
Key-schedule Security for the TLS 1.3 Standard

Chris Brzuska1, Antoine Delignat-Lavaud2, Christoph Egger3,
Cédric Fournet2, Konrad Kohbrok1, and Markulf Kohlweiss4

1 Aalto University, Finland {chris.brzuska,konrad.kohbrok}@aalto.fi
2 Microsoft Research Cambridge, UK {fournet,antdl}@microsoft.com
3 IRIF, Université Paris Cité, France christoph.egger@alumni.fau.de

4 University of Edinburgh, UK mkohlwei@ed.ac.uk

Abstract. Transport Layer Security (TLS) is the cryptographic back-
bone of secure communication on the Internet. In its latest version 1.3,
the standardization process has taken formal analysis into account both
due to the importance of the protocol and the experience with conceptual
attacks against previous versions. To manage the complexity of TLS (the
specification exceeds 100 pages), prior reduction-based analyses have fo-
cused on some protocol features and omitted others, e.g., included session
resumption and omitted agile algorithms or vice versa.
This article is a major step towards analysing the TLS 1.3 key estab-
lishment protocol as specified at the end of its rigorous standardization
process. Namely, we provide a full proof of the TLS key schedule, a core
protocol component which produces output keys and internal keys of
the key exchange protocol. In particular, our model supports all key
derivations featured in the standard, including its negotiated modes and
algorithms that combine an optional Diffie-Hellman exchange for for-
ward secrecy with optional pre-shared keys supplied by the application
or recursively established in prior sessions.
Technically, we rely on state-separating proofs (Asiacrypt ’18) and intro-
duce techniques to model large and complex derivation graphs. Our key
schedule analysis techniques have been used subsequently to analyse the
key schedule of Draft 11 of the MLS protocol (S&P ’22) and to propose
improvements.

Keywords: TLS 1.3 · key schedule · protocol analysis · state-separating
proofs

1 Introduction

Transport Layer Security (TLS) is the most widely used authenticated secure
channel protocol on the Internet, protecting the communications of billions of
users. Previous versions of TLS have suffered from impactful attacks against
weaknesses in their design, including legacy algorithms (e.g. FREAK for ex-
port RSA [9], LogJam [2] for export Diffie-Hellman, WeakDH for ill-chosen
groups, and exploits against Mantin biases of RC4 [21]); the RSA key encap-
sulation (e.g. the ROBOT [19] variant of Bleichenbacher’s PKCS1 padding or-
acle); the fragile MAC-encode-encrypt construction leading to many variants

2 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

of Vaudenay’s padding oracles against CBC cipher suites (e.g. BEAST [38],
Lucky13 [3]); the weak signature over nonces allowing protocol version down-
grades (e.g. DROWN [5] and POODLE); attacks on other negotiated param-
eters [11], the key exchange logic (e.g. the cross-protocol attack of [49] and
3SHAKE [12]); exploitations of collisions on the hash transcript (e.g. SLOTH [15]).
TLS 1.3 intends both to fix the weaknesses of previous versions and to improve
the protocol performance, notably by lowering the latency of connection es-
tablishment from two roundtrips down to one, or even zero when resuming a
connection.

Historically, the IETF process to adopt a standard involves an open consor-
tium of contributors mostly coming from industry, with a bias towards early
implementers. The TLS working group at the IETF acknowledged that this pro-
cess puts too much emphasis on deployment and implementation concerns, and
tends to address security issues reactively [50]. For TLS 1.3, it decided to ad-
dress security upfront by welcoming feedback from various cryptographic efforts,
including symbolic [30,29] and computational protocol models [34,35,48], both
on paper and implemented in tools such as Tamarin or CryptoVerif. Early drafts
of TLS 1.3 also drew much inspiration from Krawczyk’s OPTLS protocol [47],
which comes with a detailed security proof, although later versions diverged
from it (in particular in the design of resumption). This proactive approach has
certainly improved the overall design of TLS 1.3, and uncovered flaws along its
28 intermediate drafts. However, many of these efforts are incomplete (focusing,
e.g., on fixed protocol configurations) or do not account for the final version
published in RFC 8446, see Section 6 for a more detailed discussion of related
work. Since final adoption, further questions have been raised about pre-shared
keys, potential reflection attacks [37], and difficulties in separating resumption
PSKs (produced internally by the key exchange) from external ones installed by
the application. In short: we still miss provable security for the final Internet
standard.

TLS can be decomposed into sub-protocols: the record layer manages the
multiplexing, fragmentation, padding and encryption of data into packets (also
called records) from three separate streams of handshake, alert, and application
data. Incoming handshake messages are passed to the handshake sub-protocol,
which in turn produces fresh record keys and outgoing handshake messages.
Taking advantage of this well-understood modularity, other protocols re-use the
TLS 1.3 handshake with different record layers: for instance, DTLS 1.3 is a vari-
ant based on UDP datagrams instead of TCP streams, while the IETF version
of QUIC replaces the record layer with a much extended transport [42], adding
features such as dynamic application streams and fine-grained flow control. De-
tailed security proofs for the TLS 1.3 record layer have been proposed by Patton
et al. [51] (extending the work of Fischlin et al. [40] on stream-based channels),
Badertscher et al. [6], and Bhargavan et al. [32], who also provide a verified ref-
erence implementation. Therefore, we defer to these works for the record layer,
and focus on the handshake protocol.

Key-schedule Security for the TLS 1.3 Standard 3

xtr xtr xpdxpd xtr xpd

xpd

session resumption

xpd

New Session Ticket:

MAC of :

Client Hello:
Binders:

Server Hello:

Certificate:
Signature over :
MAC over :

Fig. 1: Overview over the TLS 1.3 Handshake (left) and its key schedule (right).
[m]k denotes encryption of message m under key k. kae1 and τc are derived from
kcht , kae2 and τs are derived from ksht , and kae3 is derived from ksat . We color
digests and keys in alternating pink and blue to clarify digest-key dependency.
E.g., label c e traffic and digest das is used to derive kcet .

1.1 TLS 1.3 Handshake and Key Schedule

The top of Fig. 1 gives an abstract view of the TLS 1.3 protocol message flow.
In the client hello message, the client sends a nonce nc, its Diffie-Hellman (DH)
share gx, a PSK label and a binder value for domain separation and session
resumption. As a means of negotiation, the client may offer shares for different
groups and different PSK options (thus the indices i, j in gxi

i , label j , binder j).
The server communicates its choice of the DH group and the PSK when send-
ing the server hello message which contains the server nonce ns, its share gyi0
(including the group description) and the label label j0 of the chosen PSK. The
remaining messages consist of server certificate, signature (C(pk),CV(σ)), key
confirmation messages in the forms of messages authentication codes (MACs)
τs and τc computed over the transcript, and a ticket which is used on the client
side to store a resumption key (later referred to as resumption PSK) derived
from the key material of the current key exchange session.

The key schedule is the core part of the handshake that performs all key
computations. It takes as main input PSK and DH key materials and, at each
phase of the handshake, it derives keys, e.g., to encrypt client early traffic (kcet),
to compute the binder value (kbinder), to encrypt server handshake traffic (ksht)
and to encrypt client handshake traffic (kcht).

The key schedule relies on the hashed key derivation function (HKDF) stan-
dard [45], which uses HMAC [7] to implement extract (xtr) and expand (xpd)
operations. In addition, the key schedule makes calls to xpd to expand keys into
further subkeys. The key schedule thus consists of a collection of xtr an xpd op-
erations, organized in a graph. Each of the operations takes as input a chaining
key and/or new key material, (kpsk in the xtr in the early phase and kdh in the
xtr in the in the handshake phase), together with the latest digest and auxiliary
inputs such as a resumption status r and a ticket nonce tn.

4 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

In this article, we consider eight output keys of the TLS key schedule: kcet ,
keem , kbinder , kcht , ksht , kcat , ksat , keam . They constitute a natural boundary,
inasmuch as all other TLS keys and IVs are further derived from them in a
transcript-independent manner.

1.2 Key Schedule Model and Key Exchange Model

We model the security of the key schedule as an indistinguishability game be-
tween a real and an ideal game. The real game allows the adversary to use their
own dishonest application PSKs and Diffie-Hellman shares. In addition, it allows
the adversary to instruct the game to sample honest PSKs and Diffie-Hellman
shares. From these base keys, the adversary can then instruct the model to de-
rive further keys. The adversary cannot see internal keys, but it can obtain the 8
output keys from the model. In turn, in the ideal game, the output keys are re-
placed by unique, random keys which are sampled independently from the input
key material.

The interface of this model captures how the key exchange protocol uses the
key schedule. The key exchange protocol should, indeed, not use the internal
keys, but instead only use the output keys. Moreover, the final session keys
are to be used only by the Record Layer to implement a secure channel. In
a companion paper [25], we show that key exchange security of the TLS 1.3
handshake protocol reduces to the key schedule security established in this paper.
Note that authentication is proved based on keys and does not capture binding
between keys and identities, as needed, e.g., for reflection attacks [29].

Outline We introduce our overall technical approach in Section 2. We define our
assumptions for collision-resistance, pseudorandomness and pre-image resistance
in Section 3. Section 4 defines syntax and security of the TLS key schedule.
Section 5 states the main key schedule theorem and provides its proof. This
article gives proof sketches of all lemmata, highlighting their conceptual insights.
The complete proofs are provided in the full version [23]. Finally, Section 7
includes proposals for (late) changes to the TLS 1.3 standard.

2 Technical Approach

2.1 Handles

Complex derivation steps make it crucial to maintain administrative handles in
the model state, both for internal bookkeeping and security modeling as well as
for communication with the adversary. Namely, to instruct the model to perform
further computations on keys, the adversary can point to the keys to be used
via handles. Such handles are particularly important for honest keys, i.e., honest
psks, honest Diffie-Hellman shares and honest internal keys derived via xtr and
xpd from honest base keys, because the model cannot provide the adversary with
the actual values of these secrets.

Key-schedule Security for the TLS 1.3 Standard 5

Our model constructs handles as nested data records where each nesting step
keeps track of the inputs which were used to compute the associated key. We
have base handles for PSKs and DH secrets, including handles for dummy zero
values to be used in noDH and noPSK mode as well as base handles for a fixed
0salt and fixed 0ikm.

dh〈sort(X,Y)〉 Diffie-Hellman secret
h = psk〈ctr , alg〉 application PSK
noDH〈alg〉 fixed 0len(alg) Diffie-Hellman secret
noPSK〈alg〉 fixed 0len(alg) PSK
0salt fixed 0 salt
0ikm〈alg〉 fixed 0len(alg) initial key material (IKM)

The model then inductively applies the following constructors to build all
other handles from the base handles:

xtr〈name, left parent handle, right parent handle〉.
xpd〈name, label, parent handle, other arguments〉.

For example, given a handle to the early master secret hes , the handle hcet to
the client early transport secret is defined as

hcet = xpd〈cet, c e traffic, hes , tes〉

where tes is the transcript of the protocol messages exchanged so far, and
‘c e traffic’ is the constant byte string label prescribed in the RFC [52] for
this derivation step.

Agility Our model is agile, i.e., it supports multiple algorithms. Thus, we tag
the handles h = psk〈ctr , alg〉, noPSK〈alg〉 and 0ikm〈alg〉 with the algorithm alg
for which the keys are intended. Jumping ahead, we note that we also tag keys
with their intended algorithm so that in the key derivation

kcet = xpd(kes , c e traffic, des),

the agile xpd function can retrieve the correct hash algorithm alg to use
within hmac from the key’s tag. We write alg(hcet) for the algorithm descriptor
of hcet and tagh(k) for key k tagged with this algorithm.

Length The handle determines the algorithm, and the algorithm determines the
length of keys and outputs of a hash-algorithm alg . For convenience, we write
len(hcet) as an alias for len(alg(hcet)).

Note that we introduced handles 0ikm〈alg〉 for the dummy key value 0len(alg)
as well as 0salt for the 1-bit-long 0-key. This is because hmac pads keys with
zeroes up to their block length and thus, storing multiple zero values would
introduce redundancy in the model without a correspondence in real-life.

6 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Name and level In addition to the algorithm and its key length, the handle deter-
mines the key name (cet) and a level. The level is the number of resumptions the
handle records, counting from 0 and adding one for each node with a resumption
label. We write level(hcet) for this level. We will often need to refer to the par-
ent names of a particular key (name) n, and write the pair of parent names as
prntn(n). In the case of xpd, the key is only derived from one key and thus, in
this case, prntn(n) = (n1,⊥). Conversely, we refer by chldrnn(n1) to the set of all
key names which are derived from n1. In particular, if prntn(n) = (n1,⊥), then
n ∈ chldrnn(n1). We refer to all names which share a parent with n as sblngn(n).

Handshake mode Jumping ahead, we note that we use handle data also to com-
municate the handshake mode to the key schedule model. A noDH〈alg〉 Diffie-
Hellman handle signals a psk_ke mode, while a noPSK〈alg〉 PSK handle signals
a dh_ke mode.

2.2 Application Key Registration & Honesty

Honesty of a handle is a crucial concept to model that the key associated with
the handle, when returned to the adversary, looks pseudorandom. Honesty is
inductively computed, starting from the base keys: All zero keys have dishonest
handles. Handles of application PSKs are honest if their key was sampled by the
security model and dishonest if their key was sampled by the security model.
Diffie-Hellman handles are honest if both shares are honest. Derived handles are
honest if and only if at least one of their input handles are honest. Considering
the derivation graph (cf. right side of Fig, 1), we obtain that the hesalt handles
and the handles which appear before have the same honesty as the last PSK
handle, while the handles after hesalt are honest if the last PSK handle was
honest or the last Diffie-Hellman handle was honest.

2.3 State-Separating Proofs (SSPs)

QCN, UNQCN

Qn1, UNQn1

GETn1,

HASH

XpdCN,

Qn1

UNQn1

Keyn1,

QCN

UNQCN

KeyCN,

SETCN,

GETCN,

SETn1,

XPDCN,

Logn1

LogCN

D

D

1

b

HASH
Hash1

(n1,):=prntn(n)
CN:=chldrnn(n1)

Fig. 2: Game Gxpdbn,` for b ∈ {0, 1}

In the following we use
the the pseudorandom-
ness game Gxpd0n,` for the
xpd function (depicted in
Fig. 2) as a running exam-
ple to introduce core con-
cepts. As is common in
cryptography, security is
modeled as an interaction
between an adversary A
(which can be thought of as sitting left of the picture) and a program which
we call the game. This interaction happens via so-called oracles—which we de-
scribe in pseudo-code—corresponding to the arrows from the left side of the
picture. The task of the adversary consists in distinguishing two variants of the

Key-schedule Security for the TLS 1.3 Standard 7

game G0 and G1 with identical interfaces and we measure the success probability
of any such adversary A and call it advantage.

Definition 1 (Advantage). For adversary A, we define the advantage

Adv(A; G0, G1) :=
∣∣Pr[1 = A → G0

]
− Pr

[
1 = A → G1

]∣∣ .
In particular, for the pseudorandomness game Gxpdbn,` for xpd, the analogous
definition is as follows.

Definition 2 (XPD). For adversary A, we define the xpd pseudorandomness
advantage Adv(A, Gxpd0n,`, Gxpd1n,`) as∣∣Pr[1 = A → Gxpd0n,`

]
− Pr

[
1 = A → Gxpd1n,`

]∣∣ ,
where Fig. 2 defines Gxpd0n,`.

The graphs specifying such a security game suggest a natural flow downwards.
While we discuss the details of the game later in this section, one can extract
a conceptual picture already from the graph alone. Concretely the intended
usage (by the adversary) of Gxpdbn,` consists on first registering input values
using the SETn1,` oracle, executing key derivation using the XPDCN ,` oracle and
finally retrieving and testing the output using the GETn,` oracle. In addition, the
adversary gets access to auxiliary oracles, namely the HASH oracle modeling a
cryptographic hash function as well as the Q and UNQ oracles.5 Finally, Gxpdbn,`
is structured in individual components which we call packages.

Definition 3 (Package). A package M consists of a set of oracles [→ M] =
{O1, ..,Ot}, specified by pseudo-code and operating on a set of state variables
Σ, specified on the top of each package description. All other variables used by
oracles are temporary and their values are forgotten after each call. The oracles
of M may depend on oracles [M→] = {O′1, ..,O′t′}, i.e., make calls to oracles in
[M→]. We say that a package M is stateless if Σ = ∅. We say that a package M is
a game if [M→] = ∅.

While some oracles of a package are exposed to the adversary, others are
used only internally within the game. A monolithic version of a game such as
Gxpdbn,` can be obtained by inlining all internal oracle calls. With the concept
of packages we can now discuss the individual parts of Gxpdbn,`. XpdCN ,` is a
parallel composition of Xpdn,` for all children of n1 exposing the oracles XPDn,`

for n ∈ CN , we write XPDCN ,` as shorthand for these oracles. The XpdCN ,`

packages are the only stateless packages in the game, indicated by the white
color as opposed to the gray of stateful packages.
5 These two oracles in particular are necessary for composition: Note that the main
oracles the adversary interacts with are subscripted by a name n and a level ` while
the Q and UNQ oracles only take the name n as subscript. We will share the same
Q and UNQ oracles between many instances of Gxpdbn,` and therefore need to allow
reductions access to these oracles.

8 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Xpdn,`

Parameters

n : name
` : level

prntn : N → (N⊥ ×N⊥)

label : N × {0, 1} → {0, 1}96

State

no state

XPDn,`(h1, r, args)

n1,_← prntn(n)

label ← label(n, r)

h← xpd〈n, label , h1, args〉
(k1, hon)← GETn1,`(h1)

if n = psk :

`← `+ 1

k ← xpd(k1, (label , args))

else

alg ← alg(h1)

d← HASH(tagalg(args))

k ← xpd(k1, (label , d))

h← SETn,`(h, hon, k)

return h

Fig. 3: Xpd package

The XPDCN ,` oracle of package Xpdn,` com-
putes a new handle h ← xpd〈n, label , h1, args〉
alongside a new key k ← xpd(k1, (label , d)) based
on the parent handle h1, the arguments (e.g. tran-
script) and the bit r indicating whether this is a
resumption session. The evaluation also includes
a label which depends on the name of the package
as well as the resumption bit. Note that the oracle
only receives the handle of the input key from the
adversary and only returns the newly constructed
handle of the newly derived key. Concrete secrets
are passed to Keybn,` packages using the GET and
SET oracles. Here we can distinguish the upper
Key1n1,`

package and the lower KeybCN ,` packages
(for all n in CN). We defer discussion about the
Q and UNQ oracle calls to the description of the
Log package.

The upper Key1n1,`
package offers oracle

SETn1,`(h, hon, k) to the adversary which allows it
to register a key. The oracle first verifies that the
handle h matches the name n and level ` of this
key package and—modeling algorithmic agility—
verifies that the algorithm tag matches the value
of the key, and else, assert throws an abort . As
this is an ideal key package (indicated by super-
script b=1) for honest keys, instead of using the
value provided by the adversary a fresh value is
sampled—as indicated by using ←$ in contrast to
← used for assignments. Finally the key is stored
in this package’s state and the handle returned to
the caller. The GET oracle simply restores algo-
rithm tagging on the key value and returns it to
the caller (in this case the Xpd package). The lower
KeybCN ,` packages work the other way round in that they expose the GET oracle
to the adversary while the SET oracle is used by Xpd. We encode the distinguish-
ing task for the adversary in the KeybCN ,` package: In Gxpd0n,` (b = 0), the keys
returned from the GET oracle of the Key0CN ,` is honestly computed based on the
input keys while in the ideal game Gxpd1n,` the values of honest keys are sampled
in the Key package ignoring the value computed by Xpd.

Finally, queries Qn and UNQn to the Logn package (Fig. 4) model collisions.
The Q query simply returns if a handle is re-used while UNQ concerns itself with
collisions between keys via an abort pattern and a mapping method. In slightly
nonstandard notation, we use existential quantors here to express searching for
indices into tables. The pattern models conditions on states where the game
aborts (i.e. terminates and outputs a special symbol), cf. Section 5.3 for their

Key-schedule Security for the TLS 1.3 Standard 9

Keybn,`

Parameters

n : name
` : level

State

Kn,` : Keytable

SETn,`(h, hon, k
?)

assert name(h) = n

assert level(h) = `

assert alg(k?) = alg(h)

k ← untag(k?)

assert len(h) = |k|
if Qn(h) 6= ⊥ : return Qn(h)

if b ∧ hon :

k←$ {0, 1}len(h)

h′ ← UNQn(h, hon, k)

if h′ 6= h : return h′

Kn,`[h]← (k, hon)

return h

GETn,`(h)

assert Kn,`[h] 6= ⊥
(k∗, hon)← Kn,`[h]

k ← tagh(k
∗)

return (k, hon)

LogP,map
n

Parameters

n : name

State

Ln : Log

Qn(h)

if Ln[h] = ⊥ : return ⊥
else

(h′,_,_)← Ln[h]

return h′

UNQn(h, hon, k)

if (∃ h′ : Ln [h
′] = (h′, hon ′, k)

∧ level(h) = r ∧ level(h?) = r′) :

if map(r, hon, r′, hon ′Jn[k]) :

Ln [h]← (h′, hon, k)

Jn [k]← 1

return h′

if (∃ h? : Ln [h
?] = (h′, hon ′, k)

∧ level(h) = r ∧ level(h?) = r′) :

P (r, hon, r′, hon ′)

Ln [h]← (h, hon, k)

return h

P the command P (r, hon, r′, hon ′) is

Z ∅
A if hon = hon ′ = 0 ∧ r = r′ = 0 : throw abort
D if hon = hon ′ = 0 : throw abort
R if hon = hon ′ = 0 : throw abort else throw win
F throw abort

map the command map(r, hon, r′, hon ′, Jn [k]) is

0 0
1 hon = hon ′ = 0 ∧ r 6= r′ ∧ 0 ∈ {r, r′} ∧ Jn [k] 6= 1
∞ hon = hon ′ = 0

Fig. 4: Code for the Key and Log. In addition we use Nkey for a single key
package that answers queries for all levels from the same table and 0key for a
NKey package which consistently answers with the constant all-zeros key.

10 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

use. We use the throw notation here to allow special symbols in addition to
abort which is also used by assert. In the game Gxpdbn,`, the D pattern aborts
on collisions between dishonest keys. The F and R pattern abort if there is a
collision between key values, regardless of their honesty, and they return different
abort messages. Z does not abort at all, and A aborts upon a collision of two
dishonest level 0 keys (which we use to constrain the adversary’s psk registrations
in the key schedule model).

Mapping methods filter certain collisions (preventing an abort event. ∞ al-
lows collisions between Diffie-Hellman secrets (the adversary can construct col-
liding values via XzY = XY z) and the 1 method allows the adversary to register
a dishonest application PSK colliding with an dishonest resumption PSK. The
mapping methods are only used in the proof and not in the security model.

3 Assumptions

3.1 Collision-Resistance

Gcrf-alg,b

HASH(t)

assert t ∈ dom(f-alg)
d← f-alg(t)
if H [t] = ⊥ :

if b ∧ d ∈ range(H) :

throw abort

H [t]← d

return d

Fig. 5: Gcrf-alg,b code.

Fig. 5 defines the collision-resistance game Gcrf-alg,b for
a given function f-alg , where f ∈ {hash, xtr, xpd} and
alg ∈ H which TLS 1.3 currently defines as

H = {sha256, sha384, sha512}

(see FIPS 180-2). The HASH oracle takes as input a text
t from the domain of f-alg and returns its digest d. If that
text t has not been queried before, the digest is stored in
table H at index t. In the ideal game (b = 1), the oracle
first checks whether d already occurs in H , and if so,
throws an abort. Hence, the adversary can distinguish
between the real and the ideal game if and only if it can
submit two different texts with the same digest. Our definition generalizes to
n-ary functions by letting the text t be the tuple of their arguments.

Definition 4 (Collision-Resistance). For an adversary A, a function f ∈
{hash, xtr, xpd} and algorithm alg ∈ H, define collision-resistance advantage
Adv(A, Gcrf-alg,0, Gcrf-alg,1) is∣∣Pr[1 = A → Gcrf-alg,0

]
− Pr

[
1 = A → Gcrf-alg,1

]∣∣ .
Agile Collision-resistance It is convenient to define the agile collision-resistance
game Gacrf,b as well, where f ∈ {hash, xtr, xpd} takes tagged inputs, i.e., hash
takes a single input, tagged with the algorithm to use, xpd takes three inputs
(k, label , args), where k is tagged, and xtr takes inputs (k1, k2) where one is
tagged, and if both are tagged, they are tagged consistently. The adversary can
then make queries to HASH with values in the domain of the agile functions. We
write Hashb := Gacrhash,b. See Section 2.1 for further discussion of tagging.

Key-schedule Security for the TLS 1.3 Standard 11

3.2 Pseudorandomness of xpd

For most key names n, Definition 2 already captures pseudorandomness of xpd.
We now cover two special cases.

XPD to derive PSK For n = psk (cf. Fig. 6a), the layer index increases from `
to ` + 1. Thus, the XPDpsk ,` oracle reads keys via GETrm,` queries, but writes
keys using the level ` + 1 query SETpsk ,`+1. Another difference in Gxpdbpsk ,`
compared to the general Gxpdbn,` is that the lower LogD1

psk package uses a D1
pattern for logging which ignores level 0 UNQpsk (h, hon, k) queries with hon = 0
whenever there already exists a dishonest handle h′ for key value k at level 0.
Since XPDpsk ,` writes only on level `+ 1 > 0, this difference in logging does not
affect the strength of the assumption, but it makes the assumption code align
with the key schedule game, cf. Section 4.1. Finally, for deriving the psk, no
hash-operation is performed.

Definition 5 (XPD for psk). For an adversary A, we define the xpd pseudo-
randomness advantage for psk derivation Adv(A, Gxpd0psk ,`, Gxpd1psk ,`) as∣∣Pr[1 = A → Gxpd0psk ,`

]
− Pr

[
1 = A → Gxpd1psk ,`

]∣∣
XPD to derive esalt For n = esalt , the lower LogResalt package uses an R pattern
instead of a D pattern, sending abort messages whenever the same key value k is
registered as an esalt under two distinct handles h and h′ (across all levels and
regardless of honesty). Note that the adversary could simulate the R pattern
itself (by retrieving all keys and checking for equality) and thus, the R pattern
only weakens the adversary since it can no longer query the game after triggering
an R abort and since the adversary does not learn the value of the collision which
caused the abort.

Definition 6 (XPD for esalt). For an adversary A, we define the xpd pseu-
dorandomness advantage for esalt derivation Adv(A, Gxpd0esalt,`, Gxpd1esalt,`) as∣∣Pr[1 = A → Gxpd0esalt,`

]
− Pr

[
1 = A → Gxpd1esalt,`

]∣∣ .

Qpsk,UNQpsk

Qrm,UNQrm

GETrm,
Xpdpsk,

Qrm
UNQrm

Keyrm,

Qpsk
UNQpsk

Keypsk, +1

SETpsk, +1

GETpsk, +1

SETrm,

XPDpsk,

Logrm

Logpsk

D

D1

1

b

(a) Game Gxpdbpsk,` for b ∈ {0, 1}

GETn1,

HASH

XpdCN,

Qn1

UNQn1

Keyn1,

QCN

UNQCN

KeyCN,

SETCN,

GETCN,

SETn1,

XPDCN,

Logn1

LogCN

Logesalt

D

D

1

b

HASH
Hash1

R

(n1,):=prntn(esalt)
CN:=chldrnn(n1)

QCN, UNQCN

Qn1, UNQn1

(b) Game Gxpdbesalt,` for b ∈ {0, 1}

Fig. 6: xpd assumptions

12 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Xtrbn,`

Parameters

n : name
` : level
b : bit
prntn : N → (N⊥ ×N⊥)

label : N × {0, 1} → {0, 1}96

State

no state

XTRn,`(h1, h2)

n1, n2 ← prntn(n)

if alg(h1) 6= ⊥ ∧ alg(h2) 6= ⊥ :

assert alg(h1) = alg(h2)

h← xtr〈n, h1, h2〉
(k1, hon1)← GETn1,`(h1)

(k2, hon2)← GETn2,`(h2)

k ← xtr(k1, k2)

hon ← hon1 ∨ hon2

if b ∧ hon2 :

k? ←$ {0, 1}len(k)

k ← tagalg(k)(k
?)

h← SETn,`(h, hon, k)

return h

(a) Code of Xtr

Qes,UNQes

Qpsk,UNQpsk

GET0salt,
Xtres,

0Key0salt,

Qes
UNQes

Keyes,
SETes,

GETes,

XTRes,

LogesDb

GETpsk,

Qpsk
UNQpsk

Keypsk,
SETpsk,

LogpskD11

0

GET0salt,0.. -1, +1..d

(b) Game Gxtr1bes,` for b ∈ {0, 1}

Qhs,UNQhs

Qesalt,UNQesalt

GETesalt,
Xtrhs,

Qdh
UNQdh

NKeydh

Qhs
UNQhs

Keyhs,
SEThs,

GEThs,

SETdh
GETdh,0.. -1, +1..d

XTRhs,

Logdh

Loghs

Z

Db

GETdh,

Qesalt
UNQesalt

Keyesalt,
SETesalt,

LogesaltR1

1

(c) Game Gxtr2bhs,` for b ∈ {0, 1}

Qas,UNQas

GET0ikm,
Xtras,

0Key0ikm

Qn
UNQn

Keyas,
SETas,

GETas,

XTRas,

LogasD
b

GEThsalt,

Qhsalt
UNQhsalt

Keyhsalt,
SEThsalt,

LoghsaltD1

0

Qhsalt,UNQhsalt

GET0ikm,0.. -1, +1..d

(d) Game Gxtr3bas,` for b ∈ {0, 1}

Fig. 7: xtr Pseudorandomness Assumption

3.3 Pseudorandomness of xtr

The TLS 1.3 key schedule performs three xtr operations (cf. Fig. 1), and the
modeling is analogous to the XPD assumptions, except that for the early secret
es, xtr security relies on the psk which is the right input to xtr, and for the
application secret as, xtr security relies on esalt which is the left input to xtr.
The derivation of the handshake secret hs is a special case, because its security
is an OR of the honesty of its left and right input. We here state the xtr security
assumption required for hs security based on its left input esalt and turn to the
security based in its right input (the Diffie-Hellman (DH) secret) shortly. Note
that the security of esalt will be applied after the security of the DH secret
and thus, the bit b in the Xtrbhs,` is already set to 1 and samples output keys
uniformly at random whenever the Diffe-Hellman secret is honest. The security
of esalt thus only increases security for those keys where the Diffie-Hellman
secret is dishonest.

Key-schedule Security for the TLS 1.3 Standard 13

Definition 7 (XTR advantages). For adversary A, level ` ∈ N0, we de-
fine the xtr pseudorandomness advantage for es as Adv(A, Gxtr10es,`, Gxtr11es,`),
the pseudorandomness advantage for hs as Adv(A, Gxtr20hs,`, Gxtr21hs,`) and the
pseudorandomness advantage for as as Adv(A, Gxtr30as,`, Gxtr31as,`), where Fig. 7b-
7d define the games Gxtr1bes , Gxtr2bhs and Gxtrbas and Definition 1 defines ad-
vantage.

3.4 Salted ODH

GETesalt,0..d
Xtrhs,0..d

Qdh
UNQdh

NKeydh

Qhs
UNQhs

Keyhs,0..d

SEThs,0..d

GEThs,0..d

XTRhs,0..d

Logdh

Loghs

Z

D0

GETdh,0..d

Qesalt
UNQesalt

Keyesalt,0..d

SETesalt,0..d
Logesalt

R0

b

DHEXP
DHGEN

DH
SETdh

DH

Parameters

G : set of
groups

ord : G→ N

State

E : table

DHGEN(grp)

assert grp ∈ G

g ← gen(grp)

x←$Zord(grp)

X ← gx

E[X]← x

return X

DHEXP(X,Y)

assert grp(X) = grp(Y)

h← dh〈sort(X,Y)〉
honX ← E[X] 6= ⊥
honY ← E[Y] 6= ⊥
assert honX = 1

x← E[X]; k ← Y x

hon ← honX ∧ honY

h← SETdh(h, hon, k)

return h

Fig. 8: Game Gsodhb (top), package Dh (bottom)

Our salted oracle Diffie-
Hellman assumption (SODH)
is a stronger variant of
the oracle Diffie-Hellman as-
sumption introduced by Ab-
dalla et al. [1] and the
PRF oracle Diffie-Hellman
assumption studied by Bren-
del et al. [20]. Most im-
portantly, SODH is an ag-
ile, i.e., it requires pseudo-
randomness of the derived
keys even when the adver-
sary can see hash-values of
the same Diffie-Hellman se-
cret under different hash-
functions and different, pos-
sibly adversarially chosen
salts. In practice, different
salts can emerge from dis-
agreement between server
and client about the PSK to use since the early salt esalt (and possibly also the
alg) changes when the PSK changes (see Fig. 1). The Gsodhb game (cf. Fig. 8)
allows the adversary to generate honest Diffie-Hellman shares via DHGEN, to
combine them (or an honest and a dishonest share) into a Diffie-Hellman se-
cret via DHEXP and to derive keys from them via XTRn,` for an arbitrary level
` ∈ {0, .., d}. Oracle GETn,` then allows to retrieve the derived keys. Note that
pseudorandomness is modeled, this time, by a bit in the Xtrbn,` package (Fig. 7a).

Definition 8 (SODH). For an adversary A, we define the Salted Oracle Diffie
Hellman (SODH) advantage Adv(A, Gsodh0, Gsodh1) :=∣∣Pr[1 = A → Gsodh0

]
− Pr

[
1 = A → Gsodh1

]∣∣ ,
3.5 Pre-image resistance for xpd

Pseudorandomness and collision resistance of xpd also imply that it is hard to
find pre-images for honest output keys. We prove this implication in the full

14 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

version of this article [23, Lemma E.7] and in this conference version rely on
pre-image resistance as a separate assumption for convenience.

HASH

GETPO*,0..d

HASH

XpdSO*,0..d

KeySOPO,0..d

SETSO*,0..d

GETSO*\PO*,0..d

SETPO*\ (SO* O*),0..d

XPDSO*,0..d

LogSOPO\O*

LogO*

P

1

Hash1
PO*:={n1:
n1, =prntn(n) for n O*}
SO*:= chldrnn(n)
SOPO:=SO* PO*

QSOPO

UNQSOPO

D

(a) Games GpiPO∗ for P ∈ {D,F}

GETn1,0..d

HASH

XpdCN,0..d

Qn1

UNQn1

Keyn1,0..d

QCN

UNQCN

KeyCN,0..d
SETCN,0..d

GETCN,0..d

SETn1,0..d

XPDCN,0..d

Logn1

LogCN

D

P

1

1

HASH
Hash1

 n1, :=prntn(esalt)
 CN:=chldrnn(n1)

(b) Games GpiPesalt for P ∈ {R,D}

Fig. 9: Pre-image resistance assumptions

Definition 9 (Pre-image resistance advantages). For an adversary A and
level ` ∈ N0 we define the pre-image resistance advantage for deriving keys in
O∗ (a set to be specified later) Adv(A, GpiDO∗ , GpiFO∗) :=∣∣Pr[1 = A → GpiDO∗

]
− Pr

[
1 = A → GpiFO∗

]∣∣ ,
the pre-image resistance advantage for deriving keys with the same parent as
esalt by Adv(A, GpiDesalt , GpiFesalt) :=∣∣Pr[1 = A → GpiDesalt

]
− Pr

[
1 = A → GpiFesalt

]∣∣ .
Fig. 9b and Fig. 9b define GpiPO∗ and GpiPesalt .

Our modular assumptions for xpd and xtr are agile, multi-instance security as-
sumptions with registration of dishonest keys. They reduce to their non-agile,
single-instance, monolithically written counterparts with a security loss equal
to the number of honest keys. Since TLS 1.3 currently only supports hash-
algorithms of different length, indeed, our agile assumptions for xtr and xpd
reduce to non-agile assumptions. In turn, we can only reduce our modular agile
SODH assumption to an agile monolithic SODH assumption, because TLS 1.3
indeed requires such a strong, agile SODH assumption (cf. Section 3.4 and Sec-
tion 7) for further discussion. See full version [23, Appendix E] for the reduction
proofs.

Key-schedule Security for the TLS 1.3 Standard 15

level

Fig. 10: Parent names prntn in TLS 1.3

4 Key Schedule

We reason about the TLS 1.3 key schedule in terms of its three elementary
operations extract (xtr), expand (xpd) and computation of Diffie-Hellman secrets.
This section first introduces an abstract key schedule syntax and refines it to
capture TLS 1.3 as part of a bigger class of TLS-like key schedules. We then
define key schedule security and state our theorem for all TLS-like key schedules.

4.1 Key Schedule Syntax

Our formalization interprets the key schedule as a directed graph where nodes
describe key names (cf. Fig. 10 for the case of TLS 1.3). In addition to the set of
names N and the graph description (encoded as prntn function, cf. Section 2.1),
a key schedule has a function label which maps the name and a resumption bit
to a derivation label. We conveniently model hmac operations by using xpd with
empty label as an alias for hmac. By sound cryptographic practice, a key should
be either used for xpd or for hmac but not both, so if a node has an empty label, it
is not allowed to have siblings. Similarly, xtr operations only yield a single child,
and the multiple children of xpd operations are derived using distinct labels.

Definition 10 (Key Schedule Syntax). A key schedule ks = (N, label, prntn)
consists of a set of names N and two functions

label : N × {0, 1} → {0, 1}96 ∪ {⊥}
prntn : N → (N ∪ ⊥)× (N ∪ ⊥)

with the previously described restrictions.

Fig. 10 describes the prntn function of the TLS 1.3 key schedule as a graph.
Stating and proving our theorem in terms of the concrete TLS key schedule
would require listing and treating each xpd operation individually. Instead, we

16 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

prove our theorem for all TLS-like key schedules (of which the TLS key schedule
is an instance). We consider a key schedule as TLS-like if it aligns with TLS in
terms of base keys and xtr operations and treats the psk name as the main root
from which all keys except for the base keys can be reached. Moreover, a TLS-
like key schedule only has a single loop. This loop contains the edge from rm to
psk and models resumptions. This edge has the special property of increasing
the associated level as the psk is computed in an earlier session to be used in a
later key schedule session. As such the cycle does not contradict an ordering on
key computations.

Definition 11 (TLS-like Key Schedule Syntax). A key schedule ks =
(N, label, prntn) is TLS-like if its prntn graph satisfies the above restrictions, its
set of names N contains at least the names 0salt , psk , es, esalt , dh, hs, hsalt , 0ikm,
as, rm and the prntn function maps 0salt, dh and 0ikm to (⊥,⊥), maps es, hs
and as according to Fig. 10, maps psk to (rm,⊥) and each of the remaining
names n to some pair (n1,⊥) with n1 6= ⊥.

We use several subsets of N which we summarize in Table 1.

4.2 Key Schedule Security Model

Our key schedule security model captures that the key schedule produces keys
which are pseudorandom and unique. We formulate security as indistinguishabil-
ity between a real and an ideal game where the real game implements the actual
key schedule derivations, while in the ideal game, output keys are unique, and
honest keys are sampled uniformly at random. Concretely, we follow a simula-
tion approach (somewhat similar to the Canetti and Krawczyk [26] approach to
key exchange), where the ideal game is defined as a composition of a simulator
S and an ideal functionality. The simulator instructs the ideal functionality to
produce output keys of certain length, however the value of the output keys is
sampled independently from the simulator. As we require that no adversary can
distinguish these two settings this captures security: The protocol determines
when an output key becomes available and which type of key but no informa-
tion about the concrete value is disclosed in the protocol (as the simulator does
not have such information).

Concretely, in our ideal game Gks1(S) (Fig. 11b), the simulator S is a param-
eter and the Key1O∗,0..d and LogO∗ packages (cf. Section 2.3) constitute the ideal
functionality. Namely, the Key1O∗,0..d package samples a uniformly random key
for handles which correspond to honest keys with a name n ∈ O∗ and some level
0 ≤ ` ≤ d. The LogO∗ package, in turn, ensures that each handle corresponds to
a different key, modeling key uniqueness for both honest and dishonest keys.

Similarly, we describe the real execution of the key schedule as a game Gks0,
written in pseudocode. Following the SSP methodology outlined in Section 2.3,
we split the pseudocode of the game Gks0 into several packages most of which
(Xpd, Xtr, DH, Key, and Log) have been introduced before and Check is described
in Section 4.3. Fig. 11a depicts the composed game Gks0—recall that this graph
is not merely an illustration, it is part of the formal definition of Gks0.

Key-schedule Security for the TLS 1.3 Standard 17

DHEXP

DHGEN DH Nkeydh Logdh

SETdh

SETpsk,0

GET0salt,0..d

GET0ikm,0..d

Xtres/as,0..d

Xtrhs,0..d

XpdXPN, 0..d

0Key0salt,0..d

0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d

SETpsk, 1..d

0

Z

Keypsk, 0

Keypsk, 1..d

1
0 Logpsk

0

A

HASH Hash0

GETO*,0..d

GETbinder, 0..d

Check

XTRes/as/hs,0..d

XPDXPN, 0..d

XPDXPN, 0..d

KeyI*, 0..d

0 LogI*

Z

KeyO*, 0..d

0 LogO*

Z
SETO*,0..d

SETI*,0..d

GETI*,0..d

Qdh

UNQdh

Qpsk

UNQpsk

QI*

UNQI*

QO*

UNQO*

Gks0

(a) Real Game Gks0

SETO*, 0..d

GETbinder, 0..d

KeyO*, 0..d
1 UNQO* LogO*

SETpsk,0

DHGEN

DHEXP

XTRes/hs/as,0..d

XPDXPN,0..d

GETO*,0..d

F

Gks1()

(b) Ideal Game Gks1(S)

Fig. 11: Key schedule security games with internal keys I∗, output keys O∗ and
XPN , the set of key names produced by xpd. We write 0Kn as an abbreviation
for Nkn → LZn . We initialize K and Nkn with suitable 0 values (cf. Section 2.1).

N The set of all (key) names
N∗ N \{psk , dh }
I∗ The set of internal keys {n ∈ N∗ | chldrnn(n) = ∅}
O∗: The set of output keys {n ∈ N∗ | chldrnn(n) = ∅}
O: O∗ ∪{psk }
S: The set of separation points (Definition 13)
XPN : The set of expand names {n ∈ N : prntn(n) = (_,⊥)}
XPR: The set of representatives (Section 4.3)

Table 1: Notation

18 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

The game Gks0 exposes SETpsk ,0 and DHGEN oracles which sample honest
Diffie-Hellman shares, honest application PSKs and enable the adversary to reg-
ister dishonest application PSKs with a chosen value. The XTR and XPD oracles
trigger key derivations. Finally, the adversary can access output keys via the
GET oracle on the (real) key package Key0O∗,0..d.

Definition 12 (Key Schedule Advantage). For a key schedule ks = (N, label,
prntn), a natural number d, a simulator S and an adversary A which makes
queries for at most d levels we define the advantage Adv(A, Gks0, Gks1(S)) :=∣∣Pr[1 = A → Gks0

]
− Pr

[
1 = A → Gks1(S)

] ∣∣,
where Fig. 11b defines Gks1(S) and Fig. 11a defines Gks0.

4.3 Front-End Checks

Check
XPDn,`(h1, r, args)

if n = bind :

if r = 0,assert level(h1) = 0

if r = 1,assert level(h1) > 0

elseif n ∈ S ∩ early :

binder ← BinderArgs(args)

hbndr ← BinderHand(h1, args)

(k,_)← GETbinder,`(hbndr)

assert binder = k

elseif n ∈ S :

X,Y ← DhArgs(args)

hdh ← DhHand(h1)

assert hdh = dh〈sort(X,Y)〉
binder ← BinderArgs(args)

hbndr ← BinderHand(h1, args)

(k,_)← GETbinder,`(hbndr)

assert binder = k

h← XPDn,`(h1, r, args)

return h

Fig. 12: Code of Check

The Check package acts as a restriction on the
adversary since the assert conditions in the
Check code force the adversary to use the cor-
rect Diffie-Hellman shares and binder value in
its transcript when the transcript is included
in a derivation step. In terms of composability,
the assert conditions in Check force the key
exchange to call the key schedule with con-
sistent values, i.e., derive the Diffie-Hellman
secret from a pair of shares that is included in
the transcript and not from an unrelated pair
of shares. The TLS 1.3 specification ensures
these innocent conditions, and requiring them
formally means that the proof breaks down
when session memory in TLS 1.3 is unsafely
implemented.

In addition to enforcing the use of consis-
tent shares in the transcript, the XPD oracle of
the Check package (Fig. 12) ensures that the
resumption flag is consistent with the level of
the PSK; and that the binder tag included in
the transcript of later stages (at the end of the
last ClientHello message) is the same that was
computed and checked in the early stage. The
transcript is not included into all xpd deriva-
tions, but only once on the path from psk to
output key, and Check only filters queries on these particular derivation steps.
Since including the transcript ensures domain separation between different pro-
tocol runs and derivation pathes, we refer to the derivation steps which include
the transcript as a separation point.

Key-schedule Security for the TLS 1.3 Standard 19

Definition 13 (Separation Points). For a key schedule ks =
(N, label, prntn), we call S ⊆ N a set of separation points, if it satisfies
the following two requirements:

– ∀ n ∈ O: the path from psk to n contains an n′ ∈ S.
– If there exists a path from dh to an n ∈ O, then it contains an n′ ∈ S.

In addition, for each xpd operation, we choose one representative child. I.e.,
XPR ⊆ N is a representative set for ks if psk , esalt ∈ XPR and for each name
n ∈ N with only a single parent (these are the xpd nodes), either n or exactly
one sibling of n is contained in XPR.

5 Key Schedule Theorem

Theorem 1. Let ks be a TLS-like key schedule with representative set XPR and
separation points S. Let d ∈ N. There is an efficient simulator S such that for
all adversaries A which make queries for at most d resumption levels,

Adv(A, Gks0, Gks1(S)) ≤ Adv(A → Rmain
cr , Gacrhash,b)

+
∑

j∈{Z,D},f∈{xtr,xpd}

Adv(A → Rmain
j,f , Gacrf,b)

+ max
i∈{0,1}

[
Adv(Ai → Rmain

sodh , Gsodh
b)

d−1∑
`=0

(
Adv(Ai → Rmain

es,` , Gxtr
b
es,`)

+Adv(Ai → Rmain
hs,` , Gxtr

b
hs,`)

+Adv(Ai → Rmain
as,` , Gxtr

b
as,`)

+
∑

n∈XPR

(
Adv(Ai → Rmain

n,` , Gxpdbn,`)
))

+Adv(Ai → Rmain
esalt,pi , Gpi

b
esalt)

+Adv(Ai → Rmain
O∗,pi , Gpi

b
O∗)
]
,

where Ai behaves as A except that it returns bit i on a so-called win abort (cf.
[23, Lemma D.4]); Rmain

∗ := Rch-map → R∗ when replacing ∗ by cr, (Z, f),
(D, f), sodh, es, hs, as, n, O∗, pi or esalt , pi , the simulator S is marked in grey
in [23, Fig.26b], [23, Fig.32a] defines Rsodh, [23, Fig.34a] defines Res,`, Rhs,`
and Ras,` are defined analogously, and [23, Fig.34b] defines Rn,` for n ∈ XPR,
0 ≤ ` ≤ d, [23, Fig.32c] defines Resalt,pi and [23, Fig.32d] defines RO∗,pi .

5.1 Proof Technique

A recurrent proof technique which we use are reductions, written in SSP style.
As usually, we want to show that if there is an adversary A which successfully

20 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Theorem 1
Modular Theorem

Lemma 2
Map-Intro

Lemma 3
Main Reduction

Lemma 4
Xpd-inlining

Lemma 5
Map-Outro

Claim [23, C.5.1]
Injectivity

Claim [23, C.5.2]
Func. Equiv.Theorem 2

Core Theorem

Lemma D.2
Coll. Resistance

Lemma D.3
D-pattern

Lemma D.4
R-esalt

Lemma D.5
SODH

Lemma D.6
KI-hybrid

Lemma D.7
Preimage

Claim D.10.1
Id. Order

Lemma D.11
Xtr-1

Lemma D.12
Xtr-2

Lemma D.13
Xtr-3

Lemma D.14
Xpd

Claim D.7.1
Code Equiv.

Claim D.7.2
Co-Dep. Events

Lemma D.9
Co-Dependance

Mapping

Core Key-Schedule
See full version [23]

Fig. 13: Proof Structure

distinguishes between two games G0big and G1big, then based on A, we can con-
struct an adversary B of similar complexity as A which successfully distinguishes
between two games G0sml and G1sml. Our reductions will have the following form.

Lemma 1 (Reduction Technique). If we can define a reduction R such that

G0big
code≡ R → G0sml (1) and G1big

code≡ R → G1sml (2)

then
Adv(A; G0big, G1big) = Adv(B; G0sml, G

1
sml), (3)

where
B := A → R. (4)

Proof. Assuming Equation 1, 2 and 4, we deduce Equation 3 as follows:

Adv(A,G0big , G1big)
def.
=
∣∣Pr[1 = A → G0big

]
− Pr

[
1 = A → R→ G1big

]∣∣
Eq.1&2
=

∣∣Pr[1 = A → (R → G0sml)
]
− Pr

[
1 = A → (R → G1sml)

]∣∣
=
∣∣Pr[1 = (A → R)→ G0sml)

]
− Pr

[
1 = (A → R)→ G1sml

]∣∣
def.
= Adv(A → R, G0sml , G

1
sml)

Eq. 4
= Adv(B, G0sml , G

1
sml)

Importantly, throughout this article, we define reductions graphically as com-
position of previously defined packages so that the reduction re-uses code, as
opposed to the usual technique which introduces new code for a reduction. As
a result, we can argue Equations 1 and 2 graphically. E.g., in [23, Fig. 31a] we

Key-schedule Security for the TLS 1.3 Standard 21

Map

SETpsk,0(h, hon, k)

h′ ← SETpsk,0(h,

hon, k)

Mpsk[h]← h′

return h

GETn∈O∗,`(h)

assert Mn,`[h] 6= ⊥
h′ ← Mn,`[h]

return

GETn,level(h′)(h
′)

XPDn∈XPN ,`(h1, r, args)

i1,_← prntidx(n, `)

assert Mi1 [h1] 6= ⊥
label← label(n, r)

`1 ← level(Mi1 [h1])

h← xpd〈n, label, h1, args〉

h′ ← XPDn,`1

(
Mi1 [h1],
r, args

)
if n = psk : `← `+ 1

Mn,`[h]← h′

return h

DHGEN()

return DHGEN()

DHEXP(X,Y)

h← dh〈sort(X,Y)〉
h′ ← DHEXP(X,Y)

if Mdh[h] = ⊥ :

Mdh[h]← h′

return h

XTRn∈{es,hs,as},`(h1, h2)

i1, i2 ← prntidx(n, `)

assert Mi1 [h1] 6= ⊥
assert Mi2 [h2] 6= ⊥

`′
choose← level(Mi1 [h1]),

level(Mi2 [h2])

h← xtr〈n, h1, h2〉

h′ ← XTRn,`′

(
Mi1 [h1],
Mi2 [h2]

)
Mn,`[h]← h′

return h

Fig. 14: Oracles of Map. Here, ` ∈ {0 . . . d}. `′ choose← level(Mn1
[h1]), level(Mn2

[h2])
assigns to `′ the value level(Mn1

[h1]) if it is not ⊥ and level(Mn2
[h2]), else.

highlight the reduction in gray and observe that the only change from Fig. 15a is
the collision resistance assumption—the Gbsml in this case. Observing the graph of
Gks0 (cf. Fig. 11a) closely and comparing it with the graphs of the assumptions
introduced in Section 3, one can identify that the assumptions are almost sub-
graphs of Gks0, and by an appropriately chosen sequence of reduction arguments,
the graphs of the assumptions will appear as actual subgraphs.

5.2 Proof of Theorem 1

We need to show the indistinguishability of the real game Gks0 and the ideal game
Gks1(S). [23, Fig.25a] depicts the real game Gks0 (cf. Fig. 11a), with slightly dif-
ferent graph layouting. [23, Fig.26b] depicts the ideal game Gks1(S) (cf. Fig. 11b)
where the simulator S is described in concrete code. To show the indistinguisha-
bility between Gks0 ([23, Fig.25a]) and Gks1(S) ([23, Fig.26b]), we make 4 game
hops, depicted as the sequence of the five games depicted in [23, Fig.25a], [23,
Fig.25b], [23, Fig.25c], [23, Fig.26a] and [23, Fig.26b]. We now describe each of
the game hops and state the corresponding lemma.

First, recall that the key schedule security model stores keys in a redundant
fashion (a) due to possible equal values of a dishonest resumption psk (level(h) >
0) and an adversarially registered application psk (level(h) = 0) and (b) due
to the equal values of the (dishonest) DH keys corresponding to (Xa, Y) and
(X,Y a).

Lemma 2 introduces a Map package (see [23, Fig.25b] for the game and the
left column of Fig. 14 for the code of Map) to remove the redundantly stored
keys—note that the LogA1

psk and the LogZ∞dh package now use the map = 1 and
the map = ∞ code of Log (see Fig. 4 for its code). As a result, any adversary
playing against Gcore0 (defined in [23, Fig.25b]) cannot create (this particular)
redundancy anymore since the Keypsk ,` and DHKeydh packages do not store the
key again when the mapping code is triggered. We defer the proof of code equality

22 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

proof of Lemma 2 to the full version [23]. It relies on proving the invariant that
whenever Gks0 stores key k with honesty hon under handle h, then game Gks0Map

stores key k with honesty hon under the mapped handle h′ = M [h]. The proof
proceeds by induction over the oracle calls.

Lemma 2 (Map-Intro). For all adversaries A which make queries for at most
d resumption levels,

Pr
[
1 = A → Gks0

]
= Pr

[
1 = A → Gks0Map] .

In particular Gks0
func
≡ Gks0Map.

Lemma 3 then reduces the indistinguishability of Gks0Map ([23, Fig.25b]) and
Gks1Map ([23, Fig.25c]) to the indistinguishability of Gcore0 and Gcore1(Score)
using reduction Rcore. The indistinguishability of Gcore0 and Gcore1(Score) will
be established in Theorem 2 in Appendix 5.3 and contains the main technical
argument of this article.

Lemma 3 (Main). For all PPT adversaries A which make queries for at most
d resumption levels,

Adv(A, Gks0Map, Gks1Map)

=Adv(A → Rch-map, Gcore0, Gcore1(Score)),

where [23, Fig.25b] defines Gks0Map, [23, Fig.25c] defines Gks1Map, Rch-map and
Score are marked in grey in [23, Fig.25c], and Fig. 15a and Fig. 15b define
Gcore0 and Gcore1(Score), respectively.

Proof. The proof of Lemma 3 is an instance of Lemma 1 with G0big = Gks0Map,
G1big = Gks1Map, G0sml = Gcore0, G1sml = Gcore1(Score) and R = Rch-map.

By Lemma 1, it suffices to show that

Gks0Map code≡ Rch-map → Gcore0 (5)

Gks1Map code≡ Rch-map → Gcore1(Score) (6)

Equation 5 follows by definition, since [23, Fig.25b] defines Gks0Map as the com-
position of Rch-map and Gcore0. Similarly, for Equation 6, [23, Fig.25c] defines
Gks1Map as the composition of Rch-map and Gcore1(Score).

In Lemma 4, we inline the Xpdn,0..d code into Map for n ∈ O∗ and call the result
Map-Xpd (see [23, Fig.25c] and [23, Fig.26a] for the two games). The proof is a
simple inlining argument and included into the full version [23] for completeness.

Lemma 4 (Xpd-Inlining). For all PPT adversaries A which make queries
for at most d resumption levels,

Pr
[
1 = A → Gks1Map] = Pr

[
1 = A → GksMapxpd] .

In particular Gks1Map code≡ GksMapxpd.

Key-schedule Security for the TLS 1.3 Standard 23

Finally, Lemma 5 establishes the (perfect) indistinguishability of GksMap-Xpd
and Gks1(S). The proof of Lemma 5, essentially, removes or rather inverts the
mapping on the output keys in order to recover the ideal functionality. Inverting
the handle mapping, however, requires that it is injective. Conceptually, it is
also clear that injectivity of the handle mapping needs to play a role in the
proof: We prove uniqueness of output keys which means that equal keys imply
equal handles. The injectivity proof ensures that the mapping did not introduce
additional collisions and that the proof of Theorem 2 indeed suffices to establish
the uniqueness of output keys in Gks1(S).

Lemma 5 (Map-Outro). For all PPT adversaries A which make queries for
at most d resumption levels,

Pr
[
1 = A → GksMapxpd] = Pr

[
1 = A → Gks1(S)

]
.

In particular, GksMapxpd func
≡ Gks1(S).

In summary, Lemma 3 is the core argument, Lemma 2 is proven via a mechan-
ical invariant proof, Lemma 5 is proven via a conceptually interesting invariant
proof and Lemma 4 is a straightforward inlining argument.

Theorem 1 directly follows from Lemma 2-Lemma 5 and Theorem 2 (stated
in Section 5.3).

Adv(A, Gks0, Gks1(S)) Lm. 2
= Adv(A, Gks0Map, Gks1(S))

Lm. 5
= Adv(A, Gks0Map, GksMapxpd)

Lm. 4
= Adv(A, Gks0Map, Gks1Map)

Lm. 3
= Adv(A → Rch-map, Gks0core, Gks1core(Score))

Th. 2
≤ Adv(A → Rmain

cr , Gacrhash,b)

+
∑

j∈{Z,D},f∈{xtr,xpd}

Adv(A → Rmain
j,f , Gacrhash,b)

+ max
i∈{0,1}

Adv(Ai → Rmain
sodh , Gsodh

b)

+ Adv(Ai → Rmain
esalt,pi , Gpi

b
esalt)

+ Adv(Ai → Rmain
O∗,pi , Gpi

b
O∗)

+

d−1∑
`=0

(
Adv(Ai → Rmain

es,` , Gxtr
b
es,`)

+ Adv(Ai → Rmain
hs,` , Gxtr

b
hs,`)

+ Adv(Ai → Rmain
as , Gxtrbas,`)

+
∑

n∈XPR

(
Adv(Ai → Rmain

n,` , Gxpdbn,`)
))
,

24 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

KeyN*, 0..d
0 LogN*

DHEXP
DHGEN

DH Nkeydh Logdh

SETdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

Z

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

A1

HASH Hash0
HASH

GETO*,0..d

Z

XTRes/as/hs,0..d
XPDXPN, 0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0
0

QN*
UNQN*

Qdh
UNQdh

Qpsk
UNQpsk

(a) Game Gcore0.

XTRes/as/hs,0..d
XPDXPN, 0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0
1

DHEXP
DHGEN

DH
SETdh

QI*
UNQI*

Qdh
UNQdh

Qpsk
UNQpsk

KeyI*, 0..d
1 LogI*

Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETI*,0..d
GETI*,0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

Z

Keypsk, 0..d
1 Logpsk

D1

HASH Hash1
HASH

D

QO*
UNQO*

KeyO*, 0..d
1 LogO*

GETO*,0..d

F
SETO*,0..d

(b) Game Gcore1(Score), Score in grey.

Fig. 15: Games for Theorem 2

whereXPR is the representative set required by the theorem,Rmain
∗ := Rch-map →

R∗ when replacing ∗ by cr, (Z, f), (D, f) sodh, es, hs, as, n, O∗, pi or esalt , pi .

5.3 Core Key Schedule Theorem

It remains to show that the core key schedule game Gcore0 without the Map
and Check package in front (Fig. 15a is indistinguishable from an ideal game
Gcore1(Score) which consists of an ideal functionality with a simulator Score

(Fig. 15b). The proof of Theorem 2 can be found in the full version [23, Appendix
D]

Theorem 2 (Core). Let ks be a TLS-like key schedule with XPR. Let d be an
integer. Let Score be the efficient simulator defined in [23, Fig.26b]. Then, for
all adversaries A which make queries for at most d resumption levels, we have
that

Adv(A, Gcore0, Gcore1(Score))

≤
∑

R∈{Rcr,RZ ,RD}

Adv(A → R, Gacrb)

+ max
i∈{0,1}

Adv(Ai → Rsodh, Gsodhb)

+ Adv(Ai → Resalt,pi , Gpibesalt)

+ Adv(Ai → RO∗,pi , GpibO∗)

+

d−1∑
`=0

(
Adv(Ai → Res,`, Gxtrbes,`)

+ Adv(Ai → Rhs,`, Gxtrbhs,`)

+ Adv(Ai → Ras, Gxtrbas,`)

+
∑

n∈XPR

(
Adv(Ai → Rn,`, Gxpdbn,`)

))
,

Key-schedule Security for the TLS 1.3 Standard 25

where XPR is the required representation set (cf. Table 1), Fig. 15a defines
Gcore0 and Fig. 15b defines Gcore1(Score), [23, Fig.31a] defines Rcr, [23, Fig.32a]
defines Rsodh, [23, Fig.34a] defines Res,`, Rhs,` and Ras,` are defined analo-
gously, and Rn,` for n ∈ XPR and 0 ≤ ` ≤ d is defined in [23, Fig.34b],
Resalt,pi is defined in [23, Fig.32c] and RO∗,pi is defined in [23, Fig.32d].

6 Related Work

The following discussion focuses on attacker capabilities and security guarantees,
and glosses over the exact encoding into security games and the use of multiple
keys and stages.

Dowling et al. [34,35,36] present a multi-stage security model of draft-05,
draft-10, and the final version of the standard. Their multi-stage model con-
siders psk_ke, dh_ke, and psk_dhe_ke modes in isolation. Li et al. [48] adapt
the multi-stage security model to also capture the recursive nature of the TLS
1.3 key schedule, by accounting for the re-use of resumption secrets between
different modes (psk_ke, psk_dhe_ke, and the now removed semi-static share
0-RTT).

Cremers et al. [30,29] investigate the security of draft-10 and draft-21,
using the automated Tamarin prover (in the symbolic model). Their work inves-
tigates the proposed post-handshake client authentication and finds an attack
that exploited a missing binding between PSKs and transcripts that led to the
addition of binders to the standard. To our knowledge ours is the first reduction
proof that models the additional security afforded by binder values.

Bhargavan et al. [10] also model TLS 1.3, decomposed into 3 separate pieces:
dh_ke 1-RTT handshake, the 0-RTT handshake, and the record protocol. They
verify these models using both ProVerif [18] and CryptoVerif [16]. A limitation
of their model is the informal way in which the separate guarantees for the three
components are combined to justify the overall security of the protocol.

Blanchet [17] introduces a new proof modularization framework in Cryp-
toVerif, which bears significant similarities with the state-separating proof frame-
work [24] that our work is based on. The work also updates some of the model
from draft-18 to draft-28; however, the model still assumes that all pre-shared
keys are derived from resumption secrets and does not capture adaptively-created
dishonest application PSKs, or the security of PSK binders.

Many other works focus on analysing certain properties of the TLS 1.3 hand-
shake protocol. For instance, Arfaou et al. [4] specifically analyse the privacy of
the TLS 1.3 psk_ke, dh_ke, and psk_dhe_ke handshakes. Fischlin et. al. [41]
analyse the draft-06 TLS 1.3 handshake, and show that its modes achieve key
confirmation in isolation. Fischlin et. al. [39] considers replay attacks against
various drafts of TLS 1.3 0-RTT handshakes such as draft-14’s psk_ke mode,
similarly considering versions and modes in isolation. Other relevant papers on
TLS handshake analysis are [46,37,27].

The idea of analyzing a key schedule (rather than a key exchange protocol)
is conceptually similar to the SIGMA-I pattern of Krawczyk [44] and Krawczyk

26 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

and Wee [47]. These works prove a reduction from key exchange security to key
schedule security analogously to our companion paper [25].

Recent work also looked at the tightness of TLS 1.3 security proofs [33,31].
Besides natural birthday bounds for collision resistance, our reductions avoid
the common quadratic loss in the number of sessions. We remark however, that
tightness was not the principal focus of our analysis.

Subsequent work to the present article [22] uses our methodology, e.g., our
recursive handle structure and the style of encoding security guarantees in Log
packages to analyse the key schedule security of the Messaging Layer Secu-
rity (MLS) protocol whose conclusions were integrated into the IETF standard,
e.g., [28]. In the present paper, in addition to key techniques which were picked
up by [22], we introduce a plethora of techniques to tackle indirect domain sep-
aration by late hashing of Diffie-Hellman shares and binders such as the notion
of separation points and the Check component introduced in Section 4.3. In a
similar way, the additional mapping step (Lemma 2, 4 and 5) handle redundancy
not present in MLS. See Section 7 for simplifications of the TLS protocol which
would allow for a much simpler analysis than the one presented in this article.

7 Lessons Learned & Afterthoughts on the Key Schedule

We now discuss changes to the key schedule that would improve its security and
simplify its analysis and may be of independent interest for other protocols.

Simplify SODH The salted Diffie-Hellman computation extracts entropy from
the DH secret and mixes it with the PSK-derived salt (which is under adversarial
influence). A separate DH extraction, preferably hashing the (sorted) public
shares together with the secret, followed by a dual PRF, would enable a proof
based on the simpler and better understood Oracle Diffie-Hellman assumption.
The hashing of shares would also remove the need to map DH secrets (currently
computable from multiple pairs of shares), and would enable the use of a more
abstract functionality such as a CCA-secure KEM (as in TLS 1.2 [14]). These
changes would thus also ease the integration of post-quantum secure primitives.

Eliminate PSK mapping Similarly, directly applying domain-separation for
computations based on application and resumption PSKs via distinct labels
would remove the need to map PSKs and argue via inclusion of binders at
separation points indirectly. Both proposals follow the same design pattern: first
sanitize input key materials to prevent malleability (DH secrets) and collisions
(dishonest resumption PSKs and adversarially-chosen application PSKs).

Avoid Agile Assumptions Our development supports multiple hash algo-
rithms without requiring any hash-agile assumptions, by observing that the hash
functions currently used by TLS 1.3 have pairwise-distinct digest lengths. This
is brittle, e.g. adding support for SHA3 with the same lengths as SHA2 would

Key-schedule Security for the TLS 1.3 Standard 27

require to formally account for cross-algorithm collisions. This may be prevented
by tagging the outputs of all extractors and KDFs with hash algorithms. Simi-
larly, we may avoid the current need for agile (S)ODH assumptions by tagging
group elements with both a group descriptor and a single extraction algorithm.

Prevent PSK Reflections Drucker and Gueron note that TLS 1.3 is subject
to reflection attacks due to its symmetric use of PSKs [37]. Hence, in our model,
the same PSK handle may either be used by two parties, as intended, or by
the same party acting both as a client and as a server. This is a security risk,
inasmuch as applications may embed identity information in PSK identifiers to
benefit from their early authentication. It may also enable key synchronization
attacks and other variants of key compromise impersonation [13] when identities
are also symmetrical. When using PSKs, the standard unfortunately forbids
certificate-based authentication, which would otherwise provide more detailed,
role-specific identity information. At the key schedule level, it may be possible
to enforce better separation by tagging PSK identifiers with roles.

Enforce Stronger Modularity Applied cryptographers often complain that,
in TLS 1.2, the subtle interleaving of the handshake with the record layer hinders
its analysis based on the well-established Bellare-Rogaway [8] security model [43].
While TLS 1.3 tries to enforce cleaner separation between handshake and record
keys, it still fails in some important places. Notably, the handshake traffic se-
crets, meant to be released to the record layer (be it TLS, DTLS, or QUIC) are
also used by the handshake to derive finished keys. Similarly, some handshake
messages are encrypted under keys derived from application traffic secrets (e.g.
New Session Ticket, carrying resumption PSKs, late client authentication, and
key updates). This complicates the modeling of data stream security, as appli-
cation data may be interleaved with handshake messages (e.g. the same QUIC
packet may contain both data and session tickets). To prevent such issues, and
many others, we suggest the RFC documents more explicitly its application in-
terface and, in particular, recommends not to derive keys from keys released to
the record layer.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer,
Heidelberg (Apr 2001). https://doi.org/10.1007/3-540-45353-9_12

2. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A.,
Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow,
E., Zanella-Béguelin, S., Zimmermann, P.: Imperfect forward secrecy: How Diffie-
Hellman fails in practice. In: ACM CCS 2015. pp. 5–17. ACM Press (Oct 2015).
https://doi.org/10.1145/2810103.2813707

3. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS
record protocols. In: 2013 S&P. pp. 526–540. IEEE (May 2013). https://doi.
org/10.1109/SP.2013.42

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1109/SP.2013.42

28 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

4. Arfaoui, G., Bultel, X., Fouque, P.A., Nedelcu, A., Onete, C.: The privacy of the
TLS 1.3 protocol. PoPETs 2019(4), 190–210 (Oct 2019). https://doi.org/10.
2478/popets-2019-0065

5. Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N., Dankel, M., Steube, J.,
Valenta, L., Adrian, D., Halderman, J.A., Dukhovni, V., Käsper, E., Cohney, S.,
Engels, S., Paar, C., Shavitt, Y.: DROWN: Breaking TLS using SSLv2. In: USENIX
Security 2016. pp. 689–706. USENIX (Aug 2016)

6. Badertscher, C., Matt, C., Maurer, U., Rogaway, P., Tackmann, B.: Augmented
secure channels and the goal of the TLS 1.3 record layer. In: ProvSec 2015. LNCS,
vol. 9451, pp. 85–104. Springer, Heidelberg (Nov 2015). https://doi.org/10.
1007/978-3-319-26059-4_5

7. Bellare, M.: New proofs for NMAC and HMAC: Security without collision resis-
tance. Journal of Cryptology 28(4), 844–878 (Oct 2015). https://doi.org/10.
1007/s00145-014-9185-x

8. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In:
CRYPTO’93. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (Aug 1994).
https://doi.org/10.1007/3-540-48329-2_21

9. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.Y., Zinzindohoue, J.K.: A messy state of the union: Taming
the composite state machines of TLS. In: 2015 S&P. pp. 535–552. IEEE (May
2015). https://doi.org/10.1109/SP.2015.39

10. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: 2017 S&P. pp. 483–502. IEEE
(May 2017). https://doi.org/10.1109/SP.2017.26

11. Bhargavan, K., Brzuska, C., Fournet, C., Green, M., Kohlweiss, M., Zanella-
Béguelin, S.: Downgrade resilience in key-exchange protocols. In: 2016 S&P. pp.
506–525. IEEE (May 2016). https://doi.org/10.1109/SP.2016.37

12. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A., Strub, P.Y.:
Triple handshakes and cookie cutters: Breaking and fixing authentication over
tls. In: IEEE Symposium on Security & Privacy (Oakland) (2014), pubs/
triple-handshakes-and-cookie-cutters-sp14.pdf

13. Bhargavan, K., Delignat-Lavaud, A., Pironti, A.: Verified contributive channel
bindings for compound authentication. In: NDSS 2015. ISOC (Feb 2015)

14. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y., Zanella
Béguelin, S.: Proving the TLS handshake secure (as it is). In: CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 235–255. Springer, Heidelberg (Aug 2014). https:
//doi.org/10.1007/978-3-662-44381-1_14

15. Bhargavan, K., Leurent, G.: Transcript collision attacks: Breaking authentication
in TLS, IKE and SSH. In: NDSS 2016. ISOC (Feb 2016)

16. Blanchet, B.: CryptoVerif: Computationally sound mechanized prover for crypto-
graphic protocols. In: Formal Protocol Verification. vol. 117, p. 156 (2007)

17. Blanchet, B.: Composition theorems for CryptoVerif and application to TLS 1.3.
In: CSF. pp. 16–30 (July 2018). https://doi.org/10.1109/CSF.2018.00009

18. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: ProVerif 2.00: automatic cryp-
tographic protocol verifier. User Manual (2018)

19. Böck, H., Somorovsky, J., Young, C.: Return of bleichenbacher’s oracle threat
(ROBOT). In: USENIX Security 2018. pp. 817–849. USENIX (Aug 2018)

20. Brendel, J., Fischlin, M., Günther, F., Janson, C.: PRF-ODH: Relations, in-
stantiations, and impossibility results. In: CRYPTO 2017, Part III. LNCS, vol.
10403, pp. 651–681. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/
978-3-319-63697-9_22

https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.1007/978-3-319-26059-4_5
https://doi.org/10.1007/978-3-319-26059-4_5
https://doi.org/10.1007/978-3-319-26059-4_5
https://doi.org/10.1007/978-3-319-26059-4_5
https://doi.org/10.1007/s00145-014-9185-x
https://doi.org/10.1007/s00145-014-9185-x
https://doi.org/10.1007/s00145-014-9185-x
https://doi.org/10.1007/s00145-014-9185-x
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1109/SP.2015.39
https://doi.org/10.1109/SP.2015.39
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2016.37
https://doi.org/10.1109/SP.2016.37
pubs/triple-handshakes-and-cookie-cutters-sp14.pdf
pubs/triple-handshakes-and-cookie-cutters-sp14.pdf
https://doi.org/10.1007/978-3-662-44381-1_14
https://doi.org/10.1007/978-3-662-44381-1_14
https://doi.org/10.1007/978-3-662-44381-1_14
https://doi.org/10.1007/978-3-662-44381-1_14
https://doi.org/10.1109/CSF.2018.00009
https://doi.org/10.1109/CSF.2018.00009
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1007/978-3-319-63697-9_22

Key-schedule Security for the TLS 1.3 Standard 29

21. Bricout, R., Murphy, S., Paterson, K.G., van der Merwe, T.: Analysing and ex-
ploiting the mantin biases in RC4. Cryptology ePrint Archive, Report 2016/063
(2016), http://eprint.iacr.org/2016/063

22. Brzuska, C., Cornelissen, E., Kohbrok, K.: Security analysis of the mls key deriva-
tion. In: 2022 IEEE Symposium on Security and Privacy. pp. 595–613. IEEE Com-
puter Society, Los Alamitos, CA, USA (may 2022). https://doi.org/10.1109/
SP46214.2022.00035

23. Brzuska, C., Delignat-Lavaud, A., Egger, C., Fournet, C., Kohbrok, K., Kohlweiss,
M.: Key-schedule security for the tls 1.3 standard. Cryptology ePrint Archive,
Report 2021/467 (2021), https://eprint.iacr.org/2021/467

24. Brzuska, C., Delignat-Lavaud, A., Fournet, C., Kohbrok, K., Kohlweiss, M.: State
separation for code-based game-playing proofs. In: ASIACRYPT 2018, Part III.
LNCS, vol. 11274, pp. 222–249. Springer, Heidelberg (Dec 2018). https://doi.
org/10.1007/978-3-030-03332-3_9

25. Brzuska, C., Egger, C.: Key exchange to key schedule reduction for TLS 1.3 (2022),
preprint

26. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7_22

27. Chen, S., Jero, S., Jagielski, M., Boldyreva, A., Nita-Rotaru, C.: Secure commu-
nication channel establishment: TLS 1.3 (over TCP fast open) vs. QUIC. In: ES-
ORICS 2019, Part I. LNCS, vol. 11735, pp. 404–426. Springer, Heidelberg (Sep
2019). https://doi.org/10.1007/978-3-030-29959-0_20

28. Cornelissen, E.: Pull request 453: Use the GroupContext to derive the
joiner_secret, https://github.com/mlswg/mls-protocol/pull/453

29. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehen-
sive symbolic analysis of TLS 1.3. In: ACM CCS 2017. pp. 1773–1788. ACM Press
(2017)

30. Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis and
verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In: 2016
S&P. pp. 470–485. IEEE (May 2016). https://doi.org/10.1109/SP.2016.35

31. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key ex-
change protocols. In: ACNS 2021, Japan, June 21-24, 2021, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 12727, pp. 448–479. Springer (2021).
https://doi.org/10.1007/978-3-030-78375-4_18, https://doi.org/10.1007/
978-3-030-78375-4_18

32. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Protzenko, J., Rastogi, A.,
Swamy, N., Zanella-Beguelin, S., Bhargavan, K., Pan, J., Zinzindohoue, J.K.: Im-
plementing and proving the TLS 1.3 record layer. In: IEEE Security & Privacy.
IEEE (2017)

33. Diemert, D., Jager, T.: On the tight security of TLS 1.3: Theoretically sound
cryptographic parameters for real-world deployments. Journal of Cryptology 34(3),
30 (Jul 2021). https://doi.org/10.1007/s00145-021-09388-x

34. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol candidates. In: ACM CCS 2015. pp. 1197–1210. ACM
Press (Oct 2015). https://doi.org/10.1145/2810103.2813653

35. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint
Archive, Report 2016/081 (2016), http://eprint.iacr.org/2016/081

http://eprint.iacr.org/2016/063
https://doi.org/10.1109/SP46214.2022.00035
https://doi.org/10.1109/SP46214.2022.00035
https://doi.org/10.1109/SP46214.2022.00035
https://doi.org/10.1109/SP46214.2022.00035
https://eprint.iacr.org/2021/467
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/3-540-46035-7_22
https://doi.org/10.1007/3-540-46035-7_22
https://doi.org/10.1007/978-3-030-29959-0_20
https://doi.org/10.1007/978-3-030-29959-0_20
https://github.com/mlswg/mls-protocol/pull/453
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1007/s00145-021-09388-x
https://doi.org/10.1007/s00145-021-09388-x
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653
http://eprint.iacr.org/2016/081

30 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

36. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol. Journal of Cryptology 34(4), 37 (Oct 2021).
https://doi.org/10.1007/s00145-021-09384-1

37. Drucker, N., Gueron, S.: Selfie: reflections on TLS 1.3 with PSK. Journal of Cryp-
tology 34(3), 27 (Jul 2021). https://doi.org/10.1007/s00145-021-09387-y

38. Duong, T., Rizzo, J.: Here come the ⊕ ninjas (2011),
http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf

39. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: The case of the
TLS 1.3 handshake candidates. In: 2017 IEEE European Symposium on Security
and Privacy (EuroS&P). pp. 60–75. IEEE (2017)

40. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: Se-
curity of stream-based channels. In: CRYPTO 2015, Part II. LNCS, vol. 9216,
pp. 545–564. Springer, Heidelberg (Aug 2015). https://doi.org/10.1007/
978-3-662-48000-7_27

41. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key
exchange: A formal treatment and implications for TLS 1.3. In: 2016 S&P. pp.
452–469. IEEE (May 2016). https://doi.org/10.1109/SP.2016.34

42. Iyengar, J., Thomson, M.: QUIC. IETF draft (2019)
43. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Authenticated confidential channel

establishment and the security of TLS-DHE. Journal of Cryptology 30(4), 1276–
1324 (Oct 2017). https://doi.org/10.1007/s00145-016-9248-2

44. Krawczyk, H.: SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: CRYPTO 2003. LNCS, vol. 2729,
pp. 400–425. Springer, Heidelberg (Aug 2003). https://doi.org/10.1007/
978-3-540-45146-4_24

45. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme.
In: CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg (Aug 2010).
https://doi.org/10.1007/978-3-642-14623-7_34

46. Krawczyk, H.: A unilateral-to-mutual authentication compiler for key exchange
(with applications to client authentication in TLS 1.3). In: ACM CCS 2016. pp.
1438–1450. ACM Press (Oct 2016). https://doi.org/10.1145/2976749.2978325

47. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. Cryptology ePrint
Archive, Report 2015/978 (2015), http://eprint.iacr.org/2015/978

48. Li, X., Xu, J., Zhang, Z., Feng, D., Hu, H.: Multiple handshakes security of TLS
1.3 candidates. In: 2016 S&P. pp. 486–505. IEEE (May 2016). https://doi.org/
10.1109/SP.2016.36

49. Mavrogiannopoulos, N., Vercauteren, F., Velichkov, V., Preneel, B.: A cross-
protocol attack on the TLS protocol. In: ACM CCS 2012. pp. 62–72. ACM Press
(Oct 2012). https://doi.org/10.1145/2382196.2382206

50. Paterson, K.G., van der Merwe, T.: Reactive and proactive standardisation of TLS.
In: Security Standardisation Research. pp. 160–186 (2016)

51. Patton, C., Shrimpton, T.: Partially specified channels: The TLS 1.3 record layer
without elision. Cryptology ePrint Archive, Report 2018/634 (2018)

52. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. https:
//tools.ietf.org/html/rfc8446 (Aug 2018)

https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/s00145-021-09387-y
https://doi.org/10.1007/s00145-021-09387-y
http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1007/s00145-016-9248-2
https://doi.org/10.1007/s00145-016-9248-2
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1145/2976749.2978325
https://doi.org/10.1145/2976749.2978325
http://eprint.iacr.org/2015/978
https://doi.org/10.1109/SP.2016.36
https://doi.org/10.1109/SP.2016.36
https://doi.org/10.1109/SP.2016.36
https://doi.org/10.1109/SP.2016.36
https://doi.org/10.1145/2382196.2382206
https://doi.org/10.1145/2382196.2382206
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446

	Key-schedule Security for the TLS 1.3 Standard

