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Abstract. In 2020, Bernard and Roux-Langlois introduced the Twisted-
PHS algorithm to solve Approx-Svp for ideal lattices on any number
field, based on the PHS algorithm by Pellet-Mary, Hanrot and Stehlé.
They performed experiments for prime conductors cyclotomic fields of
degrees at most 70, one of the main bottlenecks being the computation
of a log-S-unit lattice which requires subexponential time.
Our main contribution is to extend these experiments to cyclotomic fields
of degree up to 210 for most conductors m. Building upon new results
from Bernard and Kučera on the Stickelberger ideal, we use explicit
generators to construct full-rank log-S-unit sublattices fulfilling the role
of approximating the full Twisted-PHS lattice. In our best approximate
regime, our results show that the Twisted-PHS algorithm outperforms,
over our experimental range, the CDW algorithm by Cramer, Ducas and
Wesolowski, and sometimes beats its asymptotic volumetric lower bound.
Additionally, we use these explicit Stickelberger generators to remove al-
most all quantum steps in the CDW algorithm, under the mild restriction
that the plus part of the class number verifies h+

m ≤ O(
√
m).

Keywords: Ideal lattices, Approx-SVP, Stickelberger ideal, S-unit at-
tacks, Twisted-PHS algorithm

1 Introduction

The ongoing NIST Post-Quantum Cryptography competition illustrates the im-
portance of the Learning With Errors (Lwe) problem as an intermediate building
block for a wide variety of cryptographic schemes. Most of these cryptographic
schemes rely on a structured version of the Lwe problem allowing for much
more satisfactory performance, compared to schemes based on the unstructured
Lwe problem. The first structured variant of Lwe, later known as the Ring-Lwe
problem, is shown to be at least as hard as the Approximate Shortest Vector
Problem on ideal lattices (Approx-id-Svp) using quantum worst-case to average-
case reductions [SSTX09,LPR10]. One important matter is to determine whether
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using this structured version of Lwe could lower the hardness hypothesis of the
scheme. Notably, an efficient solver for Approx-id-SVP would render the worst-
case to average-case reduction to Ring-Lwe meaningless as a security argument.
Note however that even in this case, this would not directly imply an efficient
solver for the Ring-Lwe problem.

In the case of arbitrary lattices, Approx-Svp is a well-studied hard problem.
It consists in finding relatively short vectors of a given lattice, within an approx-
imation factor of the shortest vector. The best theoretical trade-off between run-
time and approximation factor is known as Schnorr’s hierarchy [Sch87]: one can

reach, for any α ∈ (0, 1), an approximation factor 2Õ(nα) in time 2Õ(n1−α). The
closest known practical algorithm to this trade-off is the BKZ algorithm [SE94],
a generalization of the well-known LLL algorithm [LLL82]. In the particular
case of ideal lattices, i.e., lattices that correspond to ideals of the ring of inte-
gers OK of a number field K, one could hope that the best reduction algorithms
would remain those associated with arbitrary lattices. However, this simplifying
assumption seems questionable, since the underlying number-theoretic struc-
ture is precisely what makes Ring-Lwe a more efficient building block. Thus,
going beyond the BKZ algorithm and estimating the hardness of Approx-id-
Svp using algebraic ideas has gathered more attention, starting by works from
[EHKS14,CGS14,BS16,CDPR16]. Earlier works aimed at the more restricted
case of Approx-id-Svp for principal ideals. A strategy for this case is devised as
a two parts algorithm. The first part requires solving the Principal Ideal Problem
(Pip), i.e., finding any generator of the ideal; the second part aims at finding
the shortest one, by solving a Closest Vector Problem (Cvp) in the so-called
log-unit lattice. This shortest generator is expected to solve Approx-Svp for a
sufficiently small approximation factor. Ultimately, for the particular case of cy-
clotomic fields of prime power conductors, [CDPR16] proved that Approx-id-Svp
on principal ideals is solvable in quantum polynomial time, but only reaching an
approximation factor 2Õ(

√
n).

Subsequent works in a more general case can be divided in two different paths.
The first one [CDW17,CDW21] aimed at extending the results from [CDPR16] to
arbitrary ideal lattices over any cyclotomic fields, while still reaching in quantum
polynomial time an approximation factor 2Õ(

√
n). One of their contributions is

to reduce the arbitrary ideal case to the principal ideal case by solving the Close
Principal Multiple Problem (Cpmp): given an ideal b, one computes an ideal c
of small algebraic norm s.t. bc is a principal ideal. In order to ensure that c
has a small norm, a new key technical ingredient, specific to cyclotomic fields,
was the use of the Stickelberger lattice, which has good geometric properties.
Then, the results from [CDPR16] are applied to bc to obtain a candidate short
element of b, using the fact that c has a small norm. The concrete consequences
of this method were experimented in [DPW19], under different regimes which
mainly differ upon which Cvp solver is used. The first regime (called “Naive”)
uses Babai’s Nearest Plane algorithm, whereas the second regime uses a heuris-
tic Cvp algorithm relatively to ad hoc pseudo-norms. From these experiments,
the asymptotic performance of those decoding algorithms was estimated, which
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led to simulated approximation factors reached by the CDW algorithm. Finally,
given experimentally verified constants, a volumetric lower bound was derived for
the approximation factors that could be reached in the best scenario. Accord-
ing to this lower bound, the CDW algorithm is expected to beat the BKZ300

algorithm for cyclotomic fields of degrees at least larger than 7000. Since NIST
submissions based on structured lattices rely on cyclotomic fields of degree at
most 1024, this could be perceived as somewhat reassuring.

The second path is explored in [PHS19,BR20]. Those works, applying to ar-
bitrary number fields, replace the two reductions steps from [CDW21] with a
single Cvp instance, so as to find a principal multiple ideal which is not only of
small algebraic norm, but is also generated by a small element. A key ingredient
achieving this is to use a generalization of the units of OK , called S-units; this
formalism was an underlying feature of [PHS19] and was later made explicit in
[BR20]. The PHS algorithm splits into a preprocessing phase and a query phase.
The preprocessing phase consists in preparing the decoding of a particular lattice
depending only on the number field K, via the computation of a hint following
Laarhoven’s Cvp with preprocessing algorithm [Laa16], which takes exponential
time. Then, any Approx-id-Svp instance in K can be interpreted as an Approx-
Cvp instance in this lattice, efficiently solved thanks to the hint. Up to the pre-
processing, the query phase yields new time/quality trade-offs: as in [CDW21]
for cyclotomic fields, it reaches approximation factor 2Õ(

√
n) in quantum poly-

nomial time; however, the PHS algorithm also allows for better trade-offs than
Schnorr’s hierarchy, from polynomial to 2Õ(

√
n) approximation factors. On the

downside, the computation of the lattice itself takes classically subexponential
time, which is a serious obstacle for studying their geometry and obtaining con-
crete asymptotic estimations as was done in [DPW19] for the CDW algorithm.

Then, [BR20] introduced Twisted-PHS, a “Twisted” version of the PHS algo-
rithm whose main difference lies in a fundamental modification of the underlying
lattice, thanks to a natural normalization coming from the Product Formula. The
problem of finding a short vector is expected to be better encoded within this new
lattice, ultimately leading to smaller outputs. Even though the proven trade-offs
between runtime and approximation factor remain the same for the Twisted-PHS
algorithm as for the PHS algorithm, very significant improvements have been
experimentally illustrated in [BR20, Fig. 5.3], showing much better approxima-
tion factors compared to the PHS algorithm for number fields of degree up to
60, where Laarhoven’s Cvp algorithm is replaced in practice by Babai’s Nearest
Plane algorithm [Bab86]. These were to our knowledge the first experimental ev-
idence of the geometric peculiarity of normalized log-S-unit lattices and of the
practical potential of this type of attack. In this practical version, experiments
are solely limited by the classical complexity of computing the lattice.

Unfortunately, the attained dimensions, up to 60, are not sufficient to assess
the practical limits of the Twisted-PHS algorithm: its heuristic analysis [BR20]
could give only a loose upper bound, or miss unexpected performance in practical
dimensions due to its asymptotic nature, even in the cryptographical range.
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Fig. 1.1 – Average of approximation factors achieved by our implementation of
Twisted-PHS, using log-S-unit sublattices in cyclotomic fields over
random simulated instances, compared to those achieved by CDW
[DPW19], assuming the Gaussian Heuristic throughout all instances.

Our contributions. We develop theoretical and practical improvements re-
garding algorithms for solving Approx-id-Svp, in both lines of work following
the CDW algorithm and the Twisted-PHS algorithm. Even though the hardness
of the Approx-id-Svp does not concretely impact the security of cryptographic
schemes, it is important to get a better understanding of both approaches, which
are the only ones successfully exploiting the structure of a lattice.

Our core ingredient is the introduction of a full-rank family of independent S-
units, whose algebraic properties are proven in §3. In §4, we use this family to
remove most quantum steps of the CDW algorithm, leaving only one step during
a preprocessing phase done once for any given field, and one step for each query.

In §5, this family allows us to achieve experiments on algorithms in the
(Twisted-)PHS family, for most cyclotomic fields of dimension up to 210. By
comparison, previous experiments [DPW19,BR20] only considered cyclotomic
fields of conductors m = p > 2 prime and m = 2e > 2. Our work comes with
an improved implementation of the initial Twisted-PHS algorithm, allowing us
to extend the experiments conducted in [BR20] up to dimension 80 and for all
cyclotomic fields. It also includes different regimes of approximation for this
algorithm, using sublattices of the log-S-unit lattice obtained thanks to our new
construction beyond dimension 80 up to 210. These regimes yield concrete upper
bounds for the approximation factors that could be reached by the full Twisted-
PHS algorithm up to dimension 210, as illustrated in Fig. 1.1:

1. The depicted approximation factors were estimated using the Gaussian Heu-
ristic, matching the exact ones obtained by [BR20] without this hypothesis.



Using Explicit Stickelberger Generators to Solve Approx Ideal-SVP 5

2. Our best approximate regime yields approximation factors that are compa-
rable (sometimes even smaller) to the asymptotical volumetric lower bound
regime of the CDW algorithm.

In [DPW19], it was already noted that the PHS approach should outperform the
lower bound, but at the cost of computing Laarhoven’s hint in exponential time.
Our work show that for medium dimensions, where asymptotical results should
start to be meaningful, the Twisted-PHS algorithm is at least comparable to the
CDW lower bound, though without this exponential hint precomputation.

As suggested in [BR20], and illustrated in small dimensions, the Twisted-
PHS algorithm performance may be explained by the peculiar geometric nature
of the log-S-unit lattice. In our work, this is confirmed by the computations
of several geometrical parameters on the basis obtained by our implementa-
tion, across all considered cyclotomic fields, sublattices and factor bases. This
specificity, observed in a wide variety of regimes and even in medium dimen-
sions, suggest a deeper explanation, a possibility recently explored by Bernstein
and Lange [BL21]. We provide a full implementation of all our experiments
at https://github.com/ob3rnard/Tw-Sti.

Technical overview. In [BR20], the log-S-unit lattice needed for the prepro-
cessing phase was built using generic number theory tools. Our main idea is to
shortcut this generic computation by considering a maximal family F of inde-
pendent S-units, where S verifies some conditions (detailed in §3), leading to
sublattices of the log-S-unit lattice. The family F is composed of three parts:

1. Circular units, also known as cyclotomic units, e.g. in [Was97, §8];
2. Generators coming from the explicit proof of Stickelberger’s theorem proof;
3. Real S-units coming from the maximal real subfield K+

m of Km, where Km

is the cyclotomic field of conductor m.

The first two parts are classically easy to compute. In particular, the effectiveness
of the second part comes from two recent results of [BK21]: the knowledge of
an explicit short Z-basis of the Stickelberger ideal for any conductor [BK21,
Th. 3.6], and the effective computations of generators corresponding to these
short relations using Jacobi sums [BK21, §5]. On the contrary, the last part still
relies on generic number theory tools which are classically costly, but are now
performed in a number field of half degree, which propels us to degree 210.

As an important theoretical contribution, we prove in Th. 3.11 that F is in-
deed a full-rank family of multiplicatively independent S-units, by computing
explicitly its (finite) index in the full S-unit group. This can be seen as a gener-
alization of the strategy of [CDW17, Def. 2] to obtain a full-rank lattice of class
relations, restricted to the relative class group. In particular, our result proves the
experimentally conjectured value [DPW19, Rem. 3] of the index of their family.

Finally, the index of F contains a large power of 2 that can be removed using
classical 2-saturation techniques of §3.5, leading to a family Fsat. We then use
the explicit knowledge of these special S-units in two different situations.

Theoretical improvements of the CDW algorithm. In §4, we remove almost all
quantum steps of the CDW algorithm while still guaranteeing its approximation

https://github.com/ob3rnard/Tw-Sti
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factor [CDW21, Th. 5.1], at the small price of restricting to cyclotomic fields
s.t. h+m ≤ O(

√
m) ([BLNR21, Hyp. B.1]), where h+ denotes the plus part of the

class number (defined in §2.2), whereas [CDW21, Ass. 2] uses h+m ≤ poly(m).
For that purpose, we state an equivalent rewriting of [CDW21, Alg. 7], making

explicit some hidden steps useful for subsequent modifications. Then, the explicit
Stickelberger generators and real S-units are used to remove the last call to
the quantum Pip solver. Finally, considering the module of all real class group
relations allows us to remove the quantum random walk mapping any ideal
of Km into the relative class group. This last part uses our Th. 3.11 and needs
[BLNR21, Hyp. B.1] to obtain the same bound on the approximation factor.

Only two quantum steps remain: the first is performed once to compute real
S-units in K+

m, of degree only half, the second is solving the Cldl for each query.

Experimenting the Twisted-PHS algorithm in medium dimensions. We apply
Twisted-PHS [BR20] on our full-rank sublattices of the log-S-unit lattice, yield-
ing approximated regimes of the Twisted-PHS algorithm. Up to degree 210,
for most conductors, the newly implemented algorithm is used to compute the
sublattices associated with F and Fsat, for varying subsets S according to the
number of Galois orbits of totally split primes used. In particular, we explicitly
compute the Stickelberger generators and real generators of F and effectively
perform the 2-saturation of F to get Fsat. Up to degree 80, the whole log-S-unit
lattice is also computed, corresponding to a fundamental system Fsu of S-units.
This last computation of Fsu remains unfeasible at higher dimensions. We eval-
uate the geometry of all these lattices with standard indicators described in
§2.5: the root-Hermite factor δ0, the orthogonality defect δ and the logarithm of
the Gram-Schmidt norms. We consistently observe the same phenomena already
pointed out in [BR20, §5.1 and 5.2], that indicate close to orthogonal lattices.

Next, since computing Cldl solutions for random ideals quickly becomes in-
tractable, we simulate this step by sampling random outputs similarly to what
was done in [DPW19, Hyp. 8]. Given those targets and the preprocessed lat-
tices associated with F, Fsat and Fsu, we evaluate the approximation factors
reached by these different regimes, by assuming the Gaussian Heuristic. These
two assumptions, i.e., using simulated targets and the Gaussian Heuristic, are
validated by the fact that up to degree 80, where it is feasible to compute the
full S-unit group generated by Fsu, our approximation factors match the ex-
act approximation factors obtained in [BR20, Fig. 1.1], where those heuristics
were not used. Finally, we compare our results to the approximation factors
obtained by the CDW algorithm [CDW21] in the “Naive” regime of [DPW19],
under the same working assumptions as above. We observe that in our best ap-
proximate regime, using Fsat, our estimated approximation factors are close, and
sometimes smaller, than the theoretical lower bound derived in [DPW19]. This
suggests that the crossover with BKZ300 could be lower than expected for the
Twisted-PHS algorithm.

Relations to other works related to S-units. Some recent mathematical re-
sults regarding the Stickelberger lattice were established in [BK21]. The authors
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described, for any conductor, an easily computable short basis for this lattice,
and how to explicitly compute the associated principal ideal generators through
Jacobi sums. In our work, this result is brought into fruition to solve Approx-id-
Svp. The completion of this short basis into a full-rank lattice of class relations,
the effective computation of the explicit generators and the 2-saturation of these
elements, yielded the different approximated regimes of Twisted-PHS and al-
lowed us to remove many quantum steps from the CDW algorithm.

In a talk on August 2021 at SIAM Conference,4 Bernstein announced a joint
work with Eisenträger, Rubin, Silverberg and van Vredendaal, by illustrating the
construction of small S-units using Jacobi sums that lead to an “S-unit attack”
in the power-of-2 conductor case up to degree 64, assuming h+2e = 1. The talk
also announced a paper that has yet to appear. In this light, we are not able to
compare our use of explicit Stickelberger generators to their work. However, this
talk does neither mention a short basis of the Stickelberger lattice, which is at
the heart of our work, nor lift all obstructions to apply it to any conductor.

In December 2021, a “filtered-S-unit software” was released by Bernstein,
treating the prime p ≤ 43 conductor case, on a webpage5 describing the “sim-
plest S-unit attack” using a technique described in [BL21]. This work is not re-
lated to our construction. Finally, the authors of [BL21] argued that “spherical
models” should not be applied to log-S-unit lattices, which may have particular
geometric properties. This phenomenon was experimentally observed already in
[BR20], and is confirmed by all of our experiments in medium dimensions.

2 Preliminaries

Notations. For any i, j ∈ Z with i ≤ j, the set of all integers between i and j
is denoted by Ji, jK. For any x ∈ Q, let

{
x
}

denote its fractional part, i.e., such

that 0 ≤
{
x
}
< 1 and x−

{
x
}
∈ Z. A vector is represented by a bold letter v,

and for any p ∈ N∗∪{∞}, its `p-norm is written ‖v‖p. The n-dimensional vector
with all 1’s is denoted by 1n. All matrices are given using row vectors.

2.1 Cyclotomic fields

We denote the cyclotomic field of conductor m, m 6≡ 2 mod 4, by Km = Q[ζm],
where ζm is a primitive m-th root of unity. It has degree n = ϕ(m), its maximal
order is OKm = Z

[
ζm
]

([Was97, Th. 2.6]), and its discriminant is given precisely

by ∆Km =
(
−1
)ϕ(m)/2 mϕ(m)∏

p|m pϕ(m)/(p−1) ([Was97, Pr. 2.7]), which is of order nn.

In this paper, we consider any conductor m > 1 of the general prime fac-
torization m = pe11 p

e2
2 · · · p

et
t , m 6≡ 2 mod 4, and let qi = peii for all i ∈ J1, tK.

In particular, m has exactly t distinct prime divisors. Let Gm denote the Galois
group of Km, which can be made explicit by ([Was97, Th. 2.5]):

Gm =
{
σs : ζm 7−→ ζsm; 0 < s < m, (s,m) = 1

}
'
(
Z/mZ

)×
.

4 The slides are available at https://cr.yp.to/talks.html#2021.08.20.
5 This is hosted by https://s-unit.attacks.cr.yp.to/filtered.html.

https://cr.yp.to/talks.html#2021.08.20
https://s-unit.attacks.cr.yp.to/filtered.html
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In particular, we denote by σs ∈ Gm the automorphism sending any m-th root of
unity to its s-th power. For convenience, the automorphism induced by complex
conjugation is written τ = σ−1. The algebraic norm of α ∈ Km is defined
by N (α) =

∏
σ∈Gm σ(α), hence the absolute norm element in the integral group

ring Z[Gm] is Nm =
∑
σ∈Gm σ.

Maximal real subfield. The maximal real subfield of Km, written K+
m, is the fixed

subfield of Km under complex conjugation, i.e., K+
m := K

〈τ〉
m = Q

(
ζm+ ζ−1m

)
. Its

maximal order is OK+
m

= Z
[
ζm + ζ−1m

]
(see e.g. [Was97, Pr. 2.16]).

By Galois theory, since
〈
τ
〉

is a normal subgroup of Gm, the maximal real

subfield of Km is a Galois extension of Q with Galois group G+
m := Gal

(
K+
m/Q

)
isomorphic to Gm

/〈
τ
〉
. We identify G+

m with the following system of represen-

tatives modulo τ restricted to K+
m: G+

m =
{
σs|K+

m
; 0 < s < m

2 , (s,m) = 1
}

.

Technically, each σs|K+
m
∈ G+

m extends in Gm to either σs or τσs = σ−s. For

simplicity, we always choose to lift σs|K+
m
∈ G+

m to σs ∈ Gm and drop the restric-

tion to K+
m which should be clear from the context. This slight abuse of notation

appears to be very practical. For example, the corestriction CorKm/K+
m

(
σs|K+

m

)
,

defined as the sum of all elements of Gm that restricts to σs|K+
m

, namely σs+τσs,
is written using the much simpler expression (1 + τ) · σs.

2.2 Real and relative class groups

Fractional ideals of Km form a multiplicative group Im containing the normal
subgroup Pm :=

{
〈α〉; α ∈ Km

}
of principal ideals. The quotient group Im

/
Pm

is called the class group ofKm and denoted by Clm. It is finite and its cardinal hm
is the class number of Km. For any b ∈ Im, the class of b in Clm is written

[
b
]
.

The integral group ring Z[Gm] acts naturally on Im; more precisely, for any
element α =

∑
σ∈Gm aσσ ∈ Z[Gm], and any b ∈ Im, bα :=

∏
σ∈Gm σ

(
b
)aσ

.
The class group and class number of the maximal real subfield K+

m are denoted
respectively by Cl+m and h+m. The relative norm map NKm/K+

m
induces a homo-

morphism from Clm to Cl+m, whose kernel is the so-called relative class group,
written Cl−m and of cardinal the relative class number h−m. Hence, by construc-
tion, for any b s.t.

[
b
]
∈ Cl−m, b1+τ ∩K+

m is principal. One important specificity
of cyclotomic fields is that the real class group Cl+m embeds into Clm via the
natural inclusion map, which to each ideal class

[
b
]
∈ Cl+m associates the ideal

class
[
b·OKm

]
∈ Clm [Was97, Th. 4.14]. Concretely, it implies that hm = h+m ·h−m

is the product of the plus part and the relative part of the class number.

Plus part and relative part of the class number. Generally, not much is known
about the class number of a number field, and the analytic class number formula
[Neu99, Cor. 5.11(ii)] allows obtaining a rough upper bound hm ≤ Õ

(√
|∆Km |

)
.

In the case of cyclotomic fields though, the structure of the relative class
group is better understood. Using analytic means, the relative class number has

the following explicit expression [Was97, Th. 4.17]: h−m = Qw ·
∏
χ odd

(
− 1

2B1,χ

)
,
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where w = 2m if m is odd and w = m if m is even, Q = 1 if m is a prime power
and Q = 2 otherwise, and B1,χ is defined by 1

f

∑f
a=1 a·χ(a) for any odd primitive

character χ modulo m of conductor f dividing m. Computing this value is in
practice very efficient, using adequate representations of Dirichlet characters.

The hard part of cyclotomic class numbers computations is to obtain the plus
part h+m, and relatively few of them are known. We use the values from [Was97,
Tab. §4], [Mil14, Th. 1.1 and 1.2] and [BFHP21, Tab. 1], consistently assuming
the Generalized Riemann Hypothesis (GRH). We also provide 58 additional val-
ues of h+m in [BLNR21, Tab. 2.1] for completeness.

The fact that the plus part of the class number seems much smaller than the
relative part is striking. Weber’s conjecture claims that h+2e = 1 for any e > 1,
and Buhler, Pomerance and Robertson [BPR04] argue, based on Cohen-Lenstra
heuristics, that for all but finitely many pairs (p, e), where p is a prime and e is a
positive integer, h+pe+1 = h+pe . For prime power conductors, this conjecture claims
that the plus part is asymptotically constant. These conjectures are backed up
by Schoof’s extensive calculations [Sch03] in the prime conductor case, and by
the above explicit values. In particular, under GRH, Miller proved Weber’s con-
jecture up to m = 512, and we note that according to Schoof’s table, h+m ≤

√
m

holds for more than 96.6% of all prime conductors m = p < 10000.

Prime ideal classes generators. When picking a set of prime ideals in the algo-
rithms of this paper, an important feature is that they generate the class group.
In general, even assuming GRH, only a large bound on the norm of genera-
tors is known, indeed Bach proved [Bac90, Th. 4] that N (Lmax) ≤ 12 ln2|∆Km |,
where Lmax is the biggest ideal inside a generating set of Clm of minimum norm.
In practice though, this bound seems very pessimistic [BDF08, §6].

On the other hand, as prime ideals belong to Cl−m only with probability
roughly 1/h+m, searching for generators of the subgroup Cl−m mechanically in-
creases the provable upper bound on generators. More precisely, writing as L−max

the biggest ideal of a generating set of Cl−m, Wesolowski proved [Wes18, Rem. 2]

that N (L−max) ≤
(
2.71h+m · ln|∆Km |+ 4.13

)2
.

Finally, we use the notation hm,(L1,...,Lk) to denote the cardinal of the sub-

group of Clm generated by the k classes
[
Li
]
, i.e., the determinant of the kernel

of fL1,...,Lk :
(
e1, . . . , ek

)
∈ Zk 7−→

∏
1≤i≤k

[
Li
]ei ∈ Clm .

2.3 Logarithmic S-embeddings

We introduce log-S-unit lattices and discuss proper normalization by the Prod-
uct Formula that was at the heart of the practical improvements of [BR20]
compared to [PHS19].

Places of the cyclotomic field Km are usually split into two parts: the set S∞
of infinite places can be identified with the (complex) embeddings of Km into C,
up to conjugation; the set S0 of finite places is specified by the infinite set of
prime ideals of Km, each prime ideal p inducing an embedding of Km into its p-
adic completionKm,p. Hence, any place v ∈ S∞∪S0 induces an absolute value |·|v
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on Km, and Ostrowski’s theorem for number fields [Nar04, Th. 3.3] shows that all
possible absolute values on Km are obtained in this way. Concretely, for α ∈ Km:
∀σ ∈ S∞, |α|σ =

∣∣σ(α)
∣∣ and ∀p ∈ S0, |α|p = p−vp(α), where vp(·) is the valuation

of α at p and 〈p〉 = p∩Z. A remarkable fact is that all these absolute values are
tied by the Product Formula [Nar04, Th. 3.5]:

∀α ∈ Km,
∏

v∈S∞∪S0

|α|[Km,v :Qv]v = 1. (2.1)

The S∞-part of this product is
∣∣N (α)

∣∣, as for σ ∈ S∞, Km,σ = C and Qσ = R, so

that [Km,σ : Qσ ] = 2. Similarly, for p ∈ S0, we have |α|[Km,p:Qp]p = N (p)−vp(α).

S-unit group structure. Fix a finite set S of places; in this paper we shall con-
sider that S always contains S∞. The so-called S-unit group of Km, denoted
by O×Km,S , is the multiplicative subgroup of Km generated by all elements whose
valuations are non zero only at the finite places of S. Formally:

O×Km,S =
{
α ∈ Km; 〈α〉 =

∏
p∈S∩S0

pvp(α)
}
.

Theorem 2.1 (Dirichlet-Chevalley-Hasse [Nar04, Th. III.3.12, Cor. 1]).
The S-unit group is the direct product of the group of roots of unity µ

(
O×Km

)
and a free abelian group with |S| − 1 generators. There exists a fundamental
system of S-units ε1, . . . , ε|S|−1 such that any ε ∈ O×Km,S is uniquely written

as: ε = µ ·
∏|S|−1
i=1 εkii , where µ ∈

〈
±ζm

〉
is a root of unity and ki ∈ Z.

Log-S-unit lattice. A fundamental ingredient of the proof of this theorem is to
build an embedding of O×Km,S into the real space of dimension |S|, whose kernel
is µ
(
O×Km

)
and whose image is a lattice of dimension

(
|S|−1

)
. This embedding is

called the logarithmic S-embedding, and its image is called the log-S-unit lattice.
Several equivalent definitions of this logarithmic S-embedding are accept-

able for the proof. However, for cryptanalytic purposes, experimental evidence
[BR20] suggests that it is crucial to use a properly normalized embedding for
the decodability of the log-S-unit lattice. Thus, we define [Nar04, §3, p.98]:

LogS α =
(
[Km,v : Qv]·ln|α|v

)
v∈S =

({
2 ln|σ(α)|

}
σ∈S∞

,
{
−vp(α) lnN (p)

}
p∈S∩S0

)
.

By definition ofO×Km,S , R⊗LogS O×Km,S is included in the hyperplane orthogonal
to 1|S|. Showing that its dimension is at least |S| − 1 is more involved.

A basis of the log-S-unit lattice is given by the images LogS εi of the funda-
mental system of S-units of Th. 2.1, as in [BR20, Eq. (2.7)]. Actually, we shall
use later that for any maximal set of independent S-units, their images under
any logarithmic S-embedding form a full rank sublattice of the corresponding
log-S-unit lattice. Its volume is given by [BR20, Pr. 2.2 and Eq. (2.8)].

As mentioned in [PHS19,BDPW20,BR20], a convenient trick in the context
of the cryptanalysis of id-Svp is to consider an expanded version of the log-
arithmic S-embedding, halving and repeating twice S∞-coordinates, namely:

LogS α =
(
{ln|σ(α)|, ln|σ(α)|}σ∈S∞ , {[Km,p : Qp] · ln|α|p}p∈S∩S0

)
.
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In particular, this reduces the volume of the log-S-unit lattice, as shown
by [BR20, Pr. 2.3]. In practice though, we did not observe any fundamental
difference between the approximation factors obtained using LogS or LogS .

2.4 Hard problems in Number Theory

One of the most difficult classical steps of the Approx-id-Svp algorithms propo-
sed in [CDW17,PHS19,BR20,CDW21] is to find a solution to the Cldl defined as:

Problem 2.2 (Class Group Discrete Logarithm (ClDL)). Given a basis
of prime ideals

{
L1, . . . ,Lk

}
, and a challenge ideal b, find α ∈ Km and inte-

gers e1, . . . , ek such that 〈α〉 = b ·
∏
i L

ei
i , if this decomposition exists.

In this definition, we also ask for an explicit element α of the field, contrary to
the definition of, e.g., [CDW17, Pr. 2]. Nevertheless, we note that in both quan-
tum and classical worlds, the standard way to solve this problem boils down to
computing S-units, for S containing b and the Li’s, so that this explicit element
is a byproduct of the resolution. Furthermore, put in this form it encompasses
the well-known Principal Ideal Problem (Pip), using an empty set of ideals.

The Shortest Generator Problem (Sgp) asks, from a generator α of a principal
ideal, for the shortest generator α′ such that 〈α〉 = 〈α′〉. Similarly, we define:

Problem 2.3 (Shortest Class Group Discrete Logarithm (S-ClDL)).
Given a solution 〈α〉 = b ·

∏
i L

ei
i to the Cldl problem, find w1, . . . , wk ∈ Z≥0

and α′ ∈ Km such that 〈α′〉 = b ·
∏
i L

wi
i and α′ is the smallest possible one.

The condition for the wi’s to be positive is crucial. Note that all recent
algorithms for Approx-id-Svp that are not bound to principal ideals eventually
output an approximate solution of the S-Cldl [CDW21,PHS19,BR20]. If the set
of prime ideals is sufficiently large compared to b, then S-Cldl is exactly id-Svp.

We also mention the Close Principal Multiple (Cpm) problem which, given
an ideal b, asks to find c such that bc is principal and N (c) is small. This specific
problem is used in [CDW21], and the authors prove that under GRH and using
a factor base containing all prime ideals of norm up to m4+o(1), there exists a
solution c with N (c) ≤ exp

(
Õ(m1+o(1))

)
[CDW21, §1.3.4].

Complexities. As shown in [BS16], class groups, unit groups, class group discrete
logarithms and principal ideal generator computations can be reduced to S-unit
groups computations for appropriate sets of places S. Denote by TS(Km) the run-
ning time of the computation of the S-unit group in Km. Under GRH, in a quan-
tum setting, TS(Km) = poly

(
ln|∆Km |,

∣∣S∣∣,maxp∈S lnN (p)
)

by [EHKS14,BS16].
In a classical setting, TS(Km) = poly

(∣∣S∣∣,maxp∈S lnN (p)
)
· exp Õ

(
ln2/3(|∆K |

)
is mainly subexponential in the degree of the cyclotomic field Km [BF14,PHS19].
The exponent can be lowered to 1/2 when m is a prime power [BEF+17].
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2.5 Lattices

Let L be a Euclidean lattice of full rank n. The first minimum λ1(L) of L is
defined as the `2-norm of the smallest vector v ∈ L∗, and the `2-distance from t
to L, for any t in the span L⊗R of L, is defined by dist2(L, t) = minv∈L‖t− v‖2.

The Approximate Shortest Vector Problem (Approx-Svp) is, given a lattice L
and an approximation factor af, to find v ∈ L such that ‖v‖2 ≤ af ·λ1(L).
Similarly, the Approximate Closest Vector Problem (Approx-Cvp) asks, given a
lattice L, an approximation factor af and a target t in the span L⊗R of L, for
a vector v ∈ L such that ‖t− v‖2 ≤ af ·dist2(L, t). A practical Approx-Cvp
oracle is given by Babai’s Nearest Plane algorithm [Bab86].

Bounding approximation factors. An ideal lattice of Km is the full-rank image
under the Minkowski embedding in Rϕ(m) of a fractional ideal b of Km. Unlike
generic lattices, a lower bound of the first minimum is implied by the arithmetic-
geometric mean inequality, using that for any b ∈ b, N (b) divides |N (b)|. Thus:

√
n · N (b)1/n ≤ λ1(b) ≤

√
n · N (b)1/n

√
|∆Km |

1/n
, (2.2)

where n = ϕ(m) = degKm and the right inequality is Minkowski’s inequality.
Actually, applying the Gaussian Heuristic to ideal lattices would give that on av-
erage, λ1(b) ≈

√
n

2πe ·Vol1/n(b), where Vol(b) = N (b)
√
|∆Km |. This hypothesis

is commonly used for the analysis of cryptosystems based on structured lattices,
and we note that the exact approximation factors reached by the Twisted-PHS
algorithm in [BR20] match this heuristic.

For any x ∈ b, let af(x) = ‖x‖2/λ1(b) denote the approximation factor
reached by x for the Svp in the ideal lattice b. In general, λ1(b) is not known,
but Eq. (2.2) imply the bounds af inf(x) ≤ af(x) ≈ afgh(x) ≤ afsup(x), where:

af inf(x) :=
‖x‖2√

n ·Vol1/n(b)
, afsup(x) :=

‖x‖2√
n · N (b)1/n

,

afgh(x) :=
√

2πe · af inf(x).
(2.3)

Quality of a lattice basis. Several indicators have been used in the literature to
attempt to measure the quality of a lattice basis B = (b1, . . . ,bn) relatively to
the Svp or the Cvp. We will focus on the following three standard quantities:

1. the root-Hermite Factor δ0(B), defined by δn0 (B) = ‖b1‖2/Vol1/nB, is com-
monly used to compare lattice reduction algorithms like LLL [LLL82] or
BKZ [CN11]. On average, LLL reaches δ0 ≈ 1.022 [GN08] whereas BKZ

with blocksize b ≥ 50 heuristically yields δ0 ≈
(
b

2πe (πb)1/b
)1/(2b−2)

[Che13].

2. the (normalized) orthogonality defect δ(B), given by δn(B) =
∏
i

( ‖bi‖2
Vol1/n B

)
[MG02, Def. 7.5] involves all vectors of the basis. By Minkowski’s second
theorem, its smallest possible value is upper bounded by

√
1 + n

4 .
3. the logarithms of the norms of Gram-Schmidt Orthogonalization (GSO) vec-

tors b?i give also valuable information. For example, a rapid decrease in the
sequence ln‖b?i ‖2 at i ≥ 2 indicates that bi is rather not orthogonal to the
previously generated subspace

〈
b1, . . . ,bi−1

〉
.
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3 An explicit full-rank family of independent S-units

In this section, we exhibit a full rank family of independent S-units, where the
finite places S correspond to a collection of full Galois orbits of split prime ideals.
As mentioned in introduction, this family is composed of three parts:

1. Circular units are recalled in §3.1 using the material from [Kuč92, Th. 6.1];
2. Stickelberger generators are in §3.2, sticking to the exposition of [BK21];
3. Real S+-units (apart from real units), where S+ is the set S ∩K+

m of places
of S restricted to K+

m, are in §3.3.

Considering real S+-units and proving in §3.4 the multiplicative index of our
family in the full S-unit group constitute our main theoretical contributions.
Finally, the saturation process used to mitigate this index is described in §3.5.

Remark 3.1. Recall that m has prime factorization m = q1q2 · · · qt 6≡ 2 mod 4,
where qi = peii > 2 for i ∈ J1, tK. In this section, we will use subsets M+

m and M ′m
of J1,mK that are useful to describe resp. a fundamental family of circular units
and a short Z-basis of the Stickelberger ideal of Km. Their precise definitions
from resp. [Kuč92, p.293] and [BK21, Eq. (11)] can be found in [BLNR21, §A.1].

3.1 Circular units

Circular units are sometimes called cyclotomic units in the literature, as in
[Was97, §8]. We prefer to use the historical terminology from algebraic number
theory, e.g. Sinnott [Sin78, §4] and Kučera [Kuč92, §2], in order to avoid any
confusion with the whole unit group O×Km of the m-th cyclotomic field.

Definition 3.2 (Circular units [Was97, §8.1]). Let Vm be the multiplicative
subgroup of K×m generated by

{
1− ζam; 1 ≤ a ≤ m

}
. The group of circular units

is the intersection Cm := Vm ∩ O×Km .

Note that Vm contains the torsion of Km, since −ζm =
(
1− ζm

)/(
1− ζ−1m

)
.

The circular units form a subgroup of O×Km of finite index, more precisely:

Proposition 3.3 ([Sin78, Th. p.107]). The index of Cm in O×Km is finite:[
O×Km : Cm

]
= 2b · h+m, with b =

{
0 if t = 1,

2t−2 + 1− t otherwise,

where t is the number of distinct prime divisors of m.

Hence, circular units provide a very large subgroup of O×Km : indeed, the real
part of the class number is expected to be small (§2.2), and the other factor gener-
ically grows linearly in m (see [HW38, Th. 430 and 431] for a precise statement).

An explicit system of fundamental circular units for any m has been given
in [GK89] and independently in [Kuč92, Th. 6.1]. More precisely, for 0 < a < m,
define the following special circular units, where mi = m/peii [Kuč92, p.176]:

va =


1− ζam if ∀i ∈ J1, tK, mi - a,
1− ζam
1− ζmim

otherwise, for the unique mi | a.
(3.1)
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Theorem 3.4 ([Kuč92, Th. 6.1]). Recall the definition of M+
m ( J1,mK can

be found in [BLNR21, §A.1]. The set
{
va; a ∈M+

m

}
is a system of fundamental

circular units of Km: for any circular unit η ∈ Cm, there exist a uniquely deter-

mined map k : M+
m → Z, and a root of unity µ ∈

〈
±ζm

〉
s.t. η = µ·

∏
a∈M+

m
v
k(a)
a .

A crucial point for the cryptanalysis of id-Svp in [CDW21] is that the
logarithmic embedding of these elements is short. Namely, explicitly writing
the constants that appear in the proof of [CDW21, Lem. 3.5], we have, for
any 0 < a < m, that ‖LogS∞(1− ζam)‖2 ≤ 1.32 ·

√
m.

3.2 Stickelberger generators

In this section, we use [BK21, Th. 3.1] to describe a short basis of the so-called
Stickelberger ideal, viewed as a Z-module. These Stickelberger short relations
correspond to principal ideals whose generators are surprisingly easy to compute
using Jacobi sums as in [BK21, §6]. Following Sinnott [Sin80], for all a ∈ Z, let:

θm(a) =
∑

s∈(Z/mZ)×

{
−as
m

}
· σ−1s ∈ Q

[
Gm
]
, (3.2)

and let Nm be the absolute norm element Nm =
∑
σ∈Gm σ.

Definition 3.5 (Stickelberger ideal [Sin80, p.189]). Let S ′m be the Z-
module of Q

[
Gm
]

generated by
{
θm(a); 0 < a < m

}
∪
{

1
2Nm

}
. The Stickelberger

ideal of Km is the intersection Sm = S ′m ∩ Z
[
Gm
]
.

As in [CDW21], we shall refer to the Stickelberger lattice when Sm is viewed as
a Z-module. Note that in some references, like in [Was97, §6.2], the Stickelberger
ideal is defined as the smaller ideal Z

[
Gm
]
∩θm(−1)Z

[
Gm
]
, which coincides with

Def. 3.5 if and only if m is a prime power [Kuč86, Pr. 4.3].

Theorem 3.6 (Stickelberger’s theorem [Sin80,Th. 3.1]). The Stickelberger
ideal Sm of Km annihilates the class group of Km. Hence, for any ideal b of Km

and any α =
∑
σ∈Gm aσσ ∈ Sm, the ideal bα =

∏
σ∈Gm σ(b)aσ is principal.

An outstanding point is that the proof of this important result is completely
explicit, i.e., for any α ∈ Sm, and any fractional ideal b ofKm, an explicit γ ∈ Km

s.t. 〈γ〉 = bα is constructed. It appears that when α is a short element of Sm,
this explicit generator is very efficiently computable.

A short basis of the Stickelberger lattice. An element of the integral
group ring Z

[
Gm
]

is called short if it is of the form
∑
σ∈Gm aσσ ∈ Z

[
Gm
]
,

where aσ ∈ {0, 1} for all σ ∈ Gm. Short elements of Sm have been identified
in [Sch08, Th. 9.3(i) and Ex. 9.3] in the prime conductor case, and the proof has
been adapted to any conductor in [CDW21, Lem. 4.4] to prove the shortness of
the following generating set of Sm:

W =
{
wa; a ∈ J2,mK

}
, with wa = θm(1) + θm(a− 1)− θm(a). (3.3)
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Note that using θm(a) + θm(−a) = Nm when m - a, we obtain wa = wm−a+1

whenever 1 < a < m, and that wm = Nm using also θm(m) = 0. Hence, W is
the set

{
wa; 2 ≤ a ≤

⌈
m
2

⌉}
∪
{
Nm
}

.
We emphasize that only knowing a generating set of short elements as in

[CDW21] is not necessarily sufficient. Though it would be possible to build a basis
from this generating set to solve the Cvp like in [CDW21, Cor. 2.2], without any
geometric loss using e.g. [MG02, Lem. 7.1], we observed that the slight euclidean
norm growth of the obtained basis vectors translates into a dramatic increase of
the size of the (possibly rational) coefficients of the corresponding generators, in
a way that significantly hinders subsequent computations. In particular, in order
to climb dimensions as far as possible and best approach log-S-unit lattices using
the saturation process described in §3.5, it is crucial to constrain both the number
of elements we use and their size, i.e., to use a basis of the Stickelberger lattice
containing only short elements. In [BK21], a very large family of short elements
[BK21, Pr. 3.1] encompassing W \ {Nm} is made explicit:

Proposition 3.7 ([BK21, Pr. 3.1]). Let a, b ∈ Z satisfying m - a, m - b
and m - (a+ b). Then α = θm(a) + θm(b)− θm(a+ b) is a short element of Sm.
Moreover, (1 + τ) ·α = Nm, so exactly one half of the coefficients of α are zeros.

Then, from this family, a short basis is computationally easy to extract:

Theorem 3.8 ([BK21, Th. 3.6]). Recall M ′m ( J1,mK is defined in [BLNR21,
§A.1]. There exists an efficiently computable map αm(·) from J1,mK to the family
of short elements of Sm described in Pr. 3.7, s.t.

{
αm(c); c ∈ M ′m

}
∪
{
Nm
}

is
a Z-basis of the Stickelberger lattice Sm of Km having only short elements.

The explicit definition of αm(·) is given in [BK21, §3.2], and included for
completeness in [BLNR21, §A.2]. We stress that when m is a prime, this basis
coincides with the one given by [Sch08, Th. 9.3(i)] and with the setW in Eq. (3.3).

Effective Stickelberger generators using Jacobi sums. As previously men-
tioned, the proof of Th. 3.6 is explicit, i.e., for any α ∈ Sm and any fractional
ideal b of Km, it builds an explicit γ ∈ Km s.t. 〈γ〉 = bα [Was97, §6.2], [Sin80,
§3.1]. Moreover, when α is a short basis element from Th. 3.8, it turns out that γ
has a simple expression using Jacobi sums [BK21, §5].

We briefly treat the split case here. Let ` ∈ Z be a prime s.t. ` ≡ 1 mod m,
and let L be any fixed (split) prime ideal of Km above `. Let a, b be such as in
Pr. 3.7, then for α = θm(a) + θm(b)− θm(a+ b), we have that Lα is a principal
ideal generated by the following Jacobi sum [BK21, Pr. 5.1]:

JL(a, b) = −
∑

u∈OKm/L
χaL(u)χbL(1− u) ∈ Km, (3.4)

where χL(u) ∈
〈
ζm
〉

verifies χL(u) ≡ u(`−1)/m mod L, for any u ∈
(
OKm/L

)×
,

and χL(0) = 0. When α = αm(c) for c ∈ M ′m, we shall write γ−L,c for the

generator of Lαm(c). Using a discrete logarithm table for elements of (OKm/L)×,
the computation, for a fixed prime L, of all Jacobi sums corresponding to the
short basis

{
αm(c); c ∈M ′m

}
is very fast.
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3.3 Real S+-units

A consequence of Th. 3.8, since
∣∣M ′m∣∣ = ϕ(m)

2 , is that the Stickelberger lattice

only has rank ϕ(m)
2 + 1 in Z

[
Gm
]
; in particular, it is not full rank, hence cannot

be directly used as a lattice of class relations. In previous works, obtaining a full
rank lattice in Z[Gm] from Sm was done by projecting into (1− τ)Sm [CDW21,
§4.3], or by the adjunction of (1+τ)Z[Gm] [CDW17, Def. 2]. Both can be used as
a lattice of class relations for the relative class group Cl−m. In particular, the so-
called augmented Stickelberger lattice Sm+(1+τ)Z[Gm] annihilates the relative
class group and has full rank in Z[Gm], as shown in [CDW17, Lem. 2].

We generalize this result by considering the module of all real class group
relations between relative norm ideals of ideals from the entire class group Clm.
In §3.4, we shall prove that the Stickelberger lattice augmented with these real
class group relations yields a lattice of class relations for the whole class group.
Note that, as opposed to other modules like (1− τ)Sm or Sm + (1 + τ)Z

[
Gm
]
,

real class group relations actually depend on the underlying prime ideals.
On one hand, this affects negatively the shortness of the obtained relation

vectors: putting those in Hermite Normal Form, we shall see later that each
relation, viewed as a vector of integer valuations, has `2-norm at most h+m. On
the other hand, removing the constraint to belong to the relative class group
brings a significant practical and theoretical gap: first, it allows choosing prime
ideals of smallest possible norms, which as shown in [BR20, §3.3] or [CDW21,
Th. 4.8] lowers in practice the obtained approximation factor; second, whereas
prime ideals of norm at most Bach’s bound are sufficient to generate the entire
class group, prime generators for the relative class group are only proven to be
of norm bounded by the larger bound (2.71 ·h+m · ln∆Km + 4.13)2 from [Wes18].

Lifting real class group relations. Let `1, . . . , `d be distinct prime integers
satisfying `i ≡ 1 mod m, so that `i splits in Km, for all i in J1, dK. For each i, fix
a prime ideal Li | `i in Km of norm `i, and let li = NKm/K+

m

(
Li
)

= L1+τ
i ∩K+

m

be the relative norm ideal of Li. Since Li is a split prime ideal of Km dividing `i,
the ideal li is a split prime ideal of K+

m of norm `i, and by Kummer-Dedekind’s
theorem we have li · OKm = L1+τ

i . This justifies the slight abuse of notation of

writing lσi = L
(1+τ)σ
i ∩K+

m, for any σ ∈ Gm.
We are interested in the real class group relations between all prime ideals

in the G+
m-orbits of the li, i.e., between the following prime ideals of K+

m:{
lσsi ; i ∈ J1, dK, 0 < s < m

2 , (s,m) = 1
}
. (3.5)

The important point is, any class relation in K+
m between ideals from Eq. (3.5)

translates to a class relation in Km using repeatedly lσi · OKm = L
(1+τ)σ
i . More

precisely, let
(
r1, . . . , rd

)
∈ Z

[
G+
m

]d
represent a real class relation in K+

m between

ideals
{
lσsi
}

of Eq. (3.5), i.e., there exists γ+r ∈ K+
m s.t. γ+r ·OK+

m
=
∏d
i=1 l

ri
i . Then,

this relation lifts naturally to a class relation
(
(1 + τ) · r1, . . . , (1 + τ) · rd

)
in Km

between prime ideals in the Gm-orbits
{
Lσi ; i ∈ J1, dK, σ ∈ Gm

}
as:

γ+r · OKm =

d∏
i=1

L
(1+τ)ri
i . (3.6)
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Let C+
l1,...,ld

denote the lattice of class relations between elements of all G+
m-

orbits of {li; i ∈ J1, dK}. Concretely, it is the kernel of the following map:

fl1,...,ld :
(
ri,s
)

1≤i≤d,
0<s<m/2,(s,m)=1

∈ Zd·
ϕ(m)

2 7−→
∏
i,s

[
lσsi
]ri,s ∈ Cl+m . (3.7)

Using the canonical isomorphism of Z-modules Zd·
ϕ(m)

2 'Z Z[G+
m]d, the lattice

of class relations C+
l1,...,ld

may be viewed as a Z-submodule of Z[G+
m]d. Lifting

all these relations back to Km as in Eq. (3.6), we therefore obtain the submod-
ule (1 + τ) · C+

l1,...,ld
⊆ (1 + τ)Z[Gm]d, that we shall call the lattice of real class

relations between the Gm-orbits of {Li; i ∈ J1, dK}.

Remark 3.9. When h+m = 1, C+
l1,...,ld

is isomorphic to d copies of the integral
group ring Z[G+

m] and the lattice of real class relations is simply (1 + τ)Z[Gm]d.

Euclidean norm of real class relations. We now identify a real class group
relation from C+

l1,...,ld
to a vector in Zd·

ϕ(m)
2 . In other words, we consider only

the valuations of these relations on the G+
m-orbits of the prime ideals l1, . . . , ld.

Furthermore, C+
l1,...,ld

is put in Hermite Normal Form, conveniently for the proof
of the following proposition, provided in the full version of this paper [BLNR21],
but better bounds might easily be obtained using e.g. the LLL algorithm.

Proposition 3.10. Suppose the lattice C+
l1,...,ld

of real class relations is in HNF.

Then, for all w ∈ C+
l1,...,ld

⊆ Z[G+
m]d, we have ‖w‖2 ≤ ‖w‖1 ≤ h+m.

This means that (1 + τ) ·C+
l1,...,ld

can be used in the CDW algorithm instead

of (1 + τ)Z[Gm]d, as we will see in §4, while still reaching the same asymptotic
approximation factor under the same assumption on the Galois-module structure
of Clm [CDW21, Ass. 1], as long as h+m ≤ O

(√
m
)
. This slightly more restrictive

hypothesis (see the discussion in §2.2) will be more than compensated by the
fact that it removes the need for the li’s to be principal, which has a significant
impact in practice on the algebraic norm of the chosen ideals, and thus on the
final approximation factor reached in [CDW21, Alg. 6].

Explicit real generators. For each relation r =
(
r1, . . . , rd

)
∈ C+

l1,...,ld
, we

compute an explicit γ+r ∈ K+
m ( Km that verifies Eq. (3.6). Together with the

unit group O×K+
m

of K+
m, they form a fundamental system of S+-units, where the

finite places of S+ are the G+
m-orbits of the relative norm ideals li.

In the next section, we shall see that adding the explicit Stickelberger gener-
ators of §3.2 to these real generators yields a maximal set of independent S-units
in the degree ϕ(m) cyclotomic field Km, at the much smaller cost of computing

a fundamental system of real S+-units in K+
m of degree only ϕ(m)

2 .
In practice, though this remains the main bottleneck of our experimental

setting, it allows us to push effectively our experiments up to degree ϕ(m) = 210,
whereas the full S-unit group computations of [BR20] were bound to ϕ(m) = 70.
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3.4 A S-unit subgroup of finite index

As in §3.3, let `1, . . . , `d be prime integers satisfying `i ≡ 1 mod m; for each i,
fix a (split) prime ideal Li | `i in Km and let li = Li∩K+

m. Let S be a set of places
containing, apart from the infinite places ofKm, allGm-orbits of the Li’s. Combi-
ning the results of §3.1, §3.2 and §3.3, we get the following family of S-units:

F =
{
va; a ∈M+

m

}
∪
{
γ−Li,b; i ∈ J1, dK, b ∈M ′m

}
∪
{
γ+r; r ∈ C+

l1,...,ld

}
(3.8)

where the first set is the set of circular units given by Th. 3.4, the second is the
set of explicit Stickelberger generators stated at the end of §3.2 and the last one
is the set of real generators as in Eq. (3.6).

This family has
(
ϕ(m)/2−1

)
+d·ϕ(m) elements, which matches precisely the

multiplicative rank of the full S-unit group modulo torsion O×Km,S
/
µ
(
O×Km

)
.6 In

this section, we prove that these S-units are indeed independent and we compute
the index of the subgroup of O×Km,S generated by those elements.

Theorem 3.11. Let hm,(L1,...,Ld) (resp. h+m,(l1,...,ld)) be the cardinal of the sub-

group of Clm (resp. Cl+m) generated by the Gm-orbits of L1, . . . ,Ld (resp. the G+
m-

orbits of l1, . . . , ld). The family F given in Eq. (3.8) is a maximal set of indepen-
dent S-units. The subgroup generated by F in O×Km,S

/
µ
(
O×Km

)
has index:(

hm · h+m,(l1,...,ld)
hm,(L1,...,Ld)

)
· 2b ·

(
h−m
)d−1 · (2

ϕ(m)
2 −1 · 2a

)d
,

where a = b = 0 if m is a prime power, and a = 2t−2 − 1, b = 2t−2 + 1 − t
when m has t distinct prime divisors.

When the Gm-orbits of the Li’s generate Clm, the first term in this index
equals h+m. As we shall see in §3.5, the powers of 2 can be killed by saturation
techniques, so the problem comes from the (h−m)d−1 part, which has generically
huge prime factors. Intuitively, this is because the Stickelberger relations miss
all class group relations that exist between two (or more) distinct Gm-orbits.

First, we show that the lattice obtained by adding one copy of the Stickel-
berger ideal per Gm-orbit, to the lattice (1 + τ) · C+

l1,...,ld
of real class relations,

yields a full-rank submodule of Z[Gm]d. Hence, we have obtained a full-rank
lattice of class relations for the union of all Gm-orbits above `1, . . . , `d.

We begin by restricting our attention to the case d = 1. We need the following
lemma, which extends and proves an observation already made in [DPW19,
Rem. 3] in the prime conductor case (see [BLNR21, §3.4] for the full proofs):

Lemma 3.12. The index of Sm + (1 + τ) · Z[G+
m] in Z[Gm] is finite:[

Z[Gm] : Sm + (1 + τ) · Z[G+
m]
]

= 2ϕ(m)/2−1 · 2a · h−m,

where a = 0 if t = 1 and a = 2t−2 − 1 else, where m has t prime divisors.

6 Note that for our purpose, the torsion units play no role and can thus be put aside.
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When h+m = 1, the lattice of real class relations is always (1 + τ) ·Z[G+
m], and

Lem. 3.12 gives the whole story. In the general case h+m 6= 1, we deduce:

Lemma 3.13. Let ` be a prime integer that splits in Km, let L | ` in Km and
let l = L1+τ ∩K+

m. Let h+m,(l) be the cardinal of the subgroup of Cl+m generated by
the G+

m-orbit of l in K+
m. The Z-module generated by Sm and the lattice (1+τ)·C+

l

of real class relations of the Gm-orbit of L, has finite index in Z[Gm]:[
Z[Gm] : Sm + (1 + τ) · C+

l

]
= 2ϕ(m)/2−1 · 2a · h−m · h+m,(l),

where a = 0 if t = 1 and a = 2t−2 − 1 else, where m has t prime divisors.

Finally, for the case where there are d ≥ 1 orbits, a reasoning very similar to
the proofs of Lem. 3.12 and 3.13 leads to:

Proposition 3.14. Let h+m,(l1,...,ld) be the cardinal of the subgroup of Cl+m gen-

erated by all G+
m-orbits of l1, . . . , ld. Then, the Z-module generated by the lat-

tice (1+τ)·C+
l1,...,ld

⊆ (1+τ)·Z[G+
m]d of real class relations between the Gm-orbits

of the Li’s, and the diagonal block matrix of d copies of
(
Sm \NmZ

)
, verifies:[

Z[Gm]d : Sdm + (1 + τ) · C+
l1,...,ld

]
=
(
2ϕ(m)/2−1 · 2a · h−m

)d · h+m,(l1,...,ld).
Proof of Th. 3.11. The independence comes from Pr. 3.14 and the trivial fact
that circular units are independent from Stickelberger and real generators. The
index of the subgroup generated by F in O×Km,S

/
µ
(
O×Km

)
is given by:

[
O×Km : Cm

]
·
[
Z[Gm]d : Sdm + (1 + τ) · C+

l1,...,ld

]∣∣det
(
ker fS

)∣∣ ,

where ker fS is the lattice of all class group relations between finite places of S.
The first term is given by Pr. 3.3 and the numerator of the second term by
Pr. 3.14. By definition of O×Km,S , the denominator is precisely hm,(L1,...,Ld). Re-
arranging terms adequately yields the result.

3.5 Saturation

Saturation is a standard tool of computational algebraic number theory that has
been used in various contexts like unit and class group computations, and can be
traced back at least to [PZ89, §5.7]. This procedure is described in more detail
in [BLNR21, §3.5], and we refer to e.g. [BFHP21, §4.3] for a formal exposition.

Intuitively, the e-saturation procedure applied to F consists in detecting e-th
powers in the subgroup generated by F, including their e-th roots in the set
and rebuilding a basis of multiplicatively independent elements. At the end, the
index of the new basis is no longer divisible by e. Remark that the output size
does not depend on e, but only on the number and size of the elements of F.

As the index given by Th. 3.11 is divisible by a large power of 2, it is therefore
natural to 2-saturate F in order to mitigate its exponential growth, obtaining
the 2-saturated family Fsat. Note however that the relative class number h−m in
the index of Th. 3.11 hides huge prime factors that at first glance render this
strategy hopeless in general to obtain the full S-unit group from F.



20 O. Bernard, A. Lesavourey, T.-H. Nguyen, A. Roux-Langlois

4 Removing quantum steps from the CDW algorithm

The full material for this section is given in [BLNR21, §B], we summarize the
main points here. The CDW algorithm for solving Approx-Svp was introduced in
[CDW17] for cyclotomic fields of prime power conductors, using short relations
of the Stickelberger lattice as a keystone. [CDW21] extended it to all conductors.

In this section, we show how to use the results of §3.2, §3.3 and §3.4 to remove
most quantum steps of [CDW21]. More precisely, we first propose an equivalent
rewriting of [CDW21, Alg. 7] that enlightens some hidden steps that reveal useful
for subsequent modifications. Then, we plug in the explicit generators of §3.2
([BK21]) and Eq. (3.6) for relative class group orbits, to remove the last call
to the quantum Pip solver. Finally, by considering the module of all real class
group relations, using Pr. 3.14 and Th. 3.11, we remove the need of a random walk
mapping any ideal of Km into Cl−m, at the (small) additional price of restricting
to cyclotomic fields such that h+m ≤ O(

√
m).

An equivalent rewriting of CDW [BLNR21, §B.2]. Omitting details, the CDW
algorithm works as follows, for any challenge ideal a of Km [CDW21, Alg. 7]:

1. Random walk to Cl−m: find b such that
[
ab
]
∈ Cl−m.

2. Solve the Cldl of ab on Gm-orbits of the prime ideals L1, . . . ,Ld of Cl−m. This
gives a vector7 ε = (ε1, . . . , εd) ∈ Z[Gm]d such that ab ·

∏
i L

εi
i is principal.

3. Solve the Cpmp by projecting each εi in π(Sm) = (1 − τ)Sm, find a close
vector vi = yi · π(Sm) and lift vi to get some ηi s.t. π(ηi) = vi, ‖ε− η‖1 is
small with positive coordinates, and ab ·

∏
i L

εi−ηi
i is principal.

4. Apply the Pip algorithm of [BS16] to get a generator of this principal ideal.
5. Reduce the obtained generator by circular units like in [CDPR16].

This eventually outputs h ∈ a of length ‖h‖2 ≤ exp
(
Õ(
√
m)
)
· N (a)1/ϕ(m).

We focus on the lift procedure of Step 3. In [CDW21], v ∈ π(Sm) is lifted
to η ∈ Sm with non-negative coordinates by setting (ησ , ητσ) = (vσ , 0) if vσ ≥ 0
and (0,−vσ) otherwise, for all σ ∈ G+

m. This works because [c]−1 = [cτ ] for
any c ∈ Cl−m, but hides which exact product of relative norm ideals is involved.
We propose a totally equivalent lift procedure: from v = y · π(Sm), consider the
preimage η̃ = y · Sm. Define η by removing min

{
η̃σ , η̃τσ

}
to each η̃σ coordinate.

Now, it is obvious that η is a combination y of relations in Sm, and of relative
norm relations given by the min part. Details are in [BLNR21, Alg. B.6].

Using explicit Stickelberger generators [BLNR21, §B.3]. Each element wa of
the generating set W of Sm corresponds to a generator JL(1, a − 1) (see §3.2).
Similarly, each relative norm ideal writes 〈γ+s 〉 = L(1+τ)σs (see §3.3). Hence, from
an (explicit) Cldl solution 〈α〉 = ab · Lε, and given a Cpmp solution, explicitly
written as above as η = y ·W + u · (1 + τ) · Z[G+

m], we have that a generator of
ab ·Lε−η is directly given by α

/(∏
a JL(1, a− 1)ya

∏
s(γ

+
s )us

)
. This allows us to

remove the quantum Pip in dimension n in step 4 (for each query). In exchange,
we need to compute (only once) all real generators for relative norm relations,
which can be done in dimension ϕ(m)/2 by [BS16, Alg. 2].

7 In the CDW algorithm, the explicit generator given by the Cldl solver is discarded.
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Avoiding the random walk [BLNR21, §B.4]. Finally, note that several quantum
steps are performed (for each query) in the random walk that maps ideals to Cl−m.
Using the results of §3.3, we replace the module (1 + τ) ·Z[Gm]d by the module
of all real class group relations. Asymptotically, we prove in [BLNR21, Pr. B.7]
that this does not change the bound on the approximation factor obtained in
[CDW21, Th. 5.1], under the same assumption on the Galois-module structure
of Clm [CDW21, Ass. 1], as long as we restrict to fields Km with h+m ≤ O(

√
m).

This additional tiny assumption is largely compensated by the fact that only
two quantum steps remain: one is performed only once in dimension ϕ(m)/2 to
compute real class group relations and generators, and the second is solving the
Cldl for each query (see [BLNR21, Tab. B.1]).

5 Computing log-S-unit sublattices in higher dimension

Our main goal is to simulate the Twisted-PHS algorithm for high degree cyclo-
tomic fields. To this end, we compute full-rank sublattices of the full log-S-unit
lattice using the knowledge of the maximal set F of independent S-units defined
by Eq. (3.8) and its 2-saturated counterpart Fsat from §3.5. These sets are lifted
from a complete set of real S+-units (see §3.3), hence are obtained at the classi-
cally subexponential cost of working in the half degree maximal real subfield. We
note that by Th. 3.11, the index of these families grows rapidly as the number of
orbits increases, hence these approximated modes give an upper bound on the
approximation factors that can be expected when using Twisted-PHS.

The Twisted-PHS algorithm is briefly recalled in §5.1, and our experimental
setting is detailed in §5.2. Then, we analyse in §5.3 the geometric characteristics
of our log-S-unit sublattices and the obtained approximation factors in §5.4.

5.1 The Twisted-PHS algorithm

The Twisted-PHS algorithm [BR20] was introduced as an improvement of the
PHS algorithm [PHS19]. Both aim at solving Approx-id-Svp in any number field
and have the same theoretically proven bounds for running time and reached ap-
proximation factors. However, the explicit S-units formalism in [BR20] leads to a
proper normalization of the used log-S-embedding, weighting coordinates ac-
cording to finite places norms. This turned out to give experimentally significant
improvements on the lattices’ decodability and on reached approximation factors.

Both algorithms are split in a preprocessing phase, performed only once for
a fixed number field, and a query phase, for each challenge ideal. More precisely:

1. The preprocessing phase consists in choosing a set of finite places S gen-
erating the class group, computing the corresponding log-S-unit lattice for
an appropriate log-S-embedding, and preparing the lattice for subsequent
Approx-Cvp requests using the Laarhoven’s algorithm from [Laa16];

2. For each challenge ideal b, the query phase consists in first solving the Cldl
relatively to S, obtaining 〈α〉 = b·

∏
L∈S L

vL . Then, this element is projected
onto the span of the above log-S-unit lattice, and a close vector of this lattice
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gives a S-unit s s.t. α/s is hopefully small. Here, guaranteeing that α/s ∈ b
is achieved by applying a drift parameterized by some β on the target.

In the Twisted-PHS case, since the obtained lattice, after proper normaliza-
tion, appears to have exceptionally good geometric characteristics, it was pro-
posed to replace Laarhoven’s algorithm by a lazy BKZ reduction in the prepro-
cessing phase and Babai’s Nearest Plane algorithm in the query phase [BR20,
Alg. 4.2 and 4.3]. We will consider only this practical version in our experiments.

In details, for a number field K, the log-S-unit lattice used in the Twisted-
PHS algorithm is defined as ϕtw(O×K,S), where ϕtw is the log-S-embedding given
by fH ◦ LogS [BR20, Eq. (4.1)], for an isometry fH from the span H of LogS
to Rk, where k equals the multiplicative rank of O×K,S modulo torsion.

Among the consequences of the proper normalization induced by LogS , the
authors showed how to optimally choose a set of finite places that generate the
class group [BR20, Alg. 4.1]. Namely, taking ideals of increasing prime norms in
the set S, they noticed that the density of the associated (twisted) log-S-unit
lattice ϕtw(O×K,S) increases up to an optimal value before decreasing.

Finally, a tricky aspect of the resolution resides in guaranteeing that the
output solution is indeed an element of the challenge ideal, i.e., that vL(α/s) ≥ 0
for all L ∈ S∩S0. In [BR20], this is done by applying a drift vector in the span of
the log-S-unit lattice, parameterized by some β whose optimal value is searched
using a dichotomic strategy in the query phase. Concretely [BR20, Eq. (4.7)]:

t = fH

({
ln|α|σ−

kβ + lnN (b)−
∑

L∈S lnN (L)

[K : Q]

}
σ
,
{

ln|α|[KL:Q`]
L +β− lnN (L)

}
L∈S

)
.

5.2 Experimental settings

Computing the full group of S-units in a classical way is rapidly intractable,
even in the case of cyclotomic fields; therefore, experiments performed in [BR20]
on Twisted-PHS were bound to ϕ(m) ≤ 70. We apply the Twisted-PHS algo-
rithm using our full-rank sublattices of the whole log-S-unit lattice induced by
the independent family F of Eq. (3.8), its 2-saturated counterpart Fsat (§3.5)
and, when feasible, a fundamental system Fsu for the full S-unit group. Approxi-
mated modes with F or Fsat give a glimpse on how Twisted-PHS scales in higher
dimensions, where asymptotic phenomena like the growth of hm start to express.

Source code and hardware description. All experiments have been implemented
using SageMath v9.0 [Sag20], except for the full S-unit groups computations for
which we used Magma [BCP97], which appears much faster for this particular
task and also offers an indispensable product (“Raw”) representation. Moreover,
fplll [FpL16] was used to perform all lattice reduction algorithms. The entire
source code is provided on https://github.com/ob3rnard/Tw-Sti.

Most of the computations were performed in less than two weeks on a server
with 72 Intel® Xeon® E5-2695v4 @2.1GHz with 768GB of RAM, using 2TB of
storage for the precomputations. Real class group computations were performed
on a single Intel® Core™ i7-8650U @3.2GHz CPU using 10GB of RAM.

https://github.com/ob3rnard/Tw-Sti
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m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m

136 64 2 408 128 2 205 160 2 356 176 † 520 192 4 265 208 †
212 104 5 268 132 † 328 160 † 376 184 † 840 192 † 424 208 †
145 112 2 284 140 † 440 160 5 191 190 11 303 200 † 636 208 †
183 120 4 292 144 † 163 162 4 221 192 † 404 200 †
248 120 4 504 144 4 332 164 † 388 192 † 309 204 †
272 128 2 316 156 † 344 168 † 476 192 † 412 204 †

Table 5.1 – List of ignored conductors (†: failure to compute Cl+m within a day).

Targeted cyclotomic fields. We consider cyclotomic fields of any conductor m
s.t. 20 < ϕ(m) ≤ 210 with known real class number h+m = 1, including those
from [BLNR21, Tab. 2.1]. The restriction to h+m = 1 is only due to technical
interface obstructions, i.e., we are not aware of how to access the non-trivial
real class group relations internally computed by SageMath. Additionally, for
some of the conductors, we were not able to obtain the real class group within a
day. Thus, we are left with 210 distinct cyclotomics fields, and Tab. 5.1 lists all
ignored conductors.

Finite places choice. The optimal set of places computed by [BR20, Alg. 4.1]
yields a number dmax of splitGm-orbits of smallest norms maximizing the density
of the corresponding full log-S-unit lattice. However, the index of our log-S-unit
sublattices, given by Th. 3.11, grows too quickly, roughly in (h−m)d−1, so that
their density always decreases as soon as d > 1. This remark motivates us to
compute all log-S-unit sublattices for d = 1 to dmax first split Gm-orbits.

Full rank log-S-unit sublattices. The first maximal set of independent S-units
that we consider is F from Eq. (3.8). The 2-saturation process of §3.5 mitigates
the huge index of F, yielding family Fsat. A fundamental system Fsu of the full S-
unit group O×Km,S (modulo torsion) is also used whenever it is computable in
reasonable time, i.e., up to ϕ(m) < 80. As noted in §2.3, their images under any
log-S-embedding ϕ form full-rank sublattices resp. Lurs, Lsat, Lsu, generated by
resp. ϕ(F), ϕ(Fsat), ϕ(Fsu), of the corresponding full log-S-unit lattice ϕ(O×Km,S).

We consider several choices of the log-S-embedding ϕ. Namely, we tried to
evaluate the advantage of using the expanded LogS (exp) over LogS , labelled tw
(as twisted by [C : R] = 2). We also considered versions with (iso) or without
(noiso) the isometry fH of [BR20, Eq. (4.2)]. This yields four choices for ϕ,
e.g. tag noiso/tw is ϕ = LogS and iso/exp gives the original ϕtw = fH ◦ LogS .

Compact product representation. In order to avoid the exponential growth of
algebraic integers viewed in Z[x]

/〈
Φm(x)

〉
, we use a compact product represen-

tation, so that any element α in F (resp. Fsat or Fsu) is written on a set g1, . . . , gN
of N small elements as α =

∏N
i=1 g

ei
i . Hence, besides the gi’s, each α is stored as

a vector e ∈ ZN , and for any choice of ϕ, we have ϕ(α) =
∑N
i=1 ei · ϕ(gi). This

allows us to compute ϕ without the coefficient explosion encountered in [BR20,
§5], which unlocks the full log-S-unit lattices computations beyond degree 60.
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m d set k Vol1/k
δ max1≤i≤k‖bi‖2

raw LLL bkz40 raw LLL bkz40

152

1
urs 107 8.691 2.016 1.570 1.551 45.007 38.466 38.202
sat 107 6.928 4.398 1.787 1.822 752.306 23.280 21.720
su 107 6.928 28.396 1.805 1.828 3163.723 21.953 21.446

2
urs 179 9.683 2.157 1.623 1.590 48.754 41.313 41.404
sat 179 7.384 7.670 1.885 1.896 6273.562 23.280 22.772
su 179 6.816 65.355 2.226 2.322 3427.134 23.221 24.741

211

1
urs 314 14.325 2.672 2.291 2.257 96.068 97.930 96.569
sat 314 11.386 9.998 2.581 2.562 9742.552 59.387 59.578

5
urs 1154 18.232 3.118 2.542 2.497 118.124 119.160 115.888
sat 1154 13.341 19.443 2.918 2.901 32067.612 71.428 72.752

7
urs 1574 18.976 3.161 2.557 2.512 120.838 121.129 119.020
sat 1574 13.771 26.841 2.927 2.910 530646.708 71.428 72.752

Table 5.2 – Geometric characteristics of Lurs, Lsat and Lsu for Q(ζ152) and
Q(ζ211) with log-S-embedding ϕtw (of type iso/exp). For all bases,
the root-Hermite factor verifies |δ0 − 1| < 10−3.

Lattice reductions. For each of the constructed log-S-unit sublattices, i.e. for each
number of orbits d ∈ J1, dmaxK, for each family of independent S-units F, Fsat and
(when feasible) Fsu, and for each choice of log-S-embedding, we compare several
levels of reduction: no reduction (“raw”), LLL-reduction and BKZ40-reduction.

5.3 Geometry of the lattices

For all described choices of log-S-unit sublattices, we first evaluate several ge-
ometrical parameters (see §2.5): reduced volume V 1/k, root-Hermite factor δ0,
orthogonality defect δ. We only give here a few examples giving a glimpse of
what happens in general, and additional data can be found in [BLNR21, §C.1].

Table 5.2 contains data for cyclotomic fields Q(ζ152) and Q(ζ211) of de-
grees resp. 72 and 210. All values correspond to the iso/exp log-S-embedding,
i.e., ϕ = ϕtw. Indeed, as illustrated by [BLNR21, Tab. C.2], we experimen-
tally note that using (no)iso/exp seems geometrically slightly better than using
(no)iso/tw. Notice how small is the normalized orthogonality defect after only
LLL reduction, unambiguously below the tight Minkowski bound

√
1 + k

4 .

We then look at the logarithm of the Gram-Schmidt norms, for every de-
scribed choice of log-S-unit sublattices. Figure 5.1 plots the Gram-Schmidt log
norms before and after BKZ reduction of the lattices Lsat, using the original
iso/exp log-S-embedding ϕtw. As in [BR20, Fig. B.1–10], for each field the two
curves are almost superposed, which is consistent with the observations on the
orthogonality defect. We also checked the impact of the log-S-embedding choice
among all four options on the Gram-Schmidt logarithm norms of the unreduced
basis ϕ(Fsat). As expected, the isometry fH has no influence on the Gram-
Schmidt norms. On the other hand, using LogS or LogS seems to alter only the
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Fig. 5.1 – Lsat lattices for Q(ζ152) and Q(ζ211): Gram-Schmidt log norms before
and after reduction by BKZ40.

first norms, and in a very small way. This can be seen in [BLNR21, Tab. C.4].
Again, increasing the number of orbits does not influence these behaviours.

We stress that these very peculiar geometric characteristics – shape of the
logarithm of the norms of the Gram-Schmidt basis, ease of reduction, very small
orthogonality defect (after LLL) – already observed in [BR20, §5.1–2], are consis-
tently viewed across all conductors, degrees, log-S-unit sublattices and number
of orbits. To give a concrete idea of e.g. the striking ease of reduction of these
log-S-unit sublattices, we report that for m = 211, BKZ40 terminates in around
7 minutes (resp. 30 minutes) on the log-S-unit sublattice of dimension k = 1154
(resp. 1574) corresponding to d = 5 (resp. dmax = 7), which is unusually fast.

This very broad phenomenon suggests that the explanation is possibly deep,
an observation that has been recently developed by Bernstein and Lange [BL21].

5.4 Evaluation of the approximation factor

In [BR20], evaluating in practice the approximation factors reached by Twisted-
PHS is done by choosing random split ideals of prime norm, solving the Cldl
for these challenges and comparing the length of the obtained algebraic integer
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with the length of the exact shortest element. As the degrees of the fields grow,
solving the Cldl and exact id-Svp becomes rapidly intractable. Hence, we resort
to simulating random outputs of the Cldl, similarly to [DPW19, Hyp. 8], and
estimate the obtained approximation factors with inequalities from Eq. (2.3).

Simulation of Cldl solutions. To simulate targets that heuristically correspond
to explicit generators α output by the Cldl, we assume that for each ideal Li ∈ S,

the vector
(
vLσi (α)

)
σ∈Gm of Z

ϕ(m)
2 is uniform modulo the lattice of class relations,

and that after projection along the 1-axis,
(
ln|σ(α)|

)
σ

is uniform modulo the
log-unit lattice. These hypotheses have already been used in [DPW19, Hyp. 8] or
[BR20, H. 4.8], and are backed up by theoretical results in [BDPW20, Th. 3.3].

Drawing random elements modulo a lattice of rank k is done by following a
Gaussian distribution of sufficiently large deviation. Concretely, we first choose
a random split prime p in J297, 2103K. Then, for each L ∈ S ∩S0, we pick random
valuations vL(α) modulo the lattice of class relations of rank

∣∣S∩S0∣∣ and random
elements (uσ)σ∈G+

m
∈ Rϕ(m)/2 in the span of the log-unit lattice of rank ϕ(m)

2 − 1.

Finally, we simulate (ln|σ(α)|)σ by adding
ln p+

∑
L∈S vL lnN (L)

ϕ(m) to each coordi-

nate uσ , so that their sum is ln |N (α)|
2 . For each field, we thereby generate 100

random targets on which to test Twisted-PHS on all lattice versions.

Reconstruction of a solution. For each simulated Cldl generator α, given as a
random vector ({ln|σ(α)|}σ∈G+

m
, {vL(α)}L∈S∩S0), it is easy to compute ϕ(α) for

any log-S-embedding ϕ and to derive a target as in [BR20, Eq. (4.7)], including a
drift parameterized by some β. Then, considering e.g. Lsat = ϕ(Fsat), given by the
BKZ40-reduced basis Ubkz ·ϕ(Fsat), we find a close vector v = (y ·Ubkz) ·ϕ(Fsat) to
this target using Babai’s Nearest Plane algorithm, and from y, Ubkz and Fsat we
easily recover, in compact representation, s ∈ O×Km,S s.t. v = ϕ(s) and also α/s.

The purpose of the drift parameter β is to guarantee vL(α/s) ≥ 0 on all finite
places. As mentioned in [BR20], the length of α/s is extremely sensitive to the
value of β, so that they searched for an optimal value by dichotomy. However,
this positiveness property actually does not seem to be monotonic in β, and in
practice, using the same β on each finite place coordinate is too coarse when
the dimension grows, resulting in unnecessarily large approximation factors. We
instead obtained best results using random drifts in `∞-norm balls of radius 1
centered on the 1 axis. A first sampling of O(ϕ(m)) random points β ·1 +B∞(1)
for a wide range of random β’s allows us to select a β0 around which we found the
best ‖α/s‖2 with all vL(α/s) being positive. Then we sample O(ϕ(m)) uniform
random points in the neighbourhood of β0, namely in [0.9β0, 1.1β0] · 1 +B∞(1),
and output the overall optimal ‖α/s‖2 having all vL(α/s) ≥ 0.

Estimator of the approximation factor. Since we do not have access to the short-
est element of a challenge ideal, we cannot compute an exact approximation fac-
tor as in [BR20]. Instead, we estimate the retrieved approximation factor using
the inequalities implied by Eq. (2.3). We focus on the Gaussian Heuristic, which
gives consistent results with the exact approximation factors found in [BR20],
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Fig. 5.2 – Approximation factors, with Gaussian Heuristic, reached by Tw-PHS
for cyclotomic fields of degree up to 210, on lattices Lurs, Lsat and Lsu.

Fig. 5.3 – Approximation factors, with Gaussian Heuristic, reached by Tw-PHS
for cyclotomic fields of degree up to 100, on lattices Lsat and Lsu.

in small dimensions. For each cyclotomic field, the plotted points are the means,
over the 100 simulated random targets, of the minimal approximation factors
obtained using options iso/noiso and exp/tw. For each family F, Fsat and Fsu, we
chose to keep only the factor base that gives the best result. This systematically
translated into using d = 1 Gm-orbit for F and Fsat, whereas we had to use
d = dmax for Fsu, as predicted by the Twisted-PHS algorithm.

Figure 5.2 shows the approximation factor afgh obtained for all lattices Lurs,
Lsat and Lsu (when feasible) after BKZ40 reduction. Figure 5.3 is a zoom of
Fig. 5.2 that focuses on Lsat and Lsu on small dimensions. First, we remark that
using F from Eq. (3.8), the retrieved approximation factors are increasing rapidly.
Using the 2-saturated family Fsat yields much better results, and looking closely
at Fig. 5.3 shows that using a basis Fsu of the full S-unit group, when feasible,
even improves the picture if dmax > 1, in which case Lsu is denser than Lsat.
For Lsu, we stress that we obtain estimated approximation factors very similar
to the exact ones observed in [BR20].
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More generally, we observe a very strong correlation between the density of
our lattices and the obtained approximation factors – the denser, the better. As
an important related remark, the variance seen for afgh in Fig. 5.2 for distinct
fields of same degree follows the variations of the norm of the first split prime,
thus of the reduced volume of the considered log-S-unit sublattice. We expect
this variance to be smoothed through conductors for the full log-S-unit lattice.

Furthermore, considering m = 211, the F family gives Vol1/314 Lurs ≈ 14.325
and an estimated afgh ≈ 13170, for Fsat we get Vol1/314 Lsat ≈ 11.386 and a much
smaller estimated afgh ≈ 16.4, whereas the optimal number of orbits predicted by
the Twisted-PHS factor base choice algorithm [BR20, Alg. 4.1] is dmax = 7, which

yields a full log-S-unit lattice of reduced volume only Vol1/1574 Lsu ≈ 9.635.

Comparison to the CDW algorithm. Using the same experimental setting, we
compute the approximation factors obtained using the CDW algorithm as imple-
mented in [DPW19] (“Naive version”) with additional BKZ40 lattice reductions,
as well as the experimentally derived volumetric lower bound from [DPW19,
Eq. (5) and Tab. 1]. Those values are also represented in Fig. 5.2 and 5.3.

We note that our experimental results using the Fsat family are comparable
to this volumetric lower bound. Moreover, for some fields, e.g. in dimensions
96, 160, 168, 200, this lower bound is defeated by the (approximated version of
the) Twisted-PHS algorithm. Note that this does not invalidate the lower bound
itself, which is stated for the two-phase CDW algorithm, but indicates the power
of combining both steps in only one lattice as in the Twisted-PHS algorithm.
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tement homomorphe. Ph.D. thesis, Paris 7, 2013.

CN11. Y. Chen, P. Q. Nguyen: BKZ 2.0: Better lattice security estimates. In
ASIACRYPT, vol. 7073 of LNCS, pp. 1–20, Springer, 2011.
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