we consider a modified
soundness game where the challenger extracts {x̂j , ẑj}j∈SV

from {ctj}j∈SV
by

just decrypting them instead of deriving {(x̂j , ẑj), Rj}j∈SV
from ot2 and then

checking the consistency to {ctj}j∈SV
as in the actual verification algorithm.

This does not decrease adversary’s winning probability since {x̂j , ẑj}j∈SV
de-

rived from ot2 should be equal to decryption of {ctj}j∈SV
or otherwise the ver-

ification algorithm immediately rejects. In this game, the challenger does not
use st of ΠOT. Therefore, by the receiver’s security of ΠOT, adversary’s winning
probability changes negligibly even if we generate ot1 by the simulator Simrec.
At this point, the challenger obtain no information about SV . Then soundness
in this game can be reduced to the soundness of ΠNIZK in Figure 1 against aug-
mented cheating provers with an additional capability to choose {x̂j , ẑj}j∈[N ].
By carefully examining the proof of the soundness of ΠNIZK, one can see that the
proof works against such augmented cheating provers as well. (Note that what
is essential for the soundness of ΠNIZK is that SV is hidden from the cheating
prover.)

Zero-knowledge in the hiding mode. In the hiding mode, pk of ΠLE is in the lossy
mode, and thus {ctj}j∈[N ] can be simulated only from pk by encrypting all 0
message. Moreover, by sender’s security in the hiding mode of ΠOT, ot2 can be
simulated from {x̂j , ẑj}j∈SV

where SV is a subset such that |SV | = 5 extracted
from ot1. Therefore, the zero-knowledge property of ΠDM can be reduced to the

22



zero-knowledge property of ΠNIZK in Figure 1 against augmented malicious veri-
fiers with an additional capability to choose SV and ρP . By carefully examining
the proof of the zero-knowledge property of ΠNIZK, one can see that the proof
works against such augmented malicious verifiers as well. (Note that what is
essential for the zero-knowledge property of ΠNIZK is that {x̂j , ẑj}j /∈SV

is hidden
from the malicious verifier.)

5 CV-NIZK via Fiat-Shamir Transformation

In this section, we construct CV-NIZK in the quantum random oracle model via
the Fiat-Shamir transformation.

5.1 Definition

We give a formal definition of CV-NIZK in the QRO + (V → P ) model.

Definition 5.1 (CV-NIZK in the QRO + (V → P ) Model). A CV-NIZK
for a QMA promise problem L = (Lyes, Lno) in the QRO + (V → P ) model
w.r.t. a random oracle distribution ROdist consists of algorithms Π = (Preprocess,
Prove,Verify) with the following syntax:

Preprocess(1λ): This is a QPT algorithm that takes the security parameter 1λ

as input, and outputs a quantum proving key kP and a classical verification
key kV . We note that this algorithm is supposed to be run by the verifier
as preprocessing, and kP is supposed to be sent to the prover while kV is
supposed to be kept on verifier’s side in secret. We also note that they can
be used only once and cannot be reused.

ProveH(kP , x, w
⊗k): This is a QPT algorithm that is given quantum oracle access

to the random oracle H. It takes the proving key kP , a statement x, and
k = poly(λ) copies w⊗k of a witness w ∈ RL(x) as input, and outputs a
classical proof π.

VerifyH(kV , x, π): This is a PPT algorithm that is given classical oracle access
to the random oracle H. It takes the verification key kV , a statement x,
and a proof π as input, and outputs > indicating acceptance or ⊥ indicating
rejection.

We require Π to satisfy the following properties.

Completeness. For all x ∈ Lyes ∩ {0, 1}λ, and w ∈ RL(x), we have

Pr

VerifyH(kV , x, π) = > :

H
$← ROdist

(kP , kV )
$← Preprocess(1λ)

π
$← ProveH(kP , x, w

⊗k)

 ≥ 1− negl(λ).
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Adaptive Statistical Soundness. For all adversaries A that make at most
poly(λ) quantum random oracle queries, we have

Pr

x ∈ Lno ∧ VerifyH(kV , x, π) = > :

H
$← ROdist

(kP , kV )
$← Preprocess(1λ)

(x, π)
$← AH(kP )

 ≤ negl(λ).

Adaptive Multi-Theorem Zero-Knowledge. For defining the zero-knowledge
property in the QROM, we define the syntax of a simulator in the QROM follow-
ing [Unr15]. A simulator is given quantum access to the random oracle H and
classical access to reprogramming oracle Reprogram. When the simulator queries
(x, y) to Reprogram, the random oracle H is reprogrammed so that H(x) := y
while keeping the values on other inputs unchanged. Then the adaptive multi-
theorem zero-knowledge property is defined as follows:

There exists a QPT simulator Sim with the above syntax such that for any
QPT distinguisher D, we have∣∣∣Pr

[
DH,O

H
P (·,·,·)(1λ) = 1 : H

$← ROdist
]

− Pr
[
DH,O

H,Reprogram
S (·,·,·)(1λ) = 1 : H

$← ROdist
]∣∣∣ ≤ negl(λ)

where D’s queries to the second oracle should be of the form (kP , x, w
⊗k) where

w ∈ RL(x) and w⊗k is unentangled with D’s internal registers, 11 OHP (kP , x, w
⊗k)

returns ProveH(kP , x, w
⊗k), and OH,ReprogramS (kP , x, w

⊗k) returns SimH,Reprogram(kP , x).

Remark 5.1. Remark that the “multi-theorem” zero-knowledge does not mean
that a preprocessing can be reused many times. It rather means that a single
random oracle can be reused as long as a fresh preprocessing is run every time.
This is consistent to the definition in the CRS + (V → P ) model (Definition 4.1)
if we think of the random oracle as replacement of CRS.

5.2 Building Blocks

We use the two cryptographic primitives, a non-interactive commitment scheme
and a Σ-protocol with quantum preprocessing, for our construction.

Definition 5.2 (Σ-protocol with Quantum Preprocessing). A Σ-protocol
with quantum preprocessing for a QMA promise problem L = (Lyes, Lno) consists
of algorithms Π = (Preprocess,Prove1,Verify1,Prove2,Verify2) with the following
syntax:

Preprocess(1λ): This is a QPT algorithm that takes the security parameter 1λ

as input, and outputs a quantum proving key kP and a classical verification

11 We remark that kP is allowed to be entangled with D’s internal registers unlike w⊗k.
See also footnote 8.
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key kV . We note that this algorithm is supposed to be run by the verifier
as preprocessing, and kP is supposed to be sent to the prover while kV is
supposed to be kept on verifier’s side in secret. We also note that they can
be used only once and cannot be reused.

Prove1(kP , x, w
⊗k): This is a QPT algorithm that takes the proving key kP , a

statement x, and k = poly(λ) copies w⊗k of a witness w ∈ RL(x) as input,
and outputs a classical message msg1 and a state st.

Verify1(1λ): This is a PPT algorithm that takes the security parameter 1λ, and
outputs a classical message msg2, which is uniformly sampled from a certain
set.

Prove2(st,msg2): This is a QPT algorithm that takes the state st and the message
msg2 as input, and outputs a classical message msg3.

Verify2(kV , x,msg1,msg2,msg3): This is a PPT algorithm that takes the verifi-
cation key kV , the statement x, and classical messages msg1,msg2,msg3 as
input, and outputs > indicating acceptance or ⊥ indicating rejection.

We require Π to satisfy the following properties.

c-Completeness. For all x ∈ Lyes ∩ {0, 1}λ, and w ∈ RL(x), we have

Pr

Verify2(kV , x,msg1,msg2,msg3) = > :

(kP , kV )
$← Preprocess(1λ)

(msg1, st)
$← Prove1(kP , x, w

⊗k)

msg2
$← Verify1(1λ)

msg3
$← Prove2(st,msg2)

 ≥ c.

(Adaptive Statistical) s-soundness. For all adversary (A1,A2), we have

Pr

x ∈ Lno ∧Σ.Verify2(kV , x,msg1,msg2,msg3) = > :

(kP , kV )
$← Preprocess(1λ)

(x, st,msg1)
$← A1(kP )

msg2
$← Verify1(1λ)

msg3
$← A2(st,msg2)

 ≤ s.

Special Zero-Knowledge. There exists a QPT algorithm Sim such that for
any x ∈ Lyes, w ∈ RL(x), msg2, and QPT adversary (A1,A2), we have∣∣∣∣∣∣∣∣∣∣∣∣

Pr

A2(stA, x,msg1,msg2,msg3) = 1 :

(kP , stA)
$← A1(1λ)

(msg1, st)
$← Prove1(kP , x, w

⊗k)

msg3
$← Prove2(st,msg2)


− Pr

[
A2(stA, x,msg1,msg2,msg3) = 1 :

(kP , stA)
$← A1(1λ)

(msg1,msg3)
$← Sim(kP , x,msg2)

]
∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

High Min-Entropy. Prove1 can be divided into the “quantum part” and “clas-
sical part” as follows:

ProveQ1 (kP , x, w
⊗k): This is a QPT algorithm that outputs a classical string st′.
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ProveC1 (st′): This is a PPT algorithm that outputs msg1 and st.

Moreover, for any st′ generated by ProveQ1 , we have

max
msg∗1

Pr[ProveC1 (st′) = msg∗1] = negl(λ).

Lemma 5.1 (Gap Amplification for Σ-protocol with quantum prepro-
cessing). If there exists a Σ-protocol with quantum preprocessing for a promise
problem L that satisfies c-completeness, s-soundness, special zero-knowledge, and
high min-entropy for some 0 < s < c < 1 such that c − s > 1/poly(λ), then
there exists a Σ-protocol with quantum preprocessing for L with (1 − negl(λ))-
completeness, negl(λ)-soundness, special zero-knowledge, and high min-entropy.

Proof. It is clear that the parallel repetition can amplify the completeness-
soundness gap, and that the high min-entropy is preserved under the parallel
repetition. We can also show that parallel repetition preserves the special zero-
knowledge property by a standard hybrid argument.

By applying a similar trick as in Section 3 to the quantum Σ-protocol of
[BG20], we obtain the following theorem.

Theorem 5.1. If a non-interactive commitment scheme exists, then there exists
a Σ-protocol with quantum preprocessing for QMA.

As mentioned in Section 5.1, a non-interactive commitment scheme uncondition-
ally exists in the QROM. Therefore, the above theorem implies the following
corollary.

Corollary 5.1. There exists a Σ-protocol with quantum preprocessing for QMA
in the QROM.

5.3 Construction

In this section, we construct a CV-NIZK in the QRO + (V → P ) model. As a
result, we obtain the following theorem.

Theorem 5.2. There exists a CV-NIZK for QMA in the QRO + (V → P ) model.

Let L = (Lyes, Lno) be a QMA promise problem, H be a random oracle, and
ΠΣ = (Σ.Preprocess, Σ.Prove1, Σ.Verify1, Σ.Prove2, Σ.Verify2) be a Σ-protocol
with quantum preprocessing (with (1−negl(λ))-completeness and negl(λ)-soundness).
Then our CV-NIZK in the QRO + (V → P ) modelΠQRO = (PreprocessQRO,ProveQRO,
VerifyQRO) for L is described in Figure 5.

Lemma 5.2. ΠQRO satisfies (1 − negl(λ))-completeness and adaptive negl(λ)-
soundness.

Correctness is clear. Soundness is shown by using the measure-and-reprogram
lemma shown in [DFM20].

Lemma 5.3. ΠQRO satisfies adaptive multi-theorem zero-knowledge property.

This is proven by using adaptive reprogramming lemma shown in [GHHM20].
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PreprocessQRO(1λ): It runs Σ.Preprocess(1λ) → (Σ.kV , Σ.kP ), and outputs kV :=
Σ.kV and kP := Σ.kP .

ProveHQRO(kP , x, w
⊗k): It parses Σ.kP ← kP , and runs Σ.Prove1(kP , x, w

⊗k) →
(msg1, st). It computes msg2 := H(x,msg1). It runs Σ.Prove2(st,msg2)→ msg3. It
outputs π := (msg1,msg3).

VerifyHQRO(kV , x, π): It parses Σ.kV ← kV and (msg1,msg3) ← π. It computes
Σ.Verify2(kV , x,msg1, H(x,msg1),msg3). If the output is ⊥, it outputs ⊥. If the
output is >, it outputs >.

Fig. 5. CV-NIZK in the QRO + (V → P ) model ΠQRO.

Shared Bell-pair model. Remark that the verifier ofΠQRO just sends a state ρP :=⊗N
j=1(U(Wj)|mj〉) for (W1, ...,WN )

$← {X,Y, Z}N and (m1, ...,mN )
$← {0, 1}N

while keeping (W1, ...,WN ,m1, ...,mN ) as a verification key. This step can be
done in a non-interactive way if N Bell-pairs are a priori shared between the
prover and verifier. That is, the verifier can measure his halves of Bell pairs in a
randomly chosen bases (W1, ...,WN ) to get measurement outcomes (m1, ...,mN ).
Apparently, this does not harm either of soundness or zero-knowledge since the
protocol is the same as ΠQRO from the view of the prover and the malicious
verifier’s power is just weaker than that in ΠQRO in the sense that it cannot
control the quantum state to be sent to the prover. Thus, we obtain the following
theorem.

Theorem 5.3. There exists a CV-NIZK for QMA in the QRO + shared Bell
pair model.
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BCR86. G. Brassard, C. Crépeau, and J.-M. Robert. Information Theoretic Reduc-
tions among Disclosure Problems. In 27th FOCS, pages 168–173. 1986.
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