
Witness Encryption and Null-IO
from Evasive LWE

Vinod Vaikuntanathan1, Hoeteck Wee2, and Daniel Wichs2,3

1 MIT CSAIL
2 NTT Research

3 Northeastern U.

Abstract. Witness encryption (WE) allows us to use an arbitrary NP
statement x as a public key to encrypt a message, and the witness w
serves as a decryption key. Security ensures that, when the statement
x is false, the encrypted message remains computationally hidden. WE
appears to be significantly weaker than indistinguishability obfuscation
(iO). Indeed, WE is closely related to a highly restricted form of iO
that only guarantees security for null circuits (null iO). However, all
current approaches towards constructing WE under nice assumptions go
through iO. Such constructions are quite complex and are unlikely to
lead to practically instantiable schemes. In this work, we revisit a very
simple WE and null iO candidate of Chen, Vaikuntanathan and Wee
(CRYPTO 2018). We show how to prove its security under a nice and
easy-to-state assumption that we refer to as evasive LWE following Wee
(EUROCRYPT 2022). Roughly speaking, the evasive LWE assumption
says the following: assume we have some joint distributions over matrices
P, S and auxiliary information aux such that

(SB + E,SP + E′, aux) ≈c (U,U′, aux),

for a uniformly random (and secret) matrix B, where U,U′ are uniformly
random matrices, and E,E′ are chosen from the LWE error distribution
with appropriate parameters. Then it must also be the case that:

(SB + E,B−1(P), aux) ≈c (U,B−1(P), aux).

Essentially the above says that given SB + E, getting the additional
component B−1(P) is no more useful than just getting the product
(SB + E) ·B−1(P) ≈ SP + E′.

1 Introduction

Witness encryption (WE), a notion introduced by Garg, Gentry, Sahai and Wa-
ters [GGSW13], allows us to use an arbitrary NP statement x as a public key
to encrypt a message. If x is a true statement then any user who knows the
corresponding witness w for x will be able to decrypt the message, but if x is
a false statement then the encrypted message is computationally hidden. For
example, the Clay Mathematics Institute could encrypt $1M worth of bitcoin



2 Vaikuntanathan, Wee, and Wichs

reward under the NP statement that corresponds to the Riemann hypothesis. If
anyone comes up with such a proof, they can use that as the witness to decrypt
the ciphertext and recover the reward.

WE is known to be implied by indistinguishability obfuscation (iO) [BGI+01,
GGH+13b]. However, iO appears to be a significantly stronger primitive than
WE, and provably so with respect to black-box constructions [GMM17]. On an
intuitive level, in WE, we only require functionality (ability to correctly decrypt)
in a setting where the statement is true and there are no security guarantees.
Conversely, we only require security to hold in a setting where the statement is
false and there is no functionality requirement. On the other hand, iO requires us
to provide security and functionality simultaneously since the obfuscated pro-
gram needs to function correctly on all inputs while at the same time hiding
the code of the original program. Indeed, modulo the LWE assumption, WE is
equivalent to a very weak form of iO, referred to as null-iO, where security (in-
distinguishability of circuits) only needs to hold for null programs that output 0
on all inputs, while functionality needs to hold for all programs [WZ17,GKW17].

Despite WE being seemingly much weaker than iO, the current state-of-the-
art in constructions does not reflect this. In particular, a beautiful series of recent
works constructs iO under simple-to-state assumptions [AJL+19,JLMS19,Agr19,
GJLS21], culminating in a recent break-through that bases iO on well-studied
hardness assumptions [JLS21b, JLS21a]. Another recent line of works obtains
lattice-inspired iO candidates [Agr19,CHVW19,AP20,BDGM20a,WW21,GP21,
BDGM20b, DQV+21] that avoid the use of pairings and are plausibly post-
quantum secure, but requires less well-studied assumptions pertaining to variants
of LWE with leakage. Both of these routes to iO also incur high computational
complexity due to the use of non-black-box recursion (following [BV15, AJ15]),
making it almost unimaginable that they could be implemented even for the
simplest of programs. Unfortunately, the only known avenue for constructing
WE under similarly nice assumptions goes through iO and inherits all of its
corresponding complexity.

In this work, we turn our attention to earlier frameworks for constructing
iO and witness encryption [GGH+13b, GGSW13, GLW14]: encode the corre-
sponding program or NP instance, represented as a branching programs4, using
multi-linear encodings [GGH13a, CLT15, GGH15]. The ensuing schemes are re-
markably simple, direct, reasonably efficient (e.g., implemented in [HHSS17]),
and could even achieve plausible post-quantum security. Unfortunately, we have
attacks on the iO schemes for read-c branching programs for c = O(1) [CHL+15,
MSZ16, CLLT16, ADGM17, CLLT17, CGH17, Pel18, CVW18, CCH+19]. On the
other hand, none of these attacks are applicable to the WE schemes.

Arguably the simplest of these WE schemes is due to Chen, Vaikuntanathan
and Wee [CVW18] (henceforth CVW) based on GGH15 multi-linear encodings
[GGH15,CC17]. It only relies on LWE-style tools/algebra and is very simple to
write down, with complexity similar to the iO candidate for read-once branching

4 For iO, we need some additional pre-processing to prevent mixed-input attacks; see
Section 7.



Witness Encryption and Null-IO from Evasive LWE 3

programs implemented in [HHSS17]. We do not currently know any attacks on
the CVW WE scheme, nor do we know how to base it on any nice assumption,
other than just tautologically assuming its security. This motivates the main
question of this work:

Question: Can we prove security of the CVW scheme for WE (or a variant
thereof) under a simple assumption?

For the optimist, the assumption would ideally increase our confidence in the
security of the CVW scheme and give us a better understanding of the basis
of this security. For the skeptic, the assumption would constitute a simpler and
easier target for cryptanalysis. More broadly, the assumption could provide new
insights into the security and weakness of GGH15 multi-linear encodings, ex-
tending the positive results in [CC17,GKW17,WZ17,GKW18,CVW18].

1.1 Our Results

We prove the security of the CVW schemes for WE and null-IO under a variant
of Wee’s evasive LWE assumption [Wee22], together with LWE with subexpo-
nential hardness. We analyze the CVW schemes essentially “as is”, with some
modifications to the underlying parameters. We proceed to state the assumption
and then provide an overview of our security proof.

Evasive LWE. Fix some efficiently samplable distributions (S,P, aux) over Zn′×nq ×
Zn×tq × {0, 1}∗. We would like to assert statements of the form

( SB + E ,B−1(P), aux) ≈c ( C ,B−1(P), aux)

where B ← Zn×mq ,C ← Zn′×mq are uniformly random. Think of parameters
O(n log q) ≤ m ≤ t, so that P is wider than B. We have two distinguishing
strategies in the literature:

– distinguish SB + E from C given aux;
– compute (SB + E) ·B−1(P) ≈ SP and distinguish the latter from uniform

(the afore-mentioned zeroizing attacks on iO fall into this category).

The evasive LWE assumption essentially asserts that these are the only distin-
guishing attacks. Namely,

if ( SB + E , SP + E′ , aux) ≈c ( C , C′ , aux), (1)

then ( SB + E ,B−1(P), aux) ≈c ( C ,B−1(P), aux) (2)

where E′ is a fresh noise matrix of sufficiently larger magnitude than E.5 In
[Wee22] (c.f. Section 1.3), the assumption is conceptually similar, but the matrix

5 Note that (SB + E) · B−1(P) has rank at most m and therefore cannot be pseu-
dorandom whenever n′,m < t. Instead, we merely require that the high-order bits
of (SB + E) · B−1(P) ≈ SP are pseudorandom, as formalized by SP + E′ being
pseudorandom.



4 Vaikuntanathan, Wee, and Wichs

B is public and S is secret and uniformly random, while in our case both B,S
are secret and S can be chosen from an arbitrary distribution subject to (1)
holding.

First, to give some intuition for the assumption, we begin with two quick
sanity checks:

– If P is drawn from the uniform distribution over Zm×tq , then the evasive LWE
assumption holds unconditionally. In particular, (2) follows unconditionally
from (1), since B−1(P) is distributed like a random Gaussian and hence can
be simulated without knowing a trapdoor for B. This is the case even if aux
can depend on P, as long as it is efficiently sampleable given P.

– If P = 0 or P is the gadget matrix, then both the pre- and post-conditions
are false, so evasive LWE is vacuously unconditionally true.

We will need to rely on a version of evasive LWE where P is not uniformly
random, but we still manage to ensure that (1) holds. We use the evasive LWE
assumption to argue that (2) holds in this case as well.

Unfortunately, we show that the evasive LWE assumption is unlikely to hold
in its completely full generality with arbitrary aux. In particular, we cook up a
highly contrived auxiliary info aux that contains a carefully crafted obfuscated
program (containing a trapdoor for P). Under a heuristic obfuscation assump-
tion, we show that for this choice of aux, the pre-condition holds, while the
post-condition is clearly violated. This is similar in spirit to the implausibility of
differing-inputs obfuscation (diO) with general auxiliary information, as shown
in [GGHW14]. See Section 8.2 for details of our counter-example. Nevertheless,
analogously to the case of diO, it is still reasonable to assume security with es-
sentially any “natural distribution” of aux that is not specifically cooked up to
contain a counter-example. This is the route we take in this work. In addition,
we also describe in Section 8.2 a class of distributions that are sufficient for our
proofs and seem to avoid obfuscated-based counter-examples.

We note that evasive LWE is qualitatively different from the LWE with leak-
age assumptions used in recent lattice-inspired iO candidates. With the latter,
a distinguisher can easily obtain equations of the LWE secrets over the inte-
gers (which in turn allows zeroizing attacks), whereas the pre-condition in eva-
sive LWE essentially rules this out. Indeed, the variants of LWE with leakage
used in [GP21, WW21] have since been broken in [HJL21], whereas the ones
in [DQV+21, JLMS19] rely on the pseudorandomness of structured low-degree
polynomials over the integers which while plausible, still requires further crypt-
analysis (e.g. we do not know how to rule out sum-of-squares attacks, even
heuristically).

WE and null-IO via GGH15 encodings. We consider a read-once branching pro-
gram (BP) specified by values u ∈ {0, 1}w, {Mi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}. On

input x ∈ {0, 1}h we define Mx :=
∏h
i=1 Mi,xi , and the output of the branch-

ing program is determined by uMx
?
= 0. (Note that the matrices Mi,b are not



Witness Encryption and Null-IO from Evasive LWE 5

necessarily permutations.) The GGH15 encoding of such a branching program
ggh.encode⊗(u, {Mi,b}) is given by{

(uM1,b ⊗ S1,b)A1
:::::::::::::::

,A−11 ((M2,b ⊗ S2,b)A2
::::::::::::::

), . . . ,A−1h−1((Mh,b ⊗ Sh,b)Ah
::::::::::::::

)

}
b∈{0,1}

where Si,b ← Dn×nZ,χ ,Ai,b ← Znw×O(nw log q)
q and we use A−1i,b (·) to denote random

Gaussian pre-images, and we use curly underlines
:::::::::::::

in place of noise terms. Given

the encoding and any x ∈ {0, 1}h, we can approximate (uMx ⊗ Sx)Ah where

Mx :=
∏h
i=1 Mi,xi ,Sx :=

∏h
i=1 Si,xi , and therefore check if uMx

?
= 0.

For WE, we can embed a CNF formula and the message into the read-
once BP, and x corresponds to a truth assignment. For null-IO, we can take
an arbitrary branching program or a NC1 formula and perform some additional
pre-processing on it to convert it into a read-once BP, and x corresponds to a
repetition-encoding of the input to the program/formula. In either case, the way
we do this ensures that, if the formula is unsatisfiable or the program is a null
program, it will be the case that uMx 6= 0 for all x ∈ {0, 1}h. (In the case of null
iO, this will hold even for values x that are not valid repetition-encodings of any
input.) We show what whenever this condition holds, ggh.encode⊗(u, {Mi,b})
is pseudorandom and therefore hides u, {Mi,b}. The latter immediately implies
security of the CVW schemes for WE and null-IO. We sketch the proof of this
statement in our technical overview.

Concurrent Independent Work. The concurrent and independent work of Tsabary
[Tsa22] gives a similar construction of witness encryption and shows security un-
der a variant of evasive LWE, via a similar proof strategy. See Appendix A for
a comparison.

1.2 Technical Overview

The technical core of this work lies proving the following statement:

Theorem 1 (informal). Suppose subexponential LWE and evasive LWE holds.
If uMx 6= 0 for all x ∈ {0, 1}h, then

ggh.encode⊗(u, {Mi,b}) ≈c {C1,b,D2,b, . . . ,Dh,b}b∈{0,1}

where C1,b ← Zn×O(nw log q)
q ,Di,b ← DO(nw log q)×O(nw log q)

Z,χ .

As a warm-up, we prove security under a strengthening of evasive LWE where
we omit SB + E in the pre-condition, namely we assume:

if (SP + E′, aux) ≈c ( C′ , aux),

then ( SB + E ,B−1(P), aux) ≈c ( C ,B−1(P), aux)

Intuitively, evasive LWE says that to prove pseudorandomness of (SB+E,B−1(P),
it suffices to “peel off” B and prove pseudorandomness of the product SP + E′.
Our proof essentially proceeds in two steps:



6 Vaikuntanathan, Wee, and Wichs

– We will use evasive LWE to successively “peel off” A1,A2, . . . ,Ah−1 in our
“encoded program”, which leaves us with 2h products {(uMx ⊗ Sx)Ah

:::::::::::::
}x∈{0,1}h .

– We then show that these 2h evaluated products are pseudorandom under
the LWE assumption, following the BLMR PRF [BLMR13].

We proceed to describe this in more detail.

Proof idea. Suppose instead of getting the full “encoded program”{
(uM1,b ⊗ S1,b)A1
:::::::::::::::

,A−11 ((M2,b ⊗ S2,b)A2
::::::::::::::

), . . . ,A−1h−1((Mh,b ⊗ Sh,b)Ah
::::::::::::::

)

}
b∈{0,1}

,

we were only given the 2h “evaluated products” (with fresh independent errors):{
(uMx ⊗ Sx)Ah
:::::::::::::

}
x∈{0,1}h

,

which is something we could approximate from evaluating the encoded program
on all inputs x ∈ {0, 1}h.6

First, by the same security analysis as the BLMR PRF [BLMR13], we can
rely on (sub-exponential) LWE to show that such “evaluated products” look
pseudorandom. In particular, we have

(uMx ⊗ Sx)Ah
:::::::::::::

≈ (

6=0︷ ︸︸ ︷
uMx ⊗ I) ·

pseudorandom︷ ︸︸ ︷
(I⊗ Sx)Ah
:::::::::

.

Next, we rely on evasive LWE with B = Ah−1 to show that if we were given{
(uMx ⊗ Sx)Ah−1
:::::::::::::::

}
x∈{0,1}h−1

,

{
A−1h−1((Mh,b ⊗ Sh,b)Ah

::::::::::::::
)

}
b∈{0,1}

corresponding to 2h−1 “evaluated products” for all possible choices of the first
h− 1 bits of the input and the last two components of the “encoded program”,
the 2h−1 “evaluated products” would still look pseudorandom.

We repeat the argument with B = Ah−2, . . . ,A1 until we show that just

the first 2 “evaluated products”

{
(uM1,b ⊗ S1,b)A1
:::::::::::::::

}
b∈{0,1}

look pseudoran-

dom even given all the remaining components of the “encoded program”. But
the first 2 “evaluated products” are just the first two components of the “en-
coded program” and hence we can replace them by uniformly random matrices

6 While a polynomial-time adversary cannot evaluate the encoded program on
all 2h inputs, it can still efficiently approximate some linear combination of
an exponential number of inputs, e.g. the sum of all 2h evaluated products,
using ((uM1,0 ⊗ S1,0)A1

::::::::::::::
+ (uM1,1 ⊗ S1,1)A1

::::::::::::::
) ·

∏h
i=2(A−1

i−1((Mi,0 ⊗ Si,0)Ai
::::::::::::

) +

A−1
i−1((Mi,1 ⊗ Si,1)Ai

::::::::::::
).



Witness Encryption and Null-IO from Evasive LWE 7

{C1,b}b∈{0,1} At this point, we can invoke an argument from [CVW18] to re-

place the subsequent components of the encoded program by uniformly random
Gaussians to complete the proof.7

Example for h = 3. In more detail, let’s see an example for h = 3. In that case,
the proof shows:{

(uMx ⊗ Sx)A3
:::::::::::::

}
x∈{0,1}3

≈c
{

Cx ← Zn×O(nw log q)
q

}
x∈{0,1}3

=⇒
{

(uMx′ ⊗ Sx′)A2
::::::::::::::

}
x′∈{0,1}2

,

{
A−12 ((M3,b ⊗ S3,b)A3

::::::::::::::
)

}
b∈{0,1}

≈c
{

Cx′ ← Zn×O(nw log q)
q

}
x′∈{0,1}2

,

{
A−12 ((M3,b ⊗ S3,b)A3

::::::::::::::
)

}
b∈{0,1}

=⇒
{

(uMb ⊗ Sb)A1
::::::::::::

,A−11 ((M2,b ⊗ S2,b)A2
::::::::::::::

),A−12 ((M3,b ⊗ S3,b)A3
::::::::::::::

)

}
b∈{0,1}

≈c
{

C1,b,A
−1
1 ((M2,b ⊗ S2,b)A2

::::::::::::::
),A−12 ((M3,b ⊗ S3,b)A3

::::::::::::::
)

}
b∈{0,1}

≈c {C1,b,D2,b,D3,b}b∈{0,1}

The first statement uses subexponential LWE, and uses security of the BLMR
PRF [BLMR13] (as described earlier) asserting pseudorandomness of the set of

values

{
(I⊗ Sx)A3
:::::::::

}
x∈{0,1}3

, together with the condition uMx 6= 0 for all x.

The next two =⇒ corresponds to invocations of evasive LWE. In particular, for
the second =⇒, we invoke the assumption with:

S =

(
uM1,0 ⊗ S1,0

uM1,1 ⊗ S1,1

)
P = [(M2,0 ⊗ S2,0)A2

::::::::::::::
‖(M2,1 ⊗ S2,1)A2

::::::::::::::
]

aux =

{
A−12 ((M3,b ⊗ S3,b)A3

::::::::::::::
)

}
b∈{0,1}

For this step, we will actually additionally need to use noise flooding to prove
the pre-condition. As a result, the noise parameter in (uM1,b ⊗ S1,b)A1

:::::::::::::::
is going

to much be larger than that in A−1j−1((Mj,b ⊗ Sj,b)Aj
:::::::::::::

), j = 2, . . . , h. The final ≈c

follows from an argument used in [CVW18], repeatedly applying A−1(Z
:

) ≈c D

(follows from LWE) from “left to right”.

7 The above proof strategy forces us to rely on LWE with sub-exponential security
for two distinct reasons. Firstly, in the base case, we rely on LWE with 2h terms.
Secondly, we rely on h levels of induction, where each level of the induction incurs a
polynomial security loss.



8 Vaikuntanathan, Wee, and Wichs

Tying up the loose ends. More generally, we invoke evasive LWE h − 1 times,
where each statement contains up to 2h terms, so the size of the evasive LWE
instances are as large as 2h · poly(λ). With each invocation of evasive LWE, we
also incur a multiplicative polynomial security loss (in the size of the instance),
and therefore our total security loss is (2h · poly(λ))O(h).

To extend the argument to the setting where SB + E is also provided in the
pre-condition, we observe that

(SB + E,S, aux) ≈c (C,S, aux) ∧ (SP + E′,S, aux) ≈c (C′,S, aux)

=⇒ (SB + E,SP + E′,S, aux) ≈c (SB + E,C′,S, aux) ≈c (C,C′,S, aux)

This allows us to treat pseudorandomness of SB + E and that of SP + E′

separately, where the former will rely on security of the BLMR PRF (which holds
even if the distinguisher gets {Si,b}i∈[h],b∈{0,1}) and the latter uses the argument

as before. This step is important as it captures the fact that the adversary
can in fact compute 22h− 1 evaluated products {(uMx′ ⊗ Sx′)Aj

::::::::::::::
}x′∈{0,1}j ,j∈[h]

corresponding to all possible prefixes x′ of length at most h.

1.3 Discussion

Comparison with [Wee22]. Wee’s evasive LWE assumption in [Wee22] considers
distributions over pairs of matrices (A′,P) together with auxiliary input aux
and stipulates that

if (A′,B,P, sA + e′ , sB + e , sP + e′′ , aux) ≈c (A′,B,P, c′ , c , c′′ , aux),

then (A′,B, sA + e′ , sB + e ,B−1(P), aux) ≈c (A′,B, c′ , c ,B−1(P), aux)

For the applications in [Wee22], the auxiliary input includes the coin tosses used
to sample A′,P, which rules out obfuscation-based counter-examples.

In [Wee22], evasive LWE was used to build ciphertext-policy ABE for circuits
and optimal broadcast encryption schemes. The schemes are very different from
the ones analyzed and in particular, do not rely on GGH15 encodings. The
techniques are also quite different: in [Wee22], evasive LWE is only invoked once,
whereas in this work, we invoke evasive LWE h times. For ease of comparison, we
reproduce the informal description of the CP-ABE scheme described in [Wee22,
Section 2.1] below:

mpk := A0,B0 ← Zn×mq , B1 ← Zmn×m
2

q , A← Zn×`mq

ctf := s0B0
::::

, s(Af ⊗ Im) + s0A0
::::::::::::::::

+ µ · g, sB1
:::

, where s← Zmnq , s0 ← Znq

skx := B−10 (A0r),B−11 ((A− x⊗G)⊗ r), r, where r← DmZ,χ

WE proof strategies. It is instructive to compare our proof strategy with that for
WE in [GLW14] (henceforth GLW) based on static assumptions over multi-linear
encodings; unfortunately, existing candidate instantiations for these assumptions



Witness Encryption and Null-IO from Evasive LWE 9

are broken due to zeroizing attacks. Our proof uses O(h) hybrids and evasive
LWE instances of size 2h ·poly(λ), whereas the GLW proof, based on the notion
of positional WE, uses 2h hybrids and problem instances of size poly(λ).

Zeroizing attacks and iO vs WE. What iO and WE have in common is that
they require handling an exponential number of possible evaluations for both
correctness and security. A key difficulty in constructing post-quantum iO arises
from the fact that all known approaches yield schemes in the zeroizing regime
[CHL+15] wherein an attacker can easily obtain sufficiently many equations in
low-norm secret values —low-norm LWE secrets, error vectors, or both— over
the integers that information-theoretically determine these secret values.8 These
equations arise naturally from the interaction of the correctness constraints and
the security requirements, and could in turn be exploited to yield a zeroizing at-
tack on the scheme [MSZ16,CLLT16,ADGM17,CLLT17,CGH17,Pel18,CVW18,
CCH+19, HJL21]. In order to rule out zeroizing attacks, current approaches to
post-quantum iO rely on some form of pseudorandomness of low-norm values
over the integers [AJL+19, Agr19, CHVW19] to argue that the leakages in the
zeroizing regime do not lend themselves to an attack. As mentioned earlier in the
introduction, the evasive LWE assumption is qualitatively different from these
assumptions as it does not refer to pseudorandomness of low-norm values.

Weak multi-linear map models. Prior works analyzed security of iO and WE can-
didates in the so-called weak multi-linear map models, e.g. [GMM+16,BGMZ18,
CHVW19]. Most of these models (notably [CVW18, Section 11.3] and [CHVW19])
immediately yield a statement similar to Lemma 2 (used in the proof of The-
orem 1), whereas our proof of Lemma 2 from evasive LWE requires a careful
inductive argument combined with noise flooding.

On security losses. The CVW18-type schemes are the most promising (and
currently only) approach towards practical witness encryption, which begs the
question: are the schemes secure and the underlying design principle sound?
Towards answering these questions, we follow the cryptographic tradition of
relating the security of the schemes to a simpler assumption. As is often the
case, the parameters we achieve in our security reduction are far from practical.
Nonetheless, they constitute some evidence that the underlying design is indeed
sound, and the first step in a broader research agenda. Indeed, many NIST post-
quantum candidates and the sub-field of “tight security” (e.g. for TLS 1.3) start
with provably secure schemes with poor parameters, and the parameters for
practical instantiations are based on the best-known attacks on the scheme and
often more aggressive than the parameters given by the security reduction.

8 As a point of comparison, we have examples such as k-LWE [LPSS14] and inner
product functional encryption [ALS16] based on LWE where it is easy to obtain a
few such equations, but the equations do not information-theoretically determine
the secret values.



10 Vaikuntanathan, Wee, and Wichs

Looking ahead. Looking ahead, we see 4 possible scenarios, starting with the
most optimistic and ambitious:

1. In a few years, we have witness encryption based on LWE, as has been the
case for several lattice-based schemes where the initial candidates were based
on non-standard assumptions (outside the zeroizing regime), such as fully ho-
momorphic encryption and its multi-key variant, attribute-based encryption
and predicate encryption, and the Fiat-Shamir heuristic. If so, we hope that
the insights and techniques developed in this work play a small role, but
even if not, the ensuing witness encryption scheme will almost certainly be
substantially more complex than the CVW scheme. This would place us in
a world analogous to the state of the art for discrete-log and pairing-based
cryptography: while we do have fairly efficient schemes based on standard
assumptions like DDH, the most practical schemes as well as the ones being
deployed are often the ones for which we only know how to prove security in
the generic group model, possibly augmented with random oracles.

2. The evasive LWE assumption survives cryptanalysis: this gives us confidence
in the CVW18 WE, and the techniques in this work would likely further
enable other cryptographic constructions based on evasive LWE as well as
GGH15 multi-linear encodings.

3. The evasive LWE assumption is broken but the CVW18 WE scheme is not.
This would require new and valuable cryptanalytic advances beyond the
state-of-the-art zeroizing attacks. The current statement of evasive LWE is
fairly general, and an attack could guide us towards identifying restricted
variants of the assumption that would suffice for our analysis of the CVW18
scheme and more generally yield new insights into GGH15 multi-linear en-
codings.

4. The CVW18 scheme (and thus evasive LWE) is broken. This would be a
fairly exciting result in cryptanalysis, and we hope that our statement of
evasive LWE plays an important role as an intermediate and easier target
for cryptanalysis.

We believe any of these scenarios would advance our current scientific under-
standing of lattice-based cryptography and assumptions (hardness and/or at-
tacks).

2 Preliminaries

Notations. We use boldface lower case for row vectors (e.g. v) and boldface
upper case for matrices (e.g. V). For integral vectors and matrices (i.e., those
over Z), we use the notation |v|, |V| to denote the maximum absolute value over
all the entries. We use v ← D to denote a random sample from a distribution
D, as well as v ← S to denote a uniformly random sample from a set S. We also
use U(S) to denote the uniform distribution over a set S. We use ≈s and ≈c as
the abbreviation for statistically close and computationally indistinguishable.



Witness Encryption and Null-IO from Evasive LWE 11

Tensor product. The tensor product (Kronecker product) for matrices A =
(ai,j) ∈ Z`×m, B ∈ Zn×p is defined as

A⊗B =

a1,1B, . . . , a1,mB
. . . , . . . , . . .
a`,1B, . . . , a`,mB

 ∈ Z`n×mp.

The mixed-product property for tensor product says that

(A⊗B)(C⊗D) = (AC)⊗ (BD)

We adopt the convention that matrix multiplication takes precedence over tensor
product, so that we can write A⊗BC to mean A⊗ (BC).

2.1 Lattices background

We use DZ,χ to denote the discrete Gaussian distribution over Z with standard
deviation χ.

Learning with errors (LWE). Given n,m, q, χ ∈ N, the LWEn,m,q,χ assumption
states that

(A, sA + e) ≈c (A, c)

where

A← Zn×mq , s← Znq , e← DmZ,χ, c← Zmq

We rely on the LWE assumption with sub-exponential hardness (for time, ad-
vantage and modulus-to-noise ratio), namely for some δ > 0, indistinguishability

holds against adversaries running in time 2n
δ

with advantage at most 2−n
δ

, as

long as q/χ ≤ 2n
δ

.

Trapdoor and preimage sampling. Given any Z ∈ Zn×n′q , σ > 0, we use B−1(Z, σ)
to denote the distribution of a matrix Y sampled from DZm×n′ ,σ conditioned on
BY = Z (mod q). We sometimes suppress σ when the context is clear.

There is a p.p.t. algorithm TrapGen(1n, q) that, given the modulus q ≥ 2
and dimension n, outputs B ≈s U(Zn×2n log q

q ) with a trapdoor τ . Moreover,

there is a p.p.t. algorithm that given (B, τ) ← TrapGen(1n, q), Z ∈ Zn×n′q , and

σ ≥ 2
√
n log q, outputs a sample from B−1(Z, σ).

2.2 Matrix branching programs

A (matrix) branching program Γ with width w and length h is a set

Γ =
{

u ∈ {0, 1}1×w,
{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1} , $ : {0, 1}` → {0, 1}h

}



12 Vaikuntanathan, Wee, and Wichs

where w is called width of branching program and $ an input-to-index function.
We say that a branching program Γ computes a function f : {0, 1}` → {0, 1} if

∀x ∈ {0, 1}` : u

h∏
i=1

Mi,$(x) = 0⇐⇒ f(x) = 1

For simplicity, we only consider ”oblivious” branching programs, where $ :
{0, 1}` → {0, 1}h that outputs h/` copies of x, i.e. $(x) = x|x| · · · |x . We
denote c := h/` and call this a read-c branching program. For most of the paper,
we will focus on read-once branching programs, with c = 1, ` = h and $ being
the identity function, and where we write Mx :=

∏h
i=1 Mi,xi .

3 Evasive LWE

We proceed to provide a formal statement of our evasive LWE assumption, stated
informally in Section 1.1.

Evasive LWE. Let Samp be a PPT algorithm that on input 1λ, outputs

S ∈ Zn
′×n
q ,P ∈ Zn×tq , aux ∈ {0, 1}∗

We define the following advantage functions:

AdvpreA0
(λ) := Pr[A0( SB + E , SP + E′ , aux) = 1]

−Pr[A0( C , C′ , aux) = 1], (3)

AdvpostA1
(λ) := Pr[A1( SB + E ,D, aux) = 1]

−Pr[A1( C ,D, aux) = 1] (4)

where

(S,P, aux)← Samp(1λ),

B← Zn×mq ,E← Dn
′×m

Z,χ ,E′ ← Dn
′×t

Z,χ′ ,

C← Zn
′×m
q ,C′ ← Zn

′×t
q ,

D← B−1(P, χ)

We say that the evasive LWE assumption holds if for every PPT Samp there
exists some polynomial Q(·) such that for every PPT A1, there exists another
PPT A0 such that

AdvpreA0
(λ) ≥ AdvpostA1

(λ)/Q(λ)− negl(λ)

and Time(A0) ≤ Time(A1) · Q(λ). We consider parameter settings for which
χ′ � χ so that the pre-condition is stronger, which in turn makes evasive LWE
weaker. See Section 8 for further discussion.



Witness Encryption and Null-IO from Evasive LWE 13

4 GGH15 Encodings

We describe (generalized) GGH15 encodings, following [GGH15,CC17,CVW18].
We find it helpful to break down the description into two separate algorithms
ggh.encode and ggh.encode⊗. The former is more general, and refers to matrices
Ŝi,b, whereas the latter instantiates Ŝi,b with Mi,b ⊗ Si,b.

Construction 2 (GGH15 Encodings) The randomized algorithm ggh.encode
takes the following inputs

– parameters 1λ, h,m, q, n̂0, n̂ ∈ N and Gaussian parameters χ, χ′, χ′′, χ′′′;
– matrices Ŝ1,b ∈ Zn̂0×n̂

q , Ŝ2,b, . . . , Ŝh,b ∈ Zn̂×n̂q , b ∈ {0, 1};
and

– samples Ai, τAi
← TrapGen(1n̂, q) for i = 1, . . . , h,

– samples E1,b ← Dn̂0×m
Z,χ ,E2,b, . . . ,Eh,b ← Dn̂×mZ,χ′′′ for b ∈ {0, 1},9

– outputs{
Ŝ1,bA1 + E1,b

}
b∈{0,1}

,
{

A−1i−1(Ŝi,bAi + Ei,b)
}
i=2,...,h,b∈{0,1}

where A−1i−1(·) is computed with Gaussian parameter χ′′ using τAi−1
.

Construction 3 (⊗-GGH15 Encodings) The randomized algorithm ggh.encode⊗

takes as input

u ∈ {0, 1}w,
{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

and

– samples Si,b ← Dn×nZ,O(1),

– sets Ŝi,b :=

{
uM1,b ⊗ S1,b if i = 1

Mi,b ⊗ Si,b if i > 1

– outputs ggh.encode(
{

Ŝi,b

}
i∈[h],b∈{0,1}

) with n̂0 = n, n̂ = wn, i.e.,

{(uM1,b ⊗ S1,b)A1 + E1,b}b∈{0,1} ,
{
A−1i−1((Mi,b ⊗ Si,b)Ai + Ei,b)

}
i=2,...,h,b∈{0,1}

Correctness. The next lemma from [CVW18, Lemma 5.3] (also [GGH15,CC17])
captures the functionality provided by ggh.encode⊗, namely for all x = (x1, . . . , xh) ∈
{0, 1}h:

C1,x1
·D2,x2

· · ·Dh,xh ≈ (uMx ⊗ Sx) ·Ah

where Mx :=
∏h
i=1 Mi,xi ,Sx :=

∏h
i=1 Si,xi .

Lemma 1 (Correctness). We have for all x ∈ {0, 1}h: w.h.p. over

(C1,0,C1,1,D2,0,D2,1, . . . ,Dh,0,Dh,1)← ggh.encode⊗(u, {Mi,b}i∈[h],b∈{0,1})

we have

|C1,x1
·D2,x2

· · ·Dh,xh − (uMx ⊗ Sx) ·Ah| ≤ h · χ · (λnw(χ′′ + χ′′′) log q)h

9 Prior works all use χ = χ′′′. Looking ahead, we require χ� χ′′′.



14 Vaikuntanathan, Wee, and Wichs

5 Pseudorandomness of GGH15 Encodings from Evasive
LWE

In this section, we prove Theorem 1 in the introduction, i.e., pseudorandomness
of GGH15 encodings under subexponential LWE and evasive LWE.

Theorem 4 (Theorem 1, restated). Fix {Mi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}, u ∈
{0, 1}w, such that for all x ∈ {0, 1}h, we have uMx 6= 0. Then, by LWE and the
evasive LWE assumption, we have

ggh.encode⊗(u, {Mi,b}i∈[h],b∈{0,1})

= {(uM1,b ⊗ S1,b)A1 + E1,b}b∈{0,1} ,
{
A−1i−1((Mi,b ⊗ Si,b)Ai + Ei,b)

}
i=2,...,h,b∈{0,1}

≈c
{
U(Zn̂0×m

q )
}
b∈{0,1} ,

{
Dm×mZ,χ′′

}
i=2,...,h,b∈{0,1}

An overview of the proof is given in Section 1.2. We proceed to describe the
parameter settings, followed by an overview of the proof structure and then the
proof.

Remark 1 (Parameter settings.). Here, 1λ denotes the security parameter and in

particular, the running time of the adversary is poly(λ). We rely on 2n
δ

-hardness

for LWE (i.e., indistinguishability against adversaries running in time 2n
δ

and a

modulus-to-noise ratio of 2n
δ

), and set the parameters so that

2n
δ

≥ max{2h
2λ, q/χ′′′} LWE hardness

χ′ = λh · χ′′′ · λω(1) noise flooding

χ = χ′ · λω(1) evasive LWE

q ≥ 4h · χ · (λnw(χ′′ + χ′′′) log q)h correctness

χ′′ = 2
√
nw log q trapdoor sampling

The first line comes from the fact that we need to instantiate Lemma 3 with
hardness 2h

2λ � (2h · poly(λ))ω(1) to accommodate the fact that the instances
have size up to 2h ·poly(λ) (we think of the corresponding instantiation of evasive
LWE as using security parameter λ′ = 2hλ so that n′ ≤ 2h · poly(λ) is bounded
by poly(λ′)), and we iterate the security loss from evasive LWE a total of h
times. We can realize the above constraints with

n = (h2λ)1/δ, q = 2n
δ

= 2h
2λ, χ′′′ = O(n), m = O(

√
nw log q)

The main differences from prior instantiations is that we use χ� χ′′′ (whereas
prior works use χ = χ′′′) and that n is much larger as a function of h.



Witness Encryption and Null-IO from Evasive LWE 15

Proof structure. We break down the proof of Theorem 4 into two separate lem-
mas: Lemmas 2 and 3.

– In the first lemma, we show that if the 2h “evaluated products” (with fresh
independent errors) {

(uMx ⊗ Sx)Ah
:::::::::::::

}
x∈{0,1}h

(5)

are pseudorandom, then the “encoded program” ggh.encode⊗(u, {Mi,b}i∈[h],b∈{0,1})
given by

{(uM1,b ⊗ S1,b)A1 + E1,b}b∈{0,1} ,
{
A−1i−1((Mi,b ⊗ Si,b)Ai + Ei,b)

}
i=2,...,h,b∈{0,1}

is pseudorandom. This step relies on h−1 invocations of evasive LWE. In fact,
we prove a more general statement that does not depend on properties of the
matrices {Mi,b}i∈[h],b∈{0,1} or the tensor product structure in Mi,b ⊗ Si,b.

Specifically, the formalization refers to matrices Ŝi,b in place of Mi,b ⊗ Si,b.
– In the second lemma, we show that the 2h evaluated products in (5) are

pseudorandom under the (standard) LWE assumption, provided uMx 6= 0
for all x ∈ {0, 1}h.

Lemma 2. Fix some distributions for
{

Ŝi,b

}
i∈[h],b∈{0,1}

. Suppose for all j ∈ [h],

we have:{
Ŝx′Aj + Ex′

}
x′∈{0,1}j

,
{

Ŝi,b

}
i∈[h],b∈{0,1}

≈c
{
U(Zn̂0×m

q )
}
x′∈{0,1}j

,
{

Ŝi,b

}
i∈[h],b∈{0,1}

(6)

where
Aj ← Zn̂×mq ,Ex′ ← Dn̂0×m

Z,χ

Then, by the evasive LWE assumption, we have

ggh.encode(
{

Ŝi,b

}
i∈[h],b∈{0,1}

)

=
{

Ŝ1,bA1 + E1,b

}
b∈{0,1}

,
{

A−1i−1(Ŝi,bAi + Ei,b)
}
i=2,...,h,b∈{0,1}

≈c
{
U(Zn̂0×m

q )
}
b∈{0,1} ,

{
Dm×mZ,χ′′

}
i=2,...,h,b∈{0,1}

Proof. The proof proceeds in two steps.

Step 1. First, we show that:{
Ŝ1,bA1 + E1,b

}
b∈{0,1}

,
{

A−1i−1(Ŝi,bAi + Ei,b)
}
i=2,...,h,b∈{0,1}

≈c
{
U(Zn̂0×m

q )
}
b∈{0,1}

,
{

A−1i−1(Ŝi,bAi + Ei,b)
}
i=2,...,h,b∈{0,1}



16 Vaikuntanathan, Wee, and Wichs

This proceeds via a proof by induction on j = h, . . . , 1 that:{
Ŝx′Aj + Ex′

}
x′∈{0,1}j

,
{

A−1i−1(Ŝi,bAi + Ei,b)
}
i≥j+1,b∈{0,1}

,
{

Ŝi,b

}
i∈[h],b∈{0,1}

≈c
{
U(Zn̂0×m

q )
}
x′∈{0,1}j

,
{

A−1i−1(Ŝi,bAi + Ei,b)
}
i≥j+1,b∈{0,1}

,
{

Ŝi,b

}
i∈[h],b∈{0,1}
(7)

where we have additionally augmented the distinguisher’s view with
{

Ŝi,b

}
i∈[h],b∈{0,1}

.

The base case j = h corresponds to the pre-condition (6) in the lemma. For the
inductive step, suppose (7) holds for some j and we would like to deduce the
same statement for j − 1.

We want to invoke our evasive LWE assumption with

n′ = 2j−1n̂0, t = 2m = O(n̂0 log q)

S = Ŝj−1 :=
{

Ŝx′

}
x′∈{0,1}j−1

∈ Z2j−1n̂0×n̂
q ,

P = Ŝj,0Aj + Ej,0‖Ŝj,1Aj + Ej,1 ∈ Zn̂×2mq

aux =
{

A−1i−1(Ŝi,bAi + Ei,b)
}
i≥j+1,b∈{0,1}

,
{

Ŝi,b

}
i∈[h],b∈{0,1}

,

B = Aj−1,

E = Ej−1 ← D2j−1n̂0×m
Z,χ ,

E′ = E′j−1 ← D
2j−1n̂0×2m
Z,χ′

where {·}x′∈{0,1}j−1 denotes stacking the matrices vertically.
First, we verify that the pre-condition of evasive LWE is satisfied. Observe

that

Ŝj−1Aj−1 + Ej−1, Ŝj−1P + E′j−1 , aux

≈s Ŝj−1Aj−1 + Ej−1, [Ŝj−1Ŝj,0Aj‖Ŝj−1Ŝj,1Aj ] + E′j−1 , aux

≈c Ŝj−1Aj−1 + Ej−1 , U(Z2j−1n̂0×2m
q ) , aux

≈c U(Z2j−1n̂0×m
q ) ,U(Z2j−1n̂0×2m

q ), aux

where

– the ≈s uses noise flooding to deduce that E′j−1 ≈s E′j−1 + Ŝj−1 · [Ej,0‖Ej,1];
– the first ≈c follows from the induction hypothesis (7) for j, since we can ex-

pand [Ŝj−1Ŝj,0Aj‖Ŝj−1Ŝj,1Aj ] + E′j−1 as
{

Ŝx′Aj + Ex′

}
x′∈{0,1}j

, together

with the observation that given
{

Ŝi,b

}
i∈[h],b∈{0,1}

in aux, we can sample a



Witness Encryption and Null-IO from Evasive LWE 17

random Aj−1 and simulate Ŝj−1Aj−1 + Ej−1 (note that aux depends on
Aj , . . . ,Ah but not Aj−1);

– the second ≈c follows from the pre-condition in (6), along with the fact that

given
{

Ŝi,b

}
i∈[h],b∈{0,1}

, we can simulate aux by sampling Aj , . . . ,Ah along

with the respective trapdoors.

Then, it follows from evasive LWE that

Ŝj−1Aj−1 + Ej−1 ,A
−1
j−1(Pj), aux

≈c U(Z2j−1n̂0×m
q ) ,A−1j−1(Pj), aux

which corresponds to the statement in (7) for j − 1. This completes the proof of
the inductive step.

To complete the proof of this step, we need to write down the parameters
for evasive LWE. Let Aj denote an adversary that breaks the statement in (7).
Then, evasive LWE with security parameter λ′ = 2jλ (so that n′ = 2j−1n̂0 is
bounded by poly(λ′)) tells us:

Adv(Aj) ≥ Adv(Aj−1)/poly(2jλ), Time(Aj) ≤ Time(Aj−1) · poly(2jλ)

which implies:

Adv(Ah) ≥ Adv(A1)/poly(2h
2

λh), Time(Ah) ≤ Time(A1) · poly(2h
2

λh)

That is, we will need poly(2h
2

λh) hardness for the pre-condition in (6). We
account for this when setting the final parameters in Remark 1.

Step 2. Next, we show that{
A−1i−1(Ŝi,bAi + Ei,b)

}
i=2,...,h,b∈{0,1}

≈c
{
Dm×mZ,χ′′

}
i=2,...,h,b∈{0,1}

This proceeds exactly as in the proof of [CVW18, Lemma 5.11]: for j = 2, . . . , h,

we replace
{

A−1j−1(Ŝj,bAi + Ej,b)
}
b∈{0,1}

with
{
Dm×mZ,χ′′

}
b∈{0,1}

, using{
A−1j−1(Ŝj,bAj + Ej,b)

}
b∈{0,1}

, Ŝj,0, Ŝj,1,Aj , τAj

≈c
{
Dm×mZ,χ′′

}
b∈{0,1}

, Ŝj,0, Ŝj,1,Aj , τAj

which in turn follows from LWE [CVW18, Lemma 4.4].

Lemma 3. Fix u ∈ {0, 1}w, {Mi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1} such that for all x ∈
{0, 1}h, we have uMx 6= 0. Then, by the LWE assumption, for all j ∈ [h], we
have:{

(uMx′ ⊗ Sx′)Aj + Ex′

}
x′∈{0,1}j

, {Si,b}i∈[h],b∈{0,1} ≈c
{
U(Zn×mq )

}
x′∈{0,1}j

, {Si,b}i∈[h],b∈{0,1}

where Aj ← Zn̂×mq ,Ex′ ← Dn̂0×m
Z,χ .



18 Vaikuntanathan, Wee, and Wichs

Similar statements were shown and used in [CVW18,CHVW19] for the spe-
cial case j = h, and where {Si,b}i∈[h],b∈{0,1} were not provided to the adversary.

The proof is essentially the same as before, since uMx 6= 0 for all x ∈ {0, 1}h
implies uMx′ 6= 0 for all x′ ∈ {0, 1}j .

Proof. The proof proceeds in three steps:

– First, by the mixed-product property of tensor products and noise flooding,
we have

(uMx′ ⊗ Sx′)Aj + Ex′ ≈s (uMx′ ⊗ In) · (Iw ⊗ Sx′)Aj +Dnw×mZ,χ′ ) + Ex′

– Next, by the security of the BLMR PRF [BLMR13,BPR12] (also [CVW18,
Lemma 7.4]), we have:{

(Iw ⊗ Sx′)Aj +Dnw×mZ,χ′

}
x′∈{0,1}j

, {Si,b}i∈[h],b∈{0,1}

≈c
{
U(Znw×mq )

}
x′∈{0,1}j

, {Si,b}i∈[h],b∈{0,1}

where we use ((Iw ⊗ S)A + E,S) ≈c (U(Znw×mq ),S), which in turn follows
from LWE [BLMR13,CC17].

– Finally, for all x′ ∈ {0, 1}j , we have uMx′ · U(Znw×mq ) ≈s U(Zn×mq ), since
uMx′ 6= 0.

This completes the proof.

We proceed to complete the proof of Theorem 4.

Proof (Proof of Theorem 4). We instantiate Lemma 2 with:

Ŝi,b =

{
uM1,b ⊗ S1,b if i = 1

Mi,b ⊗ Si,b if i > 1

The pre-condition in (6) is satisfied, via Lemma 3.

6 Witness Encryption

6.1 Definition

We recall the definition of witness encryption from [GGSW13].

Definition 1 (Witness encryption [GGSW13]). A witness encryption scheme
for an NP language L (with corresponding witness relation R) consists of the fol-
lowing two p.p.t. algorithms:

Encryption. Enc(1λ, Ψ, µ) takes as input a security parameter 1λ, an instance
Ψ ∈ {0, 1}poly(λ), and a message µ ∈ {0, 1}, outputs a ciphertext ct.



Witness Encryption and Null-IO from Evasive LWE 19

Decryption. Dec(ct, x) takes as input a ciphertext ct and string x ∈ {0, 1}poly(λ),
outputs a message µ or the symbol ⊥.

These algorithms satisfy

Correctness. For any security parameter λ, for any µ ∈ {0, 1}, and for any
Ψ ∈ L such that R(Ψ, x) holds, we have that

Pr[Dec(Enc(1λ, Ψ, µ), x) = µ] ≥ 1− negl(λ).

Soundness. For any p.p.t. adversary A, there exists a negligible function negl(·)
such that for any Ψ /∈ L, we have∣∣Pr[A(Enc(1λ, Ψ, 0)) = 1]− Pr[A(Enc(1λ, Ψ, 1)) = 1]

∣∣ ≤ negl(λ).

6.2 CVW WE Scheme

To build a witness encryption scheme for all of NP, it suffices to build one for the
class of CNF formulas. We describe the CVW18 scheme [CVW18, Section 10]:

Construction 5 (CVW witness encryption) We construct a witness encryp-
tion scheme for the class of CNF formula as follows:

Encryption. Enc(1λ, Ψ, µ) proceeds as follows:

– Apply [CVW18, Constructions 6.4,10.2] to the CNF Ψ (of c clauses and h
literals) to obtain a read-once branching program u = (1 · · · 1) ∈ {0, 1}c+1

and
{
Mi,b ∈ {0, 1}(c+1)×(c+1)

}
i∈[h],b∈{0,1} such that for all x ∈ {0, 1}h:

uMx =

{
(0‖µ) if Ψ(x) = 1

( 6= 0‖µ) if Ψ(x) = 0
.

That is, the program computes Ψ(x) = 1 ∧ µ = 0. Concretely,

1. Initialization: for all i ∈ [`], b ∈ {0, 1}, Let Mi,b :=

(
Ic
µ

)
.

2. If xi appears in ψj: set the jth entry on the diagonal of Mi,1 to be 0.
3. If x̄i appears in ψj: set the jth entry on the diagonal of Mi,0 to be 0.

– Output
ct = ggh.encode⊗(u, {Mi,b}i∈[h],b∈{0,1})

Decryption. Dec(ct,x) takes as input ct = {C1,b,D2,b, . . . ,Dh,b}b∈{0,1} and x ∈
{0, 1}h, outputs 0 if |C1,x1

·D2,x2
· · ·Dh,xh | ≤ B = h ·χ · (λnw(χ′′+χ′′′) log q)h,

and 1 otherwise.

We will set the parameters as in Remark 1 with w = c + 1. Correctness
follows readily from that of ggh.encode. Security follows readily from Theorem 4,
together with the fact that if Ψ is not satisfiable, then uMx 6= 0 for all x ∈
{0, 1}h.



20 Vaikuntanathan, Wee, and Wichs

7 Null iO

We analyze the CVW iO scheme for branching programs in [CVW18, Sec-
tion 11], incorporating simplifications from [CHVW19, Section 6]. The same
paper presents a poly(λ)O(c) attack on the iO scheme for read-c branching pro-
grams, which could be avoided by artificially padding the branching program
when c is small. Here, we show that the scheme is secure as a null-iO scheme for
any c even without padding, assuming subexponential LWE and evasive LWE.

7.1 Definition

Definition 2. An obfuscation scheme Obf is a null-iO scheme if it satisfies the
following properties:

Correctness: There is a negligible function ν such that for all circuits C : {0, 1}` →
{0, 1}:

Pr[∀x ∈ {0, 1}n : C(x) = C̃(x) | C̃ ← Obf(1λ, C)] ≥ 1− ν(λ),

where the probability is over the coin tosses of Obf.
Security: Let C = {Cλ}, C ′ = {C ′λ} be two circuit ensembles, such that C,C ′

have equal input length and circuit size and furthermore are everywhere null,
meaning that ∀x : C(x) = C ′(x) = 0. Then we require that: Obf(1λ, Cλ) ≈c
Obf(1λ, C ′λ).

7.2 CVW null-iO Scheme

Construction 6 (CVW null-IO)

Obfuscation. On input a branching program u, {Mi,b}i∈[h],b∈{0,1} computing a

function C : {0, 1}` → {0, 1},
– Following [CHVW19, Section 6], we may assume WLOG (at the cost of

increasing the width w) that10

∀x′ ∈ {0, 1}h : uMx′ = 0⇐⇒ x′ ∈ $({0, 1}`) ∧ C($−1(x′)) = 1

– Output
ggh.encode⊗(u, {Mi,b}i∈[h],b∈{0,1})

Evaluation. On input {C1,b,D2,b, . . . ,Dh,b}b∈{0,1} and x ∈ {0, 1}`, outputs 0

if |C1,$(x)1 ·D2,$(x)2 · · ·Dh,$(x)h | ≤ B = h · χ · (λnw(χ′′ + χ′′′) log q)h, and 1
otherwise.

We will set the parameters as in Remark 1. Correctness follows readily from
that of ggh.encode. Security follows readily from Theorem 4, together with the
fact that if C is the null program, then uMx′ 6= 0 for all x′ ∈ {0, 1}h.

10 This basically follows from the fact that we can compute x′
?
∈ $({0, 1}`) using a

read-once matrix branching program.



Witness Encryption and Null-IO from Evasive LWE 21

8 Cryptanalysis of Evasive LWE

8.1 Algorithmic attacks

The known algorithmic attacks essentially fall into one of two categories:

– Attacks on LWE: namely break pseudorandomness of SB + E given aux,
which is ruled out via the pre-condition;

– Zero-izing attacks: here, given aux, an attacker is able to compute a short
vector z such that SPz mod q ≈ 0 has low-norm; these attacks are also
ruled out via the pre-condition. But first, observe that such a z breaks the
post-condition, since

(SB + E) ·B−1(P) · z = SPz + E ·B−1(P) · z ≈ 0

and therefore an attacker can distinguish SB + E from a random C. On the
other hand, we also have

(SP + E′) · z ≈ 0

and therefore an attacker can also distinguish SP + E′ from a random C′,
which violates the pre-condition.

A direct attack strategy that fails. It is instructive to consider the following direct
attack strategy: Let aux = P. Find any (big) x via Gaussian elimination such
that: Px = 0 and Kx is small (but non-zero), where K = B−1(P). This would
yield a distinguisher for the post-condition since (SB+E) ·K ·x is small whereas
C ·K · x is not small. We provide three explanations why this attack does not
work:

– The matrix
(
P
K

)
is a (n+m)× t matrix but only has rank at most m. This

is because [I | −B]
(
P
K

)
= 0 (that is, the top rows are a linear combination of

the bottom ones). Therefore, not every system of linear equations
(
P
K

)
x = z

has a solution x.
– Any solution x for which Kx is small yields a solution Kx to SIS with respect

to the random matrix B. Therefore, attacks of this type are already ruled
out by SIS.

– More generally, the assumption provably holds when P is uniformly random
and aux is an efficient function of P that is independent of S. Therefore, an
attack on the assumption must crucially exploit some properties of P, aux
and fundamentally different from the one here.

8.2 Auxiliary inputs

Next, we describe a (heuristic) auxiliary-input attack on our assumption based
on general obfuscation, and describe a restricted class of (P, aux) that avoid
these attack, while still sufficient for our security proofs.



22 Vaikuntanathan, Wee, and Wichs

A (heuristic) auxiliary-input attack. Suppose S← Z2m×n
q ,P← Zn×2mq (that is,

n′ = t = 2m). Let aux be an obfuscation of the follow program ΠP,τ which has
P and a corresponding trapdoor τ hard-wired, and on input C ∈ Z2m×m

q ,D ∈
Zm×2mq ,

– use τ to solve for S0 such that |C ·D− S0 ·P| is small
– if |D| is small and such a S exists, output 1, else output 0.

Observe that ΠP,τ would output 1 on input (SB + E,B−1(P)), and 0 on input

(U(Zn′×mq ),B−1(P)), which yields a distinguisher for the post-condition. On the
other hand, by LWE, (SB+E,SP+E′) is pseudorandom. Moreover, given oracle
access to ΠP,τ , it is statistically hard to find an accepting input. This means
that the pre-condition would hold given an ideal obfuscation of ΠP,τ .

Restricted class (P, aux). We consider (P, aux) of the form:

P :=[Ŝ1,0A1‖Ŝ1,1A1] + E1

aux :=(A−11 ([Ŝ2,0A2‖Ŝ2,1A2] + E2), . . . ,A−1`−1([Ŝ`,0A`‖Ŝ`,1A`] + E`),

Ŝ1,0, Ŝ1,1, . . . , Ŝ`,0, Ŝ`,1, aux0)

where Ŝ1,0, Ŝ1,1, . . . , Ŝ`,0, Ŝ`,1, aux0 are “public-coin” (by requiring that aux also

contains the coin tosses used to sample Ŝi,b, aux0) and independent of the random
matrices A1, . . . ,A`. Note that

– the private randomness for aux are only used in sampling (i) A1, . . . ,A` along
with the respective trapdoors, (ii) E1, . . . ,E`, as well as (iii) A−11 (·), . . . ,A−1` (·);

– we only require that the Ŝi,b’s are ”public-coin” and do not require that they
compute a tensor of the form Mi,b ⊗ Si,b;

– this restricted class of (P, aux) is sufficient for our security reductions in
Lemma 2.

Next, we argue that this restricted class do not capture the obfuscation-based
aux. The reasons are two-fold:

– The matrices Ŝi,b’s are public-coin and given to the distinguisher as part of
aux, so any secret information (e.g. matrix trapdoors τ) embedded into these
matrices will also be provided to the distinguisher in the pre-condition “in
the clear”.

– The matrices Ŝi,b’s are independent of the random matrices A1, . . . ,A` and
in particular cannot depend on trapdoors for any of these matrices.

8.3 A special case

We consider a special case for evasive LWE that is closely related to the WE
and null-IO scheme. Suppose uiM 6= 0 for all i ∈ [N ]. Then, evasive LWE (plus
LWE) tells us that the following distribution is pseudorandom:



Witness Encryption and Null-IO from Evasive LWE 23

{S1,i, (ui ⊗ S1,i)A1 + E1,i}i∈[N ] ,S2,A
−1
1 ((M⊗ S2)A2 + E2)

We observe that for the case N = 1, such a statement follows from LWE. In
fact, it suffices to prove pseudorandomness of

(u⊗ I)A1,S2,A
−1((M⊗ S2)A2 + E2)

– First, we apply LWE with secret A2 to replace (I⊗ S2)A2
:::::::::

with a random

P.
– Next, by LWE and adapting an argument from [CVW18], we have

(u⊗I)A2,A
−1
2 ((M⊗I)P+E) ≈c (u⊗I)A2, ((u⊗I)A2)−1((uM⊗I)P+E′)

The idea is to treat the part of A2 that is perfectly hidden given (u⊗ I)A2

as the LWE secret.
– The rest of the proof follows from a statistical argument.

Acknowledgements

We thank the reviewers for helpful and meticulous feedback. VV was supported
by DARPA under Agreement No. HR00112020023, a grant from the MIT-IBM
Watson AI, a grant from Analog Devices, a Microsoft Trustworthy AI grant,
and a DARPA Young Faculty Award. DW was supported by NSF grant CNS-
1750795, CNS-2055510, and the Alfred P. Sloan Research Fellowship.

References

ADGM17. Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Crypt-
analysis of indistinguishability obfuscations of circuits over GGH13. In
Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl,
editors, ICALP 2017, volume 80 of LIPIcs, pages 38:1–38:16. Schloss
Dagstuhl, July 2017. 2, 9

Agr19. Shweta Agrawal. Indistinguishability obfuscation without multilinear
maps: New methods for bootstrapping and instantiation. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476
of LNCS, pages 191–225. Springer, Heidelberg, May 2019. 2, 9

AJ15. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation
from compact functional encryption. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 308–326. Springer, Heidelberg, August 2015. 2

AJL+19. Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit
Sahai. Indistinguishability obfuscation without multilinear maps: New
paradigms via low degree weak pseudorandomness and security am-
plification. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 284–332. Springer,
Heidelberg, August 2019. 2, 9



24 Vaikuntanathan, Wee, and Wichs

ALS16. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure func-
tional encryption for inner products, from standard assumptions. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III,
volume 9816 of LNCS, pages 333–362. Springer, Heidelberg, August 2016.
9

AP20. Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation
without maps: Attacks and fixes for noisy linear FE. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of
LNCS, pages 110–140. Springer, Heidelberg, May 2020. 2

BDGM20a. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Can-
didate iO from homomorphic encryption schemes. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 79–109. Springer, Heidelberg, May 2020. 2

BDGM20b. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Fac-
toring and pairings are not necessary for io: Circular-secure lwe suffices.
Cryptology ePrint Archive, Report 2020/1024, 2020. 2

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, August 2001. 2

BGMZ18. James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of
GGH15: Provable security against zeroizing attacks. In Amos Beimel and
Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS,
pages 544–574. Springer, Heidelberg, November 2018. 9

BLMR13. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-
nathan. Key homomorphic PRFs and their applications. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 410–428. Springer, Heidelberg, August 2013. 6, 7, 18

BPR12. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom func-
tions and lattices. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 719–737. Springer, Hei-
delberg, April 2012. 18

BV15. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation
from functional encryption. In Venkatesan Guruswami, editor, 56th FOCS,
pages 171–190. IEEE Computer Society Press, October 2015. 2

CC17. Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for
NC1 from LWE. In Jean-Sébastien Coron and Jesper Buus Nielsen, edi-
tors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 446–476.
Springer, Heidelberg, April / May 2017. 2, 3, 13, 18

CCH+19. Jung Hee Cheon, Wonhee Cho, Minki Hhan, Jiseung Kim, and Chang-
min Lee. Statistical zeroizing attack: Cryptanalysis of candidates of BP
obfuscation over GGH15 multilinear map. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of
LNCS, pages 253–283. Springer, Heidelberg, August 2019. 2, 9

CGH17. Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate
branching program obfuscators. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS,
pages 278–307. Springer, Heidelberg, April / May 2017. 2, 9

CHL+15. Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and
Damien Stehlé. Cryptanalysis of the multilinear map over the integers. In



Witness Encryption and Null-IO from Evasive LWE 25

Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 3–12. Springer, Heidelberg, April 2015. 2, 9

CHVW19. Yilei Chen, Minki Hhan, Vinod Vaikuntanathan, and Hoeteck Wee. Ma-
trix PRFs: Constructions, attacks, and applications to obfuscation. In
Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume
11891 of LNCS, pages 55–80. Springer, Heidelberg, December 2019. 2,
9, 18, 20

CLLT16. Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Ti-
bouchi. Cryptanalysis of GGH15 multilinear maps. In Matthew Rob-
shaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815
of LNCS, pages 607–628. Springer, Heidelberg, August 2016. 2, 9

CLLT17. Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Ti-
bouchi. Zeroizing attacks on indistinguishability obfuscation over CLT13.
In Serge Fehr, editor, PKC 2017, Part I, volume 10174 of LNCS, pages
41–58. Springer, Heidelberg, March 2017. 2, 9

CLT15. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New mul-
tilinear maps over the integers. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages
267–286. Springer, Heidelberg, August 2015. 2

CVW18. Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond
permutation branching programs: Proofs, attacks, and candidates. In Ho-
vav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II,
volume 10992 of LNCS, pages 577–607. Springer, Heidelberg, August 2018.
2, 3, 7, 9, 13, 17, 18, 19, 20, 23

DQV+21. Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and
Daniel Wichs. Succinct LWE sampling, random polynomials, and obfus-
cation. In TCC, 2021. 2, 4

GGH13a. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 1–17. Springer, Heidel-
berg, May 2013. 2

GGH+13b. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE
Computer Society Press, October 2013. 2

GGH15. Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multi-
linear maps from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, ed-
itors, TCC 2015, Part II, volume 9015 of LNCS, pages 498–527. Springer,
Heidelberg, March 2015. 2, 13

GGHW14. Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the im-
plausibility of differing-inputs obfuscation and extractable witness encryp-
tion with auxiliary input. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 518–535. Springer,
Heidelberg, August 2014. 4

GGSW13. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness
encryption and its applications. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 467–476. ACM Press,
June 2013. 1, 2, 18

GJLS21. Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguisha-
bility obfuscation from simple-to-state hard problems: New assumptions,



26 Vaikuntanathan, Wee, and Wichs

new techniques, and simplification. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS,
pages 97–126. Springer, Heidelberg, October 2021. 2

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation.
In Chris Umans, editor, 58th FOCS, pages 612–621. IEEE Computer So-
ciety Press, October 2017. 2, 3

GKW18. Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant
traitor tracing from learning with errors. In Ilias Diakonikolas, David
Kempe, and Monika Henzinger, editors, 50th ACM STOC, pages 660–670.
ACM Press, June 2018. 3

GLW14. Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption
from instance independent assumptions. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages
426–443. Springer, Heidelberg, August 2014. 2, 8

GMM+16. Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram
Srinivasan, and Mark Zhandry. Secure obfuscation in a weak multilinear
map model. In Martin Hirt and Adam D. Smith, editors, TCC 2016-
B, Part II, volume 9986 of LNCS, pages 241–268. Springer, Heidelberg,
October / November 2016. 9

GMM17. Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. Lower
bounds on obfuscation from all-or-nothing encryption primitives. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, vol-
ume 10401 of LNCS, pages 661–695. Springer, Heidelberg, August 2017.
2

GP21. Romain Gay and Rafael Pass. Indistinguishability obfuscation from cir-
cular security. In STOC, 2021. 2, 4

HHSS17. Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-
Davidowitz. Implementing BP-obfuscation using graph-induced encod-
ing. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 783–798. ACM Press, Octo-
ber / November 2017. 2, 3

HJL21. Samuel B. Hopkins, Aayush Jain, and Huijia Lin. Counterexamples to
new circular security assumptions underlying iO. In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages
673–700, Virtual Event, August 2021. Springer, Heidelberg. 4, 9

JLMS19. Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage
hardness of constant-degree expanding polynomials overa R to build iO.
In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I,
volume 11476 of LNCS, pages 251–281. Springer, Heidelberg, May 2019.
2, 4

JLS21a. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from LPN over f p, dlin, and prgs in ncˆ0. IACR Cryptol. ePrint Arch.,
page 1334, 2021. 2

JLS21b. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In STOC, 2021. 2

LPSS14. San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness
of k-LWE and applications in traitor tracing. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 315–334. Springer, Heidelberg, August 2014. 9



Witness Encryption and Null-IO from Evasive LWE 27

MSZ16. Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks
for multilinear maps: Cryptanalysis of indistinguishability obfuscation
over GGH13. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 629–658. Springer,
Heidelberg, August 2016. 2, 9

Pel18. Alice Pellet-Mary. Quantum attacks against indistinguishablility obfusca-
tors proved secure in the weak multilinear map model. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993
of LNCS, pages 153–183. Springer, Heidelberg, August 2018. 2, 9

Tsa22. Rotem Tsabary. Candidate witness encryption from lattice techniques. In
CRYPTO, 2022. 5, 27

Wee22. Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive
lattice assumptions. In Eurocrypt, 2022. 3, 8, 27

WW21. Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious
LWE sampling. In Anne Canteaut and François-Xavier Standaert, edi-
tors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages 127–156.
Springer, Heidelberg, October 2021. 2, 4

WZ17. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare
programs under LWE. In Chris Umans, editor, 58th FOCS, pages 600–
611. IEEE Computer Society Press, October 2017. 2, 3

A Comparison with [Tsa22]

An independent work of Tsabary [Tsa22] (also independent of [Wee22]) presents
a new witness encryption scheme under a variant of evasive LWE. We describe
some high-level differences between the two works:

– Tsabary [Tsa22] presents a new witness encryption scheme that uses read-
many branching programs and does not consider null-IO. We prove security
of existing candidate WE and null-IO schemes in CVW, where the former
uses read-once (matrix) branching programs.

– The formulation of evasive LWE in [Tsa22] allows (P, aux) to depend on B,
whereas ours and that in [Wee22] does not. In particular, our formulation of
evasive LWE is more conservative.

– The analysis in [Tsa22] relies on a formulation of evasive LWE with polyno-
mial hardness and oracle access to a possibly exponential number of matrices,
whereas we crucially rely on evasive LWE with instances of exponential size
2h (which in turn requires a careful setting of parameters). In our secu-
rity reduction, the adversary receives all possible partial evaluated products,
whereas the adversary in [Tsa22] only has oracle access to these quantities.
Note that in both analysis, the complexity of the adversary could double
with each invocation of evasive LWE, so that we would necessarily need
to consider adversaries running in time at least 2h, for which there is no
real distinction between receiving and oracle access to all possible partial
products.


	Witness Encryption and Null-IO from Evasive LWE
	Introduction
	Our Results
	Technical Overview
	Discussion

	Preliminaries
	Lattices background
	Matrix branching programs

	Evasive LWE
	GGH15 Encodings
	Pseudorandomness of GGH15 Encodings from Evasive LWE
	Witness Encryption
	Definition
	CVW WE Scheme

	Null iO
	Definition
	CVW null-iO Scheme

	Cryptanalysis of Evasive LWE
	Algorithmic attacks
	Auxiliary inputs
	A special case

	Comparison with Tsa22


