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Abstract. Cryptographic group actions are a relaxation of standard
cryptographic groups that have less structure. This lack of structure
allows them to be plausibly quantum resistant despite Shor’s algorithm,
while still having a number of applications. The most famous example
of group actions are built from isogenies on elliptic curves.
Our main result is that CDH for abelian group actions is quantumly
equivalent to discrete log. Galbraith et al. (Mathematical Cryptology)
previously showed perfectly solving CDH to be equivalent to discrete log
quantumly; our result works for any non-negligible advantage. We also
explore several other questions about group action and isogeny protocols.

1 Introduction

Proving the equivalence of breaking the
Diffie-Hellman protocol and computing
discrete-log is one of the oldest
problems in public key cryptography.

Boneh and Lipton [BL96]
Diffie-Hellman key agreement [DH76]
is one of the most important protocols
in cryptography. Given a generator g of a cyclic group of order p, Alice and Bob
choose random a ← Zp and b ← Zp, respectively, and exchange the values ga

and gb. Their shared key is then gab = (ga)b = (gb)a.
One way to break Diffie-Hellman is to compute discrete logarithms (DLog):

extract a from (g, ga) and then compute gab = (gb)a from Alice’s message. Fortu-
nately, computing discrete logs appears hard, and after decades of cryptanalytic
effort the best classical algorithms on certain groups—multiplicative groups of
finite fields and elliptic curves—have sub-exponential or exponential complexity.

The security of Diffie-Hellman key exchange, however, is potentially easier
than solving DLog. Indeed, computing the shared key is equivalent to solving the
computational Diffie-Hellman problem (CDH): computing gab from (g, ga, gb).
While CDH is clearly no harder than DLog, it is not a priori obvious that the
converse should hold. After all, CDH and DLog are very different problems:
CDH is in essence computing multiplication a, b 7→ a × b homomorphically on
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the encoded values ga, gb, whereas DLog is inverting the encoding. The good
news is that there has been classical progress towards proving such an equiva-
lence [den90, Mau94, MW96, BL96]. However, the polynomial-time equivalence
of DLog and CDH in general groups without any auxiliary information still re-
mains an important fundamental open question. As such, the hardness of CDH
must simply be assumed in Diffie-Hellman key exchange, requiring a potentially
much stronger assumption than the hardness of DLog.

Quantum Diffie-Hellman. Shor [Sho94] shows that DLog is easy on a quantum
computer, meaning the Diffie-Hellman protocol is no longer secure. Numerous
proposals have been made for replacement “post-quantum” cryptosystems. One
interesting example preserving the spirit of the original Diffie-Hellman protocol is
due to Couveignes [Cou06] and Rostovtsev and Stolbunov [RS06]. They propose
to replace the group in Diffie-Hellman with a group action. Very roughly, the
group action allows for a similar operation as discrete exponentiation as in Diffie-
Hellman, but does not have an analagous operation for multiplying two group
elements, as is needed by Shor’s attack.

In more detail, a group action consists of a group G and a set X, together
with an action ⋆ : G ×X → X such that for any a, b ∈ G and x ∈ X, it holds
that (ab) ⋆ x = a ⋆ (b ⋆ x). In this setting, DLog is the task of recovering a from
(x, a ⋆ x), and CDH is the task of computing (ab) ⋆ x from (x, a ⋆ x, b ⋆ x). If we
consider abelian and regular3 group actions, we can translate Diffie-Hellman key
exchange from groups to group actions by viewing Zp as the group acting on the
set ⟨g⟩ through discrete exponentiation: a⋆x = xa. DLog and CDH on the group
immediately correspond to DLog and CDH on the group action. However, other
group actions that do not correspond to plain groups are possible. The most
notable example is isogenies over elliptic curves [CLM+18], one of the leading
candidates for post-quantum public key cryptography proposed by Couveignes,
Rostovtsev, and Stolbunov4. In the full version of the paper, we discuss how
other plausibly post-quantum proposals can sometimes also be phrased as group
actions.

As in the classical case, the DLog-CDH equivalence is an important funda-
mental question in the quantum world. It may even be more important than
the classical equivalence today, as the post-quantum hardness of group actions
has so far seen a much smaller cryptanalytic effort than the classical hardness
of groups, and therefore our confidence in the post-quantum CDH assumption
on group actions is much weaker. An equivalence to DLog would therefore be an
important step toward improving this confidence. In ordinary groups, the post-
quantum equivalence is trivial: they are both easy. In group actions, however,
it is less clear: group actions have less exploitable structure for proving such an

3 A regular group action is a group action that, for every x1, x2 ∈ X, there exists a
unique element g ∈ G such that x1 = g ⋆ x2.

4 A few very recent works [CD22, MM22, Rob22] break a certain isogeny-based pro-
tocol called SIDH. SIDH, however, is just one of a number of isogeny protocols, and
in particular it is not a group action. For a slightly more in depth discussion about
different isogeny protocols, see Section 2.5.
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equivalence, but quantum algorithms are more powerful and can potentially be
used to facilitate a reduction.

In a short paper, Galbraith et al. [GPSV18] give a promising first step toward
proving an equivalence: they show that any perfect algorithm for solving CDH
in abelian group actions can be converted into a DLog algorithm. The core idea
is that a perfect, efficient CDH algorithm essentially turns the set of a group
action into a plain group, with x1 × x2 = CDH(x1, x2). One can then apply
Shor’s DLog algorithm to the derived group. The main difficulty is that solving
DLog in the derived group is not exactly identical to DLog in the original group
action. Galbraith et al. essentially show how to translate one DLog to the other
to complete the reduction.

Unfortunately, if the CDH algorithm has even relatively minor correctness
error (even, say, 10%), the above algorithm does not work. On the other hand,
for cryptographic applications, we want to justify that no efficient algorithm can
solve CDH with any non-negligible success probability. It could therefore be, for
example, that CDH can be broken—and hence also group action key agreement—
with probability 0.9, but that DLog is still hard. In plain groups, one can amplify
success probability using standard random self-reductions for CDH. However, as
pointed out by Galbraith et al., the limited structure of group actions prevents
such random self-reductions. They therefore leave the full quantum equivalence
of DLog and CDH for group actions as an important open question.

1.1 This Work: Full Quantum Equivalence of DLog and CDH

In this work, we resolve the open question above, showing that DLog and CDH
are quantumly equivalent for abelian group actions (Section 3). Since the most
commonly used group actions in cryptography (from isogenies) are abelian, our
results here have wide applicability and can be used directly on isogeny-based
cryptosystems such as CSI-FiSh [BKV19]5.

As a secondary result, we also show that the same cannot hold generically for
Decisional Diffie-Hellman (DDH), which is equivalent to asking that the shared
key not only cannot be predicted by the adversary, but that it is indistinguishable
from a random string. In other words, there is no black box quantum equivalence
between DLog (or even CDH) and DDH (Section 4). We also formally specify a
generic model for group actions (Section 5), explore relaxations of group actions
relevant to certain isogeny protocols (Section 6), and discuss the relationship
between group actions and the dihedral hidden subgroup problem (Section 7).

Our reduction (Section 3). Our DLog-CDH equivalence will use Galbraith et
al. to reduce the problem of proving equivalence to that of boosting the success
probability of a CDH algorithm. However, this comes with many challenges,
which we now explore. Consider a deterministic algorithm A such that:

Pr
a,b←G

[A(x, a⋆x, b⋆x) = (ab)⋆x] = p Pr
a,b←G

[A(x, a⋆x, b⋆x) = (uab)⋆x] = 1−p

5 We note that our result does not directly apply to restricted effective group actions
(REGAs) like CSIDH [CLM+18] and explain this in more detail later.
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for some constant p ∈ [0, 1] and fixed known group element u ∈ G \ {1}. This
would certainly be a valid CDH adversary with success probability p.

Remark 1. Throughout, we will consider x as being fixed; this is usually how
CDH is modeled, and typically makes hardness results for CDHmore challenging.
It is also possible to consider a variant where x is chosen randomly and A works
for a random x. [BMZ19] explore the fixed vs random question for plain groups.

In the plain group setting, the equivalent setup would be that A on input
(g, ga, gb), outputs gab with probability p and guab with probability 1−p. An easy
random self-reduction for this A would be to run h← A(g, (ga)×gc, (gb)×gd) for
random choices of c, d. Each trial will run A on random independent inputs, so we
know that h = g(a+c)(b+d) with probability p, and h = gu(a+c)(b+d) with probabil-
ity 1−p. We can then compute h′ = h×(ga)−d(gb)−cg−cd. If h = g(a+c)(b+d), then
h′ = gab. Meanwhile, if h = gu(a+c)(b+d), then h′ = g(u−1)(a+c)(b+d)+ab, which is
a uniformly random element. Therefore, by repeating this process many times
on independent c, d, a p fraction of the elements will be identical to gab, and the
rest will be uniformly random. Taking a majority therefore gives gab with over-
whelming probability. An important feature of this self-reduction is that when A
is correct, the self-reduction gives the correct answer, and when A is incorrect,
the self-reduction gives a uniformly random answer. The self-reduction can be
strengthened to handle arbitrary A, thus giving a generic way to boost success
probability.

Unfortunately, the above re-randomization is not possible with group actions,
since there is no multiplication analog for set elements. Given (x, a⋆x, b⋆x), one
could try choosing a random c, d and running (cd)−1⋆A(x, c⋆(a⋆x), d⋆(b⋆x)). The
result will be (cd)−1⋆[(ac)(bd)]⋆x = (ab)⋆x with probability p and (uab)⋆x with
probability 1− p. This allows us to obtain many samples of each. But unlike the
plain group self-reduction, now when A is incorrect we do not output a uniformly
random answer, but instead output a fixed incorrect answer (uab)⋆x. This means
we cannot in general take a majority since if p < 1/2 this would actually give
the incorrect answer. In this case, if we knew that p < 1/2, we would know to
actually take the minority element as output. This would require making non-
black box use of A, which is non-standard but acceptable. However, if p = 1/2,
then the majority or minority element is just a random sample between (ab) ⋆ x
and (uab) ⋆ x. In this case, even knowing p is not enough to identify the correct
answer.

We will now show how to resolve the reduction for this particular class of
adversaries. To do so, we consider two cases: u2 = 1, or not. The exponent 2
in u2 = 1 is a result of our algorithm A outputting a random choice amongst
two elements, and in more general settings we could consider higher, but still
polynomial, exponents. Note that group actions are defined and plausibly hard
for non-cyclic or non-prime order groups, so it is reasonable to consider group
orders that have small factors. For isogenies, the group order is indeed smooth.

If u2 = 1 and p = 1/2, we are basically stuck: A is simply outputting a
random sample in the orbit of (ab) ⋆ x under action by u. Nothing we can do

4



will amplify the success probability. Instead, we observe that A can be viewed
as essentially solving CDH—with perfect probability!—in the subgroup G/⟨u⟩.
We then apply Galbraith et al. to this subgroup to solve DLog relative to G/⟨u⟩.
We can then solve for the full DLog in G by brute forcing the ⟨u⟩ component.
This works regardless of p, but requires u to generate a small group.

If u2 ̸= 1 and/or if p ̸= 1/2, another approach will work. Here, we can first
run our re-randomized A several times on (x, a ⋆ x, b ⋆ x) to obtain y0 = (ab) ⋆ x
and y1 = (uab) ⋆ x, but we do not yet know which is which. But in this case,
we can use the fact that A is not generating uniform outputs in the orbit of
(ab) ⋆ x to distinguish the two cases. Concretely, we run the re-randomized A
several times on (x, x, y0) and (x, x, y1). Since x = 1 ⋆ x, we know that (x, x, y0)
will output y0 with probability p and u ⋆ y0 = y1 with probability 1 − p. This
distribution of outputs exactly matches the distribution from our original set of
trials on (x, a⋆x, b⋆x). Meanwhile, (x, x, y1) will output y1 and u⋆y1 = (u2ab)⋆x
with probabilities p and 1− p. This distribution will be different than that from
our original set of trials. Thus by comparing the distributions generated from
(x, x, y0) and (x, x, y1) with the distribution generated from (x, a ⋆ x, b ⋆ x), we
can identify which of y0, y1 are the correct CDH output.

Our result generalizes the approach above to work with arbitrary adversaries
A, and to work without needing any side-information (like the probability p)
about the distribution of outputs of A. Essentially, we show that there is al-
ways a polynomial-sized subgroup H of G such that we can amplify A to have
near-perfect success probability on G/H. We then apply Galbraith et al. to the
subgroup, and then brute-force the quotient group.

There are a number of challenges to getting this sketch to work. One issue is
to actually identify the subgroup of G. Suppose G has order n = 2× 3× 5× ....
Then the number of subgroups of polynomial-size will be λO log(λ); if G is non-
cyclic, the number of small subgroups can even be exponential. So we cannot
simply guess the subgroup, and must instead compute it.

Another issue is thresholding : we need to make decisions about whether var-
ious distributions of elements are close or far. These decisions are made by sam-
pling a number of samples from the distributions, and comparing frequencies.
But we can only obtain frequency estimates with inverse-polynomial error. For
whatever criteria we use to distinguish distributions, if two distributions are close
but not too close, the noise in our estimates will cause the criteria to output just
a random bit. The question is then: if the various decisions underlying our algo-
rithm may have random answers, how can we guarantee consistent outputs, as
required to achieve a high success probability?

The randomness from thresholding seems impossible to fully overcome. How-
ever, we show via careful arguments that the randomness can all be contained
within the choice of the subgroup H. Once this subgroup is fixed, we show that
we can set our decision-making criteria such that we always make consistent
decisions, resulting in consistent CDH solutions.

We note that our main proof assumes the group action is regular, meaning
for a fixed x, a ⋆ x is a bijection. This is the most relevant setting to isogeny-
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based group actions. Nevertheless, we explain in Section 3.1 how to extend to
arbitrary abelian group actions.

Impossibility of Extending to DDH (Section 4). Given the above, one may hope
to actually prove that DLog implies DDH, namely that (ab) ⋆ x is indistinguish-
able from c ⋆ x for a random c, given x, a ⋆ x, b ⋆ x.

Unfortunately, we refute this possibility, at least in the composite-order set-
ting that is most relevant to post-quantum cryptosystems. The idea is simple:
we start with any group action ⋆ : G ×X → X where CDH—and maybe even
DDH—is hard. We then define a slightly larger group and set G′ = G× Zp and
X ′ = X × Zp, for some polynomially bounded p. We expand ⋆ to an action of
G′ on X ′ by defining (a, u) ⋆ (x, y) = (a ⋆ x, u+ y). DLog and CDH easily hold
for the expanded group action, but DDH is trivially false just by looking at the
Zp component, which has no hardness. We note that if G is cyclic, we can make
G′ cyclic as well by choosing p to be relatively prime to the order of G.

Generic Group Actions (Section 5). Next, we propose a generic group action
model, analogous to the generic group model of [Sho97]. In this model, the set
elements X are just random strings, and the action of G on X is provided by
an oracle which can be queried by the adversary. This model is implicit in much
of the prior work on group actions, but we are not aware of it being formally
written down. We also note that the model trivially extends to the quantum
setting, where classical queries are replaced by quantum queries.

On REGAs (Section 6). Many isogeny protocols cannot be phrased as clean
group actions. Essentially, in some isogeny-based protocols (such as CSIDH
[CLM+18]) there is a set of generators g1, . . . , gℓ ∈ G, and it is only known
how to efficiently compute the actions of the gi or g−1i ; one can then compute

the action of any g ∈ G provided one has a representation of g =
∏ℓ

i=1 g
αi
i for

polynomially-sized αi. In general, finding such a representation is believed to be
hard. This setting is referred to as a Restricted Effective Group Action (REGA).

Our reduction (as with Galbraith et al.) does not apply to REGAs, since
applying Shor’s algorithm requires the ability to compute the action of arbitrary
group elements g. Formalizing some discussion from Galbraith et al., we show
that the reduction works for REGAs if a problem similar to the 1D Short Integer
Solution (1D-SIS) problem is easy which we call REGA-SIS.6 In the case that
G = Zp–which we can assume since we are focused on abelian groups–the prob-
lem becomes essentially the one-dimensional version of the inhomogeneous SIS
(ISIS) problem [BGLS19]: given a target integer t ∈ Zp and a vector of integers
s ∈ Zℓ

p defined by the REGA description, the problem is to find a vector of

integers v ∈ [−β, β]ℓ such that t = s ·v. The only difference between REGA-SIS

6 We defer a formal definition of this problem to the body of the paper. It is shown
in [BLP+13] that 1D-SIS, for certain paramater settings, is equivalent to the “stan-
dard” LWE problem.
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and what a natural definition of “1D-ISIS” would be is that the given vector of
integers s is defined by the REGA rather than sampled randomly.

Essentially, we show that such a REGA-SIS oracle is enough to compute a
representation of g in terms of the gi, which converts the REGA into a stan-
dard group action. This shows that in a world where REGA-SIS is easy, our
equivalence between DLog and CDH also holds for REGAs. It turns out that
the hardness of REGA-SIS is, in fact, inherent in solving DLog on REGAs: we
also show that any algorithm which solves DLog on REGAs can be used to solve
this REGA-SIS problem. This result is quite interesting since it implies DLog
on REGAs is at least as hard as a (not necessarily randomized, and thus maybe
not hard) version of a hard lattice problem.

If we could somehow strengthen this to show that a CDH solver on REGAs
must also solve REGA-SIS, then we would obtain a full quantum equivalence
between DLog and CDH for REGAs. We do not know how to prove such a result,
but we give some evidence that generic adversaries for CDH on REGAs may have
to solve REGA-SIS or, for certain groups, 1D-SIS itself. More precisely, we show a
reduction that generic adversaries for CDH on REGAs that make classical group
and group action “queries” can solve REGA-SIS.7 We leave formally proving this
equivalence as an interesting and practically important open problem.

The Dihedral Hidden Subgroup Problem (Section 7). Childs et al. [CJS14] apply
the Dihedral Hidden Subgroup Problem (DHSP) algorithm of [Kup05] to com-
pute isogenies between elliptic curves. This is a special case of the folklore result
that any algorithm for DHSP yields an algorithm for DLog on regular, abelian
group actions. We prove this folklore theorem.

The DHSP is the main approach for cryptanalyzing regular, abelian group
actions, and no known better general algorithm is known. However, we point out
that the two are not trivially equivalent: group actions have significant extra
structure that could potentially be used for attacks that is not exploited by
the reduction to DHSP. We are not aware of this observation being explicitly
mentioned previously.

We next conjecture that, nevertheless, DHSP and regular, abelian group ac-
tions are generically equivalent, meaning any generic algorithm for solving these
group actions can be used to solve DHSP generically. We offer some evidence of
this conjecture, but leave proving or disproving it as a fascinating open question.

2 Preliminaries

In this section we discuss background material that is used in the rest of the
paper. We expect that experienced readers can skip this section. For a more
thorough presentation of preliminary material, please see the full version of the
paper.

7 The adversary could be quantum but is restricted to classical queries to the group
and group action oracles.
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2.1 Min-entropy and Leftover Hash Lemma

Let Z be a discrete random variable Z with sample space Ω. Its min-entropy is

H∞(Z) = min
ω∈Ω
{− log Pr[Z = ω]}.

For two random variables Y and Z, we use H∞(Z|Y ) to denote the min-entropy
of Z conditioned on Y . We will use the following lemma, which is a simplified
version of the leftover hash lemma [ILL89].

Lemma 1. Let {Hs : Z → Y }s∈S be a family of pairwise independent hash
functions, and Z and S be discrete random variables over Z and S, respectively.
If H∞(Z) > log |Y | + 2 log(ε−1) we have ∆[(S,HS(Z)), (S,U)] ≤ ε, where ∆
denotes statistical distance and U denotes the uniform distribution over Y .

We will also use the following corollary of the leftover hash lemma.

Lemma 2. Let G be an (additive) finite abelian group such that |G| = λω(1).
Let n ∈ Z such that n > log |G|+ ω(log(λ)). If g← Gn and s← {0, 1}n, then(

g,

n∑
i=1

si · gi

)
s
≈ (g, u),

where u← G is a uniformly chosen element from G.

2.2 1D-SIS Problem

The 1D-SIS problem dates to the original work of Ajtai [Ajt96] and has been
used in many cryptographic applications [BV15, BKM17]. These cases use special
moduli, but the case for general moduli follows from [BLP+13], where it is shown
that the 1D-SIS problem with certain parameters but no special restrictions on
the modulus is as hard as standard polynomial modulus LWE.

Definition 1. Let m, β, and q be positive integers. In the 1D-SISm,q,β prob-
lem, an adversary is given a random vector v ← Zm

q and asked to provide a
vector u ∈ Zm

q such that ||u|| < β. We say that an adversary efficiently solves
the 1d-SISm,q,β problem if it can provide such a vector in PPT time.

2.3 Cryptographic Group Actions

Here we define cryptographic group actions following Alamati et al. [ADMP20],
which are based on those of Brassard and Yung [BY91] and Couveignes [Cou06].

Definition 2. (Group Action) A group G is said to act on a set X if there is
a map ⋆ : G×X → X that satisfies the following two properties:

1. Identity: If e is the identity of G, then ∀x ∈ X, we have e ⋆ x = x.
2. Compatibility: For any g, h ∈ G and any x ∈ X, we have (gh)⋆x = g⋆(h⋆x).
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We may use the abbreviated notation (G,X, ⋆) to denote a group action. We
extensively consider group actions that are regular :

Definition 3. A group action (G,X, ⋆) is said to be regular if, for every x1, x2 ∈
X, there exists a unique g ∈ G such that x2 = g ⋆ x1.

We emphasize that most results in group action-based cryptography have
focused on regular actions. As emphasized by [ADMP20], if a group action is
regular, then for any x ∈ X, the map fx : g 7→ g ⋆ x defines a bijection between
G and X; in particular, if G (or X) is finite, then we must have |G| = |X|.

In this paper, unless we specify otherwise, we will work with effective group
actions (EGAs). An effective group action (G,X, ⋆) is, informally speaking, a
group action where all of the (well-defined) group operations and group action
operations are efficiently computable, there are efficient ways to sample random
group elements, and set elements have unique representation. Since the focus
of this paper is on abelian group actions in a quantum world, we note that
we can efficiently map any abelian group to Zp for some integer p (see the full
version of our paper and our discussion on KEGAs for more details), and all
of the less obvious properties needed for EGAs follow automatically. However,
the definition of an EGA itself is a little bit tedious (and quite formal so as to
properly model isogeny-based constructions in a classical world) so we defer it
to the full version of the paper.

2.4 Computational Problems

We next define problems related to group action security that are more seman-
tically similar to typical group-based problems than those that are traditionally
used in isogeny litaterature. We define the formal definitions that are typically
used in isogenies (based on [ADMP20] in the full version of the paper, where we
also compare them to our (intuitively simpler, but almost equivalent) notions of
security defined here. We emphasize that we are defining problems here and not
assumptions because these are easier to use in reductions.

Definition 4. (Group Action Discrete Logarithm) Given a group action (G,X, ⋆)
and distributions (DX ,DG), the group action discrete logarithm problem is de-
fined as follows: sample g ← DG and x ← DX , compute y = g ⋆ x, and create
the tuple T = (x, y). We say that an adversary solves the group action discrete
log problem if, given T and a description of the group action and sampling algo-
rithms, the adversary outputs g.

Definition 5. (Group Action Computational Diffie-Hellman (CDH)) Given a
group action (G,X, ⋆) and distributions (DX ,DG), the group action CDH prob-
lem is defined as follows: sample g ← DG and x, x′ ← DX , compute y = g ⋆ x,
and create the tuple T = (x, y, x′). We say that an adversary solves the group ac-
tion CDH problem if, given T and a description of the group action and sampling
algorithms, the adversary outputs y′ = g ⋆ x′.
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Definition 6. (Group Action Decisional Diffie-Hellman (DDH)) Given a group
action (G,X, ⋆) and distributions (DX ,DG), the group action DDH problem is
defined as follows: sample g1, g2 ← DG and x, z′ ← DX , compute y1 = g1 ⋆ x,
y2 = g2 ⋆ x, and z = g1g2 ⋆ x.

The group action DDH problem is to distinguish whether a tuple is of the
form (x, y1, y2, z) or (x, y1, y2, z

′).

Remark 2. The above definitions allow for different distributions DX on X. In
particular, DX could be uniform over X, or it could be a singleton distribution
that places all its weight on a single fixed x. Whether x is fixed or uniform poten-
tially changes the the nature of these problems (see [BMZ19] for an exploration
in the group-based setting). Looking ahead, our reduction between DLog and
CDH will preserve x, and therefore it works no matter how x is modeled.

2.5 Instantiations of Cryptographic Group Actions

We next discuss various instantiations of cryptographic group actions and where
they fall into our definitions. We start by discussing isogenies. For more details,
we refer the reader to [ADMP20], which has an extensive discussion on the
classification of various isogeny protocols into group action definitions.

Isogenies that are EGAs. CSI-FiSh [BKV19] and its derivatives/applications
[DM20a] have EGA functionality and are conjectured to even have weak pseu-
dorandomness. However, there have recently been some subexponential attacks
on CSI-FiSh [Pei20, BS20] and current cryptosystems built from CSI-FiSh are
not particularly efficient. In fact, there are not efficient algorithms to (asymp-
totically) generate parameter sets for CSI-FiSh. However, if a powerful quantum
computer were available, then efficient (quantum) computation of the class group
structure could be used to generate arbitrary parameter sets for CSI-FiSh and
improve efficiency.

Isogenies that are restricted EGAs (REGAs). Recall that, in a REGA,
there is a set of generators g1, . . . , gℓ ∈ G, and it is only known how to efficiently
compute the actions of the gi or g−1i ; one can then compute the action of any

g ∈ G provided one has a representation of g =
∏ℓ

i=1 g
αi
i for polynomial αi.

We define REGAs formally in the full version of the paper. Many of the most
commonly used isogeny protocols are based on CSIDH [CLM+18], which is a
REGA. These include things like the signature scheme SeaSign [DG19] or OT
protocols [LGdSG21].

Isogenies that are not GAs. There are many isogeny-based schemes that
cannot be modeled as group actions. Examples include SIDH [DJP14] and the
recently proposed OSIDH [CK20, Onu21, DDF21]. Most isogeny-based protocols
that are not group actions are typically used for key exchange or other very
simple cryptographic applications.
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Remark 3. A few very recent works [CD22, MM22, Rob22] break SIDH by show-
ing how to solve the discrete log problem. However, the attack crucially exploits
certain extra points that are made public in SIDH, and these points are precisely
one of the reasons that SIDH is not a group action. In particular, the the attack
does not seem to apply to CSI-FISH or CSIDH, the main instantiations of EGAs
and REGAs, respectively.

Non-Isogeny Group Actions. Currently all instantiations of abelian can-
didate cryptographic group actions that are thought to be secure are isogeny-
based [DDF21]. There have been a number of attempts to build key exchange
and other basic primitives from nonabelian groups that amount to group actions
or have hardness assumptions that can be modeled in some way as group ac-
tions [KLC+00, Sti05, SU05a], but the proposed instantiations of these schemes
have been completely cryptanalyzed [Shp08, BKT18].

We note that these candidate cryptosystems typically propose an abstract
scheme and then attempt to instantiate it with a group. We note that it is not
usually the case that the abstract schemes themselves are broken: the cryptanal-
ysis typically works directly on the instantiations, so it is possible that some of
these protocols could be implemented securely with different choices of groups.

There have also been some candidate nonabelian cryptographic group actions
proposed [JQSY19]. While these are not known to be insecure, they have far
fewer applications than abelian group actions.

3 Reducing DLog to CDH Quantumly

Let (G,X, ⋆) be a regular abelian group action. In Section 3.1 we explain how
to extend our reduction to non-regular abelian actions. Let x ∈ X be a fixed set
element.

Theorem 1. If DLog is post-quantum hard in (G,X, ⋆), then so is CDH. More
precisely, there exists an oracle algorithm RA,(G,X,⋆)(µ, y) that runs in time
poly(1/µ, log |G|) and makes poly(1/µ, log |G|) total queries to a supposed CDH
adversary A and group action (G,X, ⋆), such that the following holds. If Pra,b←G

[A(a ⋆ x, b ⋆ x) = (ab) ⋆ x] ≥ µ, then for any a ∈ G, Pr[RA,(G,X,⋆)(µ, a⋆x) = a] ≥
0.99.

We note that the above means that R is very slightly non-black box, in that
its running time and number of calls to A depend on the success probability
µ of A. We note that any amplification of success probability (say, from µ to
0.99) will always come with such a dependence on µ. In our case, amplification
is critical to our algorithm, and the dependence on µ would persist even if we
only wanted RA to have very small success probability. The remainder of this
section is devoted to proving Theorem 1.

Define CDH to be the function which correctly solves CDH relative to x:
CDH(a ⋆ x, b ⋆ x) = (ab) ⋆ x. We will also allow CDH to take as input a vector
of elements, behaving as CDH(a1 ⋆ x, · · · , an ⋆ x) = (a1 · · · an) ⋆ x. Furthermore,
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we will allow CDH to take as input distribution(s) over the set X; in this case,
CDH will also output a distribution.

Let a, b ∈ G be group elements, and let y = a ⋆ x and z = b ⋆ x. Suppose A
is an efficient (quantum) algorithm such that

q := Pr[A(y, z) = CDH(y, z)]

is a non-negligible function in the security parameter, where a and b are random
elements in G, and the probability is over the randomness of a and b and A.

Our goal is to turn A into a quantum algorithm for discrete logarithms.
As a first step, we introduce a random self-reduction for CDH. In the case of
groups (as opposed to group actions), a more powerful random self-reduction
allows for amplifying the success probability on any input. The result would be
an algorithm for CDH with overwhelming success probability. In our case, due
to the restricted nature of group actions, we can only perform a more limited
self-reduction. Nevertheless, this self-reduction has useful properties.

The Basic Random Self-reduction. The random self-reduced version of A, de-
noted A0, works as follows:

– On input y = a ⋆ x, z = b ⋆ x, choose random a′, b′ ∈ G.
– Let y′ = a′ ⋆ y, z′ = b′ ⋆ z.
– Run w′ ← A(y′, z′).
– Output w = (a′b′)−1 ⋆ w′.

Note that each run of A0 runs A exactly once, and uses a constant number of
group action operations. This reduction is correct since, if A is correct, then we
output

w = (a′b′)
−1

CDH ((a′a) ⋆ x, (b′b) ⋆ x) = (a′b′)
−1

(aa′bb′) ⋆ x = (ab) ⋆ x

which is the correct output for CDH. Moreover, the set elements y′, z′ are uni-
formly distributed over the possible set elements.

Let D be the distribution A0(x, x). That is, we are feeding the “dummy” dis-
tribution to our random self-reduction. While we know what the answer should
be (x = CDH(x, x)), we use this distribution to learn more about A’s behavior.

Lemma 3. Pr[x← D] = q.

Proof. Recall that D is the distribution A0 (x, x). A0 on input (x, x) calls
A (a′ ⋆ x, b′ ⋆ x) for random a′, b′ ∈ G. With probability q, A (a′ ⋆ x, b′ ⋆ x) re-
turns (a′b′) ⋆ x, and in this case we have w = x as desired. ⊓⊔

We next generalize our notation. For any y, z ∈ X where y = a ⋆ x and
z = b ⋆ x for some a, b ∈ G, let Dy,z be the distribution of outputs of A0(y, z).

Lemma 4. For every y, z ∈ X such that there exist a, b ∈ G where y = a⋆x and
z = b ⋆ x, Dy,z = CDH(y, z,D), where CDH(·, ·, ·) is the 3-way CDH function. In
other words, A0(a ⋆ x, b ⋆ x) is identically distributed to (ab) ⋆A0(x, x).
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Proof. Fix a, b ∈ G. Consider the probability that A0(a ⋆ x, b ⋆ x) outputs w:

Pr[A0(a ⋆ x, b ⋆ x) = w] = Pr
a′,b′∈G

[(a′b′)
−1

⋆A((aa′) ⋆ x, (bb′) ⋆ x) = w]

= Pr
a′,b′∈G

[A((aa′) ⋆ x, (bb′) ⋆ x) = (a′b′) ⋆ w]

= Pr
a′′,b′′∈G

[A(a′′ ⋆ x, b′′ ⋆ x) = (a′′b′′ (ab)
−1

) ⋆ w]

= Pr[A0(x, x) = (ab)−1 ⋆ w]

Thus, A0(a ⋆ x, b ⋆ x) is just the distribution A0 (x, x), but shifted by ab. ⊓⊔

Using this “shift invariance,” we can define Dw := Dw,x = Dx,w = Dy,z, if
CDH(y, z) = w. Lemma 4 shows that Dy,z outputs CDH(y, z) with probability q.
Thus, by running A0 many times, the right answer is almost certainly amongst
the list of outputs. However, to amplify the success probability, we would need
to know which of the list of outputs is the correct answer; we cannot determine
this yet.

In the following, we will take steps to remedy this issue. Throughout this
section, it is instructive to keep the following examples in mind:

1. Let g ∈ G \ {1}. A(Y,Z) outputs CDH(y, z) with probability 1/3, and g ⋆
CDH(Y, Z) with probability 2/3. Notice that in this case, A0 has the same
distribution of outputs as A. Also notice that taking the majority element
will give the wrong answer. Thus, we cannot immediately decide which of
the outputs of A0 is the right answer just by looking at the frequencies.

2. Let H be a subgroup of G of size 1/q. Then consider the case where A(y, z)
outputs c ⋆ CDH(y, z), where c ← H is chosen uniformly. Note that A is
still correct with probability q in this case, since c = 1H with probability q.
Similar to Example 1, there is no way to identify the correct output just by
looking at frequencies.

3. Suppose H = Zlog λ
2 , which we can decompose as a chain of subgroups Hi =

Zi
2 with Hi−1 ⊆ Hi. A outputs c ⋆ CDH(y, z), where c ∈ H. However, c is

not uniform. Instead, i ∈ [0, log λ] is chosen according to some probability
distribution, and then c is chosen uniformly from Hi.

4. Suppose H = Zlog λ
2 . Again, A outputs c ⋆ CDH(y, z), where c ∈ H but not

uniform. Here, c occurs with probability 1 − α|c|1, where |c|1 denotes the
Hamming weight of c.

Example 1. It turns out Example 1 can be handled using the shifting prop-
erty from Lemma 4. Suppose we are given a CDH challenge parameterized by
(y = a ⋆ x, z = b ⋆ x). Basically, after repeating many runs of A0 (y, z), we obtain
two elements: w0 = (ab) ⋆ x and w1 = (gab) ⋆ x. In theory, in this example we
could exploit the fact that we know the probabilities with which A outputs the
correct set element and the “g-multiplied” set element, but let’s assume that we
do not know this. What can we do?

Suppose we feed these outputs back intoA0, runningA0 (w0, x) andA0 (w1, x)
several times each. Each of these two runs will output two distinct elements. Since
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w0 = (ab) ⋆ x, Lemma 4 shows that A0 (w0, x) = Dw0 = Dy,z = A0 (y, z) as dis-
tributions. Likewise, since w1 = (gab) ⋆ x, we have A0 (w1, x) = A0 (g ⋆ y, z).

Therefore, becauseA0 (w0, x) is distributed the same asA0 (y, z) andA0 (w1, x)
is not, we can effectively distinguish w0 from w1 and find the correct CDH output.

Example 2. On the other hand, Example 2 is much harder to handle. Mimicking
the above, we first run A0 several times, obtaining the list of values c⋆CDH(y, z)
as c ranges over H, but we don’t know c. We can then try, for each c⋆CDH(y, z),
running A0(c⋆CDH(y, z), x) several times, to obtain tuples of elements. However,
this will not give us any useful information: each tuple will be exactly the same
list as in the original run of A0, namely the entire set H⋆CDH(y, z). The problem
is that the output distribution of A0 is invariant under action by H.

Looking ahead, we cannot improve the CDH algorithm for this example.
However, this particular example gives a perfect CDH oracle relative to the
group G/H acting on X/H := {H ⋆ w : w ∈ X}. We will use such an algorithm
to solve discrete log in G/H. We can then solve discrete logarithms in H by
brute force, and then piece the two results together to solve discrete logarithms
in G.

Examples 3 and 4. In general, however, we may not get a perfect CDH oracle
for H, and are not even obviously guaranteed that the outputs lie in a small sub-
group. In Example 3, consider the distribution over i such that larger subgroups
are very unlikely, but not too unlikely. For any fixed number of queries, it could
be that, with probability 1/2, all results end up in Hi, but with probability 1/2
some of the results will end up in Hi+1. It might, a priori, not even be possible
to identify when you have all the elements from a subgroup, since “chaining”
calls to A0 as we have done above might move us outside a subgroup. So it is
unclear if there is a way to always output a consistent complete subgroup, so as
to get a near-perfect CDH solver relative to G mod this subgroup.

Next, we will gradually improve our CDH solver to resolve these difficulties.

Restricting to a small subgroup. We show how to discard some wrong outputs of
A0 so that the remaining outputs lie in a reasonably-small subgroup of G, while
still guaranteeing that we keep CDH(y, z).

We first give some notation. For any two distributions D0,D1 over X, let
∥D0 −D1∥∞ = maxw∈X |Pr[w ← D0]− Pr[w ← D1]|. For a distribution D over
X, consider sampling T elements w1, . . . , wT from D. This vector of wi gives
rise to an “empirical” distribution D̃, where the probability of any w is just the
relative frequency of w amongst the wi. Note that even though D̃ has a domain
of exponential size, we can represent it by the list w1, . . . , wT , which has size
T . Also note that there are two distributions here: the empirical distribution D̃
itself, and the distribution over empirical distributions. We denote the latter as
D̃ ← DT .
We are now ready to give our next algorithm, A1(y, z):

– Let T = λ/δ2 for some parameter δ ∈ (0, 1).
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– Run D̃∗ ← A0(y, z)
T

– For each w in the support of D̃∗, run D̃w ← A0(w, x)
T .

– Output L, the set of w in the support of D̃∗ such that ∥D̃w − D̃∗∥∞ ≤ δ/2.

We will think of λ being poly(log q), so that 2−Ω(λ) is negligible in 1/q. Note
that A1 makes at most T 2 +T = O(λ2/δ4) evaluations of A1, and hence T 2 +T
evaluations of A0 and O(T 2+T ) group action operations. In order to analyze the
algorithm A1, we need to give some basic results. First we recall the Dvoretzky-
Kiefer-Wolfowitz inequality:

Lemma 5 ([Mas90]). For any ζ > 0 and distribution D, except with probability

2e−2ζ
2T , ∥D̃ − D∥∞ ≤ ζ, where D̃ ← DT .

In other words, the empirical distribution converges to the underlying distri-
bution D as the number of samples T grows large.

Now consider the distribution D = A0(x, x) from before, and the derived
distributions Dw = CDH(w,D). Let dw = ∥Dw −D∥∞.

Lemma 6. ∀y, z ∈ X, ∥DCDH(y,z) −Dy∥∞ = dz and dCDH(y,z) ≤ dy + dz.

Proof. For the equality, note that ∥DCDH(y,z)−Dy∥∞ = ∥CDH(y,Dz)−CDH(y,D)∥∞.
Since CDH(y, ·) simply permutes the elements of X—more precisely, it maps v ∈
X to a⋆v where y = a⋆x—it does not affect the distance between distributions,
and therefore |CDH(y,Dz)−CDH(y,D)| = |Dz −D| = dz. For the inequality, we
have dCDH(y,z) = |DCDH(y,z) −D|∞ ≤ |DCDH(y,z) −Dy|∞ + |Dy −D|∞ = dz + dy,
where we used the equality in the second to last step. ⊓⊔

Now we prove the following general result about abelian groups. Fix an
abelian group H and a set of generators a = (a1, . . . , an). For any vector e ∈ Nn

of non-negative integers, define ae :=
∏n

i=1 a
ei
i . Let ∥e∥1 :=

∑n
i=1 |ei|. Then for

any r ∈ H, we define ∥r∥ := mine∈Nn:r=ae ∥e∥1.

Lemma 7. If U = {r ∈ H : ∥r∥ ≤ ns} has size at most s, then U = H.

In other words, if the subset of H with small ∥ · ∥ is not too big, then in fact all
of H has small ∥ · ∥.
Proof. Clearly U ⊆ H. In the other direction, consider a single ai. Since U has
size at most s, then so does the set {aeii : 0 ≤ ei ≤ s} ⊆ U . As there are s + 1

different possibilities for ei, there must be e′i < ei such that aeii = a
e′i
i . Then

a
e′i−ei
i = 1, and 0 < e′i − ei ≤ s. For any r ∈ H, write r = ae. Since ai has order

at most s, we can reduce each ei to an integer smaller than s without changing
r. After such a reduction, ∥e∥1 ≤ ns, and so r ∈ U . Hence H ⊆ U . ⊓⊔

Let Lδ ⊂ G be the set of all a ∈ G such that da⋆x ≤ δ, and Hδ be the
subgroup of G generated by Lδ. We have the following:

Lemma 8. Let ϵ ∈ (0, 1] be a real number. Then if δ ≤ ϵq4/8, |Hδ| ≤ q−1 + ϵ.
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Note that ϵ is necessary: D may output g ⋆ x for a g in a subgroup H of size n,
with q−1 negligibly smaller than n. Suppose Pr[x ← D] = q and Pr[g ⋆ x ← D]
is slightly less than q for all other g. Then Hδ = H for any non-negligible δ.

Proof. We first prove that |Lδ| ≤ q−1 + ϵ. Note that d1G⋆x = dx = 0 and so
1G ∈ Lδ. From Lemma 3, Pr[x← D] = q. Therefore, for any a ∈ Lδ,

Pr[a−1 ⋆ x← D] = Pr[x← Da⋆x] ≥ Pr[x← D]− δ = q − δ,

where the inequality follows since da⋆x ≤ δ for a ∈ Lδ. Then

1 =
∑
a∈G

Pr[a−1 ⋆ x← D] ≥
∑
a∈Lδ

Pr[a−1 ⋆ x← D]

= Pr[1 ⋆ x← D] +
∑

a∈Lδ\{1}

Pr[a−1 ⋆ x← D] ≥ q + (|Lδ| − 1)(q − δ)

Solving for |Lδ| gives |Lδ| ≤ (1 − δ)/(q − δ). Setting the right hand side to be
≤ q−1 + ϵ gives the desired bound whenever δ ≤ ϵq2/(1 − q + qϵ). Note that
(1− q + qϵ) ≤ 1. Therefore, δ ≤ ϵq4/8 is only a stronger bound on δ.

We now bound |Hδ| by applying Lemma 7 to H = Hδ and a = Lδ and
s = 1/q+ϵ. Consider some r = ae in Hδ. Then by iteratively applying Lemma 6,

dr⋆x = dCDH(a1⋆x,··· ,a1⋆x︸ ︷︷ ︸
e1

,a2⋆x,··· ,a2⋆x︸ ︷︷ ︸
e2

,a3⋆x,··· ) ≤
∑
i

eidai⋆x ≤
∑
i

eiδ = |e|1δ

By minimizing over all e, we have that dr⋆x ≤ ∥r∥δ. For U as in Lemma 7, this
means that Pr[r−1 ⋆ x ← D] = Pr[x ← Dr⋆x] ≥ q − ∥r∥δ ≥ q − nsδ. Since the
probabilities of each outcome sum to at most 1, we therefore have that |U | ≤
(q − nsδ)−1. In order to satisfy the conditions of Lemma 7, we therefore need
1/(q−nsδ) ≤ s, which is equivalent to 1 ≤ s(q−nsδ). Since n = |Lδ| ≤ 1/q+ ϵ,
we have that this inequality is satisfied whenever δ ≤ ϵq4/(1+ϵq)3. As 1+ϵq ≤ 2,
our bound of δ ≤ ϵq4/8 is only a stronger bound, showing that Hδ = Lδ. Our
prior bound on |Lδ| thus proves Lemma 8. ⊓⊔

We are finally ready to analyze the algorithm A1. Let D′ be the distribu-
tion A1(x, x), and D′y,z be the distribution A1(y, z). The next lemma follows
immediately from Lemma 4:

Lemma 9. For every y, z ∈ X where y = a ⋆ x and z = b ⋆ x for some a, b ∈ G,
D′y,z = CDH(y, z,D′).

Thus, we define D′w := D′w,1 = D′1,w = D′y,z, if CDH(y, z) = w. We now prove:

Lemma 10. Except with probability 2(T + 1)e−δ
2T/8 + (1− q)T ≤ 2−Ω(λ) over

L← A1(x, x), we have that x ∈ L ⊆ Hδ ⋆ x.

Proof. Suppose we set ζ = δ
4 . By Lemma 5, we have that |D̃⋆−DCDH(y,z)|∞ ≤ δ/4

and for each w in the support of D̃⋆, |D̃w −Dw| ≤ δ/4, each individually except
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with probability at most 2e−δ
2T/8. We also have that with probability 1−(1−q)T ,

x will be amongst the T samples of A1(x, x). By a union bound, all of these

happen simultaneously, except with probability 2(T + 1)e−δ
2T/8 + (1− q)T .

If all of these happen, then |D̃x − D̃⋆| ≤ |D̃x −D|+ |D̃⋆ −D| ≤ 2δ/4 = δ/2.
Thus x ∈ L assuming the above hold. On the other hand, for any w ∈ L,
dw = |Dw −D| ≤ |D̃w −Dw|+ |D̃w − D̃⋆|+ |D̃⋆ −D| ≤ δ. Hence w ∈ Lδ ⋆ x by
the definition of the set Lδ, which immediately implies that each w ∈ Hδ ⋆x. ⊓⊔

As a consequence, we have that D′ has negligible support outside of Hδ ⋆ x.
Note that D′ may not be random in Hδ ⋆ x, as the list L may not include all
of Hδ ⋆ x, and L itself may be randomized. Indeed, in Example 4, α may be
such that D and Dc⋆w are sufficiently close for c with small Hamming weight,
but Dc⋆w is far for c with large Hamming weight. Some c may even be right on
the cusp, being included in L with constant probability. The result is that the
output may not be a whole subgroup and may have entropy.

We note that by setting ϵ a constant and δ = ϵq4/8 = O(q4), we have that
A1 runs in time O(λq−8) = Õ(q−8) and makes Õ(q−8) total queries to A and
the group action operations.

Filling an entire subgroup. A1 outputs a subset of Hδ ⋆ CDH(y, z), and the
subset must include CDH(y, z). We will now devise a new algorithm A2 which
outputs H ⋆ CDH(y, z), where H is a (potentially unknown) subgroup of Hδ.
We split A2(y, z) into two phases, A0

2(), which outputs the set H ⋆ x, and then
A1

2(y, z,H ⋆ x), which outputs the set H ⋆ CDH(y, z). We first give A0
2():

– Initialize list L = {x}. Let s = q−1+ ϵ be an upper bound on the size of Hδ.
– Let T = sλ/τ , for a parameter τ ∈ (0, 1) to be chosen later.
– Repeat the following at least T times:
• For each pair (w,w′) ∈ L2, run Lw,w′ ← A1(w,w

′)
• Let L′ = ∪w,w′Lw,w′

• If |L′| = |L| and the number of iterations so far is ≥ T , terminate and
output L. Otherwise (if the number of iterations is < T or |L′| ̸= |L|),
replace L with L′, and continue.

We now analyze the algorithm L← A0
2().

Lemma 11. Except with negligible probability 2−Ω(λ), all of the following hold:

– L = H ⋆ x for some (potentially unknown) subgroup H ⊆ Hδ.
– A0

2() will terminate in at most T + s steps.
– For the resulting H, Pr[M ⊈ H : M ← D′] < τ .

Proof. Combining Lemmas 9 and 10, we know that except with probability
2−Ω(λ), Lw,w′ will be a list containing CDH(w,w′). Throughout the rest of the
proof of Lemma 11, we will therefore assume CDH(w,w′) ∈ Lw,w′ for all itera-
tions and for all w,w′.

We first argue that L ⊆ L′ in every iteration, except with probability 2−Ω(λ).
In particular, since L is set to L′ at the end of each iteration, this means that L
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is never decreasing in size, and once an element is added to L it will remain for
the rest of the algorithm. Indeed, L initially contains x. By induction, assume L
contains x for the first i iterations, and consider computing L′ in this iteration.
L′ is set to L′ = ∪w,w′Lw,w′ where Lw,w′ ← A1(w,w

′) as w,w′ range over L. In
particular, since x ∈ L, L′ will contain Lw,x ← A1(w, x) for every w ∈ L. Since
we assume Lw,x contains CDH(w, x) = w, every w ∈ L will be included in L′.

Therefore, if |L′| = |L|, it must mean that L′ = L. Additionally, once we
terminate, we know that CDH(w,w′) ∈ L′ = L for every w,w′ ∈ L, meaning L
is closed under CDH/multiplication once we terminate. Hence, L forms H ⋆ x
for some subgroup H. By Lemma 10, our algorithm maintains the invariant that
L ⊆ Hδ at all times, and hence H ⊆ Hδ.

Now consider any w ∈ Hδ such that Pr[w ∈ M : M ← D′] ≥ τ/s. Then
after T iterations, the probability w never gets added to L is (1 − τ/s)T =
(1−τ/s)sλ/τ ≈ e−λ. Union bounding over at most s such w, we see that all such
w get added to L, except with probability at most 2−Ω(λ). In this case, a union
bound over the w such that Pr[w ∈ M : M ← D′] < τ/s, of which there are at
most s, shows that the probability of sampling any value not in H is less than
τ . ⊓⊔

We now give the algorithm A1
2(y, z, L):

– InitializeM to be an empty list of unordered sets.
– Repeat the following λ times:
• Run M ← A1(y, z).
• For each w ∈M,w′ ∈ L, run Mw,w′ ← A1(w,w

′).
• Let M = ∪w,w′Mw,w′ . Add M toM (keeping duplicates).

– Let M∗ be the most common element inM.

We now analyze the algorithm A1
2(y, z, L).

Lemma 12. If τ ≤ 1/4(s2 + 1), then except with probability 2−Ω(λ), L = H ⋆ x
for some subgroup H ⊆ Hδ, and M∗ = CDH(y, z,H ⋆ x).

Proof. Define w∗ = CDH(y, z). We assume the bullets of Lemma 11 hold, which
Lemma 11 shows hold except with probability 2−Ω(λ). Therefore, L = H ⋆ x for
some subgroupH ⊆ Hδ. It remains to show thatM∗ = CDH(y, z,H⋆x) = H⋆w∗.
By union-bounding over the s2 + 1 runs of A1 in each iteration and invoking
the last bullet of Lemma 11, the following holds: for each iteration, except with
probability at most τ × (s2 + 1) ≤ 1/4, we have that

– Mw,w′ ⊆ H ⋆ w∗ for each w ∈ M,w′ ∈ L, and therefore in particular M ⊆
H ⋆ w∗.

– w∗ ∈M .

Provided M ⊆ H ⋆ w∗, except with probability 2−Ω(λ), we have CDH(w,w′) ∈
Mw,w′ , and so H ⋆ w∗ = CDH(w⋆,H ⋆ x) ⊆ M . Therefore, M = H ⋆ w∗ with
probability at least 3/4 − 2−Ω(λ) ≥ 2/3. Since each iteration samples indepen-
dently the distribution over M , by simple concentration bounds H ⋆ w⋆ will be
the majority element ofM, except with probability 2−Ω(λ). ⊓⊔
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Note that A0
2 runs A1 for (T + s)|L|2 = O(|L|2λ/q3) = Õ(q−5) times, giving

Õ(q−13) total queries to A and the group action operation. Meanwhile, A1
2 runs

A1 for λ|L|2 times, giving Õ(q−10) queries to A and the group operation.
From this point on, we fix a single L← A0

2() once and for all.

Removing Superfluous Information. We will next want to run quantum period-
finding algorithms which make queries to A1

2 on superpositions of inputs. These
algorithms, however, assume A1

2 is a function. Unfortunately, our algorithm gen-
erates significant side information, namely all the intermediate computations
used to arrive at the final answer. Fortunately, since our algorithm outputs a
single answer with overwhelming probability, we can use the standard trick of
purifying the execution of A1

2 and then un-computing all the intermediate values.
The result is that A1

2 is negligibly close to behaving as the function mapping
(y, z) 7→ H ⋆ CDH(y, z). From now on, we will therefore assume that A1

2 is such
a function.

Computing H. Given algorithm A1
2, we can compute the subgroup H using

quantum period-finding [BL95]. Concretely, the function a 7→ A1
2(a⋆x, x, L) will

output (aH) ⋆ x, which is periodic with set of periods H. Therefore, applying
quantum period finding to the procedure a 7→ A1

2(a⋆x, x, L) will recover H. This
will make O(log |G|) calls to A1

2(a ⋆ x, x, L).

Solving DLog in G/H. Notice that A1
2 is a (near) perfect CDH-solver, just in the

group action corresponding to G/H. Concretely, the group G/H acts on the set
X/H := {H ⋆ y : y ∈ X} in the obvious way; the distinguished element of X/H
is H ⋆ x. Our algorithm A1

2 gives a perfect CDH algorithm for this group action:
we compute CDH(H⋆y,H⋆z) as A1

2(y
′, z′) for an arbitrary y′ ∈ H⋆y, z′ ∈ H⋆z.

We apply Galbraith et al. [GPSV18] to our CDH adversary for (G/H, X/H)
to obtain a DLog adversary B(gH ⋆ x) which computes gH. For completeness,
we sketch the idea: Let a be a set of generators for G/H. Since G is abelian, we
can write any g as av for some vector v ∈ Zn1 ×· · ·×Znk

where ni is the period
of ai. We assume the ni are fully reduced, so that the choice of v is unique.
Shor’s algorithm is used in this step, and we note that Shor’s algorithm will not
necessarily work if G is not abelian and our group action is not regular, which
is why we need this restriction.

The CDH oracle allows, given h ⋆ (H ⋆ x), to compute hy ⋆ (H ⋆ x) in O(log y)
steps using repeated squaring. Given a DLog instance g ⋆ (H ⋆ x) = av ⋆ (H ⋆ x),
we define the function (x, y) 7→ ax+yv ⋆ (H ⋆ x), which can be computed using
the CDH oracle. Then this function is periodic with period (v,−1). Running
quantum period-finding therefore gives v, which can be used to compute h.

Solving DLog in G. We now have an algorithm which solves, with overwhelming
probability, DLog in G/H. We now turn this into a full DLog adversary, which
works as follows:

– Given y = c ⋆ x, first apply the DLog adversary for G/H, which outputs cH.
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– For each a ∈ cH (which is polynomial sized), test if y = a ⋆ x. We output
the unique such a.

Overall, assuming q is small relative to log |G|, the running time of the algo-
rithm is dominated by the cost of running A0

2, namely Õ(q−13) total calls to A
and the group action operations.

Remark 4. The dependence on q in our reduction is not ideal. The cost of our
attack, however, is dominated by the cost of determining the subgroup. Typically,
however, we expect the possible small-order subgroups to be known, and for
there to only be a very limited number of options. In this case, we expect the
complexity of our attack could be drastically improved.

3.1 Extending to Non-Regular Group Actions

The above assumed a regular group action, which captures all the cryptographic
abelian group actions currently known. Here, we briefly sketch how to extend to
an arbitrary abelian group action. The idea is that, within any ablelian group
action, we can pull out a regular group action, and then apply the reduction
above.

Concretely, we first consider restricting (G,X, ⋆) to the orbit of x under G,
namely G ⋆ x. Let S ⊆ G the the set of a that “stabilizes” x, namely a ⋆ x = x.
Then S is a subgroup. Moreover, for any y ∈ G ⋆ x, the set of a that stabilize y
is also exactly S.

The first step is to compute the (representation of the) subgroup S. Let
f : G → X be defined as f(a) = a ⋆ x. Then f is an instance of the abelian
hidden subgroup problem with hidden subgroup exactly S. Therefore, we can
find S using Shor’s quantum algorithm.

Then we can define the new group action (G/S,G ⋆ x, ⋆), which is a regular
abelian group action. CDH in this group action is identical to CDH in the original
group action, in that a CDH adversary for one is also a CDH adversary for the
other. We can also solve DLog in (G,X, ⋆) by solving DLog in (G/S,G ⋆ x, ⋆),
and then lifting a ∈ G/S to a′ = (a, g) ∈ G for an arbitrary g ∈ S.

The main challenge is that our CDH adversary A may not always output
elements in G ⋆ x, and it may be infeasible to tell when it outputs an element
in G⋆x versus a different orbit. Nevertheless, the same reduction as used above
applies, and the analysis can be extended straightforwardly but tediously to
handle the fact that A may output elements in different orbits. The rough idea
is that L outputted by A1 may no longer be a subset of Hδ ⋆ x, as it may have
pieces from elements from different orbits. But L∩G⋆x is still a subset of Hδ ⋆x,
and similar statements hold for A0

2,A1
2 as well. This is enough to ensure that we

obtain a near-perfect CDH algorithm on (G/S)/H.

4 On the DDH and CDH (In)equivalence

A natural question to ask is whether we can show that the group action variants
of CDH and DDH are equivalent. In traditional groups, there are a number of
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ways to argue that CDH and DDH are not equivalent, including by positing the
existence of bilinear maps [BF01].

We show that for general group actions, the problems are also not equivalent.
We do this by providing examples of group actions where “CDH” is hard and
“DDH” is easy. In particular, we show that any group action where the group
can be written as a non-trivial product group has the potential to be “CDH”
hard but not “DDH” hard. This mirrors what we know classically and in the
plain group setting, since there we can have groups that are CDH hard but not
DDH hard. We state this formally in the following lemma.

Lemma 13. Let (G,X, ⋆) be an effective group action such that no efficient
adversary can solve the group action CDH problem (as defined in definition 5)
over it. Then there exists a group action (G′, X ′,⋆) where no efficient adversary
can solve the CDH problem, but there exists a PPT algorithm for solving the
group action DDH problem (as defined in definition 6).

Proof. Consider some extra group G̃. We can define a “group action” G̃×G̃→ G̃
where the group action operation is simply group multiplication in G̃. Discrete
log is trivial on this group since group inversion is efficient.

From our secure group action (G,X, ⋆) and our insecure “group action,” we
construct another group action (G′, X ′,⋆) which we define as follows:

G′ = G× G̃

X ′ = X × G̃

⋆ :
{
G× G̃

}
×
{
X × G̃

}
→
{
X × G̃

}
For some g ∈ G, x ∈ X, g̃1, g̃2 ∈ G̃, we define the action as follows:

{g, g̃1}⋆ {x, g̃2} = {g ⋆ x, g̃1g̃2}

Note that this definition meets all of the requirements of the group action. G×G̃
is a (product) group, and all of the group action axioms hold.

We can immediately build a PPT distinguisher: given a DDH tuple
(x′1 = (x, g̃1) , g

′ ⋆ x′1 = (g ⋆ x1, g̃g̃1) , x
′
2 = (x, g̃2) , g

′ ⋆ x′2 = (g ⋆ x2, g̃g̃2)), we can
perform the following check:

(g̃g̃2)
−1

(g̃g̃1) = g̃−12 g̃1

This immediately breaks the pseudorandomness of the group action, meaning

that the group action DDH problem is not hard over
(
G̃, X̃,⋆

)
. However, any

adversary that breaks the group action CDH problem on
(
G̃, X̃,⋆

)
also breaks

it on (G,X, ⋆), which contradicts our assumption that the CDH problem is hard
on this group action. ⊓⊔

In the above example, we used a product group. A nice question is as follows:
what happens if we assume that the group must be, say, prime-order cyclic? This
case is much harder to show interesting results since we don’t have efficiently
computable bilinear pairings as in the standard group setting.
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5 A Generic Group Action Framework

In this section, we define a generic group action framework. We create two
models: one for classical queries, and one which allows quantum queries. Our
framework is based on the generic group framework of Shoup [Sho97]. We borrow
from Shoup’s description in our own explanation below.

Let G be a group of order n, let X be a set that is representable by bit
strings of length m, and let (G,X, ⋆) be a group action. We define additional
sets SG and SX such that they have cardinality of at least n and 2m, respectively.
We define encoding functions of σG and σX on SG and SX , respectively, to be
injective maps of the form σG : G→ SG and σX : X → SX .

A generic algorithm A for (G,X, ⋆) on (SG, SX) is a probabilistic algo-
rithm that behaves in the following way. It takes as input two encoding lists
(σG (g1) , ..., σG (gk)) and (σX (x1) , ..., σX (xk′)) where each gi ∈ G and xi ∈ X
and where σG and σX are encoding functions of G on SG and X on SX , respec-
tively. As the algorithm executes, it may consult two oracles, OG and OX .

The oracle OG takes as input two strings y, z representing group elements
and a sign “+” or “–”, computes σG

(
σ−1G (y)± σ−1G (z)

)
. The oracle OX takes

as input a string y representing a group element and string z representing a set
element, and computes σX

(
σ−1G (y) ⋆ σ−1X (z)

)
. As is typical in the literature, we

can force all queries to be on either the initial encoding lists or the results of
previous queries by making the string length m very long. We typically measure
the running time of the algorithm by the number of oracle queries.

We can also extend the generic group action model to the quantum setting,
where we allow quantum queries to the oracles. We model quantum queries in
the usual way: OG

∑
y,z,±,w αy,z,±,w|y, z,±, w⟩ =

∑
y,z,±,w αy,z,±,w|y, z,±, w ⊕

OG(y, z,±)⟩ and OX

∑
y,z,w αy,z,w|y, z, w⟩ =

∑
y,z,w αy,z,w|y, z, w ⊕OX(y, z)⟩.

6 On REGAs

Our reductions showing the equivalence of group action DLog and CDH un-
fortunately only hold for EGAs and not for REGAs. In their work showing an
equivalence for a perfect oracle [GPSV18], Galbraith et al. suggest that applying
the BKZ algorithm [SE94] or other lattice reduction techniques can be used to
complete the reduction. In this section, we formalize this idea with a number
of resuts on the relationship between REGAs and lattices, and, in particular,
focus on the 1D-SIS problem, which is a lattice problem that is equivalent to the
standard form of LWE modulo PPT reductions. Due to space constraints, we
only state the relevant lemmas in this section and defer proofs to the full version
of the paper. We present the full, unabridged version of this section as well as
the formal definitions related to REGAs in full in the full version of the paper.

In this section, we will rely on the fact that, using a generalization of Shor’s
algorithm [CM01], we can (quantumly) efficiently compute the isomorphism be-
tween any abelian group G and a product group over groups of the integers

G ∼= Z1 × ...× Zm.
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We additionally note that most of our results here only hold for regular group
actions. We do not consider this a major drawback since all popular REGAs
(e.g. CSIDH and its derivatives) are regular REGAs.

A “1D-SIS Oracle” Completes the DLog/CDH Reduction for REGAs.
We begin by formalizing the argument from Galbraith et al. [GPSV18] that effi-
cient lattice reductions could be used to show the discrete log/CDH equivalence
of REGAs. While doing this in full would involve completely replicating our ear-
lier proof, we simply point out at which stages using a REGA makes a difference
and how we can handle these points.

We first need to ensure that we can randomly sample elements from a REGA.
We define a notion of “sampleable REGA” capturing this:

Definition 7. Sampleable REGA: Let (G,X, ⋆) be a REGA with group el-
ement vector g = (g1, ...,gm) for some m. We say that such a REGA is sam-
pleable if there exists an efficient way to sample a vector b ∈ {−γ, γ}m for some
polynomial γ such that the vector r =

∑m
i=1 bigi is distributed statistically close

to uniform over G.

This requirement essentially just requires that some form of the leftover hash
lemma applies over the group with the action-computable elements as the “base.”
We note that many cryptosystems build on REGAs (i.e. those using CSIDH)
implicitly make this assumption. We need this to rule out cases where the ele-
ments of g are too clustered: for instance, if G is Zp and all of the gi are small
integers, we will not be able to effectively compute the group action on ran-
domly distributed group elements. Next, we define a specialized problem we call
“REGA-SIS.” Note that this is not a standard problem because, among other
things, the gi distribution comes from the definition of the REGA.

Definition 8. REGA-SIS: Let (G,X, ⋆) be a REGA with group element vec-
tor g = (g1, ...,gm) for some m. We define SISREGA,β in the following way:
given a random element h← G, the problem is to find some vector u ∈ [−β, β]m
such that h =

∑m
i=1 uigi.

This problem is parameterized by the REGA and, in particular, by both the
group and the computable elements. Furthermore, for G = Zq and when each
coefficient of g is distributed uniformly at random, REGA-SIS is exactly the
1D-inhomogeneous SIS (1D-ISIS) problem (which is reducible to standard 1D-
SIS with a slight loss in parameters, and 1D-SIS itself is again reducible to and
from standard LWE, for appropriate parameter settings). So this problem can
be viewed as a slightly unnatural generalization of SIS. We can now state our
core lemma on REGAs.

Lemma 14. Consider any efficiently sampleable REGA as defined in defini-
tion 7. Then any adversary that can solve the CDH problem on the REGA with
advantage ϵ1 and the SISREGA,β problem for the same REGA and some poly-
nomial β with advantage ϵ2 can be used to solve the discrete log problem on the
same REGA with advantage ϵ1ϵ2.
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Discrete Log on REGAs and 1D-SIS. Recall that a REGA is a group
action (G,X, ⋆) where the action is only computable on a set of group elements
defined by a vector g = (g1, . . . , gn). Suppose that G is an abelian group. We
claim that if these group elements are distributed randomly, then any adversary
that can solve discrete log on the REGA can be used to solve the 1D-SIS problem
for certain parameter settings (which are all reducible to some form of standard
LWE). The analysis of most practical REGAs (e.g. CSIDH) assume follow this
convention, so this is not an unreasonable assumption to make. We formalize
this with the following lemma.

Lemma 15. Let q and m be integers such that m ≥ 3 log q. Let A be an ad-
versary that can solve the group action DLog problem on regular REGAs of the
form (Zq, X, ⋆) where the vector of group elements g = (g1, ..., gm) is m elements
long and distributed uniformly at random with advantage ϵ. Then A can be used
to solve the 1D-SISm,q,β problem for some polynomial β with advantage ϵ.

CDH on REGAs. We above showed that an adversary that can solve discrete
log on a REGA can solve a variant of the SIS problem, and that any adversary
that can solve this SIS variant can also be used to complete the CDH/DLog
reduction. Can we tie all of this together to get an unconditional CDH to DLog
reduction to work for REGAs?

We give some mild evidence in this direction. We can show that any generic
adversary that makes only classical queries to a generic group action oracle (that
may still be able to perform quantum computations) can be used to solve the
REGA-SIS problem we defined above in Definition 8. We can then use this to
complete the CDH to DLog reduction for generic, classically-querying adver-
saries. Of course, classically we can prove CDH and DLog are unconditionally
hard (this follows from the unconditional hardness of these problems in plain
groups), and therefore equivalent. But phrasing the equivalence as a reduction
suggests a possible starting point for a quantum equivalence

Lemma 16. Consider some regular, abelian, and efficiently sampleable REGA
(G,X, ⋆) with computable elements g = (g1, ...,gm). Suppose there exists a
generic adversary making only classical group and group action queries that
can solve the GA-CDH problem on this REGA with advantage ϵ. Then there
exists an adversary that can solve REGA-SIS for some polynomial parameter β
with advantage ϵ/2.

Discussion. We have shown three core results on REGAs (stated informally):
an adversary for our REGA-SIS problem would complete our CDH/DLog re-
duction for REGAs, an adversary for DLog on REGAs solves this REGA-SIS
problem, and a generic adversary that only makes classical queries that can solve
CDH on REGAs can be used to solve REGA-SIS as well. All together, these
seemingly tightly bind CDH and DLog on a REGA to a SIS-like problem that
appears to be vulnerable to lattice-based cryptanalysis [GPSV18]. We therefore
provide some evidence for a quantum DLog-CDH equivalence on REGAs.
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7 Hidden Subgroup Problems and GAs

In this section, we discuss some similarities between different kinds of hidden
subgroup problems (HSPs) and solving group actions. We particularly focus on
the generalized dihedral group. We note that, among other things, formalizing
a connection between group actions and these kinds of problem would allow us
to potentially tie two of the most popular forms of post-quantum cryptosystems
(lattices and isogenies) together. Once again, due to space constraints, we just
state lemmas here and defer the full presentation to the full version of the paper.

The Generalized Dihedral Hidden Subgroup Problem. We begin by defin-
ing the generalized dihedral group.

Definition 9. Generalized Dihedral Group: Let A be an abelian group. The
generalized dihedral group on A, denoted DA, is the group defined by Z2 ⋉A.

When A ∼= Zn, we get back the standard notion of the dihedral group on 2n
elements. The dihedral group has a number of nice geometric explanations and
properties, but we defer those to others [KLG06]. We next define the general
dihedral hidden subgroup problem. However, rather than defining this problem
in its traditional sense, we will use an equivalent formulation known as the abelian
hidden shift problem. These problems are well known to be equivalent [CVD05].

Definition 10. Abelian Hidden Shift Problem (equivalent to GDHSP):
Consider some functions f, g such that, for some c ∈ A and for all b ∈ Zn,
f(b) = g (b+ c). We also require that each of the ||A|| output values of f and g
are also distinct. We say that an algorithm solves the abelian hidden shift problem
if, given descriptions of f and g, it outputs c (which reveals the subgroup in the
generalized dihedral hidden subgroup version of the problem).

The dihedral hidden subgroup problem has strong connections to lattice prob-
lems [Reg02], in that if an efficient algorithm for the DHS problem that uses a
special type of “coset sampling” exists, then an efficient algorithm for the LWE
problem exists as well. The best known algorithms for solving the DHS problem
are subexponential and based on Kuperberg’s algorithm [Kup05, Reg04, Kup13].

An Algorithm for the AHSP Breaks Regular, Abelian Group Actions.
We first show a relatively straightforward result: any algorithm that can solve
the abelian hidden shift problem can be used to solve DLog on a regular, abelian
group action. This is essentially already folklore since there have been many in-
stances (starting with [CJS14]) using Kuperberg’s algorithm or related principles
to build attacks against isogenies that can be modelled as EGAs.

Lemma 17. Let (G,X, ⋆) denote a regular, abelian group action. Suppose there
exists a PPT algorithm A for solving the abelian hidden shift problem on A with
probability ϵ. Then there exists for solving the GA-DLog problem on (G,X, ⋆)
with probability ϵ.
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Using Group Action Algorithms to Solve the AHSP. What about the
other direction? Can we show that an adversary that can break DLog on a
group action can solve the AHSP? Unfortunately, this seems difficult: because
the AHSP is described so generally–the functions f and g can be anything as
long as the functions are injective–so it seems difficult or impossible to prove
this for any non-generic algorithm.

But what about generic algorithms? Could we prove that the AHSP is equiv-
alent to generically solving DLog over group actions? This seems like it might
be plausible. The most interesting result would show equivalence in a generic
group action model with quantum queries. While this may be attainable, unfor-
tunately we do not know how to achieve this result. However, we can show that
an adversary that can generically solve group action DLog with classical queries
can be used to solve the AHSP, which is seemingly a step in the right direction.
We formalize this result below.

Lemma 18. Let (G,X, ⋆) be an abelian, regular group action (EGA). Suppose
there exists a generic adversary A that breaks the group action DLog problem (as
defined in definition 4) with advantage ϵ on this group action. Then there exists
an algorithm that solves that AHSP on G with advantage ϵ.

Discussion. Unfortunately, it seems difficult to show a full quantum equiv-
alence between the generalized dihedral hidden subgroup problem and solving
DLog on a generic group action. The challenge comes from the fact that it is
difficult quantumly to “remember” an adversary’s query for later use in the
simulation. One possible direction is to use compressed oracles [Zha19], which
offer some ability to record quantum queries. However, it appears challenging
to adapt the compressed oracle framework to highly structured oracles such
as generic group actions. Nevertheless, we close this section with the following
conjecture, which we think is very interesting future work:

Conjecture 1. The generalized dihedral hidden subgroup problem on an abelian
groupA is equivalent to the group action discrete logarithm problem on a regular,
abelian group action (A,X, ⋆) in a quantum generic model.
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cryptosystems from supersingular elliptic curve isogenies. Journal of Math-
ematical Cryptology, 8(3):209–247, 2014.

DM20a. Luca De Feo and Michael Meyer. Threshold schemes from isogeny assump-
tions. In PKC 2020, Part II, LNCS, pages 187–212. Springer, Heidelberg,
2020.

DM20b. Luca De Feo and Michael Meyer. Threshold schemes from isogeny assump-
tions. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vas-
silis Zikas, editors, Public-Key Cryptography – PKC 2020, pages 187–212,
Cham, 2020. Springer International Publishing.

GPSV18. Steven Galbraith, Lorenz Panny, Benjamin Smith, and Frederik Ver-
cauteren. Quantum equivalence of the DLP and CDHP for group actions.
Cryptology ePrint Archive, Report 2018/1199, 2018. https://eprint.

iacr.org/2018/1199.

ILL89. Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random
generation from one-way functions (extended abstracts). In 21st ACM
STOC, pages 12–24. ACM Press, May 1989.

JQSY19. Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun. General linear
group action on tensors: A candidate for post-quantum cryptography. In
TCC 2019, Part I, LNCS, pages 251–281. Springer, Heidelberg, March
2019.

KLC+00. Ki Hyoung Ko, Sangjin Lee, Jung Hee Cheon, Jae Woo Han, Ju-Sung Kang,
and Choonsik Park. New public-key cryptosystem using Braid groups. In
Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 166–
183. Springer, Heidelberg, August 2000.

KLG06. Hirotada Kobayashi and François Le Gall. Dihedral hidden subgroup prob-
lem: A survey. Information and Media technologies, 1(1):178–185, 2006.

28

https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2018/1199
https://eprint.iacr.org/2018/1199


Kup05. Greg Kuperberg. A subexponential-time quantum algorithm for the dihe-
dral hidden subgroup problem. SIAM Journal of Computing, 35(1):170–
188, 2005.

Kup13. Greg Kuperberg. Another Subexponential-time Quantum Algorithm for
the Dihedral Hidden Subgroup Problem. In Simone Severini and Fernando
Brandao, editors, 8th Conference on the Theory of Quantum Computation,
Communication and Cryptography (TQC 2013), volume 22 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 20–34, Dagstuhl,
Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

LGdSG21. Yi-Fu Lai, Steven D Galbraith, and Cyprien Delpech de Saint Guilhem.
Compact, efficient and uc-secure isogeny-based oblivious transfer. In An-
nual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 213–241. Springer, 2021.

Mas90. P. Massart. The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz In-
equality. The Annals of Probability, 18(3):1269 – 1283, 1990.

Mau94. Ueli M. Maurer. Towards the equivalence of breaking the Diffie-Hellman
protocol and computing discrete algorithms. In Yvo Desmedt, editor,
CRYPTO’94, volume 839 of LNCS, pages 271–281. Springer, Heidelberg,
August 1994.

MM22. Luciano Maino and Chloe Martindale. An attack on sidh with arbitrary
starting curve. Cryptology ePrint Archive, Paper 2022/1026, 2022. https:
//eprint.iacr.org/2022/1026.

MW96. Ueli M. Maurer and Stefan Wolf. Diffie-Hellman oracles. In Neal Koblitz,
editor, CRYPTO’96, volume 1109 of LNCS, pages 268–282. Springer, Hei-
delberg, August 1996.

Onu21. Hiroshi Onuki. On oriented supersingular elliptic curves. Finite Fields and
Their Applications, 69:101777, 2021.

Pei20. Chris Peikert. He gives C-sieves on the CSIDH. In Vincent Rijmen and
Yuval Ishai, editors, EUROCRYPT 2020, Part II, LNCS, pages 463–492.
Springer, Heidelberg, May 2020.

Reg02. Oded Regev. Quantum computation and lattice problems. In 43rd FOCS,
pages 520–529. IEEE Computer Society Press, November 2002.

Reg04. Oded Regev. A subexponential time algorithm for the dihedral hidden
subgroup problem with polynomial space. arXiv:quant-ph/0406151, June
2004.

Rob22. Damien Robert. Breaking sidh in polynomial time. Cryptology ePrint
Archive, Paper 2022/1038, 2022. https://eprint.iacr.org/2022/1038.

RS06. Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem
Based On Isogenies. Cryptology ePrint Archive, Report 2006/145, 2006.
https://eprint.iacr.org/2006/145.

SE94. Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Im-
proved practical algorithms and solving subset sum problems. Mathemati-
cal programming, 66(1):181–199, 1994.

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society
Press, November 1994.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997.

29

https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2006/145


Shp08. Vladimir Shpilrain. Cryptanalysis of stickel’s key exchange scheme. In
International Computer Science Symposium in Russia, pages 283–288.
Springer, 2008.

Sti05. Eberhard Stickel. A new method for exchanging secret keys. In Third
International Conference on Information Technology and Applications
(ICITA’05), volume 2, pages 426–430. IEEE, 2005.

SU05a. Vladimir Shpilrain and Alexander Ushakov. A new key exchange protocol
based on the decomposition problem. Cryptology ePrint Archive, Report
2005/447, 2005. https://ia.cr/2005/447.

SU05b. Vladimir Shpilrain and Alexander Ushakov. Thompson’s group and public
key cryptography. In John Ioannidis, Angelos Keromytis, and Moti Yung,
editors, ACNS 05, volume 3531 of LNCS, pages 151–163. Springer, Heidel-
berg, June 2005.

Zha19. Mark Zhandry. How to record quantum queries, and applications to quan-
tum indifferentiability. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 239–268.
Springer, Heidelberg, August 2019.

30

https://ia.cr/2005/447

	Full Quantum Equivalence of Group Action DLog and CDH, and More

