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Abstract. In known security reductions for the Fujisaki-Okamoto trans-
formation, decryption failures are handled via a reduction solving the
rather unnatural task of finding failing plaintexts given the private key,
resulting in a Grover search bound. Moreover, they require an implicit
rejection mechanism for invalid ciphertexts to achieve a reasonable se-
curity bound in the QROM. We present a reduction that has neither
of these deficiencies: We introduce two security games related to find-
ing decryption failures, one capturing the computationally hard task of
using the public key to find a decryption failure, and one capturing the
statistically hard task of searching the random oracle for key-independent
failures like, e.g., large randomness. As a result, our security bounds in
the QROM are tighter than previous ones with respect to the generic ran-
dom oracle search attacks: The attacker can only partially compute the
search predicate, namely for said key-independent failures. In addition,
our entire reduction works for the explicit-reject variant of the trans-
formation and improves significantly over all of its known reductions.
Besides being the more natural variant of the transformation, security of
the explicit reject mechanism is also relevant for side channel attack re-
silience of the implicit-rejection variant. Along the way, we prove several
technical results characterizing preimage extraction and certain search
tasks in the QROM that might be of independent interest.
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1 Introduction

The Fujisaki-Okamoto (FO) transform [FO99, FO13] is a well known transforma-
tion that combines a weakly secure public-key encryption scheme and a weakly
secure secret-key encryption scheme into an IND-CCA secure public-key encryp-
tion scheme in the random oracle model. Dent [Den03, Table 5] gave an adoption
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for the setting of key-encapsulation. This adoption for key encapsulation mecha-
nisms (KEM) is now the de-facto standard to build secure KEMs. In particular,
it was used in virtually all KEM submissions to the NIST PQC standardisation
process [NIS17]. In the context of post-quantum security, however, two novel
issues surfaced: First, many of the PKE schemes being transformed into KEM
are not perfectly correct, i.e., they sometimes fail to decrypt a ciphertext to
its plaintext. Second, security proofs have to be done in the quantum-accessible
random oracle model (QROM) to be applicable to quantum attackers.

Both problems were tackled in [HHK17] and a long sequence of follow-up
works (among others [SXY18, JZC+18, BHH+19, HKSU20, KSS+20]). While
these works made great progress towards achieving tighter reductions in the
QROM, the treatment of decryption failures did not improve significantly. In
this work, we make significant progress on the treatment of decryption failures.
Along the way, we obtain several additional results relevant on their own.

An additional quirk of existing QROM reductions for the FO transform is
that they require an implicit rejection variant, where pseudorandom session keys
are returned instead of reporting decapsulation errors, to avoid extreme reduc-
tion losses. (The only known concrete bound [DFMS21] for Dent’s variant is
much weaker then those known for the implicit rejection variant.)

The Fujisaki-Okamoto transformation. We recall the FO transformation for
KEM as introduced in [Den03, Table 5] and revisited by [HHK17], there called
FO⊥m. FO⊥m constructs a KEM from a public-key encryption scheme PKE, and the
overall transformation FO⊥m can be described by first modifying PKE to obtain a
deterministic scheme PKEG, and then applying a PKE-to-KEM transformation
(called U⊥m in [HHK17]) to PKEG:

Modified scheme PKEG. Starting from PKE and a hash function G, deter-
ministic encryption scheme PKEG is built by letting EncG encrypt messages m
according to the encryption algorithm Enc of PKE, but using the hash value
G(m) as the random coins for Enc: EncG(pk,m) := Enc(pk,m; G(m)). DecG uses
the decryption algorithm Dec of PKE to decrypt a ciphertext c to obtain m′, and
rejects by returning ⊥ if c fails to decrypt or m′ fails to encrypt back to c.

PKE-to-KEM transformation U⊥m. Starting from a deterministic encryp-
tion scheme PKE’ and a hash function H, key encapsulation algorithm KEM⊥m :=
U⊥m[PKE′,H] is built by letting Encaps(pk) := (c := Enc′(pk,m),K := H(m)),
where m is picked at random from the message space. Decapsulation will return
K := H(m) unless c fails to decrypt, in which case it returns failure symbol ⊥.

Combined PKE-to-KEM transformation FO⊥m. The ’full FO’ transforma-
tion FO⊥m is defined by taking PKE and hash functions G and H, and defining
FO⊥m[PKE,G,H] := U⊥m[PKEG,H]. While there exists a plethora of variants that
differ from FO⊥m, it was proven [BHH+19] that security of these variants is either
equivalent to or implied by security of FO⊥m.

The role of correctness errors in security proofs for FO. Correctness
errors play a role during the proof that an FO-transformed KEM is IND-CCA
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secure: To tackle the CCA part, it is necessary to simulate the decapsulation or-
acle oDecaps without the secret key, meaning the plaintext has to be obtained
via strategies different from decrypting. While different strategies for this exist
in both ROM and QROM, they all have in common that the obtained plain-
text is rather a plaintext that encrypts to the queried ciphertext (a “ciphertext
preimage”) than the decryption. Consequently, the simulation fails to recognise
failing ciphertexts, i.e., ciphertexts for which decryption results in a plaintext
different from the ciphertext preimage (or even in ⊥), and will in this case be-
have differently from oDecaps. Hence, the simulations are distinguishable from
oDecaps if the attacker can craft such failing ciphertexts.

The approach chosen by [HHK17] was to show that the distinguishing advan-
tage between the two cases can be bounded by the advantage in a game COR.
Game COR (defined in [HHK17]) provides an adversary with a key pair (includ-
ing the secret key) and asks to return a failing message, i.e., a message that
encrypts to a failing ciphertext, for the derandomized scheme PKEG. [HHK17]
further bounded the maximal advantage in game COR for PKEG in terms of a
statistical worst-case quantity δwc of PKE, which is the expected maximum prob-
ability for plaintexts to cause a decryption failure, with the expectation being
taken over the key pair. This results in a typical search bound as the adversary
can use the secret key to check if a ciphertext fails. In the QROM, the resulting
bound is therefore 8q2δwc, q being the number of queries to G.3

Intuitively, this notion suffers from two related unnatural features:
– First, it is unnatural to provide adversaries with the secret key, as long as the
scheme has at least some basic security.4 In particular, this observation applies
to adversaries tasked with finding failing plaintexts, which is not a mere issue of
aesthetics: If the secret key is given to the adversary, an analysis of this bound
can’t make use of computational assumptions without becoming heuristic.5

– Second, it is unnatural that the bound contains a Grover-like search term with
regard to δwc: As IND-CCA adversaries don’t have access to the secret key, they
can only check if ciphertexts fail via their classical CCA oracle, which should
render a Grover search impossible. Furthermore, in ROM and QROM, it should
be the (usually much smaller) number of CCA queries that limits the adversary’s
ability to search, not the number of random oracle queries. Hence this bound
seems overly conservative.

While follow-up works have used different games in place of COR to deal with
decryption errors, all result in the same quantum search bound in terms of δwc.

3 Some publications (e.g., [JZC+18]) use the bound 2q ·
√

δwc, it is however straightfor-
ward to verify that the bound above can be achieved by using [HKSU20, Lemma 2.9]
as a drop-in replacement. Note that this is indeed a quadratic improvement unless
4q ·
√

δwc > 1, in which case the IND-CCA bound is meaningless, anyways.
4 Schemes that allow for a key recovery attack serve as pathological examples why

this argument does not hold in generality.
5 An example we happen to be aware of is the analysis of the correctness error bound

of Kyber [BDK+18].
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Main contribution. Our main contribution is a new security reduction for the
FO transformation that improves over existing ones in two ways.
Decryption failures. We introduce a family of new security games, the Find
Failing Plaintext (FFP) games. These provide a much more natural framework
for dealing with decryption errors in the FO transformation, and it is the novel
structure of our reduction that allows their usage. Two important members of
the FFP family are as follows: The first one, Find Failing Plaintext that is Non-
Generic (FFP-NG), gives a public key to the adversary and asks it to find a
message that triggers a decryption failure more likely with respect to this key
pair than with respect to an independent key pair. The second one, Find Failing
Plaintext with No Key (FFP-NK), tasks an adversary with producing a message
that triggers a decryption failure with respect to an independently sampled key
pair, without providing any key to the adversary. As summarised in Fig. 1, we
provide a reduction from FFP-NG and passive security of PKE together with
FFP-NK for PKEG to IND-CCA security of the FO-transformed of PKE. This new
reduction structure avoids both unnatural features mentioned above:
– None of the two failure-related games FFP-NG and FFP-NK provide the ad-
versary with the secret key. In particular, we show how to bound an adversary’s
advantage in game FFP-NK in terms of δik, the worst-case decryption error rate
when the message is picked independently of the key, and additional related sta-
tistical parameters . We give two concrete example bounds, one involving the
variance based on Chebyshev’s inequality and one based on a Gaussian-shaped
tail bound. We expect that these “independent-key” statistical parameters can
be estimated more conveniently and without heuristics, by exploiting the com-
putational assumptions of the PKE scheme at hand.
– Game FFP-NK still allows for a Grover search advantage, but only when search-
ing for messages that are more likely to cause a failure on average over the key.
This game corresponds, e.g., to the first attempt at finding a failure in attacks
like [DVV18, BS20, DRV20]. In the context of the entire security reduction for
FO, the advantage in this game is multiplied with the number of decapsulation
queries a CCA attacker makes, correctly reflecting the fact that the ability of
identifying a decryption failure should depend on the CCA oracle and is thus
limited. Game FFP-NG defines a property of the underlying PKE scheme, it
thus allows to analyze the hardness of finding meaningful decryption failures in-
dependently from the hardness of searching a random oracle for them. FFP-NG
seems thus more amenable to both security reductions and cryptanalysis.

As a consequence of these features, we expect our reduction to yield much
better security bounds that provide non-trivial provable security for real-world
parameters.
FO with explicit rejection. Our reduction employs a technique for gen-
eralized preimage extraction in the QROM that was recently introduced in
[DFMS21]. As shown by [DFMS21], this technique is well-suited for proving
FO⊥m secure. We furthermore generalize the one-way to hiding (OWTH) lemma
[AHU19] such that it is compatible with the technique from [DFMS21]. OWTH
was used to derive the state-of-the-art bounds for implicitly rejecting variants,
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and combining the two techniques, we obtain a security bound for FO⊥m that is
competitive with said state-of-the-art bounds.
QROM tools. To facilitate the above-described reduction, we provide two
technical tools that might be of independent interest: Firstly, we generalize the
OWTH framework from [AHU19] such that it can be combined with the ex-
tractable quantum random oracle simulation from [DFMS21], rendering the two
techniques compatible with being used together in the same security reduction.
We make crucial use of this possibility to avoid the additional reduction losses
that [DFMS21] need to accept to be able to use the plain one-way to hiding
framework in juxtaposition with the extractable simulator.

Secondly, we prove query lower bounds for tasks where an algorithm has
access to a QRO (or even an extractable simulator thereof) and has to output
an input value x which, together with the corresponding oracle output RO(x),
achieves a large value under some figure-of-merit function. We use this technical
result to provide the aforementioned bounds for the adversarial advantage in the
FFP-NK game, but they might prove of independent interest.

TL;DR for scheme designers. Sect. 6 provides concrete bounds for the
IND-CCA security of FO⊥m[PKE,G,H]. Besides having to analyze the conjectured
passive security of PKE, applying the bounds to a concrete scheme PKE requires
to analyze the following computational and statistical properties:
– γ, the spreadness of PKE.
– An upper bound for FFP-NG against PKE.
– Either an upper bound for FFP-NK for PKEG, in our extended oracle model
that allows preimage extractions, or , two statistical values: δik, the worst-case
decryption error rate when the message is picked independently of the key, and
σδik , the maximal variance of δik.

Acknowledgements. We would like to thank Dominique Unruh for valuable
discussions about the semi-classical one-way to hiding lemma and Manuel Bar-
bosa for pointing out the use of heuristics in bounds for delta.

2 ROM reduction

This section substantiates the upper half of Fig. 1 in the ROM. The first step of
common security reductions for the FO transformation consists of simulating the
decapsulation oracle without using the secret key. This simulation allows trans-
forming an IND-CCA-KEM-adversary A against KEM⊥m := FO⊥m[PKE,G,H] into
an IND-CPA-KEM-adversary Ã against the same KEM⊥m. The oracle simulation,
however, will not accurately simulate the behaviour of Decaps for ciphertexts
that trigger decryption errors. We will show that from an adversary capable of
distinguishing between the real decapsulation oracle and its simulation, we can
construct an adversary B that is able to extract failing plaintexts for the deran-
domised version PKEG of PKE. In more detail, we formalise extraction of failing
plaintexts as the winning condition of two Find Failing Plaintext (FFP) games,
which we formally define in Definition 1 (also see Fig. 2). For ATK ∈ {CPA,CCA},
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PKEG

FFP-CPA
PKEG

FFP-CCA

PKE
IND-CPA

PKE
OW-CPA

KEM⊥
m

IND-CPA

KEM⊥
m

IND-CCA

KEM̸⊥
m

IND-CCA

Thms. 2/4

FO⊥
m , [HHK17]/ Thm. 7

FO⊥
m ,[HHK17]/ Thm. 8

Thm. 1/3

[BHH+19, Thm. 3]
(also see Rmk. 1)

δik, σδik small PKEG

FFP-NK

PKE
FFP-NG

PKEG

FFP-CCA

Thm. 10

Thm. 9

Fig. 1. Summary of our results. Top: ”Ths. X/Y“ indicates that we provide a ROM
Thm. X (in Sect. 2) and a QROM Thm. Y (Sect. 4). Bottom: Breaking down FFP-CPA
security of PKEG (Sect. 5). Solid (dashed) arrows indicate tight (non-tight) reductions
in the QROM. Thms. 2 and 4 have comparably mild tightness loss: It is linear in the
number of decryption queries. Thms. 7 and 8 are as lossy as previously known ones.

an adversary B playing the FFP-ATK game for a deterministic encryption scheme
PKE gets access to the same oracles as in the respective IND-ATK game, outputs
a message m, and wins if Dec(Enc(m)) ̸= m. (Here, and in the following, we
sometimes omit the arguments pk and sk, respectively.) For such messages m
we say that m is a failing plaintext, or shorter, that m fails. The final bounds we
obtain are essentially similar to the ones in [HHK17] except for involving a dif-
ferent correctness definition, see the discussion after Remark 1. Game FFP-CCA
was already introduced in [BS20], there called COR-ad-CCA.

Definition 1 (FFP-ATK). Let PKE = (KG,Enc,Dec) be a deterministic public-
key encryption scheme. For ATK ∈ {CPA,CCA}, we define FFP-ATK games as
in Fig. 2, where OATK is trivial if ATK = CPA and

OATK := oDecrypt if ATK = CCA.

We define the FFP-ATK advantage function of an adversary A against PKE as

AdvFFP-ATK
PKE (A) := Pr[FFP-ATKAPKE ⇒ 1] .

Note that in neither FFP-ATK game, the adversary has access to the secret
key. In particular, the FFP-CPA game only differs from the correctness game
COR defined in [HHK17] in exactly this fact, as game COR additionally provides
the secret key. We note that an adversary winning either FFP-ATK game for a
deterministic scheme PKE can be used to win in game COR.

We start by introducing two simulations of the Decaps oracle, oDecaps′ and
a variant oDecaps′′ of oDecaps′. oDecaps′′ extracts failing plaintexts from
adversarial decapsulation queries, and is simulatable by FFP adversaries with
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Game FFP-ATK
01 (pk, sk)← KG
02 m← AOATK,G(pk)
03 c := Enc(pk, m)
04 m′ := Dec(sk, c)
05 return Jm′ ̸= mK

oDecrypt(c)
06 m := Dec(sk, c)
07 return m

Fig. 2. Games FFP-ATK for a deterministic PKE, where ATK ∈ {CPA, CCA}. OATK is
the decryption oracle present in the respective IND-ATK-KEM game (see Definition 1)
and G is a random oracle, provided if it is used in the definition of PKE.

access to the decryption oracle oDecrypt for PKEG. Both simulations of the
Decaps oracle make use of a list L of previous queries to G and their respective
encryptions. For this to work, we replace G with a modification G′ that keeps
track of all issued queries and compiles L. The original Decaps oracle and its
simulations are defined in Fig. 3, using the following conventions. For a set of
pairs L ⊂ X ×Y, we assume that a total order is chosen on X and Y. We denote
by L−1(y) the first preimage of y. Formally, we define L−1(y) by setting

L−1(y) :=
{
x if (x, y) ∈ L and x ≤ x′ for all x′ s. th. (x′, y) ∈ L
⊥ ∄ x s. th. (x, y) ∈ L.

(1)

The simulation oDecaps′ can, however, only reverse encryptions that were
already computed by the adversary (with a query to oracle G′) before their query
to oracle oDecaps′, which is where the spreadness of PKE comes into play: If
γ is large, it becomes unlikely that the attacker can guess an encryption c =
Enc(pk,m; G(m)) without a respective query to G. oDecaps′ will furthermore
answer inconsistently if the reversion (in other words, the preimage) of c differs
from its decryption, meaning that c belongs to a failing plaintext that can be
recognized by the failure-extracting variant oDecaps′′.

Theorem 1. Let PKE be a (randomised) PKE scheme that is γ-spread, and
let KEM⊥m := FO⊥m[PKE,G,H]. Let A be an IND-CCA-KEM-adversary (in the
ROM) against KEM⊥m, making at most qD many queries to its decapsulation ora-
cle oDecaps. Then there exist an IND-CPA-KEM adversary Ã and an FFP-CCA
adversary B against PKEG such that

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤ AdvIND-CPA-KEM

KEM⊥
m

(
Ã

)
+ AdvFFP-CCA

PKEG (B) + qD · 2−γ . (2)

Ã makes qG queries to G and qH + qD queries to H, B makes qG queries to G and
qD decryption queries, and both adversaries run in about the time of A.

Proof. Let A be an adversary against KEM⊥m. We define Ã as the IND-CPA-KEM
adversary against KEM⊥m that runs b′ ← AG′,H,oDecaps′ and returns b′. We fur-
thermore define our FFP-CCA adversary B against PKEG as follows: B runs
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oDecaps(c)
01 m′ := Dec(sk, c)
02 if m′ = ⊥
03 return K:=⊥
04 else
05 c′ := Enc(pk, m′; G(m′))
06 if c ̸= c′ return ⊥
07 else return H(m′)
G′(m)

08 r := G(m)
09 c := Enc(pk, m; r)
10 LG := LG ∪ {(m, c)}
11 return r

oDecaps′(c ̸= c∗)
12 m := L−1

G (c)
13 if m = ⊥
14 return K:=⊥
15 else return K := H(m)
oDecrypt(c ̸= c∗)

16 m′ := Dec(sk, c)
17 if m′ = ⊥
18 return ⊥
19 else
20 if Enc(pk, m′; G(m′)) ̸= c
21 return ⊥
22 else return m′

oDecaps′′(c ̸= c∗)
23 m := L−1

G (c)
24 m′ := oDecrypt(c)
25 if m ̸= ⊥and m ̸= m′

26 LFAIL := LFAIL ∪ {m}
27 if m = ⊥
28 return K:=⊥
29 else
30 return K := H(m)

Fig. 3. Simulation oDecaps′ of oracle oDecaps for KEM⊥
m , failing-plaintext-

extracting version oDecaps′′ of oDecaps′, and decryption oracle oDecrypt for PKEG.
Oracles oDecaps′ and oDecaps′′ use in lines 12 and 23 the notation introduced in
Equation (1). G′ only differs from G by compiling list LG (which was initialized to ∅).

AG′,H,oDecaps′′ , using its own FFP-CCA oracle oDecrypt to simulate oDecaps′′.
As soon as oDecaps′′ adds a plaintext m to LFAIL, B aborts A and returns m.
If A finishes and LFAIL is still empty, B returns ⊥.

First, we will relate A’s success probability to the one of Ã. Note that unless
Ã’s simulation oDecaps′ of the decapsulation oracle fails, Ã perfectly simulates
the game to A and wins if A wins. Let DIFF be the event that A makes a
decryption query c such that Decaps(sk, c) ̸= oDecaps′(c). We bound

1
2 +AdvIND-CCA-KEM

KEM⊥
m

(A)=Pr [A wins]=Pr [A wins∧¬DIFF]+Pr [A wins∧DIFF]

= Pr
[
Ã wins ∧ ¬DIFF

]
+ Pr [A wins ∧ DIFF] ≤ Pr

[
Ã wins

]
+ Pr [DIFF]

=1
2 + AdvIND-CPA-KEM

KEM⊥
m

(
Ã

)
+ Pr [DIFF] .

To analyze the probability of event DIFF, we note that it covers several cases:

- Original oracle oDecaps(c) rejects, whereas simulation oDecaps′(c) does
not, meaning that c is an encryption belonging to a previous query m to G′,
but fails the reencryption check performed by oDecaps(c). Since the latter
means that either m′ := Dec(sk, c) = ⊥ or that Enc(pk,m′; G(m′)) ̸= c =
Enc(pk,m; G(m)), this case only occurs if Dec(sk, c) ̸= m, meaning m fails.

- Neither oracle rejects, but the return values differ, i.e., c is an encryption
belonging to a previous querym to G′, but decrypts to some messagem′ ̸= m.

- oDecaps′(c) rejects, whereas oDecaps(c) does not, i.e., while c would pass
the reencryption check, its decryption m has not yet been queried to G′.

In either of the former two cases, G′ has been queried on a failing plaintext
m and the decapsulation oracle has been queried on its encryption c, meaning
that the failing plaintext can be found and recognized by B since B can use its
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own FFP-CCA oracle oDecrypt to simulate oDecaps′′. We will denote the last
case by GUESS since A has to find a guess for a ciphertext c that passes the
reencryption check, meaning it is indeed of the form c = Enc(pk,m; G′(m)) for
m := Dec(sk, c), while not having queried G′ on m yet. Whenever DIFF occurs,
B succeeds unless GUESS occurs. In formulae,

Pr[DIFF]=Pr[DIFF∧¬GUESS]+Pr[DIFF∧GUESS]
≤AdvFFP-CCA

PKEG (B)+Pr [GUESS].

Together with Lemma 1 below, this yields the desired bound. ⊓⊔

We continue by bounding the probability of event GUESS. We will also need
to analyze a very similar event in Thm. 2, in which we revisit the FFP-CCA
attacker B against PKEG, and where we will simulate B’s oracle oDecrypt via
an oracle oDecrypt′ (see Fig. 4). Therefore, we generalize the definition of
event GUESS accordingly. Since GUESS means that A computed a ciphertext
c = Enc(pk,m; G(m)) before querying G on m, the probability can be upper
bounded in terms of the maximal probability of any ciphertext being hit by
Enc(pk,−;−). For completeness, we prove Lem. 1 in the full version.

Lemma 1. Let PKE be γ-spread, and let A be an adversary expecting oracles G,
H as well as either a decapsulation oracle oDecaps for KEM⊥m or a decryption
oracle oDecrypt for PKEG, issuing at most qD queries to the latter. When run
with G′ and simulated oracle oDecaps′ (or oDecrypt′, respectively), there is
only a small probability that original oracle oDecaps (oDecrypt) would not
have rejected, but simulation oDecaps′ (oDecrypt′) does. Concretely, we have

Pr [GUESS] ≤ qD · 2−γ . (3)

So far, we have shown that whenever an IND-CCA adversary A’s behaviour
is significantly changed by being run with simulation oDecaps′ instead of the
real oracle oDecaps, we can use A to find a failing plaintext, assuming access
to the FFP-CCA decryption oracle oDecrypt for PKEG. We now show that
oDecrypt can be simulated via oracle oDecrypt′ (see Fig. 4) without the
secret key, thereby being able to construct an FFP-CPA adversary from any
FFP-CCA adversary that succeeds with the same probability up to (at most) a
multiplicative factor equal to the number of decryption queries the FFP-CCA
adversary makes.

Theorem 2. Let PKE be -γ-spread, and let B be an FFP-CCA adversary against
PKEG, issuing at most qD many decryption queries. Then there exists an FFP-
CPA adversary B̃ such that

AdvFFP-CCA
PKEG (B) ≤ (qD + 1) ·AdvFFP-CPA

PKEG

(
B̃

)
+ qD · 2−γ . (4)

Adversary B̃ makes at most the same number of queries to G as B and runs in
about the time of B .
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oDecrypt′(c)
01 m := L−1

G (c)
02 return m
G′(m)
03 c := Enc(m; G(m))
04 LG := LG∪{(m, c)}
05 return G(m)

B̃G

06 i←$ {1, ..., qD + 1}
07 if i < qD + 1
08 Run BG′,oDecrypt′

(pk) until i-th query ci to oDecrypt′

09 m := L−1
G (ci)

10 else
11 m← BG′,oDecrypt′

(pk)
12 return m

Fig. 4. Simulation oDecrypt′ of oracle oDecrypt for PKEG, which is defined anal-
ogously to oDecaps′ (see Fig. 3), and FFP-CPA adversary B̃. For the reader’s conve-
nience, we repeat the definition of G′.

Proof. To simulate oDecrypt, we use a similar strategy as in the proof of
Theorem 1. We define the events DIFF and GUESS in the same way as in the
proof of Theorem 1, except now with respect to the adversary B and oracles
oDecrypt (oDecrypt′) instead of oDecaps (oDecaps′). If our simulation
does not fail, then a reduction can simulate the FFP-CCA game to B and use B’s
output to win its own FFP-CPA game. The simulation will fail if either GUESS
happens (with probability at most qD ·2−γ due to Lem. 1), or DIFF, while GUESS
does not, meaning that the failing message triggering DIFF can be extracted from
LG. Our reduction B̃ combines both approaches (using B’s output and LG). Since
B̃ has no knowledge of the secret key, it cannot determine which message will
let it succeed and hence has to guess.

Assume without loss of generality that B makes exactly qD many queries to
oracle oDecrypt. Consider the adversary B̃G in Fig. 4. B̃ samples i← {1, ..., qD+
1} and either runs BG′,oDecrypt′ until its i-th query to oDecrypt′ or until the
end if i = qD +1. To implement G′, B̃ uses its oracle G. Simulation oDecrypt′ is
defined in Fig. 4 and works analogous to oDecaps′ in the previous proof. Finally,
B̃ outputs query preimage L−1

G (ci), where ci is B’s i-th query to decryption oracle
oDecrypt′, unless i = qD + 1, in which case B̃ outputs the output of B.

Using the same chain of inequalities as in the proof of Thm. 1, and again
using Lemma 1, we obtain

AdvFFP-CCA
PKEG (B) ≤ Pr [B wins ∧ ¬DIFF] + Pr [DIFF ∧ ¬GUESS] + qD · 2−γ . (5)

Adversary B̃ perfectly simulates game FFP-CCA unless DIFF occurs, and wins
with probability 1/qD +1 if B wins by returning a failing plaintext or if B issues a
decryption query that triggers DIFF but not GUESS.

AdvFFP-CPA
PKEG

(
B̃

)
= 1
qD + 1 · (Pr [B wins ∧ ¬DIFF] + Pr [DIFF ∧ ¬GUESS]) (6)

Combining Equations (5) and (6) yields the desired bound. ⊓⊔

Next, we observe that IND-CPA security of KEM⊥m can be based on passive
security of PKE. This result is implicitly contained in [HHK17] since [HHK17]
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proved such a result for IND-CCA security of KEM⊥m. Combining Thms. 1 and 2
with the result from [HHK17], we obtain the following

Corollary 1. Let PKE and A be as in Thm. 1. Then there exist a OW-CPA
adversary BOW-CPA and an IND-CPA adversary BIND-CPA such that

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤(qRO + qD + 1) ·AdvOW

PKE(BOW-CPA)

+ (qD + 1) ·AdvFFP-CPA
PKEG (C) + 2qD · 2−γ

and

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤ 3 ·AdvIND-CPA

PKE (BIND-CPA) + 2 · (qRO + qD) + 1
|M|

+ (qD + 1) ·AdvFFP-CPA
PKEG (B) + 2qD · 2−γ .

C makes qG queries to G, and all adversaries run in about the time of A.

We remark that the factor 2 in front of the additive term qD ·2−γ is an artefact of
our modular proof (in terms of Theorems 1 and 2). It is straightforward to show
that the bound of Cor. 1 can be proven without the factor of 2, when directly
analyzing the composition of the reductions from Theorems 1 and 2.

When comparing our bounds with the respective bounds from [HHK17], we
note that our bounds are still in the same asymptotic ball park and differ from
the bounds in [HHK17] essentially by replacing the worst-case correctness term
δwc (there denoted by δ) present in [HHK17] by AdvFFP-CPA

PKEG (B), and having an
additional term in γ even for KEM̸⊥m. We believe that the additional γ-term
could be removed by doing a direct proof for KEM̸⊥m, but redoing the whole
proof for this variant was outside the scope of this work. We will further analyze
AdvFFP-CPA

PKEG (B) in Sect. 5.

Remark 1 (Obtaining the results for FO ̸⊥m[PKE]). We can use the results from
[BHH+19] to furthermore show that the bounds given in Cor. 1 also hold if
KEM⊥m := FO⊥m[PKE,G,H] is replaced with KEM̸⊥m := FO⊥m[PKE,G,H]: In more
detail, it follows directly from [BHH+19, Theorem 3] that for any IND-CCA-KEM
attacker A against KEM̸⊥m, there exists an IND-CCA-KEM attacker B against
KEM⊥m such that AdvIND-CCA-KEM

KEM̸⊥
m

(A) ≤ AdvIND-CCA-KEM
KEM⊥

m
(B) and Cor. 1 does not

contain any terms relative to KEM⊥m itself, it only contains terms relative to the
underlying schemes PKE and PKEG.

3 Compressed oracles and extraction

We want to generalize the ROM results obtained in Sect. 2 to the QROM. To
this end, we will use an extension of the compressed oracle technique [Zha19]
that was introduced in [DFMS21]. It was shown in [Zha19] how a quantum-
accessible random oracle O : X → Y can be simulated by preparing a database
D with an entry Dx for each input value x, with each Dx being initialized as a
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uniform superposition of all elements of Y , and omitting the “oracle-generating”
measurements until after the algorithm accessing O has finished. In [DFMS21],
this oracle simulation was generalized to obtain an extractable oracle simulator
eCO (for extractable Compressed Oracle) that has two interfaces, the random
oracle interface eCO.RO and an extraction interface eCO.Ef , defined relative to
a function f : X × Y → T . Whenever it is clear from context which function f
is used, we simply write eCO.E instead of eCO.Ef .

In general, eCO.Ef can extract preimage entries from the “database” D dur-
ing the runtime of an adversary instead of only after the adversary terminated.
This allows for adaptive behaviour of a reduction, based on an adversary’s
queries. In [DFMS21], it was already used for the same purpose we need it for
– the simulation of a decapsulation oracle, by having eCO.E extract a preimage
plaintext from the ciphertext on which the decapsulation oracle was queried. We
will denote oracles modelled as extractable quantum-accessible ROs by eQROf ,
and a proof that uses an eQROf will be called a proof in the eQROMf .

We will now make this description more formal, closely following notation and
conventions from [DFMS21]. Like in [DFMS21], we describe an inefficient variant
of the oracle that is not (yet) “compressed”. Efficient simulation is possible via
a standard sparse encoding, see [DFMS21, Appendix A]. The simulator eCO for
a random function O : {0, 1}m → {0, 1}n is a stateful oracle with a state stored
in a quantum register D = D0m . . . D1m , where for each x ∈ {0, 1}m, register Dx

has n+ 1 qubits used to store superpositions of n-bit output strings y, encoded
as 0y, and an additional symbol ⊥, encoded as 10n. We adopt the convention
that an operator expecting n input qubits acts on the last n qubits when applied
to Dx. The compressed oracle has the following three components.

– The initial state of the oracle, |ϕ⟩ = |⊥⟩2
m

– A quantum query with query input register X and output register Y is
answered using the oracle unitary OXY D defined by

OXY D |x⟩X = |x⟩X ⊗
(
FDxCNOT⊗n

Dx:Y FDx

)
, (7)

where F |⊥⟩ = |ϕ0⟩, F |ϕ0⟩ = |⊥⟩ and F |ψ⟩ = |ψ⟩ for all |ψ⟩ such that
⟨ψ|⊥⟩ = ⟨ψ|ϕ0⟩ = 0, with |ϕ0⟩ = |+⟩⊗n being the uniform superposition. The
CNOT operator here is responsible for XORing the function value (stored
in Dx, now in superposition) into the query algorithm’s output register.

– A recovery algorithm that recovers a standard QRO O: apply F⊗2m to D
and measure it to obtain the function table of O.
We now make our description of the extraction interface eCO.E formal: Given

a random oracle O : {0, 1}m → {0, 1}n, let f : {0, 1}m × {0, 1}n → {0, 1}ℓ be a
function. We define a family of measurements (Mt)t∈{0,1}ℓ . The measurement
Mt has measurement projectors {Σt,x}x∈{0,1}m∪{∅} defined as follows. For x ∈
{0, 1}m, the projector selects the case where Dx is the first (in lexicographical
order) register that contains y such that f(x, y) = t, i.e.

Σt,x =
⊗
x′<x

Π̄t,x′

D′
x
⊗Πt,x

Dx
, with Πt,x =

∑
y∈{0,1}n:
f(x,y)=t

|y⟩⟨y| (8)
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and Π̄ = 1−Π. Σt,∅ covers the case where no register contains such a y, i.e.

Σt,∅ =
⊗

x′∈{0,1}m

Π̄t,x′

D′
x
. (9)

As an example, say we model a random oracle H as such an eQROf . Using
f(x, y) := JH(x) = yK, M1 allows us to extract a preimage of y.

eCO is initialized with the inital state of the compressed oracle. eCO.RO
is quantum-accessible and applies the compressed oracle query unitary OXY D.
eCO.E is classically-accessible. On input t, it applies Mt to eCO’s internal state
and returns the result. eCO has useful properties that were characterized in
[DFMS21, Theorem 3.4]. These characterisations are in terms of the quantity

Γ (f) = max
t
ΓRf,t

, with

Rf,t(x, y) :⇔ f(x, y) = t and
ΓR := max

x
|{y | R(x, y)}|. (10)

For f = Enc(·; ·), the encryption function of a PKE that takes as inputs a message
m and an encryption randomness r , we have Γ (f) = 2−γ |R| if PKE is γ-spread.
In this case, eCO.E(c) outputs a plaintext m such that Enc(m, eCO.RO(m)) = c,
or ⊥ if the ciphertext c has not been computed using eCO.RO before.

4 QROM reduction

In this section, we generalize the reductions from Sect. 2 to the QROM. To do so,
we give in Fig. 6 the quantum analogues of the simulated decapsulation oracles
oDecaps′ and oDecaps′′ from Fig. 3, which were (essentially) developed in
[DFMS21]. We have to adapt our simulations since the ROM simulations from
Fig. 3 use book-keeping techniques and therefore cannot be easily implemented
in the standard QROM. Instead, we use the formalism described in Sect. 3, i.e.,
we use a simulation of a quantum-accessible random oracle and make use of
the additional extraction interface eCO.E: While the simulations in Fig. 3 had
access to a list LG that could be used to extract potential ciphertext preimages,
the simulations in Fig. 6 can now extract them by accessing extractor eCO.E
(see lines 12 and 24). The rest of the simulation is exactly as before. Using the
notation from Sect. 3, we denote the modelling of the ROM as extractable by
eQROMEnc, as we extract preimages relative to function f = Enc(pk, ·, ·), with
the message being f ’s first and the randomness being f ’s second input.

We split this section as follows: Sect. 4.1 ends with IND-CPA security of
KEM⊥m and FFP-CPA security of PKEG, in the eQROMEnc.We give the eQROMf

definition of FFP-ATK in Fig. 5. Sect. 4.2 develops the necessary eQROMEnc tools
to further analyze IND-CPA security of KEM⊥m. Concretely, Sect. 4.2 provides an
eQROMEnc-compatible variant of the one-way to hiding (OWTH) lemma for
semi-classical oracles as introduced in [AHU19]. Equipped with the results from
Sect. 4.2, we show in Sect. 4.3 that also in the eQROMEnc, IND-CPA security of
FO⊥m[PKE,G,H] can be based on passive security of PKE.
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Game FFP-ATK
01 (pk, sk)← KG
02 m← AOATK,eCO(pk)
03 c := Enc(pk, m)
04 return JDec(sk, c) ̸= mK

oDecrypt(c)
05 m := Dec(sk, c)
06 return m

Fig. 5. Games FFP-ATK for a deterministic PKE, where ATK ∈ {CPA, CCA}, in the
eQROMf . Like in its classical counterpart (see Fig. 2, page 7), OATK is the decryption
oracle present in the respective IND-ATK-KEM game . The only difference is that
random oracle G is now modelled as an extractable superposition oracle eCO.

4.1 From IND-CPAFO[PKE] and FFP-CCAG
PKE to IND-CCAFO[PKE]

We begin by proving a quantum analogue of Thm. 1.

Theorem 3. Let PKE be a (randomized) PKE that is γ-spread, and KEM⊥m :=
FO⊥m[PKE,G,H]. Let A be an IND-CCA-KEM-adversary (in the QROM) against
KEM⊥m, making at most qD, qG and qH queries to oDecaps, G and H, respectively.
Let furthermore d and w be the combined query depth and query width of A’s
random oracle queries. Then there exist an IND-CPA-KEM adversary Ã and an
FFP-CCA adversary B against PKEG, both in the eQROMEnc, such that

AdvIND-CCA-KEM
KEM⊥

m
(A)≤AdvIND-CPA-KEM

KEM⊥
m

(
Ã

)
+AdvFFP-CCA

PKEG (B)+12qD(qG+4qD)·2−γ/2.

The adversary Ã makes qG + qH + qD queries to eCO.RO with a combined depth
of d + qD and a combined width of w, and qD queries to eCO.E. Here, eCO.RO
simulates G × H. The adversary B makes qD many queries to oDecrypt and
eCO.E and qG queries to eCO.RO, and neither Ã nor B query eCO.E on the
challenge ciphertext. The running times of the adversaries Ã and B are bounded
as Time(Ã) = Time(A) +O(qD) and Time(B) = Time(A) +O(qD).

Before proving the theorem, we point out similarities and differences to the
ROM counterpart, Thm. 1. First note that the bounds look very similar. The
only difference lies in the additive error term that depends on the spreadness pa-
rameter γ. In the above theorem, this additive error term O(qDqG2−γ/2) is much
larger than the term O(qD2−γ) present in Thm. 1. It originates from dealing
with the fact that the extraction technique used to simulate the Decaps oracle
inflicts an error onto the simulation of the QRO. We expect that for many real-
world schemes, the additive security loss of O(qDqG2−γ/2) is still small enough
to be neglected. Another important difference between Thm. 3 and Thm. 1 is of
course that the adversaries Ã and B are now in the non-standard eQROMEnc.
Looking ahead, we provide further reductions culminating in Cor. 6 which gives
a standard-QROM bound for KEM⊥m in terms of (standard model) security prop-
erties of PKE.

Proof. We prove this theorem via a number of hybrid games, drawing some inspi-
ration from the reduction for the entire FO transformation given in [DFMS21].
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oDecaps(c ̸= c∗)
01 m′ := Dec(sk, c)
02 if m′ = ⊥
03 return K:=⊥
04 else
05 c′ := Enc(pk, m′; G(m′))
06 if c ̸= c′

07 return ⊥
08 else
09 return H(m′)

G′, input registers X, Y
10 Apply eCO.ROXY D

11 return registers XY

oDecaps′(c ̸= c∗)
12 m← eCO.E(c)
13 if m = ⊥
14 return ⊥
15 else
16 return H(m)

oDecrypt(c)
17 m′ := Dec(sk, c)
18 if m′ = ⊥
19 return ⊥
20 else if
Enc(pk, m′; G(m′)) ̸=c
21 return ⊥
22 else
23 return m′

oDecaps′′(c ̸= c∗)
24 m← eCO.E(c)
25 m′ := oDecrypt(c)
26 if m ̸= ⊥and m ̸= m′

27 LFAIL := LFAIL ∪ {m}
28 if m = ⊥
29 return ⊥
30 else
31 return H(m)

Fig. 6. Simulated and failing-plaintext-extracting versions of the decapsulation or-
acle oDecaps for FO⊥

m [PKE, G, H], using the extractable QRO simulator eCO from
[DFMS21] (see Sect. 3). The simulations of oDecaps are exactly like the ROM ones in
Fig. 3 except for how they extract ciphertext preimages (lines 12, 24). eCO is assumed
to be freshly initialized before oDecaps′ or oDecaps′′ is used for the first time, and
extraction interface eCO.E is defined with respect to function f = Enc(pk, ·; ·).

Game G0 is IND-CCA-KEMKEM⊥
m

(A).
Game G1 is like Game G0, except for two modifications: The quantum-

accessible random oracle G is replaced by G′ as defined in Fig. 6 , and after
the adversary has finished, we compute m̂i := eCO.E(ci) for all i = 1, ..., qD,
where ci is the input to the adversary’s ith decapsulation query. By property 1
in [DFMS21, Lem. 3.4], G′ perfectly simulates G until the first eCO.E-query, and
since the first eCO.E-query occurs only after A finishes, we have

AdvIND-CCA-KEM
KEM⊥

m
(A) = AdvGame G0 = AdvGame G1 . (11)

Game G2 is like Game G1, except that m̂i := eCO.E(ci) is computed right
after A submits ci instead of computing it in the end. Note that Game G2 can
be obtained from Game G1 by first swapping the eCO.E call that produces m̂1
with all eCO.RO calls that happen after the adversary submits c1, including the
calls inside oDecaps, then continuing with the eCO.E-call that produces m̂2,
etc. By property 2.c of [DFMS21, Lem. 3.4] and since Γ (Enc(·; ·)) = 2−γ |R| for
γ-spread PKE schemes, we have that∣∣AdvGame G1 −AdvGame G2

∣∣ ≤ 8
√

2qD(qG + qD) · 2−γ/2 . (12)

Game G3 is the same as Game G2, except that A in run with access
to the oracle oDecaps′ instead of oDecaps, meaning that upon a decapsu-
lation query on ci, A receives oDecaps′(ci) = H(m̂i) instead of oDecaps(ci) =



16 K. Hövelmanns, A. Hülsing, C. Majenz

Decaps(sk, ci) (using the convention H(⊥) := ⊥). We still let the game also
compute oDecaps(ci), as oDecaps makes queries to eCO.RO which can influ-
ence the behavior of eCO.E in subsequent queries. (Note that the reencryption
step of oDecaps triggers a call to G′, which in turn uses eCO.RO.) We define
B exactly as in the proof of Thm. 1, except that it uses the oracles G′ and
oDecaps′′ defined in Fig. 6: B runs AG′,H,oDecaps′′ , using its own FFP-CCA or-
acle oDecrypt to simulate oDecaps′′ and answering H queries by simulating
a fresh compressed oracle.6 As soon as oDecaps′′ adds a plaintext m to LFAIL,
B aborts A and returns m. If A finishes and LFAIL is still empty, B returns ⊥.

Let DIFF be the event that A makes a decryption query c in Game G2 such
that oDecaps(c) ̸= oDecaps′(c). Like in Thm. 1, we bound

1
2 + AdvGame G2 = Pr [A wins in Game G2]

= Pr [A wins in Game G2 ∧ ¬DIFF] + Pr [A wins in Game G2 ∧ DIFF]
= Pr [A wins in Game G3 ∧ ¬DIFF] + Pr [A wins in Game G2 ∧ DIFF]

≤Pr [A wins in Game G3] + Pr [DIFF] = 1
2 + AdvGame G3 + Pr [DIFF] .

Again, event DIFF encompasses three cases: For some decapsulation query c,

- the original decapsulation oracle oDecaps(c) rejects, but the simulation
oDecaps′(c) = H(m̂) does not. By construction of the oracles, this implies
that Dec(sk,Enc(pk, m̂, eCO.RO(m̂))) ̸= m̂ if the eCO.RO call in the previous
equation is performed right after the considered oDecaps′′ call.

- Neither oracle rejects, but the return values differ, i.e., calling eCO.E(c) in
line 12 yielded something different than Dec(sk, c). Like above, this implies
that preimage m̂ := eCO.E(c) fails

- oDecaps(c) does not reject, while oDecaps′(c) does, i.e., m̂ := eCO.E(c) in
line 12 yielded ⊥, but the re-encryption check inside the oDecaps call in line
25 checked out, meaning that Enc(pk,m, eCO.RO(m) = c for m := Dec(sk, c).
(Equivalently, the latter means that oDecrypt(c) = m.)

In the above, any statements about eCO calls that are not actually performed
by the adversary or an oracle are assumed to be made right after the query c
and do not cause any measurement disturbance in that case.

We will again denote the last case by GUESS. Whenever DIFF occurs, B
succeeds unless only case GUESS occurs: If DIFF∧¬GUESS occurs, then a failing
plaintext is extractable from the ciphertext that triggered DIFF∧¬GUESS (this
time due to access to eCO.E), and the plaintext is recognisable as failing by B
due to its FFP-CCA oracle oDecrypt. In formulae,

Pr[DIFF]=Pr[DIFF∧¬GUESS]+Pr[DIFF∧GUESS]≤AdvFFP-CCA
PKEG [B]+Pr[GUESS].

6 We remark that a t-wise independent function for sufficiently large t = O(qH + qD)
also suffices, which is more efficient as it doesn’t require (nearly as much) quantum
memory.
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In summary, we can bound the difference in advantages between Game G2
and Game G3 as∣∣AdvGame G2 −AdvGame G3

∣∣ ≤AdvFFP-CCA
PKEG (B) + Pr [GUESS] .

The following two steps are in a certain sense symmetric to the steps for
Games 0-2: A playing Game G3 can almost be simulated without using the
oDecaps oracle, except that oDecaps is still invoked before each call to the
oracle oDecaps′, without the result ever being used. This is an artifact from
Game G2. Omitting the oDecaps invocations might introduce changes in A’s
view, as these invocations might influence the behavior of eCO.E in subse-
quent queries. We therefore define Game G4 like Game G3, except that the
oDecaps invocations are postponed until afterA finishes. By a similar argument
as for the transition from Game G1 to Game G2, we obtain∣∣AdvGame G3 −AdvGame G4

∣∣ ≤ 8
√

2q2
D2−γ/2 .

Finally, Game G5 is like Game G4, but the computations of oDecaps(ci) are
omitted entirely. In game 4, all invocations of oDecaps already happened after
the execution ofA, hence this omission does not influenceA’s success probability.

Let Ã be an IND-CPA-KEM adversary against KEM⊥m in the eQROMEnc,
simulating Game G5 to A: Ã has access to a single extractable oracle whose
oracle interface eCO.RO simulates the combination of G and H, i.e., eCO.RO
simulates G×H. (We decided to combine G and H into one oracle to simplify the
subsequent analysis of the IND-CPA advantage against KEM⊥m that will be carried
out in Sect. 4.3.) Ã runs b′ ← AG′,H,oDecaps′ and returns b′. The simulation of
A’s oracles using eCO.RO is straightforward (preparing the redundant register
in uniform superposition, querying the combined oracle, and uncomputing the
redundant register).

We now have

AdvGame G4 = AdvGame G5 = AdvIND-CPA-KEM
KEM⊥

m
(Ã). (13)

Collecting the terms from the hybrid transitions, using Lem. 2 below, and
bounding qD2−γ ≤ q2

D2−γ/2 yields the desired bound. The statements about
query numbers, width and depth, as well as the runtime, are straightforward.

⊓⊔

Like in Sect. 2, we continue by bounding the probability of event GUESS, and
Lem. 2 below is the eQROMEnc analogue of Lem. 1. Again, we will soon revisit
FFP-CCA attacker B against PKEG, and we will simulate B’s oracle oDecrypt
via an oracle oDecrypt′ (see Fig. 7) that differs from oDecrypt if an event
equivalent to GUESS occurs. Therefore, we again generalize the definition of
event GUESS accordingly.

Lemma 2. Let PKE and A be like in Lem. 1 (see page 9), except that A is now
considered in the eQROMEnc. Let A be run with G′ and oDecaps or oDecaps′
(oDecrypt or oDecrypt′), but for each query ci, both m̂i = oDecrypt′(ci)
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oDecrypt′(c)
01 m← eCO.E(c)
02 return m

G′, input registers X, Y
03 Apply eCO.ROXY D

04 return registers XY

Fig. 7. Simulation oDecrypt′ of oracle oDecrypt for PKEG. For the reader’s conve-
nience, we repeat the definition of G′.

and mi = oDecrypt(ci) are computed in that order, regardless of which of
the two oracles oDecaps and oDecaps′ (oDecrypt and oDecrypt′) A has
access to. Then GUESS, the event that m̂i = ⊥ while mi ̸= ⊥, is very unlikely.
Concretely,

Pr [GUESS] ≤ 2qD · 2−γ . (14)

Proof. We begin by bounding the probability that for some fixed i ∈ {1, ..., qD}
we have m̂i = ⊥ but mi ̸= ⊥. From the definitions of oDecaps and oDecaps′,
as well as the definitions of the interfaces eCO.RO and eCO.E, we obtain√

Pr[m̂i = ⊥ ∧mi ̸= ⊥] =
√

Pr[m̂i = ⊥ ∧ Enc(mi, eCO.RO(mi)) = ci]

=
∥∥∥Πc,x

Y OXY FΣ
c,∅
F |mi⟩X |0⟩Y |ψi⟩F E

∥∥∥ (15)

Here, |ψi⟩ is the adversary-oracle state before A submits the query ci and the
projectors Πc,x

Y and Σc,∅ are with respect to f = Enc (see Eq. (8)). We begin
by simplifying the expression on the right hand side. We have OXY F |mi⟩X =
FFmi

CNOT⊗n
Fmi

:Y FFmi
⊗|mi⟩X and ΠY CNOT⊗n

Fmi
:Y |0⟩Y = CNOT⊗n

Fmi
:Y ΠFmi

|0⟩Y
for any projector Π that is diagonal in the computational basis. We can thus
simplify∥∥∥Πc,x

Y OXY FΣ
c,∅
F |mi⟩X |0⟩Y |ψi⟩F E

∥∥∥ =
∥∥∥Πc,x

Fmi
FFmi

Σc,∅ |mi⟩X |0⟩Y |ψi⟩F E

∥∥∥
≤

∥∥∥FFmi
Πc,x

Fmi
Σc,∅

F |mi⟩X |0⟩Y |ψi⟩F E

∥∥∥ + ∥[Πc,x, F ]∥

≤
∥∥∥FFmi

Πc,x
Fmi

Σc,∅
F |mi⟩X |0⟩Y |ψi⟩F E

∥∥∥ +
√

2 · 2−γ/2 (16)

where we have applied the two observations and omitted any final unitary op-
erators in the first equality, and the last inequality is due to Lemma 3.3 in
[DFMS21]. But the remaining norm term vanishes as

Πc,x
Fmi

Σc,∅
F = (Πc,xΠ̄c,x)Fmi

⊗ (Π̄c,x)⊗|M|−1
FM\{mi}

= 0. (17)

Combining Eqs. (15) to (17) and squaring the resulting inequality yields

Pr[m̂i = ⊥ ∧mi ̸= ⊥] ≤ 2 · 2−γ . (18)

Collecting the terms and applying a union bound over the qD decapsulation
queries yields the desired bound. ⊓⊔
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So far, we have shown that whenever an IND-CCA adversary A’s behaviour is
significantly changed by being run with simulation oDecaps′ instead of the real
oracle oDecaps, we can use A to find a failing plaintext, assuming access to the
decryption oracle oDecrypt provided in the FFP-CCA game. We continue by
proving an eQROMEnc-analogue of Thm. 2, i.e., we show that oDecrypt can
be simulated via oracle oDecrypt′ (see Fig. 7) without the secret key, thereby
being able to construct an FFP-CPA adversary from any FFP-CCA adversary
(both in the eQROMEnc).

Theorem 4. Let PKE and B be like in Thm. 2 (see page 9), except that B is
now considered in the eQROMEnc, issuing at most qeCO.RO/qeCO.E many queries
to its respective oracle eCO.RO/eCO.E. Then there exist an FFP-CPA adversary
B̃ in the eQROMEnc such that

AdvFFP-CCA
PKEG (B) ≤ (qD + 1)AdvFFP-CPA

PKEG (B̃) + 12qD(qG + 4qD)2−γ/2 (19)

The adversary B̃ makes qeCO.RO queries to eCO.RO and qeCO.E + qD queries to
eCO.E, and its runtime satisfies Time(B̃) = Time(B) +O(qD).

Proof. On a high level, the proof works as follows. Analogous to Thm. 3, we sim-
ulate oDecrypt by oDecrypt′. As we wish to remove the usage of oDecrypt
entirely, however, we cannot use it to determine at which oDecrypt′ query a
failure occurs. We thus resort to guessing that information. On a technical level
this proof follows the proof of Thm. 3 with deviations similar as in the proof of
Thm. 2. Let oDecrypt′ be the simulation defined in Fig. 7. Let Game G0 be
the FFP-CCA-game, and let Games G1 −G5 be defined based on Game G0
like in the proof of Thm. 3. Like in the proof of Thm. 3, we have

AdvGame G0 ≤ AdvGame G5 + 12qD(qG + 2qD)2−γ/2 + Pr[DIFF]
≤AdvGame G5+12qD(qG + 2qD)2−γ/2+ Pr[DIFF ∧ ¬GUESS] + Pr[GUESS]. (20)

Assume without loss of generality that B makes exactly qD many queries to
the oracle for DecG (if it does not, we modify B by adding a number of useless
decryption queries in the end). We define an FFP-CPA adversary B̃eCO defined
exactly like the classical one in Fig. 4 (except that it has quantum access to
its oracles), i.e., B̃ samples i ← {1, ..., qD + 1} and runs BG′,oDecrypt′ until the
i-th query, or until the end if i = qD + 1. Finally, B̃ outputs mi, the output of
BG′,oDecrypt′ ’s i-th decryption query, unless i = qD + 1, in which case B̃ outputs
the output of BG′,oDecrypt′ . By construction,

AdvFFP-CPA
PKEG (B̃) ≥

(
AdvGame G5 + Pr[DIFF ∧ ¬GUESS]

)
/(qD + 1) (21)

(note that all instances of AdvGame i are for B playing Game i.) Combining
Eqs. (20) and (21) and Lem. 2 yields the desired bound. The statement about
B̃’s running time and number of queries is straightforward. ⊓⊔

Combining Theorems 3 and 4, we obtain the following
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Corollary 2. Let PKE and A be as in Thm. 3. Then there exist an IND-CPA-
KEM adversary Ã and an FFP-CPA adversary B, both in the eQROMEnc, such
that

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤AdvIND-CPA-KEM

KEM⊥
m

(
Ã

)
+ (qD + 1)AdvFFP-CPA

PKEG (B)

+ 24qD(qG + 4qD)2−γ/2 (22)

Both Ã and B make qG + qH + qD queries to eCO.RO, with a combined depth
(width) of d+ qD (w), and qD queries to eCO.E. The running times of Ã and B
satisfy Time(Ã) = Time(A) +O(qD) and Time(B) = Time(A) +O(qD).

Again, the additive error terms are a factor of 2 larger due to our modular proof
(in terms of Theorems 3 and 4), which can be avoided with a direct proof.

While the additive error term depending on γ improves by roughly a power 2
over the corresponding term in the security bound of [DFMS21], the only known
concrete bound for FO⊥m, we remark that we do not expect it to be tight. It
turns out, however, that many relevant schemes have abundantly randomized
ciphertexts.

4.2 Semi-classical OWTH in the eQROMf

To analyze IND-CPA-KEM security of KEM⊥m in the eQROMEnc, we want to apply
an eQROMEnc argument to show that keys encapsulated by FO⊥m[PKE,G,H]
are random-looking unless the adversary can be used to attack the underlying
scheme PKE. We will need to argue that the challenge key K∗ := H(m∗) and the
encryption randomness G(m∗) used for challenge ciphertext c∗ can be replaced
with fresh random values, in the eQROMEnc. To that end, we develop eQROMf

generalizations of the semi-classical OWTH theorems from [AHU19].
We will first describe how we model this ’replacing with fresh randomness’ on

a subset S ⊂ X for superposition oracle, and how our approach generalizes pre-
vious approaches. Previous work (like [AHU19]) used two oracles O0 and O1 that
only differ on some set S, while algorithm A’s input is always defined relative to
oracle O0. In the case where A’s oracle is O1, the input uses fresh randomness
from the adversary’s point of view. Here we meet the first eQROMEnc-related
roadblock: Superposition oracles have the property that initially, each value
eCO.RO(x) is in quantum superposition, which complicates equating two oracles
everywhere but on S. As it suffices for our purpose, we define the ’resampling’ set
S as follows: We assume A’s input inp to be classical, generated by an algorithm
GenInp with classical access to eCO0. We can then define S as the set of all inputs
x queried by GenInp, e.g., for input (c∗,K∗) := (Enc(pk,m∗; G(m∗))),H(m∗)), S
is {m∗}.) Apart from how we model S, we proceed as in [AHU19]: Use eCO0 to
generate A’s input and replace A’s access to eCO0 with access to an independent
extractable compressed oracle eCO1.

Clearly, if GenInp does not query eCO0, the two oracles eCO0 and eCO1

are perfectly indistinguishable to A. But what if A’s input depends on eCO0?
[AHU19] related A’s distinguishing advantage to the probability of “FIND”,
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the event that an element of S is detected in A’s queries to the QRO via
a quantum measurement. This result, however, is in the (plain) QROM, and
FIND is not the only distinction opportunity in the eQROMf as there are now
two oracle interfaces, eCO.RO and eCO.E. As an example, let A have input
(x, t := f(x, eCO.0RO(x))) for some oracle input value x. Without any eCO.RO
query, A can tell the two cases apart by querying eCO.E on t: Querying eCO.0E
on t results in output x with overwhelming probability, while querying eCO.1E
on t yields output ⊥. Extraction queries hence have to be taken into account.

Before stating this section’s main theorems, we will describe our approach
more formally. Borrowing the notation from [AHU19], we define ‘punctured’ ver-
sions eCO\S of eCO: During each eCO.RO query, we first apply a ’semi-classical’
oracle OSC

S , and then oracle unitary OXY D. Intuitively, OSC
S marks if an element

of S was found in one of the query registers. Formally, OSC
S acts on the query

input registers X1, · · ·Xw and a ‘flag’ register F that holds one qubit per oracle
query, by first mapping |x1, · · ·xw, b⟩ to |x1, · · ·xw, b⊕ Jx1 ∈ S ∨ · · · ∨ xw ∈ SK⟩,
and then measuring register F in the computational basis.

Like in [AHU19], we denote the event that any measurement of F returns 1
by FIND. In that case, the query has collapsed to a superposition of states where
at least one input register only contains elements of S. If FIND does not occur,
then all oracle queries collapsed to states not containing any elements of S, and
in consequence, set S defining A’s input is effectively removed from the query
input domain. In this case, the only way to distinguish between eCO0 and eCO1

is to perform an extraction query where eCO.0E might return an element of S.
We will call this event EXT. If neither FIND nor EXT occur, the two scenarios
are indistinguishable to A.

The following helper lemma formalizes the above reasoning and extends it to
some other probability distances: Eq. (23) formalizes that if A neither triggers
FIND nor EXT, its behaviour in the two cases is the same: arbitrary events will
be equally likely in both cases. Eqs. (24) and (25) have a similar interpretation.
The proof of Lem. 3 is mostly reworking the probabilities by reasoning about the
cases and eliminating the case where neither FIND nor EXT occurs. It is given
in the full version.

Lemma 3. Let eCO0 and eCO1 be two extractable superposition oracles from
X to Y for some function f : X × Y → T , and let GenInp be an algorithm
with classical output inp, having access to eCO0. Let S be the set of elements
x ∈ X whose oracle values are needed to compute inp, and let TS := {t | ∃x ∈
S s.th. t = f(x, eCO0(x))}. Let FIND be the event that flag register F is ever
measured to be in state 1 during a call to A’s punctured oracle, and let EXT
be the event that A performs an extraction query on any t ∈ TS . Let E be an
arbitrary (classical) event. Then

Pr[E ∧ ¬FIND∧¬EXT : AeCO0\S ]=Pr[E∧¬FIND∧¬EXT : AeCO1\S ], (23)

|Pr[E∧¬FIND :AeCO0\S ]−Pr[E∧¬FIND :AeCO1\S ]|≤Pr[EXT :AeCO0\S ], (24)

|Pr[FIND : AeCO0\S ]− Pr[FIND : AeCO1\S ]| ≤ Pr[EXT : AeCO0\S ] (25)
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where all probabilities are taken over the coins of GenInp and the internal ran-
domness of A and we used AO0 as a shorthand for AO0(inp).

The following theorem relates the distinguishing advantage between eCO0

and eCO1 to the probability that FIND or EXT occur. Intuitively, the theorem
states that no algorithm A will recognize the reprogramming unless A makes a
random oracle or an extraction query related to its input. Thm. 5 is the eQROMf

counterpart of [AHU19, Th. 1, ’Semi-classical O2H’]. Its proof is given in the
full version. In the special case where EXT never happens, e.g., when extraction
queries are triggered by an oracle simulation like oDecaps′ that forbids critical
inputs, we obtain the same bound as [AHU19, Th. 1], but in the eQROMf .

Theorem 5 (eQROMf -OWTH: Distinguishing to Finding). Let eCO0,
eCO1, GenInp, S, FIND and EXT be like in Lem. 3. We define the OWTH dis-
tinguishing advantage function of A as

AdvOWTH
eQROf

(A) := |Pr[1← AeCO0
(inp)]− Pr[1← AeCO1

(inp)]| ,

where the probabilities are over the coins of GenInp and the randomness of A.
For any algorithm A of query depth d with respect to eCO.RO, we have that

AdvOWTH
eQROf

(A) ≤4 ·
√
d · Pr[FIND : AeCO1\S ]

+ 2 · (
√
d+ 1) ·

√
Pr[EXT : AeCO0 ] + Pr[EXT : AeCO1

] . (26)

If additionally Pr[EXT : AeCO0\S ] = Pr[EXT : AeCO1\S ] = 0, we obtain

AdvOWTH
eQROf

(A) ≤ 4 ·
√
d · Pr[FIND : AeCO1\S ] . (27)

In many cases, a desired reduction will not know the ’resampled’ set S.
Thm. 6 relates the probability of FIND to the advantage of a preimage extractor
ExtractSet that extracts an element of S without knowing S: ExtractSet will run
A with the unpunctured oracle eCO and measure one of its queries to generate its
output. In one of our proofs, we additionally need to puncture on a set different
from S. We therefore prove Thm. 6 for arbitrary sets S ′′ .

Theorem 6 (eQROMf -OWTH: Finding to Extracting). Let A be an al-
gorithm with access to an extractable superposition oracle eCO from X to Y for
some function f : X × Y → T , with query depth d with respect to eCO.RO,
and let GenInp be like in Lem. 3. Let FIND be the event that flag register F is
ever measured to be in state 1 during a call to A’s punctured oracle, where the
puncturing happens on a set S ′′.

Let ExtractSet be the algorithm that on input inp chooses i←$ {1, · · · d}, runs
AeCO(inp) until the i-th query to eCO.RO; then measures all query input registers
in the computational basis and outputs the set S ′ of measurement outcomes. Then

Pr[FIND : AeCO\S′′
] ≤ 4d · Pr[S ′′ ∩ S ′ ̸= ∅ : S ′ ← ExtractSet] . (28)
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The proof (given in the full version) directly follows from [AHU19, Th. 2,
’Search in semi-classical oracle’] since [AHU19, Th. 2] gives the bound of Thm. 6
for algorithms B accessing a semi-classical oracle OSC

S′′ itself (rather than some or-
acle punctured on S ′′). An algorithm BOSC

S′′ hence can perfectly simulate eCO\S ′′
to A by simulating eCO and having the puncturing done by its own oracle OSC

S′′ .
If the input inp of A is independent of S ′′, we also get an extraction bound,

an eQROMf counterpart of [AHU19, Cor. 1], which is proven in the same way.

Corollary 3 (eQROMf -OWTH: Extracting independent values). If S and
inp are independent, then for any algorithm AeCO issuing q many queries to
eCO.RO in total,

Pr[FIND : AeCO\S′′
] ≤ 4q · pmax ,

where pmax := maxxinX PrS′′ [x ∈ S]. As a special case, we obtain that

Pr[FIND : AeCO\{x}] ≤ 4q|X|−1 , (29)

for S ′′ = {x} with uniformly chosen x ∈ X, assuming that x was not needed to
generate the input to A.

4.3 From IND-CPAPKE or OW-CPAPKE to IND-CPAFO[PKE]

We will now use the OWTH results from Sect. 4.2 to show that the IND-CPA
security of FO⊥m[PKE,G,H] can be based on the passive security of PKE. In
Thm. 7, we base IND-CPA security of FO⊥m[PKE,G,H] on the IND-CPA security
of PKE, and we base it on OW-CPA security of PKE in Thm. 8. The obtained
bounds are the same as their known plain QROM counterparts.

Theorem 7. Let A be an IND-CPA adversary against KEM⊥m in the eQROMEnc,
issuing q many queries to eCO.RO in total, with a query depth of d, and qE many
queries to eCO.E, where none of them is with its challenge ciphertext. Then there
exists an IND-CPA adversary BIND-CPA against PKE such that

AdvIND-CPA-KEM
KEM⊥

m
(A) ≤ 4 ·

√
d ·AdvIND-CPA

PKE (BIND-CPA) + 8q|M|−1/2 ,

with Time(BIND-CPA) = Time(A) + Time(eCO, q, qE) and QMem(BIND-CPA) =
QMem(A) + QMem(eCO, q, qE).

Note that forbidding extraction queries to eCO.E on c∗ is no limitation in our
context: eCO.E queries are only triggered by an IND-CCA adversary querying its
simulated oracle oDecaps′, and oDecaps′ rejects queries on c∗ .

A full proof is given in the full version. To summarise the proof, we first define
a Game G1 like the IND-CPA-KEM game , except that encryption randomness
r∗ := G(m∗) and honest KEM key K0 := H(m∗) are replaced with fresh uniform
randomness. In Game G1, the forwarded KEM key is a uniformly random key
either way, the advantage of A in Game G1 hence is 0. It remains to bound
the distinguishing advantage between the IND-CPA-KEM game and Game G1.
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We apply Thm. 5 which bounds this distinguishing advantage in terms of the
probability of event FINDm∗ , the event that m∗ is detected in the adversary’s
random oracle queries. To further bound Pr[FINDm∗ ], we use IND-CPA security
of PKE to replace A’s ciphertext input c∗ with an encryption of an independent
message. As m∗ now is independent of A’s input, FINDm∗ is highly unlikely for
large enough message spaces. (This uses Cor. 3 .)

Theorem 8. For any IND-CPA adversary A like in Thm. 7, with a query width
of w, there furthermore exists an OW-CPA adversary BOW-CPA such that

AdvIND-CPA
KEM⊥

m
(A) ≤ 8d ·

√
w ·AdvOW

PKE(BOW-CPA),

with Time(BOW-CPA) = Time(A) + Time(eCO, q, qE) and QMem(BOW-CPA) =
Time(A) + QMem(eCO, q, qE).

Again, a full proof is given in the full version. The proof does exactly the
same steps as the one of Thm. 7, up to the point where we bound Pr[FINDm∗ ].
To bound Pr[FINDm∗ ], we use Thm. 6 to relate Pr[FINDm∗ ] to the OW-CPA
advantage of an algorithm that extracts m∗ from A’s oracle queries.

5 Characterizing FFP-CPAPKEG

While it may very well be that the maximal success probability in game FFP-CPA
for PKEG can already be bounded for particular instantiations of PKEG without
too much technical overhead, even in the eQROMEnc, this section offers an alter-
native way to bound this probability: In Thm. 9, we relate the success probability
in game FFP-CPA for PKEG to two failure-related success probabilities that are
easier to analyze. This reduction separates the computationally hard problem of
exploiting knowledge of the public key to find failing ciphertexts for PKE, from
the statistically hard problem of searching the QRO G for failing plaintexts m
for PKEG without knowledge of the key.

We begin by defining these two new notions related to decryption failures: In
Fig. 8 we define a new variant of the FFP game that differs from game FFP-CPA
by providing A not even with the public key. Since the adversary obtains No
Key whatsoever, the game is called FFP-NK, and we define the advantage of an
FFP-NK adversary A against PKE as

AdvFFP-NK
PKE (A) := Pr[FFP-NKAPKE ⇒ 1] .

Furthermore, we define a Find non-generically Failing Plaintext (FFP-NG) game,
also in Fig. 8. In this game, the adversary gets a public key pk0 as input and is
allowed to issue a single message-randomness pair to a Failure Checking Oracle
FCO that is defined either relative to (sk0, pk0), the key pair whose public key
constitutes A’s input, or relative to a key pair (sk1, pk1) which is an independent
key pair. We define the advantage of an FFP-NG adversary A against PKE as

AdvFFP-NG
PKE (A) :=

∣∣∣Pr[FFP-NGAPKE,0 ⇒ 1]− Pr[FFP-NGAPKE,1 ⇒ 1]
∣∣∣ .
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Game FFP-NK
01 m← A
02 (pk, sk)← KG
03 c := Enc(pk, m)
04 return JDec(sk, c) ̸= mK

Game FFP-NGb

05 (sk0, pk0)← KG
06 (sk1, pk1)← KG
07 b′ ← AFCOb (pk0)
08 return Jb = b′K

FCOb(m; r) �one query
09 c← Enc(pkb, m; r)
10 m′ := Dec(skb, c)
11 return Jm ̸= m′K

Fig. 8. Key-independent game FFP-NK for deterministic schemes PKE, and the find
non-generically failing ciphertexts games FFP-NG (with b ∈ {0, 1}). A can make at
most one query to FCOb.

While the game is formalized as an oracle distinguishing game, A can only win
the game with an advantage over random guessing if it queries oracle FCO on a
message-randomness pair that fails with a different probability with respect to
key pair (sk0, pk0) than with respect to key pair (sk1, pk1), a key pair about which
B can only gather information by its query to FCO. We expect this game to be
a more palatable target for both provable security and cryptanalysis compared
to FFP-CPAPKEG or correctness-related games from the existing literature.

Theorem 9. Let PKE be a public-key encryption scheme. For any FFP-CPA ad-
versary A in the eQROMEnc against PKEG making qR and qE queries to eCO.RO
and eCO.E, respectively, there exist an FFP-NK adversary C in the eQROMEnc
against PKEG and an FFP-NG adversary B against PKE with

AdvFFP-CPA
PKEG (A) ≤ AdvFFP-NG

PKE (B) + AdvFFP-NK
PKEG (C) .

The running time of C is about that of A, that of B is Time(B) = Time(A) +
Time(eCO, qRO, qE) and QMem(B) = QMem(A) + QMem(eCO, qRO, qE).

The proof consists of the following two steps: Apply the FFP-NG definition
to argue that the FFP-CPA game’s key pair can be replaced with an independent
one whose public key is not given to A. After this change, winning means solving
FFP-NK for PKEG. The full proof is given in the full version.

5.1 Characterizing FFP-NKPKEG

In the last section, we have related the success probability of an adversary in
game FFP-CPA for PKEG to the success property of an adversary in game FFP-NK
for PKEG, in the eQROMEnc. Intuitively, an adversary in game FFP-NK will
succeed if it can find oracle inputs m such that m and r := eCO.RO(m) satisfy
the predicate that (m, r) fails with respect to pk. To prove the upper bound we
provide in Thm. 10, we therefore generically bound the success probability for a
certain search problem in Sect. 5.2. While we note that the search bound might
be of independent interest, it in particular allows us to characterize the maximal
advantage in game FFP-NK in terms of two statistical values for the underlying
randomised scheme PKE.We begin with the definitions of δik and σδik : Below,
we define the worst-case decryption error rate δik under independent keys, and
the maximal variance of the decryption error rate σδik .
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Definition 2 (worst-case independent-key decryption error rate, max-
imal decryption error variance). We define the worst-case decryption error
rate under independent keys δik and the maximal decryption error variance un-
der independent keys σδik of a public-key encryption scheme PKE as

δik := max
m∈M

[ Pr
(sk,pk),r

[(m, r) fails]] = max
m∈M

Er[ Pr
(sk,pk)

[(m, r) fails]] , and

σ2
δik

:= max
m∈M

Vr[ Pr
(sk,pk)

[(m, r) fails]] both for uniformly random r.

We want to stress that δik differs from the worst-case term δwc that was
introduced in [HHK17] (there denoted by δ) since δwc is defined by

δwc := EKG max
m∈M

Pr
r←$R

[(m, r) fails] .

Intuitively, δwc is the best possible advantage of an an adversary, trying to find
the message most likely to fail for a given key pair, while for δik, the key pair will
be randomly sampled after the adversary had made its choice m. On a formal
level, it is easy to verify that δwc serves as an upper bound for δik.

Theorem 10. Let PKE be a public-key encryption scheme with worst-case in-
dependent-key decryption error rate δik and decryption error rate variance σδik .
For any FFP-NK adversary A in the eQROMEnc against PKEG, setting C = 304,
we have that

AdvFFP-NK
PKEG (A) ≤ δik + 3

√
Cqσδik + 2Cq2σ2

δik
δik(− log

√
Cqσδik) ,

The proof is given in the full version.
In the full version, we also give an alternative bound that grows with the

logarithm of the number of RO queries, assuming a Gaussian tail bound for the
decryption error distribution.

5.2 Finding large values of a function in the eQROMf

In this section, we provide the technical results for the eQROMf that we need to
prove Thm. 10. Throughout this section, f is a fixed function such that eQROMf

is well-defined. We begin by providing a bound for the success probability of an
algorithm in the eQROMf that searches for a value x that, together with its
oracle value eCO.RO(x), satisfies a relation R. In the lemma below , we will use
the quantity ΓR that was defined in Eq. (10) (see page 13).

Lemma 4. Let R ⊂ X × Y be a relation and AeCO an algorithm with access to
eQROf from X to Y for some function f : X × Y → T , making q queries to
eCO.RO. Then

Prx←AeCO [R(x, eCO.RO(x))] ≤ 152(q + 1)2ΓR|Y|−1, (30)

independently of the number of queries A makes to eCO.E. Here it is understood
that eCO.RO is queried once in the very end to determine eCO.RO(x).
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Proof. The only difference between [DFMS21, Proposition 3.5] and Lem. 4 is
that A now additionally has access to eCO.E. The proof is thus the same as
for [DFMS21, Proposition 3.5], with the additional observation that queries to
eCO.E commute with the progress measure operatorM for any relationR. This is
because i) bothM and the operator applied upon an eCO.E query are controlled
unitaries controlling on the database register of the compressed oracle database
of the eQROf , and ii) the target registers of M and eCO.E are disjoint. ⊓⊔

According to Lem. 4, it is hard to search a random oracle, even given ex-
traction access. We will now use Lem. 4 to show that it is also hard to produce
an input to the oracle so that the resulting input-output pair has a large value
under a function F , in expectation. To state a theorem making this intuition
precise and quantitative, let F : X × Y → I ⊂ [0, 1], and let I be ordered as
I = {t1, ..., tR} with ti > ti−1. The hardness of the task of finding large values is
related to a “tail bound” G(t) for the probability of F (x, r) being larger than t .

Theorem 11. Let F and I be as above. Let further G : [0, 1] → [0, 1] be non-
increasing such that G(t) ≥ Prr←Y [F (x, r) ≥ t] for all x. Let C := 304, ∆G(i) :=
G(ti)−G(ti+1) (setting formally G(tR+1) = 0), and let κq := min{i|Cq2G(ti) ≤
1}. Then for any algorithm AeCO making at most q ≥ 1 queries to eCO.RO,

Ex←AeCO [F (x, eCO.RO(x))] ≤ tκq
+ Cq2

∑R

i=κq+1
ti∆G(i) . (31)

eCO.RO is queried once in the end to determine eCO.RO(x).

Proof. Let x← AeCO. We bound

E [F (x, eCO.RO(x))] =
∑R

i=1
ti Pr[F (x, eCO.RO(x)) = ti]

=
∑R

i=1
ti (Pr[F (x, eCO.RO(x)) ≥ ti]− Pr[F (x, eCO.RO(x)) ≥ ti+1])

= t1 +
∑R

i=2
Pr[F (x, eCO.RO(x)) ≥ ti](ti − ti−1)

≤ t1+
∑R

i=2
min(1, Cq2G(ti))(ti − ti−1) = tκq + Cq2

∑R

i=κq+1
G(ti)(ti − ti−1),

where we have used Lem. 4 with the relation Rf,≥ti defined by Rf,≥ti(x, y) :⇔
f(x, y) ≥ ti in the second-to-last line. We further bound∑R

i=κq+1
G(ti)(ti − ti−1) = −G(tκq+1)tκq

+
∑R

i=κq+1
ti∆G(i) ≤

∑R

i=κq+1
ti∆G(i).

⊓⊔

We provide a corollary for the case where G is given by Chebyshev’s inequality.
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Corollary 4. Let F , I, and C be as in Thm. 11, and let the expectation values
and variances of F (x, r) for random r ← Y be bounded as Er[F (x, r)] ≤ µ and
Vr[F (x, r)] ≤ σ2, respectively. Then, for an algorithm AeCO making at most
q ≥ 1 quantum queries to eCO.RO,

Ex←AeCO [F (x, eCO.RO(x))] ≤ µ+ 3
√
Cqσ + 2Cq2σ2µ(− log(

√
Cqσ)). (32)

Proof. By Chebyshev’s inequality, we can set G(t) = σ2(t−µ)−2. We thus obtain
tκq
≤
√
Cqσ + µ. We bound

∑R

i=κq+1
ti∆G(i) = −

∑R

i=κq+1
ti

∫ ti+1

ti

G′(t)dt ≤ −
∫ 1

tκq

tG′(t)dt (33)

=2σ2
∫ 1

tκq

t

t− µ
dt = 2σ2

∫ 1−µ

tκq−µ

u+ µ

u
du = 2σ2

(
1− tκq

+ µ log 1− µ
tκq − µ

)
. (34)

We arrive at the bound

Ex←AeCO [F (x, eCO.RO(x))]≤µ+
√
Cqσ+2Cq2σ2(1+µ(log(1−µ)−log(

√
Cqσ))).

If
√
Cqσ ≥ 1, the claimed bound trivially holds, else

√
Cqσ ≥ Cq2σ2 and thus

Ex←AeCO [F (x,eCO.RO(x))]≤µ+3
√
Cqσ+2Cq2σ2µ log(log(1−µ)−log(

√
Cqσ)).

⊓⊔

6 Tying everything together

Combining the reductions from Sect. 4.1 and 4.3, we obtain a first corollary that
still relies on FFP-CPA of PKEG. Cor. 6 states our main result.

Corollary 5. Let PKE and IND-CCA-KEM A against KEM⊥m be like in Thm. 3
(on page 14). Then there exist an IND-CPA adversary BIND, a OW-CPA adversary
BOW and an FFP-CPA adversary C against PKEG in the eQROMEnc such that

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤ ÃdvPKE + (qD + 1)AdvFFP-CPA

PKE (C) + εγ , with (35)

ÃdvPKE =


4 ·

√
(d+ qD) ·AdvIND-CPA

PKE (BIND) + 8(q+qD)√
|M|

or

8 (d+ qD) ·
√
w ·AdvOW

PKE(BOW).
(36)

The additive error term is given by εγ = 24qD(qG +4qD)2−γ/2, C makes qG +qH +
qD queries to eCO.RO and qD to eCO.E. BIND’s, BOW’s and C’s running time are
bounded as Time(BIND/OW) = Time(A) + Time(eCO, qG + qH + qD) +O(qD) and
Time(C) = Time(A) +O(qD).
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Corollary 6. Let PKE and A be like in Thm. 3, and let PKE furthermore have
worst-case random-key decryption error rate δik, decryption error rate variance
σδik and decryption error tail envelope τ . Set C = 304 and assume

√
CqGσδik ≤

1/2. Then there exists an FFP-NG adversary C against PKE such that

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤ÃdvPKE + (qD + 1)(AdvFFP-NG

PKE (C) + εδik) + εγ (37)

with ÃdvPKE and εγ like in Cor. 5. The additive error term εδik is given by
εδik ≤ δik + (3 + 2δik)

√
CqGσδik . C’s running time is bounded by Time(A) +

Time(eCO, qG + qH + qD) +O(qD).

In the full version, we give an alternative corollary with an εδik that only
grows logarithmically with the number of RO queries, assuming a Gaussian-
shaped tail bound for the decryption error probability distribution.

Proof. Cor. 6 follows by combining Cor. 5 with Thms. 9 and 10 from Sect. 5. We
simplified error term εδik from Thm. 10 by using the inequality x2/ log(x) ≤ x
for x ≤ 1/2 for x =

√
CqGσδik , exploiting the mild condition

√
CqGσδik ≤ 1/27.

⊓⊔

The above result has two main advantages over previous ones: i) The additive
loss can be much smaller than the additive loss of roughly q2

Gδwc present in all
previous bounds. ii) It holds for the explicit rejection variant of the transforma-
tion, with bounds that are competitive with previous ones that were limited to
implicitly rejecting variants.
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