
Nostradamus goes Quantum

Barbara Jiabao Benedikt1 (�), Marc Fischlin1[0000−0003−0597−8297], and Moritz
Huppert1

1 Cryptoplexity, Technische Universität Darmstadt, Germany
{barbara_jiabao.benedikt,marc.fischlin}@tu-darmstadt.de

moritz.huppert@proton.me

Abstract. In the Nostradamus attack, introduced by Kelsey and Kohno
(Eurocrypt 2006), the adversary has to commit to a hash value y of an
iterated hash function H such that, when later given a message pre-
fix P , the adversary is able to find a suitable “suffix explanation” S
with H(P‖S) = y. Kelsey and Kohno show a herding attack with 22n/3

evaluations of the compression function of H (with n bits output and
state), locating the attack between preimage attacks and collision search
in terms of complexity. Here we investigate the security of Nostradamus
attacks for quantum adversaries. We present a quantum herding algo-
rithm for the Nostradamus problem making approximately 3

√
n · 23n/7

compression function evaluations, significantly improving over the clas-
sical bound. We also prove that quantum herding attacks cannot do bet-
ter than 23n/7 evaluations for random compression functions, showing
that our algorithm is (essentially) optimal. We also discuss a slightly less
tight bound of roughly 23n/7−s for general Nostradamus attacks against
random compression functions, where s is the maximal block length of
the adversarially chosen suffix S.

Keywords: Hash function, herding attack, lower bound, Nostradamus,
quantum, Grover

1 Introduction

Hash functions serve as a versatile tool in cryptography, thus coming with sev-
eral security requirements like collision resistance, preimage resistance, or second
preimage resistance. In 2006 Kelsey and Kohno [26] introduced a new kind of
attack and security property for iterated hash functions H, based on a compres-
sion function h with state and output size n. The attack requires the adversary
to first commit to a hash value ytrgt and later, after given a message prefix P ,
to find a message suffix S such that H(P‖S) = ytrgt. The attack is known under
the technical term chosen-target forced-prefix (CTFP) preimage attack, but is
often referred to by the more picturesque title Nostradamus attack. The latter
is via the connection to forecasting scenarios: The hash value can be seen as
a commitment to a allegedly correct prediction of some event P in the future,
which the attacker aims to attest by finding a suitable suffix S.

2 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

1.1 Herding Attacks

The so-called herding attack of Kelsey and Kohno [26] is a Nostradamus attack
with roughly O(22n/3) evaluations of the compression function h.1 This is still
far from the birthday bound for collision resistance, but it is clearly better than
a preimage search with O(2n) evaluations. The herding attack can be divided
into two phases:

Offline phase: In the offline phase the adversary first determines the target hash
value ytrgt and builds a diamond structure, which is a hash tree of height k.
The tree connects 2k distinct leaves to the root value ytrgt via iterating h on
different message blocks. Kelsey and Kohno discuss that the overall effort to
build such a tree is O(2(n+k)/2). Blackburn et al. [9] later pointed out a flaw
in the analysis and gave a bound of O(

√
k · 2(n+k)/2).

Online phase: In the online phase the adversary is then presented the prefix
P . It searches for a linking message part mlink to one of the leaves in the
diamond structure, such that mlink and the message blocks on the tree path
mpath yield the suffix S = mlink‖mpath. Kelsey and Kohno discuss that this
step requires O(2n−k) evaluations of h.

Choosing k = n
3 then yields an overall effort of O

(√
n · 22n/3

)
of both phases

together.
We note that there are variations of the above fundamental attack, also

discussed in [26]. One is to use expandable messages [17,27] to accommodate
variable-length suffixes when the message length is included in the padding.
Such expandable messages can be used in combination with elongated diamond
structures. These elongated structures significantly increase the suffix length, by
a term 2r for parameter r, but reduce the effort to roughly 22n/3−2r/3. We do
not look into such variations here, since our attacks already work well with basic
diamond structures.

1.2 Quantum Herding Attack

By a result of Brassard et al. [13] it is known that quantum computers facilitate
the search for collisions in hash functions, reducing the effort from O(2n/2) in the
classical setting to O(2n/3) in the quantum case. The algorithm itself is based on
Grover’s quantum search algorithm [23]. The question we address in this work
here is if quantum search or collision finding helps in improving herding attacks.
Can we expect the same speed-up of a factor 2/3 in the exponent as in the
collision case?

As a very fundamental result we first argue that quantum collision search
gives an easy attack with O(2n/2) evaluations of h, without the need to construct
a diamond structure. Namely, pick an arbitrary target value ytrgt and, once
receiving the prefix P , use Grover’s search algorithm to find the linking message
block mlink ∈ {0, 1}B of B � n bits. If we assume that the hash function is
1 Unless stated otherwise, all bounds refer to expected numbers of evaluations.

Nostradamus goes Quantum 3

approximately regular, then there are roughly t = 2B−n such message blocks
mapping to the target value. But then Grover’s algorithm requires O(

√
2B/t) =

O(2n/2) quantum evaluations of h to find mlink. This already improves over the
classical bound (and requires no storage for the diamond structure).

The next, more elaborate attempt is to replace the collision search to create
the diamond structure in the attack of Kelsey and Kohno [26] by a quantum
algorithm. The improvement may, however, be less expedient than envisioned
at first, because the original diamond structure generation throws many values
in parallel and then “sieves” for a sufficient number of simultaneous collisions.
For the quantum case we proceed step by step. Nonetheless, we show that with
this approach we indeed achieve an improvement factor of 2/3 in the exponent
compared to the classical attack, requiring O(24n/9) compression function eval-
uation.

Our main result is an enhanced version of the quantum attack with a dia-
mond structure. We show that we can actually build a diamond structure more
efficiently if we wisely re-use some of the previous evaluations when searching for
collisions. Optimizing the parameters we achieve an attack with O(3

√
k · 23n/7)

evaluations of h. The bounds for the attacks are displayed in Figure 1.

queries
(log scale)

quantum attack

classical attack (22n/3)

herding lower bound (23n/7)

general lower bound for parameter C
(≈ 23n/7−s for C = 3)

2n/2

simple

24n/9

basic

3
√
n · 23n/7

enhanced

Fig. 1: Upper and lower bounds on expected number of compression function evalu-
ations for quantum attacks (neglecting constants). The simple attack is the straight-
forward quantum attack, the basic attack uses a diamond structure formed by basic
quantum collision search, and the enhanced attack optimizes generation of diamond
structure. The parameter s denotes the maximal number of message blocks in the ad-
versarial suffix S, n is the hash function’s output size, and the parameter C denotes
the number of multicollisions for the lower bound.

We have implemented our attacks in IBM’s Qiskit software development kit.2
The classical simulation of such quantum algorithms in Qiskit, however, restricts
2 Available via https://git.rwth-aachen.de/marc.fischlin/quantum-nostradamus.

4 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

the number of available qubits. Therefore, we were only able to run our algo-
rithms against a toy hash function with very limited block and output length
B = n = 8, based on similar attempts in [21,33]. For this hash function our
experiments confirm that the enhanced attack is superior to the basic attack in
terms of actual run time, mainly in the offline phase, with almost equal statistics
in the online phase. Still, due to the restricted choice of n these results must be
taken with prudence. This is the more true as the simple attack with Grover’s
algorithm outperforms both algorithms for n = 8, presumably because it does
not require the additional overhead for the herding step.

Our attacks are primarily designed for iterated hash functions of the Merkle-
Damgård type [15,30], such as SHA2 [16]. The quantum herding attack is in
principle also applicable to sponge-based hash functions [8], as we discuss in in
the full version. In this case, our simple quantum attack also yields a bound of
O
(
2n/2

)
for n-bit outputs. For the basic and enhanced attack the capacity c of

the sponge becomes the relevant parameter for building the diamond structure
with the hash collisions on the intermediate values, yielding the overall bounds
O
(
24c/9

)
resp. O

(
3
√
c · 23c/7

)
. For SHA3 [20], however, we have c = 2n, such

that the latter bounds are inferior to the one of the simple attack. For extendable
output functions like SHAKE [20] the choice of the best attack depends on the
relationship of n and c.

1.3 Quantum Lower Bounds

Can we go below the bound of 23n/7 evaluations for our enhanced attack? We
argue that for herding attacks this is impossible, at least generically. For this we
use a lower bound of Liu and Zhandry [29] for the quantum query complexity of
finding C-collisions in random functions, i.e., C distinct values all mapping to the
same function value. The bound states that one needs at least Ω(2

n(1− 1

2C−1
)/2

)
queries to find such collisions. We argue below that a successful Nostradamus
attack essentially allows to find such C-collisions such that the bound transfers
to our scenario accordingly.

We first give a general lower bound for Nostradamus attacks for random
function h, independently of how the adversary operates. The idea is as follows.
Recall that the Nostradamus attacker first commits to the target hash value ytrgt,
and in the second phase computes the suffix S for the given value P . We can
hence repeat the second phase multiple times with different prefixes P1, P2, . . .
to generate suffixes S1, S2, . . . , such that all inputs Pi‖Si map to the same target
hash values ytrgt. If we run the adversary sufficiently often, roughly (C−1)s times
where s is the maximal number of blocks in the suffix S, then at some point we
derive a C-collision. It follows that the Nostradamus attack must make at least
Ω(2

n(1− 1

2C−1
)/2

) queries, divided by (C− 1)s. For C = 3 the bound simplifies to
approximately 23n/7−s.

We next argue that the factor (C − 1)s can be avoided for herding attacks
using a diamond structure. Specifically, we consider C = 3 and use a single solu-
tion S of the adversary together with the a specially crafted diamond structure

Nostradamus goes Quantum 5

to form a 3-collision. Since we do not need repetitions the extra factor (C − 1)s

disappears. We hence turn a Nostradamus attack with diamond structures into
a 3-collision finder, with the same number of compression function evaluations
(up to constants). It follows from the bound of Liu and Zhandry [29] for C = 3
that at least Ω

(
23n/7

)
quantum oracle queries are necessary for a random com-

pression function. This shows that our attack is essentially optimal.

1.4 Related Work

Several other works have further refined the herding attack in the classical set-
ting. Andreeva and Mennink [3] generalized the chosen-target forced-prefix at-
tack and discuss the case that the part P may appear in the middle of the
adversary’s final output, S1‖P‖S2. This covers for example attacks on zipper
hash functions and similar constructs [2]. Kortelainen and Kortelainen [28] show
how to remove the extra factor

√
k when building the diamond structure, us-

ing a sophisticated construction. Weizman et al. [35] subsequently improve the
constant in the O-notation for generating the diamond. We do not pursue such
generalizations here.

Aiming at general improvements of quantum attacks for arbitrary hash func-
tions, Chailloux et al. [14] discuss different memory-time trade-offs for finding
collisions and a preimage in a list of values. Using variations of Grover’s algo-
rithm they show collision attacks with Õ

(
22n/5

)
evaluations, and multi-target

preimage attacks with Õ
(
23n/7

)
evaluations. Both algorithms only use O (n)

quantum memory, and can be parallelized. Parallelization of multi-target preim-
age search, also in realistic communication models, has also been considered in
[4]. They show that, with realistic communication models, they can find a preim-
age in a list of t values with p processors with O(

√
2n/pt1/2) evaluation steps

(where the bound improves from t1/2 to t for models with free communication).
We do not aim to optimize memory usage for our algorithms, which already
store the diamond structure, but focus on the number of hash evaluations here.

Dedicated quantum attacks against specific hash function, improving over
the generic bounds, have gained more attention recently. The work of Hosoya-
mada and Sasaki [24] discusses collision-finding attacks against AES-MMO and
Whirlpool. Refined collision and preimage attacks on AES-like hash functions
have been presented subsequently by Dong et al. [18,19], Florez Gutierrez et
al. [22], as well as Ni et al. [31]. Hosoyamada and Sasaki [25] devised dedicated
quantum collision attacks against reduced versions of SHA-256 and SHA-512.
Wang et al. [34] present preimage attacks on 4-round versions of Keccak. While
neither of these works considers the Nostradamus attack, the results and meth-
ods may be also useful to devise improved Nostradamus attacks against specific
hash functions. In this work here, however, we are interested in the complexity
of generic attacks.

6 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

2 Preliminaries

2.1 Hash Functions

Analogously to [26] we consider hash functions H : {0, 1}∗ → {0, 1}n based
on the Merkle-Damgård construction with a compression function h : {0, 1}B ×
{0, 1}n → {0, 1}n, where B is the size of the message blocks and n the size of the
final hash value and the intermediate hash states. We implicitly assume a (public)
initialization vector IV, and for some input m = m1m2 . . .m`, mi ∈ {0, 1}B ,
aligned to block length B, we define the iterated compression function as

h∗(m) := y`, where y0 = IV, yi = h(mi, yi−1) for i = 1, 2 . . . , `.

For non-aligned inputs m we assume that the hash function uses a form of
suffix-padding function pad which only depends on the input length, such that
m‖pad(|m|) ∈ ({0, 1}B)∗. For example, for Merkle-Damgård hash functions like
SHA2 one appends 10d‖ 〈|m|〉 for a sufficient number d of 0-bits, where 〈i〉 is
a fixed-length binary encoding of the integer i. We assume that the padding
extends the message by at most one block.

We assume additionally that the compression function for any fixed inter-
mediate value y ∈ {0, 1}n, given as hy(·) := h(·, y), is surjective and sufficiently
close to regular. More specifically, we assume that this function is β-balanced,
i.e., |h−1y (hy(m))| ≥ β · 2B−n holds for all m ∈ {0, 1}B . We note that collisions
would be easier to find for the compression function if the preimage sets are
significantly skewed [5]. Indeed, Bellare and Kohno [5] also define a more fine
grained balance notion for hash functions resp. compression functions. If hy(·)
is β-balanced according to our notion, then it has a balance factor of at least
1− 2 log2n β according to their notion. The simpler balance notion here suffices
to give precise performance guarantees when using Grover’s quantum algorithm:

Definition 1. A compression function h : {0, 1}B×{0, 1}n → {0, 1}n for B ≥ n
of an iterated hash function H is called β-balanced (where β ∈ (0, 1]) if for any
y ∈ {0, 1}n and any z ∈ {0, 1}n the number of preimages satisfies |h−1y (z)| ≥
β · 2B−n for the function hy(·) = h(·, y).

We observe that, by definition, β > 0. This means that a β-balanced com-
pression function satisfies |h−1y (z)| ≥ β · 2B−n > 0 for any y, z. In other words,
any image z has a preimage under hy(·). This in particular means that the func-
tion hy(·) is surjective for any y. Let us stress that we only need the β-balance
property for the formal analysis. Our attacks may still succeed if the function
is less balanced. This also complies with our implementation results where our
example hash function is not even surjective.

We briefly discuss that, if we assume h to be random, then it is β-balanced
for β = 1

2 with overwhelming probability for B � n. For this note that for
any fixed image z, the probability that z has less than β · 2B−n of the expected
number 2B−n of preimages, is at most exp(−2B−n/8) by the Chernoff bound,
and thus double exponentially small. Hence, the probability that there exists any

Nostradamus goes Quantum 7

z among the 2n images violating the bound is still double exponentially small.
This means that for a random h we can almost surely assume that each value
z ∈ {0, 1}n is hit by at least β · 2B−n preimages.

2.2 Quantum Collision Finding

In the following chapter we will see that the Nostradamus attack is based on
finding collisions of the compression function h. Therefore we will introduce a
generalization of Grover’s algorithm as Grover(F, y0) and the specific quantum
model, which is required for the efficient collision finding algorithm from [13]:

Theorem 2 (Grover, [12]). Let F : X → Y be a function, N := |X| be the
cardinality of the domain, y0 ∈ Y be fixed and

t = |F−1(y0)| = |{x ∈ X|F (x) = y0}|

be the cardinality of the preimage of y0 under F . If t ≥ 1, then the algorithm
Grover(F, y0) outputs an x ∈ X with F (x) = y0 after O

(√
N/t

)
expected eval-

uations of F .

We consider an adversary with access to a (local) quantum computer and
assume that the compression function h is quantum accessible, i.e., the adversary
can implement h efficiently on its quantum computer. This allows the adversary
to query this h-oracle with arbitrary superposition of the inputs, akin to the
quantum random oracle model [10]. This enables us to also use the algorithm
Grover(F, y0) in cases where the function F depends on the compression function
h.

Note that Boyer et al. [12] discuss that the above theorem even holds if
the number t of solutions is not known in advance. In our attacks against hash
functions we will later take advantage of the fact the compression function h is
β-balanced (where β is usually assumed to be constant). Hence, using Grover’s
algorithm for searching a preimage for some value z among the N = 2B many
inputs to h, of which at least t ≥ β · 2B−n solutions map to z, takes an expected
number O

(√
2B/β2B−n

)
= O

(
β−1/2 · 2n/2

)
of function evaluations. For con-

stant β this equals O
(
2n/2

)
. We also point out that in most of our attacks we

apply Grover’s algorithm multiple times, in sequential order, such that the ex-
pected number of total evaluations of F is given by the sum of the expected
evaluations of the individual calls, by the linearity of expectations.

3 Classical Nostradamus Attack

In this section we review the idea of Kelsey and Kohno [26] for the Nostradamus
attack.

8 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

Attack. The Nostradamus attack lets the adversary first commit to a target hash
value ytrgt. Then it receives a prefix P where we assume for simplicity that P
is aligned to block length and that the number `P of blocks of P is known in
advance. If this was not the case the adversary could simply guess the actual
length of P and append 0’s if necessary. The task of the adversary is now to find
a suffix S such that H(P‖S) = ytrgt.

We have to specify how the prefix P is chosen in the attack. Kelsey and Kohno
[26] assume that the prefix is chosen randomly from a specified set. To avoid
assumptions about the distribution of P we ask the adversary to succeed for any
given value P . The latter matches the fact that known attacks indeed achieve
this. We specify this by quantifying over all possible prefixes P , demanding
the adversary to win in all cases. We also require the adversary to succeed
with probability 1 (over the internal randomness). Since we allow the adversary
to run in expected time, we can always enforce this by iterating till success,
compensating for smaller success probabilities by larger run times:

Definition 3 (Successful Nostradamus Attack). A successful Nostradamus at-
tack A for an iterated hash function H based on compression function h : {0, 1}B×
{0, 1}n → {0, 1}n consists of two algorithms (Aoff,Aonl) such that, for any
`P ∈ N, any P ∈ {0, 1}`P ·B, the following experiment ExpNostrH,A,P (λ) always re-
turns 1:

ExpNostrH,A,P (λ):

2 : (st, ytrgt)←$Aoff(1λ, `P) // offline

3 : S ← Aonl(st, P) // online

4 : return [H(P‖S) = ytrgt]

Note that we do not make any stipulations on the run time of adversary A. In
this sense there is always the trivial attack which executes an exhaustive search.
We are interested in more efficient attacks, of course. The parameter `P usually
enters the run time of the adversary, but only mildly compared to the search for
the initial state and for the suffix.

Offline Phase. The Nostradamus attack of Kelsey and Kohno [26] consists of an
offline and an online phase. In the offline phase the adversary creates a (binary)
tree structure (V,E), also referred to as a diamond structure. Each node v ∈
V ⊆ {0, 1}n in the tree represents a hash state and each (directed and labeled)
edge e = (y0,m, y1) ∈ E ⊆ V × {0, 1}B × V represents a transition from one
hash state to the next one via the message label, h(m, y0) = y1.3

The tree consists of 2k distinct leaves where k is chosen appropriately. The
algorithm of Kelsey and Kohno starts by sampling the leaf nodes, building up
the tree level by level, by trying message blocks for each node in order to find

3 Note that we simply identify a node with its hash value label. Formally, to make
nodes with identical hash values distinct, we add a position in the tree to each node
(given by the level and its order within the nodes of the same level) but usually omit
mentioning the position value.

Nostradamus goes Quantum 9

collisions. A level of the tree is a set of nodes with identical (edge) distance to
the root node. These levels and its nodes get numbered by the distance, e.g.,
level k contains the leaf nodes yk,1, yk,2, . . . and level 0 the root node y0,1. In
general, node yi,j is the jth node of level i. See Figure 2.

y3,1

y3,2

y3,3

y3,4

y3,5

y3,6

y3,7

y3,8

y2,1

y2,2

y2,3

y2,4

y1,1

y1,2

y0,1

m3,1

m3,3

m3,5

m3,7

m3,2

m3,4

m3,6

m3,8

m
2,1

m
2,3

m2,2

m2,4

m
1,1

m1,2

ytrgt
pad

Fig. 2: Tree structure of height 3 in offline phase of classical Nostradamus attack,
where ytrgt = h(pad(B(`P + 4)), y0,1).

The original analysis in [26] argued that roughly 2
n+k

2 compression function
evaluations are necessary to form such a tree of height k. This, however, ignored
that one node value yi,j may collide with multiple other values, such that we
would not get a full binary tree. Luckily, in [9] it is shown that we can capture
this by an extra factor

√
k. That is, in [9] it is proven that

√
k · ln 2 · 2n−k

2

evaluations of the function h suffice per node, and Θ(
√
k · 2n+k

2) in total for
building the complete diamond structure. Afterwards the hash value ytrgt =
h(pad(B · (`P + k + 1)), y0,1) can be computed and submitted, where y0,1 is the
root of the tree structure.

mpath

h∗(P)
mlink

Fig. 3: Linking message mlink for given prefix P .

Online Phase. In the online phase the adversary uses the tree structure to con-
struct the suffix S. For this the adversary searches for a linking message block

10 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

mlink ∈ {0, 1}B such that h(mlink, h
∗(P)) hashes to a leaf in the tree (see Fig-

ure 3). If such a message block mlink has been found, then the suffix S is given
by S := mlink‖mpath, where mpath denotes the (concatenation of the) message
labels on the path from the leaf to the root of the tree. See Figure 3. Note that
by construction P‖S consists of `P blocks in P , one linking block mlink, and
the k blocks in mpath, such that the message is of bit length B · (`P + k + 1).
Together with the appended padding the hash function thus maps P‖S to the
pre-selected target value ytrgt.

Since there are 2k randomly and independently sampled leaves in the tree
one can expect to find such a linking message mlink with 2n−k evaluations of
h. Moreover [9] proves that the height of the tree can be optimally chosen with
k ≈ n

3 , so that the entire attack needs O(
√
n · 2 2n

3) evaluations of h.

4 Quantum-based Nostradamus Attacks

We start by giving a straightforward quantum version of the Nostradamus attack,
exploiting that one can find collisions for hash functions in about 2n/2 quantum
steps. This already beats the classical bound of roughly 22n/3 but we show after-
wards that one can go lower with more advanced strategies. The first advanced
attack follows the same structure as the classical herding attack but reduces
the work load to approximately 24n/9 by using Grover’s algorithm. The second
advanced algorithm then optimizes the step to build the diamond structure,
resulting in a total number of roughly 23n/7 compression function evaluations.

4.1 Simple Quantum Attack

We first describe a very simple quantum Nostradamus attack Asimple. The al-
gorithm receives as input the block length `P of the unknown prefix, picks a
random value y (to which P‖S will map under h∗) and applies the final itera-
tion for the padding. In the online phase it simply runs Grover’s algorithm to
find a linking message block mlink:

Aoff
simple(1

λ, `P): // offline

1 : y←$ {0, 1}n

2 : ytrgt ← h(pad(B · (`P + 1)), y)

3 : return (y, ytrgt)

Aonl
simple(y, P): // online

1 : p← h∗(P)

2 : S ← Grover(hp, y)//hp(·) = h(·, p)

3 : return S

Proposition 4. Let H be a hash function with a β-balanced compression func-
tion h : {0, 1}B×{0, 1}n → {0, 1}n. Algorithm Asimple mounts a successful Nos-
tradamus attack against h with O

(
β−1/2 · 2n/2 + `P + 1

)
expected evaluations of

h for any prefix P of block length `P .

Note that for constant β (e.g., recall that β = 1
2 works with overwhelming

probability for random function h) we obtain approximately the bound O
(
2n/2

)
.

Nostradamus goes Quantum 11

Proof. Correctness follows directly by construction and the fact that the com-
pression function h is surjective according to the balance property: For the chosen
value y there exists at least one preimage S such that

y = hp(S) = h(S, p) = h∗(P‖S),

and ytrgt = h(pad(|P‖S|), y) by construction. As for performance, Theorem 2
implies that the search for S needs O

(√
N/t

)
evaluations in expectation where

N = |{0, 1}B | = 2B and t = |h−1p (y)| = |{m ∈ {0, 1}B |hp(m) = y}|.

Since the function hp is β-balanced it follows that t ≥ β ·2B−n, yielding an overall
effort ofO

(
β−

1
2 · 2n/2

)
evaluations for Grover’s search. The computation of ytrgt

in the offline phase and the initial computation of p in the online phase need at
most `P + 1 additional evaluations of h.

4.2 Basic Quantum Attack with Diamond Structure

This section shows that the construction of a diamond structure is rewarding and
leads to a more efficient quantum attack. We first describe a basic version of this
attack and optimize it in the next section. We present the algorithm by dividing
into several sub algorithms, following the structure of the classical attack: In the
offline phase we use algorithm Diamondbasic to build the diamond structure. The
algorithm itself uses a collision finder Claw as a subroutine. In the online phase
we once more use the Link algorithm to find the linking message mlink. Finally
we put all algorithms together to derive our adversary.

We first describe the claw finding algorithm Claw, which is in fact the well-
known BHT algorithm [13] adapted to our setting. The algorithm takes as input
a parameter ` and two functions hy and hy′ and returnsm,m′ such that hy(m) =
hy′(m

′). It does so by first sampling a random list of 2` input messages mi for
hy, and uses Grover’s algorithm to find the matching value m′ for hy′ .

Claw`(hy, hy′):

1 : m1, . . . ,m2` ←$ {0, 1}B such that hy(mi) 6= hy(mj) for all i 6= j

2 : m′ ← Grover(F, 1)// F as in Proposition 5

3 : i← {1, . . . , 2`} such that hy(mi) = hy′(m
′)

4 : return (mi,m
′)

Note that for a well-balanced compression function and for ` ≤ n/3, as
we need below, the message sampling in the first step can be implemented by
picking all the mi’s randomly, at once. A hash collision among the at most
2` ≤ 2n/3 hash values happens with sufficiently small probability, and in the
rare case of a collision we repeat the process. On average we do not need to
make more than two iterations for avoiding collisions. In the theorem below,

12 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

and also in our implementation, we nonetheless consider the general case of a β-
balanced compression function, in which case we re-sample each mi individually
if it collides with a previous choice.

Proposition 5 ([13]). Let H be a hash function with β-balanced compression
function h : {0, 1}B × {0, 1}n → {0, 1}n. For ` ∈ N, a set m1, . . . ,m2` ∈ {0, 1}B
of distinct messages, and values y, y′ ∈ {0, 1}n. Let F : {0, 1}B → {0, 1} be the
function defined by

F (m) = 1 :⇐⇒ ∃i ∈ {1, . . . , 2`} : hy(mi) = hy′(m).

Then algorithm Claw`(hy, hy′) outputs messages m,m′ ∈ {0, 1}B with hy(m) =

hy′(m
′) and needs O

(
β−1 · 2` + β−

1
2 · 2n−`

2

)
expected evaluations of h for ` < n.

In particular, Clawn/3 needs O
(
β−1 · 2n

3

)
expected evaluations of h.

Note that for β ≤ 1 we always have β−1/2 = O
(
β−1

)
and from now on

bound the factor β−1/2 by the inverse of β.

y

y′

hy(mi) = hy′(m
′)

hy(m1)

hy(m2)

hy(m2`
)

mi

m
′

Fig. 4: Illustration of Algorithm Claw`(hy, hy′).

Proof. Let us first discuss how we generate the 2` message blocks mi in the
first step for general compression functions. For this we iterate through i =
1, 2, 3, . . . and for each i we repeatedly pickmi←$ {0, 1}B randomly, until hy(mi)
is different from all the previous hash values. For the i-th step there are 2n−(i−1)
hash values unoccupied, and each image has at least β · 2B−n preimages. Hence,
we pick such a good preimage with probability at least

2−B · (2n − i+ 1) · β · 2B−n ≥ (2n − 2`) · β · 2−n = (1− 2`−n) · β ≥ 1
2 · β

for ` < n. On average, we thus only need to sample O
(
β−1

)
times for each of

the 2` message blocks.
The proof now follows straightforwardly from Theorem 2, noting that the

input size of function F equals N = 2B , and since all 2` hash values are distinct
and each hash value has at least β · 2B−n preimages by the balance property of
h, there are at least t ≥ β · 2` · 2B−n possible solutions.

Given the claw finding algorithm we present our basic algorithm for deriving
the diamond structure. The algorithm takes as input a parameter k determining

Nostradamus goes Quantum 13

the height of the tree (V,E) which it outputs. The algorithm uses Clawn/3 to
determine collisions for neighbored values:

Diamondbasic(k):

1 : (V,E)← ∅
2 : yk,1, yk,2, . . . , yk,2k ←$ {0, 1}n pairwise different // leaf nodes

3 : for s = k, . . . , 1 do // for constructing level s− 1

4 : V ← V ∪ {ys,1, . . . , ys,2s}
5 : for i = 1, . . . , 2s−1 do

6 : (m,m′)← Clawn/3(hys,2i−1 , hys,2i)

7 : E ← E ∪ {(ys,2i−1,m, hys,2i−1(m)), (ys,2i,m
′, hys,2i−1(m))}

8 : ys−1,i ← hys,2i−1(m) // for next iteration

9 : endfor

10 : endfor

11 : return (V,E)

Proposition 6. Let H be a hash function with β-balanced compression function
h : {0, 1}B × {0, 1}n → {0, 1}n. Algorithm Diamondbasic(k) outputs a diamond
structure of height k ≤ n after O

(
β−1 · 2n

3 +k
)
expected evaluations of h.

Once more, for constant β the bound simplifies to O
(
2

n
3 +k

)
. We note that

the sampling of the 2k values yk,i’s in Line 2 must yield pairwise distinct strings.
Since we later choose k = n/9 a collision among the random values happens with
negligible probability only. Alternatively, we may either pick arbitrary distinct
values, e.g., by incrementing a counter value, or sample each yk,i as often till we
have a fresh value. In our implementation we use the latter. We remark that this
sampling step in either case does not account for the number of hash evaluations.

Proof. The output graph is indeed a diamond structure of height k, because on
the one hand the connecting rule is fulfilled since hys,2i−1

(m) = hys,2i(m
′) for

any s, i and the edges are directed from higher to lower levels since the algorithm
starts with level k. On the other hand the graph has an underlying binary tree
structure with 2k leaf nodes. The algorithm constructs, for a fixed value s, the
next level s−1 by connecting the nodes of level s in a pairwise manner. Therefore
the next level contains 2s−1 nodes. Within the last iteration, where s = 1, a level
with 21−1 = 1 nodes is constructed, which is the root node of the resulting graph.

As for performance, we mainly need to consider the repetitions of Line 6,
the executions of algorithm Claw. Individually each search on average needs
O
(
β−1 · 2n

3

)
evaluations of h according to Proposition 5. Thus, for building the

entire structure,

k∑
s=1

2s−1∑
i=1

O
(
β−1 · 2n

3

)
= O

(
β−1 · 2n

3 ·
k∑
s=1

2s−1

)
= O

(
β−1 · 2n

3 · (2k − 1)
)
= O

(
β−1 · 2n

3 +k
)

14 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

expected evaluations are required in total.

We next describe our algorithm Link finding the linking message mlink. The
algorithm takes as input the 2k leaves of the diamond structure and the prefix
P , and finds a message block mlink that connects P to one of the leaves. This is
done via Grover’s algorithm by defining a suitable function F identifying such
links:

Link(P, yk,1, . . . , yk,2k):

1 : p← h∗(P)

2 : mlink ← Grover(F, 1) // F as in Proposition 7

3 : let yk,i be a leaf with h(mlink, p) = yk,i

4 : return (mlink, yk,i)

Proposition 7. Let H be a hash function with β-balanced compression function
h : {0, 1}B × {0, 1}n → {0, 1}n. Let P ∈ {0, 1}`P , p ← h∗(P) and (V,E) be a
diamond structure of height k with (distinct) leaves (yk,1, . . . , yk,2k). Define the
function F : {0, 1}B → {0, 1} as

F (m) = 1 :⇐⇒ ∃i ∈ {1, . . . , 2k} : h(m, p) = yk,i.

Then algorithm Link(k, yk,1, . . . , yk,2k) outputs a linking message block mlink and

the connecting leaf node yk,i with h(mlink, p) = yk,i, requiring O
(
β−

1
2 · 2n−k

2 + `P

)
expected evaluations of h in total.

Proof. The correctness follows directly by the construction of the function F . As
for performance, Theorem 2 implies that the search for mlink needs O

(√
N/t

)
evaluations where

N = 2B and t = |
2k⋃
i=1

h−1p (yk,i)| ≥ β · 2k+B−n,

since the function hp is β-balanced, and the leaves are distinct in a diamond
structure. The first step to compute p needs at most `P evaluations of h.

At this point, Diamondbasic and Link can be composed to form our basic
quantum attack Abasic (for parameter k), using a diamond structure of height
k. We presume that Path((V,E), y) is the algorithm, which concatenates the
message labels on the edges from leaf y to the root of the tree:

Ak,offbasic(1
λ, `P):

1 : (V,E)←$ Diamondbasic(k)

2 : let y0,1 ∈ V be the root of (V,E)

3 : ytrgt ← h(pad(B · (`P + k + 1)), y0,1)

4 : return ((V,E), ytrgt)

Ak,onlbasic((V,E), P):

1 : leaves yk,1, . . . , yk,2k of (V,E)

2 : (mlink, y)← Link(P, yk,1, . . . , yk,2k)

3 : mpath ← Path((V,E), y)

4 : S ← mlink‖mpath

5 : return S

Nostradamus goes Quantum 15

Theorem 8 (Basic Quantum Attack with Diamond Structure). Let H be a hash
function with β-balanced compression function h : {0, 1}B × {0, 1}n → {0, 1}n.
Let k ∈ N. Then adversary Akbasic mounts a successful Nostradamus attack and
needs

O
(
β−1 · 2n

3 +k + β−
1
2 · 2

n−k
2 + `P + 1

)
expected evaluations of h. In particular, for k = n

9 the adversary An/9basic in total

needs O
(
β−1 · 2 4n

9 + `P + 1
)
expected evaluations of h.

4.3 Attack with Enhanced Diamond Structure Generation

We next present an advanced attack, essentially reaching the lower bound of
Ω(23n/7) for herding attacks discussed in Section 5.2. The algorithm still applies
the same general strategy as in the previous section, but uses an enhanced algo-
rithm to create the diamond structure. The idea there was basically to connect
two nodes in the tree via algorithm Claw for parameter n/3, resulting in 2n/3

compression function evaluations for each connection. We now discuss how we
can speed up this process by re-using data across the various connection steps.

ys,1

ys,2

ys,3

ys,4

ys,5

...

ys,1

ys,2

ys,3

ys,4

ys,5

...

ys,1

ys,2

ys,3

ys,4

ys,5

...

Grover del/add lower

upper

ys−1,3 ys−1,3

Fig. 5: Iteration of algorithm Diamondenhanced. Left: At the beginning of each iteration
the nodes in the lower half have 2` potential successors, roughly distributed equally over
all remaining nodes (here 16 successors, assigned evenly to the 4 nodes ys,1, . . . , ys,4).
The next node from the upper half (here ys,5) shall be connected to a node in the
lower part. Middle: Grover’s algorithm finds a match to one of the 2` successors (called
ys−1,3 here) of a node from the lower part (here ys,3) such that we can connect the
two nodes. Right: We remove all potential successor pointers from the connected node
from the lower half and add, step by step, the same number of new pointers to the
remaining nodes (here displayed as dotted arrows).

Consider a level s of the tree for which we try to connect the 2s nodes
ys,1, . . . , ys,2s in a pairwise manner. We split the 2s nodes into a lower and an
upper half of 2s−1 nodes each. For the lower half we will compute a list Y of
2` hash evaluations h(mj , ys,i), equally spread out over the 2s−1 values. Here `
will be an appropriate parameter to be determined later. Then we use Grover’s

16 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

search to connect the first value ys,2s−1+1 of the upper half to some of these 2`

values via some message block m′. Once we have found such a connection we
are going to remove the partner node from the lower half and all of its 2`/2s−1
entries in Y . We add this amount of new values, again equally spread out over
the remaining 2s−1−1 values paired up, to fill the list Y up to 2` elements again.
This idea is displayed in Figure 5. Then we are going to connect the second node
from the upper half to an entry in the updated list Y , as before. We continue
till we have all 2s values and then proceed with the next level s− 1 till we have
eventually built the entire tree.

We present the enhanced algorithm for creating the diamond structure next.
The algorithm takes as input the parameter k (for the tree height) and outputs
the tree (V,E). It internally uses the parameter ` (for the list size) in dependence
of the tree level s it currently considers. The algorithm uses Grover’s algorithm
as a subroutine for a function Fy,Y (m) with parameters y and Y , which checks if
hy(m) is in the list Y . Put differently, Grover’s algorithm returns such a matching
message block m.

Diamondenhanced(k):

1 : (V,E) ← ∅
2 : yk,1, yk,2, . . . , yk,2k ←$ {0, 1}n pairwise different // leaf nodes

3 : for s = k, . . . , 1 do // for constructing level s− 1

4 : `← d(n+ 2s− 2 log2 s)/3e
5 : V ← V ∪ {ys,1, . . . , ys,2s}
6 : L ← {1, . . . , 2s−1} // list of unprocessed nodes in lower half

7 : Y ← ∅ // storing precomputed values

8 : γ ← 1 // state counter where to add next elements to Y

9 : foreach y ∈ {ys,2s−1+1, . . . , ys,2s} do // process each node in upper half

10 : while |Y | < 2` do // Add elements to list of precomputed values?

11 : while γ /∈ L do γ ← (γ mod 2s−1) + 1 // choose (circularly) next node

12 : m ←$ {0, 1}B such that (∗, ∗, h(m, ys,γ)) /∈ Y // unique in Y

13 : Y ← Y ∪ {(m, γ, h(m, ys,γ)}
14 : γ ← γ + 1

15 : endwhile m ← Grover(Fy,Y , 1) // F as in Theorem 9

16 : search for (m′, i, y′) ∈ Y with y′ = hy(m) // unique due to Line 12

17 : E ← E ∪ {(ys,i, m′, y′), (y, m, y′)} // connect nodes

18 : ys−1,i ← y′ // for next iteration, noting that i ≤ 2
s−1

19 : delete any (∗, i, ∗) from Y // only values for other nodes remain in Y

20 : delete i from L // ys,i has been processed

21 : endforeach

22 : endfor

23 : return (V,E)

Nostradamus goes Quantum 17

Note that we need to find a message m in Line 12 for which the hash value
has not been assigned yet. Recall that ` is in the order of (n+2s)/3 ≤ (n+2k)/3.
We will later set k = n/7 such that ` ≤ 3n/7. Hence, assuming that the hash
value ofm is uniformly distributed, the probability of having collisions is at most
22` ·2−n ≤ 2−n/7 and thus negligible. Below, for general β-balanced compression
function, we follow once more the idea to sample-till-success to find m, as also
done in the algorithm Claw.

Theorem 9. Let H be a hash function with β-balanced compression function
h : {0, 1}B × {0, 1}n → {0, 1}n. For a list Y and a fixed value y let the function
F : {0, 1}n → {0, 1} be defined as

F(m) = 1 :⇐⇒ ∃y′ ∈ Y : hy(m) = y′.

Then algorithm Diamondenhanced(k) outputs a diamond structure (V,E) of height
k with

O
(
β−1 · 2

n+2k+log2(k)
3

)
expected evaluations of h for k < n.

Proof. Correctness follows by construction. Starting with the random leaves the
algorithm connects one node from the lower part with one node from the upper
part in each iteration, yielding a binary tree. The exact matching of values in
the lower and upper half also implies that the search for the next γ-value always
terminates (because L has at least one value if there is some y in the upper half
left).

We next look at the performance of the algorithm. Each application of the
Grover algorithm (in Line 15) needs O

(√
N/t

)
evaluations of h, where

N = |{0, 1}B | = 2B , t ≥ β · 2` · 2B−n

by construction, since the set Y contains exactly 2` pairwise different elements
from {0, 1}n in each iteration and the function h is β-balanced. This means that
the algorithm requires β−

1
2 · 2n−`

2 evaluations of the compression function on
the average. Note that we run Grover on level s for 2s times, yielding an overall
number of β−

1
2 · 2n−`+2s

2 expected evaluations of h for this level.
Next we consider the number of hash evaluations for filling up the list Y

(while -loop in Line 10) when iterating through all values y in the upper half
(foreach-loop in Line 9). For this we start by looking at the search for a message
block with a fresh hash value in Line 12. As in the Claw algorithm we can
sample a message block m←$ {0, 1}B till we found one whose hash value is
not in Y . Since we have at most 2` − 1 many values in Y at this point, where
` ≤ (n + 2s)/3 ≤ (n + 2k)/3 < n for k < n, we can conclude as in the analysis
of Proposition 5 that each search requires O

(
β−1

)
attempts on the average.

For the overall analysis of the loops we first discuss a simplified version,
neglecting rounding of fractions. Since we start with Y being empty for the first
value y, we need 2` many values to fill the list in the first iteration. Then, at the

18 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

end of the iteration, we remove at most 2`/2s−1 entries in Y for the identified
element ys,i in the lower part. This implies that in the next step we need to
make 2`/2s−1 hash evaluations to fill the list Y again up to 2` elements. In
the next step, however, we have only 2s−1 − 1 elements left, and thus remove
at most 2`/(2s−1 − 1) elements for the subsequent iteration. This continues for
2s−1 − 2, 2s−1 − 3, . . . , until all the 2s−1 iterations for values in the upper half
are completed. For the final step we need to add 2`/(2s−1 − (2s−1 − 2)) = 2`/2
elements.

We can write the total number of elements to be sampled for the resurrection
of the complete list Y thus as:

2` + 2` ·
2s−1−2∑
j=0

1

2s−1 − j
= 2` ·

2s−1∑
j=1

1

j
= O

(
2` · ln 2s

)
= O

(
s · 2`

)
,

using
∑q
i=1

1
j ≤ ln q + c for the harmonic series. On average, we need O

(
β−1

)
h-evaluations for each element.

Note that, so far, we have not taken into account that we may not be able
to spread out all 2` elements in Y evenly on the remaining entries in L. By
construction, however, the difference of assigned elements from Y can differ by
at most 1. We can incorporate this into our analysis by using an extra factor
2 for the number of elements which need to be added to Y in each iteration,
resulting in the same asymptotic bound. Similarly, since we round up ` in the
algorithm, it can grow by an additive term 1 at most, which is also “swallowed”
by a constant in the asymptotic notation.

In total, for level s of the tree we thus need

O
(
β−1 · s · 2` + β−

1
2 · 2

n−`+2s
2

)
= O

(
β−1 · 2`+log2 s + β−

1
2 · 2

n−`+2s
2

)
evaluations on the average. By our choice of ` (in dependence of s) the two terms
become equal (except for the β factor), such that together with s ≤ k the bound
simplifies to

O
(
β−1 · 2

n+2s+log2 s
3

)
= O

(
β−1 · 2

n+2s+log2 k
3

)
.

Summing over all k stages we thus get a total number of
k∑
s=1

O
(
β−1 · 2

n+2s+log2 k
3

)
= O

(
β−1 · 2

n+log2 k
3 ·

k∑
s=1

2
2s
3

)
= O

(
β−1 · 2

n+log2 k
3 · 2 2k

3

)
= O

(
β−1 · 2

n+2k+log2 k
3

)
compression function evaluations on the average.

With this new algorithm our adversary is now a straightforward adaption
of the basic one, with the enhanced diamond structure generation replacing the
basic one:

Nostradamus goes Quantum 19

Ak,offenhanced(1
λ, `P):

1 : (V,E)←$ Diamondenhanced(k)

2 : let y0,1 ∈ V be the root of (V,E)

3 : ytrgt ← h(pad(B · (`P + k + 1)), y0,1)

4 : return ((V,E), ytrgt)

Ak,onlenhanced((V,E), P):

1 : leaves yk,1, . . . , yk,2k of (V,E)

2 : (mlink, y)← Link(P, yk,1, . . . , yk,2k)

3 : mpath ← Path((V,E), y)

4 : S ← mlink‖mpath

5 : return S

Theorem 10. Let H be a hash function with β-balanced compression function
h : {0, 1}B × {0, 1}n → {0, 1}n. Let k ∈ N. Then adversary Akenhanced mounts a
successful Nostradamus attack and needs

O
(
β−1 · 2

n+2k+log2(k)
3 + β−

1
2 · 2

n−k
2 + `P + 1

)
evaluations of h. In particular, for k = n

7 we get a total number of

O
(
β−1 · 3

√
n · 23n/7 + `P + 1

)
evaluations of h on the average.

We note that, ignoring the factor 3
√
k and the term `P , and assuming β to be

constant, this upper bound matches our lower bound for herding attacks shown
in the next section. This means, in order to significantly improve the attack, a
different strategy than building a diamond structure must be used. Even then,
the general lower bound still applies.

5 Quantum Lower Bound for Nostradamus Attacks

In this section we show a lower bound on the number of hash queries for mount-
ing a quantum Nostradamus attack, assuming that the compression function h
behaves like a random function. Our result is based on a query lower bound for
finding C-collisions for a random function f , i.e., distinct x1, . . . , xC such that
f(x1) = f(x2) = · · · = f(xC). Liu and Zhandry [29] gave such a lower bound:

Theorem 11 ([29]). Given a random function f : X → Y any quantum algo-

rithm needs to make at least Ω
(
|Y |

1
2 ·
(
1− 1

2C−1

))
quantum queries to oracle f

to find a C-collision with constant probability.

For example, for a threefold collision C = 3 one needs at least |Y |3/7 many
queries. Liu and Zhandry [29] also give a matching upper bound (but which is
irrelevant in our setting here).

20 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

5.1 General Lower Bound for Nostradamus Attacks

Recall that the general structure of an adversary A in the Nostradamus attack
consists of two stages, on offline stage in which the adversary outputs the target
hash value ytrgt and some state information st, and then the online-stage ad-
versary receives the prefix P and the state, and outputs the suffix S to match
the target hash value. The idea for the lower bound is now to repeatedly run
the second-stage adversary to create multiple collisions for the same target hash
value ytrgt, but for varying prefixes Pi, hoping to collect a C-collision. The total
number of queries we make is qoff + R · qonl, where qoff is the number of hash
evaluations of A in the offline phase, R is the number of repetitions, and qonl
the number of queries of A in the online phase. If we are able to show that we
get a C-collision with this approach, then it follows that this total number of
queries must exceed the lower bound in [29], also indicating a lower bound for
A’s queries in relation to R.

s = 1 pad
h∗(P1)

h∗(P2)

h∗(P3)

h∗(P4)

h∗(P5)

h∗(P9)

h∗(P6)

h∗(P7)

h∗(P8)

ytrgt

Fig. 6: Finding a C-collision by repeating online phase with different values P1, . . . , PR.
In the example C = 3 and s = 1. When running Aonl with inputs P1, . . . , PR−1 in
this order, we may fill up a (C − 1)-ary tree with root ytrgt from the answers. After
R = (C − 1)s+2 + 1 = 9 repetitions we lastly get a C-collision somewhere in the tree
(gray box).

Let us explain the process for the concrete example C = 3 in Figure 6.
Assume that we have already obtained the target hash value ytrgt from the
offline adversary Aoff. Now we run the online part Aonl several times, present-
ing the adversary different prefixes P1, P2, . . . in the repetitions. Each time the
adversary will give us a suffix path to reach ytrgt. Some of these paths may col-
lide before reaching ytrgt, e.g., all the suffixes for P1, . . . , P8 in Figure 6 have
length s = 1 and collide earlier or latest in ytrgt. The worst case for us occurs
if these paths do not yield a C-collision yet. This can only happen if they form
a full (C − 1)-ary tree with root ytrgt, with all (C − 1)s+2 intermediate values
h∗(P1), h

∗(P2), . . . , h
∗(PR−1) already forming (C − 1)-collisions in one of the

(C − 1)s+1 leaves, and the adversary connecting these leaves optimally with the

Nostradamus goes Quantum 21

suffix block and the padding to yield ytrgt. But then, if we make the R-th repe-
tition for PR, where R = (C − 1)s+2 +1, this link must connect to a node which
now forms a C-collision. In the example in Figure 6 this happens for R = 9.

We next state the above idea formally in the following theorem. Recall that we
assume that the adversary succeeds with probability 1 in the Nostradamus attack
for any prefix P . We discuss afterwards relaxations for random prefixes and
algorithms with lower success probabilities (over the choice of the compression
function).

Theorem 12. Let H be a hash function with compression function h : {0, 1}B×
{0, 1}n → {0, 1}n, and assume that h is a random function. Let A be a quantum
Nostradamus attacker, making at most qoff quantum queries to oracle h in the
offline phase, and at most qonl quantum queries to oracle h in the online phase.
Assume further that A outputs a suffix S of at most s blocks. Then for any
integer C ≥ 3 such that (C − 1)s+2 < 2B we have

qoff + ((C − 1)s+2 + 1) · qonl = Ω

(
2

(
1− 1

2C−1

)
n/2
)
.

Let us interpret this bound for some concrete cases. For sake of simplicity let
us assume that the number of offline and online queries are roughly equal (as
is the case in our herding attack). We can thus ignore qoff for now, and we also
simplify the bound further to:

(C − 1)s · qonl = Ω

(
2

(
1− 1

2C−1

)
n/2
)
.

If we fix C = 3, for example, then this bound becomes qonl = Ω
(
23n/7−s

)
.

It seems as if we can push the lower bound on the right hand side as close to
2n/2 as desired, by increasing C, in contradiction to our basic attack with 24n/9

evaluations and the advanced one with 23n/7 evaluations. However, recall that
the basic herding attack chooses a tree of height roughly s = k = n/9 such that
the pre-factor (C − 1)s is at least 2n/9, yielding an overall product of 25n/9 on
the left hand side. The same holds for the enhanced attack, where s = k = n/7
such that the factor becomes 2n/7 and hence lifts the value from 23n/7 to 24n/7.

A remarkable conclusion from the theorem’s bound is that, choosing short
suffixes for attacks, e.g., of constant block size s, one cannot go significantly
below the bound 2n/2. This holds unless the attack exploits knowledge of the
compression function h and does not treat it as a black-box random function. But
this square-root bound is already achieved with our simple quantum attack—
where indeed the suffix consists of the single linking message block mlink. In
other words, sophisticated attacks need to rely on long suffixes.

Proof of Theorem 12. Consider an arbitrary Nostradamus adversary A with the
above restrictions. We construct a c-collision finder C against h as follows. Algo-
rithm C runs Aoff to derive (st, ytrgt). Then it runs Aonl for R = (C − 1)s+2 + 1
times for the same state but different values P1, . . . , PR ∈ {0, 1}B . Note that the

22 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

requirement on C guarantees that there are so many distinct input blocks. These
executions create R suffixes S1, . . . , SR such that for all i the hash evaluations
yield the target value, H(Pi‖Si) = ytrgt. Recall that the final block may contain
the padding information such that the suffix part actually consists of up to s+1
blocks. Below we simply consider this to be part of the suffix Si and think of the
hash function using no padding.

Assume now that, in the last iteration of h of the R hash evaluations, we
have C distinct inputs (mj , yj) with h(mj , yj) = ytrgt. Then we have found the
C-collision for h and can stop here. If not, there are at most C− 1 distinct pairs
(mj , yj) resulting in ytrgt. But then there must exist one value yj among those
pairs which dR/(C − 1)e of the total number of hash evaluations reach in the
second-to-last iteration. Note that dR/(C − 1)e = (C − 1)s+1 + 1 such that we
can recursively apply the argument, losing a factor (C−1) in the remaining set of
collision with each unsuccessful iteration. After at most s+1 iterations we have
then either found our C-collision, or have a value y which at least (C−1)+1 = C
distinct input blocks Pj1 , Pj2 , . . . reach, i.e., h(IV, Pjq) = y for q = 1, 2, . . . , C.
Fortunately, this would then constitute our sought-after C-collision.

We finally discuss how to attenuate the assumption about the adversary al-
ways winning in the Nostradamus attack. As remarked earlier, if the adversary’s
success probability was only over its internal randomness, then we could easily
account for this by repeating the adversary. However, now the probability space
also comprises the choice of the random compression function (which is not cho-
sen freshly if we would rerun the attack). Hence, assume that the adversary A
has a success probability of ε (over the choice of the random function h and its
internal coin tosses, like measurements of quantum states). One may think of ε
to be some small constant, although the approach below also works with other
values for ε.

We first use the splitting lemma [32] to conclude that our once sampled
offline-stage output (st, ytrgt) is often good enough to make the online stage suc-
ceed with probability ε/2. The probability of obtaining such a good offline-stage
output is at least ε/2 itself. Condition on this being the case. Next recall that
the target value ytrgt is from now on fixed and that A succeeds with probability
ε/2 if we give it a prefix P . Hence, to collect R = (C − 1)s+2 +1 such successful
samples as in the proof, we need on average 2R/ε attempts now. In other words,
we have an expected number of qoff + 2R

ε ((C − 1)s+2 + 1) · qonl queries in order
to succeed with probability ε/2 (with which the offline-phase output is good).

We can even go one step further and take the prefix to be a random element
from {0, 1}B (as it was assumed in the original work by Kelsey and Kohno [26]).
Let us assume it is uniform in {0, 1}B . Since we expect no collisions to occur
before reaching 2B/2 samples—and B is usually significantly larger than logR—
we can assume that all sampled values Pi are distinct. This is sufficient for the
argument in the proof.

Nostradamus goes Quantum 23

5.2 Improved Lower Bound for Herding Attacks

In this section we discuss that we get a better lower bound for quantum herding
attacks. For this we assume that Aoff creates a diamond tree structure of height
k and that Aonl then tries to find a linking message part mlink to connect the
prefix P to the tree. We assume here for simplicity of presentation that P is
aligned to block length and that mlink is a single block. As before, we show how
to build a 3-collision finder C for C = 3 from such a herding adversary A. Our
approach, however, is more direct and omits the large number of repetitions,
thus yielding a better bound.

Our collision finder C will run the two phases of the herding adversary, Aoff

and Aonl, but for different height parameters. For Aoff it will pretend that the
height of the tree should be k + 1, but then prune the last layer of the tree
and give Aonl the pruned tree of height k. The advantage of this approach is
that we already have a 2-collision on the k-th level via the tree for height k + 1
from Aoff. Together with the new link to level k which we receive from Aonl, we
immediately have a 3-collision (see Figure 7).

More formally, C first lets Aoff create a diamond structure, but uses the
parameter k + 1. By this we get a tree of height k + 1 from Aoff. Then we cut
level k+1 to get a tree of height k as required. Note that here the node values yk,i
are, strictly speaking, not picked randomly. But they are the result of applying
the random function h to a uniformly chosen input (yk+1,i,mk+1,i), such that
we assume for simplicity that the herding attacks also works for such generated
values.

h∗(P)

level k + 1
level k

Fig. 7: Finding a 3-collision (gray box) using a diamond structure for height k for A,
generated by truncating a k + 1-height structure.

Algorithm C next runs Aonl for the pruned tree of height k, and an arbitrary
prefix P . This adversary eventually outputs a message part mlink that connects
the iterated prefix value h∗(P) to a tree node yk,i at level k (see Figure 7). Algo-
rithm C outputs the two children yk+1,2i−1 and yk+1,2i with their corresponding
labels mk+1,2i−1 and mk+1,2i pointing to yk,i, together with (h∗(P),mlink) as
the 3-collision for h.

24 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

For the analysis of the success probability of C we would have to make another
assumption about the number of preimages under h. But since on average each
image has 2B preimages, we simply neglect the probability of (h∗(P),mlink)
being equal to (yk+1,2i−1,mk+1,2i−1) or (yk+1,2i,mk+1,2i). In this case C succeeds
whenever A wins. For the run time of C note that creating the diamond structure
for k + 1 instead of k is, asymptotically, equally expensive. Hence, except for
constants, our algorithm C obtains a 3-collision with the same number of oracle
queries to h as A. It follows that the total number of quantum queries of C—and
thus of A—to random oracle h is at least Ω(23n/7).

6 Implementation Results

In this section, we empirically evaluate the algorithms from Sections 4.1, 4.2, and
4.3. For this purpose we have implemented the quantum algorithms in IBM’s
Qiskit.4 The open-source software development kit Qiskit makes it possible to
design quantum circuits in Python and to simulate their execution on a clas-
sical computer. Potentially, these algorithms can also be later run on quantum
computing devices.

6.1 Algorithms

The local simulation of the quantum algorithm severely restricts the number
of simultaneously accessible qubits. Hence, instead of using output-truncated
versions of SHA2 or SHA3 with large internal states, we use an iterative toy
hash function with adjustable block size B and output n as the attack target for
the algorithms.

We build this toy hash function in a similar way as the open-source project
Qibo [21], which is used to evaluate generic quantum attacks by Ramos-Calderer
et al. [33] and utilizes a ChaCha-permutation [6] as sponge function. In particu-
lar, we use this permutation f : {0, 1}B+n → {0, 1}B+n as the basis for our hash
function and truncate it (to the last n bits) to derive our compression function

h(m, y) := trunc(f(m‖y))

for the Merkle-Damgård construction.
The quantum circuit corresponding to the permutation f is shown in (the

right hand side of) Figure 8. We use parameters B = 8 and n = 8 for the
compression function throughout the evaluation. We note that empirically eval-
uations show that the compression function hy is not surjective for all y, such
that it not β-balanced for any β > 0. For measuring the run times we ignore
such failures. However, as we discuss in more detail later, our advanced attacks
still work well, showing that the theoretical results are on the conservative side.

4 https://qiskit.org/

https://qiskit.org/

Nostradamus goes Quantum 25

n
2

n
2

|y〉
Adder mod 2

n
2

	

|x〉

repeat 2 times

B
2

B
2

n
2

n
2

|d〉

QR

QR

|c〉

QR

QR

|b〉

|a〉

repeat 10 times

Fig. 8: The description of the quantum circuit for the permutation that is based on the
ChaCha permutation. The left part presents the description of the sub algorithm Quar-
ter Round, which is denoted as QR. A quarter round consists of an adder, CNOT-gates,
and qubit shuffling. The latter is denoted by the 	 symbol. The right part describes
the permutation f . In the 10 repetitions of the core function, four QR executions are
applied to the input registers. We note that a line which is drawn through a gate is
not an input to that specific gate but rather routed through.

Recall that our algorithms apply Grover’s algorithm for different functions
F for finding claws in a list of values. To implement these functions F from
Proposition 5 and Theorem 9 in a quantum circuit, we hardcode the list into the
circuit, using one n-bit Toffoli gate for each of the 2` distinct bit strings hy(mi)
in the list resp. the 2k distinct leaves yk,i. More precisely, given a bit string that
either represents a hash evaluation hy(mi) or a leaf yk,i, an n-bit Toffoli gate
is constructed such that the corresponding classical logical operator exclusively
maps this bit string to 1. These Toffoli gates are chained together to form the
existential quantification in the proposition. The resulting quantum circuit is
illustrated in Figure 9.

...
. . .

...
|m〉 hy h−1y |m〉

|0〉 |F (m)〉

Fig. 9: Description of the quantum circuits that implements the functions F from from
Proposition 5 and Theorem 9. The string y in hy(·) = h(·, y) corresponds either to y′ or
to p, depending on the context. Each n-bit Toffoli gate represents one (unique) string
to which the input is compared to, such that the exclusive-or on the final qubit is only
set at most once. Applying h−1

y at the end restores the original content of |m〉.

We note that implementing Grover’s algorithm for our functions F , also
allowing to recover the matching message m, as well as the other steps of the
algorithms are straightforward to implement. We thus omit their description
here for sake of brevity.

26 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

6.2 Experiments

The evaluation was carried out with commodity hardware, namely, a 2.6 GHz
6-core Intel Core i7 processor, an AMD Radeon Pro 5300M 4 GB graphics card,
and a 16 GB 2667 MHz DDR4 RAM. The evaluation process consists of running
all three algorithms (simple, basic, and enhanced). We measure the offline and
online run times, as well as the number of sampling operations and function calls.
The latter includes the number of calls to the quantum compression function and
the number of quantum calls to the functions from Proposition 5 and Theorem 9.
The results of the evaluation are shown in Figure 10.

Simple (Section 4.1)
k Offline [s] Online [s] Fclaw Flink Samples
— 0 147.93 — — —

Basic (Section 4.2)
k Offl. [s] Onl. [s] Fclaw Flink Sampl.
1 89.55 232.47 3 8 10
2 260.73 142.52 9 5 28
3 626.13 90.95 21 3 68
4 1363.76 62.13 45 2 138
5 2824.66 34.17 93 1 290

Enhanced (Section 4.3)
k Offl. [s] Onl. [s] Fclaw Flink Sampl.
1 62.73 235.34 2 8 18
2 190.2 145.49 6 5 50
3 429.95 90.27 14 3 84
4 927.26 63.83 30 2 138
5 1459.14 31.69 46 1 285

Fig. 10: Evaluation results for the algorithms from Sections 4.1, 4.2, and 4.3 and our
compression function h(m, y). The parameter k denotes the height of the tree of the
diamond. Online and Offline denote the online and offline run time, respectively, in
seconds. Fclaw and Flink denote the quantum function calls to the functions F from
Proposition 5 and 7, respectively. Samples denotes the number of sampling operations
for messages and leaves for building the diamond structure during an attack. Note that
the simple attack fails in some cases for our specific hash function in which case we do
not measure its run time.

Note that for k = 1, i.e., trees consisting only of one level, the sum of calls
(i.e., Fclaw + Flink) to the functions F from Proposition 5 and 7 is minimal.
This is true for the attack with the basic and the enhanced diamond structure,
confirming the optimal choice of k = dn/9e for n = 8 according to Theorems 8
and 9. Furthermore, for k = 1 the sum of function calls for the basic and enhanced
online attacks (i.e., Flink) already is less or equal to the 16 quantum function
calls in the simple quantum attack based on Grover’s algorithm. Nevertheless,
the run time of the attacks with a diamond structure is larger compared to the
run time of the simple attack. We expect this to be related to the fact that the
quantum circuit of Grover’s algorithm for the functions of Proposition 5 and 7 is
much more complex than when only applied to the compression function in the
simple attack. More precisely, with our design of the circuit in Figure 9, Qiskit
simulates the compression function twice and an exponential number of n-bit
Toffoli gates, compared to only one simulated compression function call in the
simple quantum attack, such that the advantage of using a diamond structure
does not pay off for the small value of n yet.

Nostradamus goes Quantum 27

Initially, the enhanced diamond construction requires more samples than the
basic diamond construction, while it also exhibits a smaller sum of calls (i.e.,
Fclaw +Flink) to the functions F . For the construction of larger diamonds, such
as k = 4, the sample count of the enhanced attack is surpassed by the basic
diamond construction. This is due to the fact that the enhanced attacker re-
uses data across the connection steps of a single layer in the diamond, while the
basic attacker resamples all data for each quantum collision finding. Thus, our
experiments confirm that the advanced attacker requires less sampled data to
construct a large diamond.

Instead of using the optimal run time, an attacker may also deploy a trade-off
and, for a slight decrease in online run time, accept an increase in the offline run
time. In this case, the attacker creates a larger diamond for k > 1 and thereby
achieves an improvement for the online run time. Our experiments confirm this
expected behavior, with Flink dropping and Fclaw increasing.

We previously noted that h(m, y) is not even surjective and not β-balanced.
Since the simple attack from Section 4.1 picks a random value y←$ {0, 1}n this
results in the attack failing for values y without preimage. In this case, Grover’s
algorithm cannot find a corresponding preimage. However, the more advanced
attacks from Sections 4.2 and 4.3 always succeeded. The reason is that the trees
are built in forward direction, such that each value y has at least two preimages.

We note that all the observations are specific to the parameters n = B = 8.
According to our theoretical results the asymptotic complexity of the simple
quantum attack increases faster in n than it does for the diamond attacks. As a
consequence, for higher values of n a larger difference in online run time should
occur even for smaller k. Unfortunately, the simulation of higher n in Qiskit
is expensive and, in some cases, technically infeasible due to the large sizes of
quantum circuits. Thus, the empirical demonstration remains open.

7 Conclusion

Our results show that fundamental quantum algorithms for finding collisions can
be used to speed up the classical Nostradamus attack. Our algorithms have been
designed and analyzed in an “idealized” quantum model, but our implementation
of the toy example indicates that they can be run on in principle on a quantum
computer. Turning these attacks into real quantum programs may still entail a
lot of engineering aspects which can significantly influence the run time, e.g.,
[1,7,11]. It remains an interesting open question how fast our attacks can be
made on real quantum computers.

As mentioned in the related work section, other works like [4,14] have aimed
to give time-memory trade-offs, especially in order to reduce quantum memory,
and to parallelize the search for collisions and preimages. We have not inves-
tigates such trade-offs for Nostradamus attacks, especially in light of the large
quantum memory requirements, inherited from the BHT collision search algo-
rithm [13]. Nonetheless, we expect similar techniques as in [4,14] to be applicable
here as well.

28 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

Acknowledgments

We thank the anonymous reviewers for valuable comments.
This research work has been funded by the German Federal Ministry of Ed-

ucation and Research and the Hessian Ministry of Higher Education, Research,
Science and the Arts within their joint support of the National Research Center
for Applied Cybersecurity ATHENE.

References

1. Amy, M., Matteo, O.D., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.M.:
Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3.
In: Avanzi, R., Heys, H.M. (eds.) Selected Areas in Cryptography - SAC 2016 - 23rd
International Conference, St. John’s, NL, Canada, August 10-12, 2016, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 10532, pp. 317–337.
Springer (2016)

2. Andreeva, E., Bouillaguet, C., Dunkelman, O., Kelsey, J.: Herding, second preimage
and trojan message attacks beyond merkle-damgård. In: Jr., M.J.J., Rijmen, V.,
Safavi-Naini, R. (eds.) Selected Areas in Cryptography, 16th Annual International
Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 5867, pp. 393–414. Springer
(2009)

3. Andreeva, E., Mennink, B.: Provable chosen-target-forced-midfix preimage resis-
tance. In: Miri, A., Vaudenay, S. (eds.) Selected Areas in Cryptography - 18th
International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12, 2011,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 7118, pp. 37–54.
Springer (2011)

4. Banegas, G., Bernstein, D.J.: Low-communication parallel quantum multi-target
preimage search. In: Adams, C., Camenisch, J. (eds.) Selected Areas in Cryptog-
raphy - SAC 2017 - 24th International Conference, Ottawa, ON, Canada, August
16-18, 2017, Revised Selected Papers. Lecture Notes in Computer Science, vol.
10719, pp. 325–335. Springer (2017)

5. Bellare, M., Kohno, T.: Hash function balance and its impact on birthday attacks.
In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology – EUROCRYPT 2004.
Lecture Notes in Computer Science, vol. 3027, pp. 401–418. Springer, Heidelberg,
Germany, Interlaken, Switzerland (May 2–6, 2004)

6. Bernstein, D.: ChaCha, a variant of Salsa20 (2008), https://cr.yp.to/chacha/
chacha-20080128.pdf

7. Bernstein, D.J.: Cost analysis of hash collisions : will quantum computers make
SHARCS obsolete? In: SHARCS’09 Workshop Record (Proceedings 4th Workshop
on Special-purpose Hardware for Attacking Cryptograhic Systems, Lausanne, Swit-
serland, September 9-10, 2009). pp. 105–116 (2009)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. Ecrypt
Hash Workshop (2007)

9. Blackburn, S.R., Stinson, D.R., Upadhyay, J.: On the complexity of the herding
attack and some related attacks on hash functions. Des. Codes Cryptogr. 64(1-2),
171–193 (2012)

https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf

Nostradamus goes Quantum 29

10. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December
4-8, 2011. Proceedings. Lecture Notes in Computer Science, vol. 7073, pp. 41–69.
Springer (2011), https://doi.org/10.1007/978-3-642-25385-0_3

11. Bonnetain, X., Jaques, S.: Quantum period finding against symmetric primitives
in practice. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 1–27 (2022)

12. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik 46(4-5), 493–505 (1998)

13. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN ’98: Theoretical Infor-
matics, Third Latin American Symposium, Campinas, Brazil, April, 20-24, 1998,
Proceedings. Lecture Notes in Computer Science, vol. 1380, pp. 163–169. Springer
(1998)

14. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum colli-
sion search algorithm and implications on symmetric cryptography. In: Takagi, T.,
Peyrin, T. (eds.) Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information Secu-
rity, Hong Kong, China, December 3-7, 2017, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 10625, pp. 211–240. Springer (2017)

15. Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) Advances
in Cryptology – CRYPTO’89. Lecture Notes in Computer Science, vol. 435, pp.
416–427. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24,
1990)

16. Dang, Q.: Secure hash standard. Federal Inf. Process. Stds. (NIST FIPS), National
Institute of Standards and Technology, Gaithersburg, MD (2015-08-04 2015)

17. Dean, R.D.: Formal Aspects of Mobile Code Security. Ph.D. thesis, Computer
Science Department, Princeton University (1999)

18. Dong, X., Sun, S., Shi, D., Gao, F., Wang, X., Hu, L.: Quantum collision attacks on
AES-like hashing with low quantum random access memories. In: Moriai, S., Wang,
H. (eds.) Advances in Cryptology – ASIACRYPT 2020, Part II. Lecture Notes
in Computer Science, vol. 12492, pp. 727–757. Springer, Heidelberg, Germany,
Daejeon, South Korea (Dec 7–11, 2020)

19. Dong, X., Zhang, Z., Sun, S., Wei, C., Wang, X., Hu, L.: Automatic classical and
quantum rebound attacks on aes-like hashing by exploiting related-key differentials.
In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2021 -
27th International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 6-10, 2021, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 13090, pp. 241–271. Springer (2021)

20. Dworkin, M.: SHA-3 standard: Permutation-based hash and extendable-output
functions. Federal Inf. Process. Stds. (NIST FIPS), National Institute of Standards
and Technology, Gaithersburg, MD (2015-08-04 2015)

21. Efthymiou, S., Carrazza, S., Bravo-Prieto, C., AdrianPerezSalinas, Ramos, S.,
García-Martín, D., Lazzarin, M., Zattarin, N., Pasquale, A., Paul, Serrano, J.:
Qibo: An open-source full stack api for quantum simulation and quantum hard-
ware control (2022), https://github.com/qiboteam/qibo

22. Flórez-Gutiérrez, A., Leurent, G., Naya-Plasencia, M., Perrin, L., Schrottenloher,
A., Sibleyras, F.: New results on gimli: Full-permutation distinguishers and im-
proved collisions. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology – ASI-

https://doi.org/10.1007/978-3-642-25385-0_3
https://github.com/qiboteam/qibo

30 Barbara Jiabao Benedikt (�), Marc Fischlin, and Moritz Huppert

ACRYPT 2020, Part I. Lecture Notes in Computer Science, vol. 12491, pp. 33–63.
Springer, Heidelberg, Germany, Daejeon, South Korea (Dec 7–11, 2020)

23. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. pp.
212–219. ACM (1996)

24. Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum computers by
using differential trails with smaller probability than birthday bound. In: Can-
teaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020, Part II.
Lecture Notes in Computer Science, vol. 12106, pp. 249–279. Springer, Heidelberg,
Germany, Zagreb, Croatia (May 10–14, 2020)

25. Hosoyamada, A., Sasaki, Y.: Quantum collision attacks on reduced SHA-256
and SHA-512. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology –
CRYPTO 2021, Part I. Lecture Notes in Computer Science, vol. 12825, pp. 616–
646. Springer, Heidelberg, Germany, Virtual Event (Aug 16–20, 2021)

26. Kelsey, J., Kohno, T.: Herding hash functions and the nostradamus attack. In:
Vaudenay, S. (ed.) Advances in Cryptology - EUROCRYPT 2006, 25th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings. Lecture Notes
in Computer Science, vol. 4004, pp. 183–200. Springer (2006)

27. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings. Lecture
Notes in Computer Science, vol. 3494, pp. 474–490. Springer (2005)

28. Kortelainen, T., Kortelainen, J.: On diamond structures and trojan message at-
tacks. In: Sako, K., Sarkar, P. (eds.) Advances in Cryptology - ASIACRYPT 2013
- 19th International Conference on the Theory and Application of Cryptology and
Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 8270, pp. 524–539. Springer (2013)

29. Liu, Q., Zhandry, M.: On finding quantum multi-collisions. In: Ishai, Y., Rijmen,
V. (eds.) Advances in Cryptology – EUROCRYPT 2019. pp. 189–218. Springer
International Publishing, Cham (2019)

30. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) Advances in
Cryptology – CRYPTO’89. Lecture Notes in Computer Science, vol. 435, pp. 218–
238. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24, 1990)

31. Ni, B., Dong, X., Jia, K., You, Q.: (quantum) collision attacks on reduced simpira
v2. IACR Trans. Symmetric Cryptol. 2021(2), 222–248 (2021)

32. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (Jun 2000)

33. Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M., Mateu, V.: Quantum
search for scaled hash function preimages. Quantum Inf. Process. 20(5), 180 (2021)

34. Wang, R., Li, X., Gao, J., Li, H., Wang, B.: Quantum rotational cryptanalysis
for preimage recovery of round-reduced keccak. IACR Cryptol. ePrint Arch. p. 13
(2022), https://eprint.iacr.org/2022/013

35. Weizman, A., Dunkelman, O., Haber, S.: Efficient construction of diamond struc-
tures. In: Patra, A., Smart, N.P. (eds.) Progress in Cryptology - INDOCRYPT
2017 - 18th International Conference on Cryptology in India, Chennai, India, De-
cember 10-13, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10698,
pp. 166–185. Springer (2017)

https://eprint.iacr.org/2022/013

	Nostradamus goes Quantum

