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Abstract. We give the first constructions in the plain model of 1) non-
malleable digital lockers (Canetti and Varia, TCC 2009) and 2) robust
fuzzy extractors (Boyen et al., Eurocrypt 2005) that secure sources with
entropy below 1/2 of their length. Constructions were previously only
known for both primitives assuming random oracles or a common refer-
ence string (CRS).

Along the way, we define a new primitive called a nonmalleable point
function obfuscation with associated data. The associated data is public
but protected from all tampering. We use the same paradigm to then
extend this to digital lockers. Our constructions achieve nonmalleability
over the output point by placing a CRS into the associated data and us-
ing an appropriate non-interactive zero-knowledge proof. Tampering is
protected against the input point over low-degree polynomials and over
any tampering to the output point and associated data. Our construc-
tions achieve virtual black box security.

These constructions are then used to create robust fuzzy extractors that
can support low-entropy sources in the plain model. By using the geo-
metric structure of a syndrome secure sketch (Dodis et al., SIAM Journal
on Computing 2008), the adversary’s tampering function can always be
expressed as a low-degree polynomial; thus, the protection provided by
the constructed nonmalleable objects suffices.

Keywords: Point obfuscation, digital lockers, nonmalleability, virtual
black box obfuscation, fuzzy extractors.

1 Introduction

The random oracle (RO) paradigm [9] allows one to analyze cryptographic prim-
itives/protocols with an idealized random function, significantly simplifying the
designs and analyses. Since instantiating RO with a real-life object is impossible
for the general case [23], it is important to identify useful RO properties that
are achievable under specific hard problems.
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Initial Efforts – Point Obfuscation. Canetti [20] initiated a study on an im-
portant property of random oracles called oracle hashing — or point obfuscation
— and realized it in the plain model. More specifically, a point function Ival is
indexed by a string val and acts as follows:

Ival(val
′) =

{
1 val = val′

0 otherwise
.

An obfuscated point function should reveal nothing beyond the input/output
behavior of the function Ival(·). This security notion is called virtual black-box
(VBB) security. Constructions are known from multiple assumptions [20,46,4,27].

VBB secure obfuscation of point functions captures the idea that the output
of the RO is independent of its input, and that one can verify whether the
output (for now, up to one bit) of an RO is correctly generated from a specific
input. While VBB security is impossible for general functions [6], VBB secure
obfuscation appears possible for point functions. (Similar techniques are used to
obfuscate wildcards, conjunctions, and hyperplanes [24,18,12,39,7,31].)

Next Step – Nonmalleability. However, there are many other properties
of the RO that make it a desirable object. For example, given an RO output
value on input x, it should be infeasible to obtain another output of RO on
any related input point (e.g., x + 1). Applied to our setting, this is known as
nonmalleable point obfuscation. The nonmalleability of random oracles enables
many other objects that resist active attack. For example, this work considers
robust fuzzy extractors [16] as an application, which were first constructed from
random oracles.

Canetti and Varia [25] defined a nonmalleable point function and realized it in
the common reference string (CRS) model. However, as one of the most valuable
properties of the RO is that no trusted setup is required, an ideal instantiation
would not require a CRS.

To tackle this, Komargodski and Yogev [44] proposed a construction of a
nonmalleable point obfuscation in the plain model.5 Prior work in plain model
point obfuscation considers a limiting tampering class of low-degree polynomials
where the degree relates to the hardness of the underlying number-theoretic
assumption.

Another Step Forward – Digital Lockers. An obfuscated point function
only outputs one bit. However, we are generally interested in the RO outputting
a random string for a given input. To emulate this functionality, a natural ex-
tension is the multi-bit point function, where each function Ival,key is indexed by

5 Unfortunately, their underlying cryptographic assumption was broken by Bartusek,
Ma, and Zhandry [8]. An alternative assumption was posed in [45], but this did not
suffice to show security. Fortunately, Bartusek, Ma, and Zhandry introduced their
own assumption and accompanying construction, showing their assumption holds in
a strong variant of the generic group model [8].
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a pair of strings (val, key) and works as follows:

Ival,key(val
′) =

{
key val = val′

⊥ otherwise
.

An obfuscation of a function of this class is called a digital locker, which is useful
in password [20] and biometric authentication [1,22].

Though we know how to build digital lockers in the plain model [21], the
only existing nonmalleable constructions require a CRS. Fenteany and Fuller [38]
achieved half of the goal, constructing a digital locker that nonmalleabile against
tampering only on val in the standard model. However, while the work [38]
pointed out a technique to additionally protect key, it required a CRS, similarly
to the original work [25]. As an ideal instantiation of RO does not require a
trusted setup, this naturally motivates our main question:

Can one build a nonmalleable digital locker in the plain model without setup?

Our Technical Contributions We answer the main question in the affirma-
tive, constructing a nonmalleable digital locker in the plain model. We present
the following contributions:

1. Point Obfuscation with Associated Data We define a new primitive
called a nonmalleable point obfuscator with associated data. We then instan-
tiate this object using group assumptions introduced by Bartusek, Ma, and
Zhandry [8].

2. Creating a Multibit Output We then integrate this construction with
the real or random construction [21], yielding a nonmalleable digital locker
that prevents tampering on the input and associated data only. This step is
not black box in the point obfuscations. Instead, it is created from scratch
using similar techniques from the same group assumptions as the constructed
point obfuscation.

3. Protecting the Multibit Output By putting the CRS of a true simula-
tion extractable non-interactive zero-knowledge proof (NIZK) [32] into the
associated data, we can protect the output of the digital locker. Conceptu-
ally, our new tool protects the NIZK crs, which (if intact) can be used to
derive nonmalleability for the other parts of the construction. This step is
black box from an appropriate variant of a digital locker.

In all of the above steps, the prevented tampering class for the input point, val
is low-degree polynomials, rather than the desired complete tamper resistance.
However, this class is still meaningful in many applications where a RO was
previously used.

1.1 Low Entropy Robust Fuzzy Extractors in the Plain Model

Despite a limited tampering class, our nonmalleable objects suffice to construct
the first plain model robust fuzzy extractors [16] that support sources whose
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entropy is less than half their length 1/2, a known barrier for information-
theoretically secure constructions [35]. We notice that all prior computationally
secure constructions relied on some form of a CRS, and our work shows that
this component is not required.

A fuzzy extractor is a pair of algorithms (Gen,Rep) with two properties:

Correctness. Let w,w′ be values that are close in some distance metric, and
define (key, pub)← Gen(w). Then it is true that Rep(w′, pub) = key.

Security. The value key is computationally indistinguishable from a uniform
value given pub.

Digital lockers have been used to construct reusable fuzzy extractors, as in [50]
[22,1], i.e., one can derive multiple keys from the same entropy source. An ad-
ditional desirable property is robustness [33], which prevents an adversary from
modifying pub in an attempt to force Rep to produce a different key.

Robust fuzzy extractors are notoriously difficult to construct – we show vari-
ous limitations of the prior constructions in Table 1. Dodis and Wichs [35] showed
that it is only possible information-theoretically if the entropy of w is at least
half its length. Feng and Tang [37] showed this barrier exists in the CRS model,
as well. Feng and Tang construct a robust fuzzy extractor with computational
security for entropy sources that can depend on the CRS.

We construct the first robust fuzzy extractor in the plain model that sup-
ports entropy for w that is less than half its length. We combine our nonmal-
leable digital locker with a specific error-correction component, the syndrome
construction [11,30,34]. The syndrome construction allows the reduction to ex-
tract a low-degree polynomial that is consistent with the adversary’s tampering.
Similar techniques were used to construct CRS model robust fuzzy extractors
from algebraic-manipulation detection codes [29]. We present a second construc-
tion directly from the nonmalleable point function from associated data which
is able to extract a limited length key.6

To the best of our knowledge, our work and that of Cramer et al. [29] are
the only two approaches to building a robust fuzzy extractor that do not build a
robust extractor first. This is because our nonmalleable tools only prevent limited
tampering classes; both works use the secure sketch component to guarantee the
adversary’s tampering is in this low complexity class.

1.2 Technical Overview

In this section, we present an overview of our techniques. In the CRS model, non-
malleability of point functions can be achieved as [25], by using a nonmalleable
NIZK system – in addition to generating a regular C ← DL(Ival,key), one also
appends a zero-knowledge proof π to the output showing knowledge of the pair
(val, key) inside C. However, any non-trivial nonmalleable NIZK system would
require a trusted (nontamperable) CRS for security of the proof system, so the

6 We also show that a nonmalleable point function (without associated data) suffices
to construct a robust secure sketch [34].
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Scheme Model Security SS errors H∞(W ) < |W |/2?

[14,15] RO IT t X
[33] Plain IT t X
[29] CRS IT t X
[55,53,54] CRS Comp. 2t X
[37] CRS∗ Comp. 2t X
Syn. + NM Point Obf w/ Assoc. Data Plain Comp. 2t X
Syn. + NM Digital Locker Plain Comp. 2t X

Table 1: Comparison of Robust Fuzzy Extractors. The CRS∗ model means that the
distribution of W can depend on the CRS, however, the CRS is still assumed not to
be modified. For a distribution W , H∞(W ) represents min-entropy (see Section 2) and
|W | represents its length. IT corresponds to information-theoretic security and Comp.
represents security against computationally bounded adversaries. Syn. is the syndrome
or null space of an appropriate error correcting code. The column of SS errors indicates
the error tolerance of the underlying secure sketch. This parameter is related to the
information leakage of the secure sketch. This work and prior computational works
require a secure sketch that corrects 2t errors, which leads to more leakage.

overall obfuscation would be (crs, C, π). Without trusted setup, an adversary
may simply replace the crs, rendering the NIZK ineffective and breaking non-
malleability. So, this trusted setup required immediately fails at achieving our
goal.

Point Obfuscation with Associated Data To achieve our goal, we formalize
a notion that blends any public string with point obfuscation in a meaningful
way, called point obfuscation with associated data. More specifically, the obfus-
cator Obf(Ival, ad) takes as input the point function Ival and an additional public
string ad (e.g., crs) and then outputs an obfuscated program C along with
ad. The output program C should be VBB secure, and ad is treated as public
information.

We formulate nonmalleability properties that treat the two inputs quite dif-
ferently. The adversary outputs (C ′, ad′, f) and wins if C ′ is consistent with the
values f(val) and ad′, and one of the following hold:

1. The function belongs to some targeted function class, i.e., f ∈ F , or
2. The function f is the identity and ad′ 6= ad.

Nonmalleability requires that the adversary has only a negligible winning prob-
ability, meaning that they cannot replace ad by any other string, nor tamper val
consistently by any function in the class F .

Remark 1. It is undesirable that in the definition the adversary output their
tampering function. The desired notion is that the adversary cannot output
(C ′, ad′) that is consistent with any f . This notion is impossible to achieve in
the plain model if f contains linear shifts. Essentially, given an obfuscation of
point x, an adversary not required to output their mauling function may simply
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create an obfuscation of independent point y. It is clear that if the function
f(z) = z − x + y is in F , this would be a valid tampering, but it is impossible
to prevent without requiring the adversary shows some awareness of its specific
tampering. The definition where the adversary chooses and outputs f after seeing
C does imply that all fixed functions f are prevented [45]. See the full version
for more details [3, Appendix A] .

How to Construct this Object Before instantiating such an object, we recall
some notations and related constructions of nonmalleable point obfuscations in
prior work [44,8,38]. We note that all of these constructions rely on groups that
only efficiently admit linear operations.

Suppose that g is a generator of a prime order group whose order is p.
Throughout this paper, [x]g will be used to represent gx (called implicit no-
tation in [36]) so as to highlight the behavior in the exponent. We treat val as
an element in Zp. Let the class of tampering functions F correspond to low
degree polynomials over Zp. Previous constructions [8] use a set of polynomial
encodings, denoted as P, and compute the following for Obf(Ival) :

1. Sample some P ← P,
2. Output P, [P (val)]g.

The intuition for security7 is twofold: 1) that P is sufficiently randomized to
argue virtual black box security [6], and that 2) for all instances of P ∈ P no
fixed affine functions of P — i.e., αP (val)+β — correspond to any P ′(f(val)) for
P ′ ∈ P and low degree polynomial f . Prior work achieves these two properties
jointly by randomizing the low degree coefficients of P and fixing some higher
powers to have a coefficient of 1. For example, Bartusek et al. [8] consider Pa(x) =
ax+ x2 + x3 + x4 + x5.

Our construction builds such a function class P, parameterizing P ∈ P by
both a random a and ad, so that ad and val can be blended in a secure way. Let
ρ := |ad|. Then, we have:

Pa,ad(x)
def
= ax+

ρ+1∑
i=2

adix
i +

ρ+6∑
i=ρ+2

xi.

In the above, the random a corresponds to the lowest degree coefficient of P
and the bits of ad set intermediate coefficients of the polynomial P . We can
prove security using the same group assumption used in prior nonmalleable point
obfuscation works [8,38].

While the construction has a similar structure to prior work, analysis of
nonmalleability is significantly more complicated by the fact that the adversary

7 The actual constructions are more complicated to ensure correctness holds, using
other points of randomness and group elements to check correctness. These are not
used in arguing nonmalleability. For simplicity, we do not discuss correctness in this
section.
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Algorithm 1: Augmented real-or-random construction that provides
nonmalleability over input point and associated data. Obf is an obfus-
cator and NMObf is a nonmalleable obfuscator.

Input (val, key, ad).
Sample random z.
for each bit i of key do

if keyi = 1 then
Ci ← Obf(Ival)

else
Ci ← Obf(Iz)

end

end
Let C0 ← NMObf(Ival,ad). // To distinguish an all-zero key and provide

nonmalleability

Output C = (C0, C1, . . . , C|key|, ad).

1) knows ad, 2) can output any value for ad′, and 3) doesn’t have to explain
how ad′ arose from ad. This gives the adversary more flexibility, and proving
nonmalleability becomes a careful multi-step procedure.

To give some intuition for the algebraic structure, it is important that the
powers multiplied by the bits of ad are below the powers with coefficients 1. If
these were switched, one could apply a polynomial tampering function to x and
change the associated data to compensate for the resulting changes in the higher
powers.

Extending to the Multibit Setting Next, we integrate the above with the
real-or-random approach of Canetti and Dakdouk [21]. The modified algorithm
is summarized in Algorithm 1.

On the technical side, this approach requires the polynomials in the group
to have more randomized powers, similar to the prior work of Fenteany and
Fuller [38]. However, unlike their work, we only use one nonmalleable point
obfuscation, the rest simply provide privacy. That is, only C0 in Algorithm 1 is
nonmalleable. As we show, this is sufficient to ensure nonmalleability over the
resultant digital locker.

Protecting the Multibit Output The above instantiation of the real-or-
random construction prevents tampering of the input point and associated data
but provides no protection over key. Our protection of the associated data allows
us to upgrade the NIZK construction of [25] to the plain model. Our technique
protects the associated data, which is set as crs, and the security of NIZK
protects everything else, so long as crs cannot be tampered with. As we discuss
in Section 5.3, we are also able to use a weaker NIZK system, specifically true
simulation extractible NIZKs, which may be instantiable in pairing-free groups.



8 D. Apon, C. Cachet, P. Hall, B. Fuller, F. Liu

1.3 Discussion and Open Questions

This work presents the first constructions in the plain model of nonmalleable
digital lockers and low-entropy robust fuzzy extractors. The integration of the
nonmalleable point function with associated data with the real-or-random con-
struction is technical and non-black box. Ideally, one would be able to define
some necessary condition such that general black box composition of our point
obfuscation with associated data and any other point obfuscation or digital locker
is possible. One can view our construction as evidence that our particular non-
malleable point obfuscator with associated data is safe under composition with
a specific point function.

There are known barriers to constructing digital lockers secure against auxil-
iary data that is hard to invert (such as a point function) if indistinguishability
obfuscation exists [19,10]. Security in the presence of auxiliary data is the stan-
dard method for arguing composition.

In this work, we focus on nonmalleability of digital lockers. Obfuscating wild-
cards, conjunctions, and hyperplanes use similar techniques [18,12,39,7,31,24], so
our techniques may apply. We note that some of these objects directly yield non-
robust fuzzy extractors [39,31], so it may be possible to provide robustness by
making the obfuscation nonmalleable. It seems less likely the techniques can
be used to protect obfuscation of general evasive functions [5], compute-and-
compare programs [43,56,17] and general obfuscation [40,41,49,48,42,2].

We generically use (true simulation extractible) NIZKs. Optimizing this con-
struction is important, since this object will likely represent the dominant com-
putational cost.

2 Preliminaries

Logarithms are base 2. Let Xi ∈ Z be random variables. We denote by X =
X1, ..., Xn the tuple (X1, . . . , Xn). For a discrete random variable X, the min-
entropy of X is H∞(X) = − log(maxx Pr[X = x]). For a pair of discrete random
variables X,Y , the average min-entropy of X|Y is

H̃∞(X|Y ) = − log

(
E
y∈Y

(
2−H∞(X|Y )

))
.

The notation id is used to denote the identity function: ∀x, id(x) = x. Capitalized
letters are used for random variables and lowercase letters for samples. Let {Dλ}
be an ensemble of sets. Two circuits, C and C ′, with inputs in Dλ are functionally
equivalent, denoted C ≡ C ′, if ∀x ∈ Dλ, C(x) = C ′(x). For a matrix A, let Ai

denote the ith row and Ai,j to denote the entry in the i row and jth column.

Definition 1. An ensemble of distributions X = {Xλ}λ∈N, where Xλ is over
Dλ, is well-spread if the function H∞(Xλ) mapping λ to non negative reals
grows faster than ω(log λ). That is, H∞(Xλ) = ω(log λ).
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Definition 2. An ensemble of distributions X = {Xλ}λ∈N, where Xλ is over
Dλ, is efficiently sampleable if exists a PPT algorithm given 1λ as input whose
output is identically distributed as Xλ.

Throughout this work, we will use λ to represent the security parameter, ρ to
represent the length of the associated data, ` to represent the length of the output
key, and τ to represent the maximum degree of the polynomial the adversary
uses for mauling.

3 Obfuscation Definitions

All obfuscation definitions include require only polynomial slowdown, which is
easily verifiable for all presented constructions. The main object we introduce in
this work is a nonmalleable point function with associated data. A traditional
point function Ival : Zp 7→ {0, 1} takes a single input val ∈ Zp and returns 1 if and
only if the input x to the function is val. An obfuscator is designed to preserve this
functionality while hiding val. The definition of a nonmalleable point function
with associated data adds a second input to I denoted as ad ∈ {0, 1}ρ. This
input does not need to be hidden by the obfuscator but should be nonmalleable.
So the raw functionality is just a point function of the pair val, ad. That is,

Ival,ad(x, y) =

{
1 x = val ∧ y = ad

0 otherwise.

Note that, since in our use cases ad is public, an honest user may just use
the given ad in using the obfuscated point function. In our further sections, we
use lockPoint(·) to denote point obfuscation algorithm and unlockPoint as the
obfuscated program. As prior work [25,44,38], we first present the notion of an
obfuscation verifier:

Definition 3 (Obfuscation Verifier). Let λ ∈ N be a security parameter and
let O input x ∈ Dλ and output a program P. An algorithm Vobf is a value verifier
if ∀x ∈ Dλ it is true that PrVobf,O[Vobf(P) = 1|P ← O(x)] = 1.

Definition 4 (Nonmalleable Point Function with Associated Data).
For security parameter λ ∈ N parameter ρ ∈ N, let Dλ be a sequence of in-
put domains and F : Dλ → Dλ be a family of functions. Let X be a family
of distributions over Dλ. A (F ,X , ρ)-nonmalleable point function obfuscation
with associated data lockPoint is a PPT algorithm that inputs a point val ∈ Dλ
and ad ∈ {0, 1}ρ, and outputs a circuit unlockPoint. Let Vobf be an obfuscation
verifier for lockPoint as defined in Definition 3. The following properties must
hold:

1. Completeness: For all val ∈ Dλ, ad ∈ {0, 1}ρ, it holds that

Pr[unlockPoint(·, ·) ≡ Ival,ad(·, ·)|unlockPoint← lockPoint(val, ad)] ≥ 1−ngl(λ),

where the probability is over the randomness of lockPoint.
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2. Virtual Black Box Security: For every PPT A and any polynomial func-
tion p, there exists a simulator S and a polynomial function q(·) such that,
for all large enough λ ∈ N, all val ∈ Dλ, ad ∈ {0, 1}ρ and for any predicate
P : Dλ × {0, 1}ρ 7→ {0, 1},

|Pr[A(unlockPoint, ad) = P(val, ad)|unlockPoint← lockPoint(val, ad)]

−Pr[SIval,ad(·)(1λ, ad) = P(val, ad)]| ≤ 1

p(λ)
,

where S is allowed q(λ) oracle queries total to Ival,ad and the probabilities
are over the internal randomness of A and lockPoint, and of S, respectively.
Here Ival,ad(·) is an oracle that returns 1 when provided input (val, ad) and 0
otherwise.

3. Nonmalleability: For any X ∈ X , for all ad ∈ {0, 1}ρ, for any PPT A,
there exists ε = ngl(λ), such that defining

unlockPoint← lockPoint(val, ad),

(C, f, ad∗)← A (unlockPoint, ad)

it is true that :

Pr
val←X

[
Vobf(C) = 1, (If(val),ad∗ ≡ C)

f ∈ F ∨ (f = id ∧ ad∗ 6= ad)

]
≤ ε.

3.1 Nonmalleable Digital Locker

We recall the definition of a nonmalleable digital locker. To distinguish this from
the case of point obfuscation, we use lock() to denote the multi-bit point obfusca-
tion algorithm and unlock as the (obfuscated) digital locker. In our construction,
all tampering of the output key is prevented, so we remove the notion of a key
verifier that was used in [38].

Definition 5 (Nonmalleable Digital Locker). For security parameter λ ∈
N, let Dλ be a sequence of domains, let

1. F : Dλ → Dλ be a function family,
2. X be a family of distributions over Dλ,
3. lock be a PPT algorithm that maps points val ∈ Dλ, key ∈ {0, 1}n to a circuit

unlock, and
4. Vobf be an obfuscation verifier.

The algorithm lock is a (F ,X , n)-nonmalleable digital locker if all of the below
are satisfied:

1. Completeness For all val ∈ Dλ, key ∈ {0, 1}n it holds that

Pr[unlock(·) ≡ Ival,key(·)|unlock← lock(val, key)] ≥ 1− ngl(λ),

where the probability is over the randomness of lock. Here Ival,key is a function
that returns key when provided input val, otherwise Ival,key returns ⊥.
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2. Virtual Black Box Security: For all PPT A and p = poly(λ), ∃S and
q(λ) = poly(λ) such that for all large enough λ ∈ N, ∀val ∈ Dλ, key ∈
{0, 1}n,P : Dλ × {0, 1}n 7→ {0, 1},∣∣Pr[A(lock(val, key)) = P(val, key)]− Pr[SIval,key(1λ) = P(val, key)]

∣∣ ≤ 1

p(λ)
,

where S is allowed q(λ) oracle queries to Ival,key and the probabilities are over
the internal randomness of A and lock, and of S, respectively.

3. Nonmalleability ∀X ∈ X , PPT A, key ∈ {0, 1}n, there exists ε = ngl(λ)
such that:

Pr
val←X

 Vobf(C) = 1,(
(f ∈ F ∧ key′ 6=⊥)∨

(key′ 6∈ {⊥, key} ∧ f = id)

)∣∣∣∣∣∣∣
unlockval,key ← lock(val, key)

(C, f)← A(unlockval,key)

key′ ← C(f(val))

 ≤ ε.
recall id is the identity function.

Remark 2. As mentioned in the Introduction, there are alternative notions of
nonmalleability. We formally define fixed nonmalleability, a weaker definition
which was used in [25], and oblivious nonmalleability, which does not require
the adversary to output the targeted function f in the full version [3, Appendix
A]. There we show that oblivious nonmalleability is impossible in general. One
can bypass this result by using cryptographic tools that extract the tampering
function, such as a random oracle or non-falsifiable assumptions.

3.2 Same Point Definitional Equivalences

The soundness in Definitions 4 and 5 are virtual black box security [6]. In
the majority of this work, we will be using distributional indistinguishability,
which says that obfuscations of all well spread distributions X are indistin-
guishable from obfuscations of random points. Bitanski and Canetti [13] showed
that this definition is equivalent to virtual black box obfuscation for point
functions (see also [20,52]). Furthermore, they showed this equivalence holds
when given a constant number of obfuscations on related points. Fenteany and
Fuller [38] show that this equivalence holds if given a polynomial number of
copies unlockPoint1 ← lockPoint(X), ..., unlockPoint` ← lockPoint(X) as long as
the same value is locked in each call to lockPoint. In the full version [3], we gen-
eralize these results showing that a vector of obfuscations that have output on
a single input point are secure when composed with associated data. That is,
define the circuit class

Pointval,key,ad(val
′, ad′) =

{
key val′ = val ∧ ad′ = ad

⊥ otherwise
.

Note that point functions and digital lockers both with and without associated
data variants fall into this class by adjusting whether ad and key are of length
0. These proofs are straightforward extensions of the proofs in [38]. There are
presented for completeness in the full version of this work [3].



12 D. Apon, C. Cachet, P. Hall, B. Fuller, F. Liu

Definition 6 (Distributional Indistinguishability). A Point obfuscator is
called a good distributional indistinguishable (DI) obfuscator if for any PPT A
with binary output and any well-spread distribution X over points in Dλ, for all
vectors ~key, ~ad then there exists some negligible function ε such that

| Pr
val←X

[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val, ~adi, ~keyi)}`i=1]

− Pr
u

$←Dλ
[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(u, ~adi, ~keyi)}`i=1]| ≤ ε.

Theorem 1. For the class Point under ` = poly(λ) composition where the
same val is used in each obfuscation, distributional indistinguishability and vir-
tual black box security (in Definition 4) are equivalent.

3.3 Group Theoretic Assumptions

We present our underlying group-theoretic assumptions here. As a reminder, we
use the implicit notation [36] to denote encoding in a group with generator g
(where [x]g denotes gx).

Assumption 1 [8, Assumption 3] Fix some ψ ∈ Z+. Let G = {Gλ}λ∈N be a
group ensemble with efficient representation and operations where each Gλ is
a group of prime order p(λ) ∈ (2λ, 2λ+1). Let {Xλ} be a family of well-spread
distributions over Dλ = Zp(λ). Then for any PPT A:∣∣Pr[A({ki, [kix+ xi]g}i∈[2,...,ψ] = 1]− Pr[A({ki, [kir + ri]g}i∈[2,...,ψ]

∣∣ = ngl(λ).

where x← Xλ, r ← Zp(λ), ki ← Zp(λ).

Bartusek, Ma, and Zhandry [8] justified Assumption 1 by showing it holds in the
generic group model even if Xλ depends on g. This model of allowing a distribu-
tion to depend on g is related to the non-uniform generic group model [26]. Such
an assumption is crucial to arguing plain model security (rather than treating Xλ
as independent of g). The second assumption can be proved from Assumption 1,
see [8, Lemma 8], and is useful for arguing nonmalleability:

Assumption 2 [8, Assumption 4] Fix some ψ ∈ Z+. Let G and Xλ be defined
as in Assumption 1. For any PPT A,

Pr[[x]g ← A({ki, [kix+ xi]g}i∈[2,..,ψ])] = ngl(λ).

where x← Xλ and ki ← Zp(λ).

4 Nonmalleable Point Functions with Associated Data

We begin by instantiating a nonmalleable point obfuscation satisfying Defini-
tion 4.
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Construction 1 Let λ ∈ N be a security parameter, let ρ ∈ N be a parameter.
Let G = {Gλ}λ∈N be a group ensemble with efficient representation and oper-
ations where each Gλ is a group of prime order p(λ) ∈ (2λ, 2λ+1). Define five
polynomials p1, ..., p5 as follows:

p1,ad,c1(val) = c1val +

ρ∑
i=1

adival
i+1 +

ρ+6∑
i=ρ+2

vali,

p2,c2(val) = c2val + valρ+7,

p3,c3(val) = c3val + valρ+8,

p4,c4(val) = c4val + valρ+9,

p5,c5(val) = c5val + valρ+10.

In the above, all calculations are conducted modulo Zp(λ).
Let g be a generator of the group Gλ. Let c1, c2, c3, c4, c5

$← Zp(λ) be input

randomness. Let ρ
def
= |ad|. Consider the following construction:

lockPoint(val, ad; a, b, c)
def
=


c1, [p1,ad,c1(val)]g
c2, [p2,c2(val)]g
c3, [p3,c3(val)]g
c4, [p4,c4(val)]g
c5, [p5,c5(val)]g


Vobf is the circuit that checks that unlockPoint consists of the appropriate number
of values and group elements. If not, it outputs 0. Given a program unlockPoint
consisting of five pairs {(c′i, g′i)}5i=1

8 and inputs val′, ad′ compute:[
p1,ad′,c′1(val′)

]
g

?
= g′1,{[

pi,c′i(val
′)
]
g

?
= g′i

}5

i=2
.

If all of these checks pass, output 1. Otherwise, output 0.

Theorem 2. Let all parameters be as in Construction 1, let ρ ∈ N be a pa-
rameter. Define F : Zp(λ) → Zp(λ) as the set of non-constant, non-identity
polynomials of maximum power τ . Suppose that

1. Assumption 1 holds for ψ = max{τ(ρ+ 6), ρ+ 10} and
2. (ρ+ 6)22ρ/p(λ)3 = ngl(λ).

Then, Construction 1 is a (F ,X , ρ)-nonmalleable point function obfuscation with
associated data.

8 g is a generator that is a global system parameter along with the group description.
Note that it is efficiently checkable 1) whether the order of a group is prime and 2)
whether an element g is a generator of the known order group.
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Remark 3. In the above, the size of associated data is limited to be ρ ≈ log(p(λ)),
which is linear in the security parameter λ. Our primary application has the
associated data as the CRS of some NIZK. Such strings can be quite long. In
Section 5.4, we show that it suffices to include a short value in the associated
data whose size is Θ(log λ).

In order to prove that Construction 1 satisfies Definition 4, we must prove cor-
rectness, virtual black box security, and nonmalleability.

Correctness: We present the following lemma proving correctness. Its proof is
deferred to the full version [3].

Lemma 1. For any ρ such that (ρ+ 6)22ρ/p(λ)3 + ρ/p(λ) = ngl(λ), Construc-
tion 1 satisfies completeness.

Security: We present the following theorem proving security. Its proof is de-
ferred to the full version [3]. Within the proof, Lemma 2 presents a general
approach to creating valid point obfuscations from Assumption 1, which will be
used in later constructions, as well.

Theorem 3. Let ρ be the length of ad. Suppose that Assumption 1 holds for
highest power ψ = ρ+ 10. Then, Construction 1 satisfies virtual black box secu-
rity.

Nonmalleability: Finally, we must prove nonmalleability. We give the main
theorem below. The proof strategy for it is as follows:

1. Lemma 2. We first prove that any method of incorporating associated data
suffices for keeping val from being changed as long as there are enough large
powers of val that are not affected by associated data. We show this holds
even for adversaries that may arbitrarily tamper with the associated data.

2. Lemma 3. We then prove that, if the value val is not tampered, then for
Construction 1 it is difficult to change ad ∈ {0, 1}ρ to any distinct ad′ ∈
{0, 1}ρ.

The aggregate of both of these results yields the desired nonmalleabillity prop-
erty. We include the statements of Lemma 2 and Lemma 3 below, as well. Their
proofs are deferred to the full version [3].

Theorem 4. Let λ be a security parameter. Let {Xλ} be a well-spread distribu-
tion ensemble and let τ, ρ ∈ Z+ be parameters that are both poly(λ). Let Fpoly
be the ensemble of functions fλ where fλ is the set of non-constant, non-identity
polynomials in Zp(λ)[x] with degree at most τ . Suppose that Assumption 1 holds
for ψ = max{ρ + 10, τ(ρ + 6)}. Then, the obfuscator in Construction 1 is non-
malleable over Fpoly with distribution ensemble {Xλ}, and AD = {0, 1}ρ.
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Lemma 2. Let λ be a security parameter. Let {Xλ} be a well-spread distribution
ensemble and let τ, ` ∈ Z+ be poly(λ). Let Fpoly be the ensemble of functions
fλ where fλ is the set of non-constant, non-identity polynomials in Zp(λ)[x] with
degree at most τ .

Let P (x) = r1x + . . . + rρ−1x
ρ−1 + rρx

ρ with ri ∈ Zp(λ), and let ~P =
{r1, . . . , rρ} where any or all of the ri may be 0. Suppose that Assumption 1
holds for ψ = max{ρ+ 10, τ(ρ+ 6)}. Define as obfuscation (with c1, c2, c3, c4, c5
uniformly distributed in Zp(λ))

lockPointP (val, ~P ; c1, c2, c3, c4, c5)
def
= ~P ,



c1,
[
c1val + valP (val) +

∑ρ+6
i=ρ+2 val

i
]
g

c2,
[
c2val + valρ+7

]
g

c3,
[
c3val + valρ+8

]
g

c4,
[
c4val + valρ+9

]
g

c5,
[
c5val + valρ+10

]
g


.

Consider Fpoly and distribution ensemble {Xλ}. For any nonmalleability PPT
adversary A in Definition 4, A outputs a valid f, P ′, unlockPointP ′ with negligible
probability.

Lemma 3. Let λ be a security parameter. Let {Xλ} be a well-spread distribution
ensemble and let τ, ρ ∈ Z+ be poly(λ). Let Fpoly be the ensemble of functions
fλ where fλ is the set of non-constant, non-identity polynomials in Zp(λ)[x] with
degree at most τ .

Let P~b(x) = bρx
ρ + bρ−1x

ρ−1 + . . . + b1x where bi ∈ {0, 1}. Suppose that
Assumption 2 holds for ψ = max{ρ + 10, τ(ρ + 6)}. Define as an obfuscation
(with c1, c2, c3, c4, c5 uniformly distributed in p(λ)):

lockPoint(val,~b; c1, c2, c3, c4, c5)
def
= ~b,



c1,
[
c1val + valP~b(val) +

∑ρ+6
i=ρ+2 val

i
]
g

c2,
[
c2val + valρ+7

]
g

c3,
[
c3val + valρ+8

]
g

c4,
[
c4val + valρ+9

]
g

c5,
[
c5val + valρ+10

]
g


.

Consider Fpoly and distribution ensemble {Xλ}. The probability that any PPT
algorithm outputs a valid obfuscation with the identity function f and some P~b′

with ~b′ ∈ {0, 1}ρ,~b′ 6= ~b is negligible.

5 Standard Model Digital Lockers

We will now construct a nonmalleable digital locker in two steps.

– In Section 5.1 we amend our previous construction of a NMPOad to instead
output a predetermined key rather than a single bit. Nonmalleability of the
input val and ad must still be preserved, but no nonmalleability is guaranteed
for key.
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– In Section 5.2, we use this intermediate digital locker with a non-interactive
zero knowledge proof, to guarantee complete nonmalleability over key.

Of course, correctness and security must hold for val, key as well. The end result
of these efforts (Construction 3) will be a digital locker with: 1) input val non-
malleable over low-degree polynomials, 2) public helper string ad nonmalleable
over any tampering, and 3) output key nonmalleable over any tampering. As we
will see in Section 6, these tampering classes have meaningful applications.

5.1 Digital Lockers Nonmalleable over val and ad

We integrate our NMPOad with the real-or-random construction [21] in Figure 1.
The essential idea is that we may encode each bit of key as a real (encoding val) or
random (encoding a random point) point obfuscation, with an additional obfus-
cation of val to ensure that is the point being tested. We encode the attestation
of ad in this additional obfuscation.

In order to adapt our techniques to a real-or-random digital locker with
|key| = `, then, it is clear that we must ensure that each point obfuscation
retains security in the presence of up to ` other copies of the same point (i.e.,
if key = 1`). The previous construction is clearly not sufficient, providing two
copies of the obfuscation breaks security (see discussion in [38]), but we may use
similar techniques as so. We begin by defining the intermediate cryptographic
object.

Definition 7 (Input Nonmalleable Digital Locker with Associated Data).
For security parameter λ ∈ N, let {Dλ} be an ensemble of finite sets, let ρ ∈ N
be a parameter. Let

1. F : Dλ → Dλ be a function family,
2. X be a family of distributions over Dλ,
3. iLock be a PPT algorithm that maps points val ∈ Dλ, ad ∈ {0, 1}ρ, key ∈
{0, 1}n to a circuit iUnlock, and

4. Vobf be an obfuscation verifier.

The algorithm iLock is a (F ,X , ρ, n)-input nonmalleable digital locker with as-
sociated data if all of the below are satisfied:

1. Completeness For all val ∈ Dλ, ad ∈ {0, 1}ρ, key ∈ {0, 1}n it holds that

Pr[iUnlock(·) ≡ Ival,ad,key(·)|iUnlock← iLock(val, ad, key)] ≥ 1− ngl(λ),

where the probability is over the randomness of iLock. Here Ival,ad,key is a
function that returns key when provided input (val, ad), otherwise Ival,ad,key
returns ⊥.

2. Virtual Black Box Security: For all PPT A and p(λ) = poly(λ), ∃S
and q(λ) = poly(λ) such that for all large enough λ ∈ N, ∀val ∈ Dλ, ad ∈
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{0, 1}ρ, key ∈ {0, 1}n,P : Dλ × {0, 1}ρ+n 7→ {0, 1},∣∣Pr[A(iLock(val, ad, key), ad) = P(val, ad, key)]

−Pr[SIval,ad,key(1λ, ad) = P(val, ad, key)]
∣∣ ≤ 1

p(λ)
,

where S is allowed q(λ) oracle queries to Ival,ad,key and the probabilities are
over the internal randomness of A and lock, and of S, respectively.

3. Input Nonmalleability For all X ∈ X , PPT A, ad ∈ {0, 1}ρ, key ∈ {0, 1}n,
there exists ε = ngl(λ) such that:

Pr
val←X

 Vobf(C) = 1,

f ∈ F ∨ (f = id ∧ ad′ 6= ad)

C(f(val), ad′) 6=⊥

∣∣∣∣∣∣∣
unlockval,key ← iLock(val, ad, key)

(C, f, ad′)← A(unlockval,key, ad)

 ≤ ε.
Remark 4. Note that input nonmalleability does not protect against key tamper-
ing. In fact, an adversary that arbitrarily mauls key to key′ ∈ {0, 1}n is allowed
for this object, so long as val and ad are not tampered.

Before introducing the construction, we define some polynomials that will be
used in the construction as follows:

p0,ad, ~c0(val) = c0,1val +
∑̀
i=1

c0,i+1val
i+1 +

ρ∑
i=1

adival
`+1+i +

5∑
i=1

val`+ρ+1+i,

(1)

p0,1,c0,`+2
(val) = c0,`+2val + val`+ρ+7, (2)

p0,2,c0,`+3
(val) = c0,`+3val + val`+ρ+8, (3)

p0,3,c0,`+4
(val) = c0,`+4val + val`+ρ+9, (4)

p0,4,c0,`+5
(val) = c0,`+5val + val`+ρ+10, (5)

p∗~c(val) = cj,1val +
∑̀
i=1

cj,i+1val
i+1. (6)

Construction 2 Let λ ∈ N be a security parameter, let ρ, ` ∈ N be parameters.
Let G = {Gλ} be a group ensemble with efficient representation and operations
where each Gλ is a group of prime order p(λ) ∈ (2λ, 2λ+1). Let Dλ = Zp(λ). Let
g be a generator of Gλ. Let ρ, ` ∈ Z+ such that ρ = O(log λ) and ` = poly(λ).
Define the Construction of (iLock, iUnlock) as in Figure 1.

Theorem 5. Let all parameters be as in Construction 2. Let τ ∈ N and ρ ∈ N
be parameters.

1. Suppose that Assumption 1 holds for maximum power max{`+ ρ+ 10, τ(`+
ρ+ 6)},
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iLock(val, ad, key) :

1. Define ` = |key|,
2. Sample z ← Zp(λ),
3. Sample C ← Z(`+1)×(`+1)

p(λ) ,
c0,`+2, c0,`+3, c0,`+4, c0,`+5 ← Zp(λ),

4. Compute unlockPointad =
[p0,ad,C0(val)]g

c0,`+2,
[
p0,1,c0,`+2(val)

]
g

c0,`+3,
[
p0,2,c0,`+3(val)

]
g

c0,`+4,
[
p0,3,c0,`+4(val)

]
g

c0,`+5,
[
p0,4,c0,`+5(val)

]
g


5. For i = 1 to `:

unlockPointi =

{[
p∗Ci(val)

]
g

keyi = 1[
p∗Ci(z)

]
g

keyi = 0
.

6. Output C, unlockPointad, {unlockPointi}`i=1.

iUnlock(C′, unlockPoint′ad,
{unlockPoint′i}`i=1, val

′, ad′):

1. Parse unlockPoint′ad as
c′0,`+2, c

′
0,`+3, c

′
0,`+4, c

′
0,`+5,

g′0,1, g
′
0,2, g

′
0,3, g

′
0,4, g

′
0,5.

2. Verify[
p1,ad′,C′0(val′)

]
g

= g′0,1,{[
pi,c′0,i(val

′)
]
g

= g′0,i

}5

i=2

.

If one checks does not pass out-
put ⊥.

3. Initialize key = ~0`.
4. For i = 1 to `:

(a) If [p∗C′i
(val′)]g =

unlockPoint′i set keyi = 1.
5. Output key.

Fig. 1: Real-or Random-Instantiation of Input Nonmalleable Digital Locker with As-
sociated Data.

2. Let Fpoly be the family of polynomials over Zp(λ) with maximum degree τ ,
and

3. (`+ ρ+ 10)22ρ/p(λ)3 = ngl(λ).

Then, Construction 2 is a (Fpoly,X , ρ, `)-input nonmalleable digital locker with
associated data.

The proof of this statement is deferred to the full version [3]. The technical
details behind Theorem 5 follow the same structure as Theorem 2 — we prove
correctness, virtual black box security, and input nonmalleability separately, each
following a similar proof structure as the respective property of Construction 1.

5.2 Adding Key Nonmalleability

We now show that the input nonmalleable digital locker with associated data
suffices to build a fully nonmalleable digital locker for the same function class.
Let iLock be such an object and Π = (Setup, P, V ) be some appropriate non-
interactive proof system (described in Section 5.3) using a crs of length ρ for
the following language that proves well-formness of iLock:

L = {iUnlock : ∃(val, crs, key, r) such that iUnlock = iLock(val, crs, key; r)}
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lock(val, key) :

1. Sample (crs = (crs1, crs2),TK, EK)← Setup(1λ).
2. Compute iUnlock← iLock(val, crs1, key; r).
3. Compute π ← P (unlock′; val, key, r, crs).
4. Output (iUnlock, π, crs).

Vobf(iUnlock, π, crs):

1. If VobfInput(iUnlock) = 0 output 0.

2. If crs = ~0 output 0.
3. if V (π, unlock′, crs) = 0 output 0.
4. Output 1.

unlock(val, iUnlock, π, crs = (crs1, crs2)): Output iUnlock(val, crs1)

Fig. 2: Digital Locker Construction.

Construction 3 For security parameter λ ∈ N, let F : Dλ → Dλ be a family
of functions, let ρ, ` ∈ N be parameters, X be a family of distributions over Dλ.
Suppose that

1. iLock is a (Fpoly,X , ρ, `)-input-nonmalleable digital locker with associated
data with associated obfuscation verifier VobfInput, and

2. Π = (Setup, P, V ) is an NIZK system for the language L with short non-
tamperable CRS.9 We formally define this property and show a generic con-
struction in Section 5.3.

Then define (lock, unlock,Vobf) as in Figure 2.

Theorem 6. Let notation be as in Construction 3. Suppose that

1. iLock is a (Fpoly,X , ρ, `)-input-nonmalleable digital locker with associated
data with associated obfuscation verifier VobfInput, and

2. Π = (Setup, P, V ) is a true simulation extractable non-interactive zero knowl-
edge proof system as described in Section 5.3,

3. That every function f ∈ F is entropy preserving; i.e., for any well-spread
X, f(X) is also well-spread.

Then lock, unlock is a (F ,X , n)-nonmalleable digital locker.

Proof (Proof of Theorem 6). Following Definition 5, we need to prove complete-
ness, soundness, and nonmalleability. Completeness can be easily verified, so we
just focus on the non-trivial parts, i.e., proof of soundness and nonmalleability.

Soundness To prove soundness, we first observe that according to Theorem 1,
for this class of circuits being obfuscated DI is equivalent to VBB, so for the rest
of the proof, we focus on proving the DI. We prove soundness by contradiction.

9 That is, crs can be split into (crs1, crs2) where crs1 has length independent of the
language, i.e., O(λ), and only crs1 is required to be non-tamperable. crs2 cannot
be modified (computationally infeasible) given the original crs1.
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Suppose there exists a PPT adversary A, a key key ∈ {0, 1}`, and a well-spread
distribution X such that

| Pr
val←X

[A(lock(val, key)) = 1]− Pr
r

$←Dλ
[A(lock(r, key)) = 1] > ε

for some non-negligible ε, then there exists an adversary B that breaks the DI
security of the input-nonmalleable digital locker. This reaches a contradiction.
B receives the distribution X samples (crs1, crs2,TK,EK) ← Setup(1λ) for

the proof system, and sets associated data as crs1. B sends this distribution to
the reduction for iLock with the input distribution the same X, and associated
data, crs1. The reduction samples some val ← X or uniform r. B receives
iUnlock. Next B creates a simulated π. It sends iUnlock, π, crs to A and outputs
A’s decision.

Clearly, if val is from the distribution X, then the reduction has simulated an
indistinguishable lock(val, key) (assuming the simulated proof π is indistinguish-
able), or otherwise, lock(r, key). That is, in both cases, the obfuscation is properly
prepared assuming the indistinguishability of the simulated proof. Thus, the ad-
vantage of the adversary A translates to the advantage of B in breaking the DI of
the nonmalleable point obfuscation. By the equivalence of DI and VBB of point
obfuscation, this breaks the soundness of the nonmalleable point obfuscation.

Nonmalleability Now we prove nonmalleability. As before, we prove by con-
tradiction. Suppose there exists a PPT adversary A and key ∈ {0, 1}`, a well-
spread distribution X such that A breaks the nonmalleability experiment with
non-negligible probability ε. Then there exists an adversary B that breaks the
nonmalleability of the underlying iLock(·).
B follows exactly the same procedure in preparing the input to the adver-

sary A as in soundness proof above. Now A would return a triple (C, f, crs∗ =
(crs∗1, crs

∗
2)) that passes the checking conditions with a non-negligible proba-

bility ε. Assume C is different from the original obfuscation given to A (as we
don’t allow identity tampering). B does the following:

– If the crs1 is modified to a different crs∗1, then the reduction just outputs
the C, f, crs∗1 which correspond to a tamper according to nonmalleability of
iLock(·).

– If the crs1 is kept intact but crs2 is modified to a different crs∗2, then this
breaks the underlying NIZK as it is computationally infeasible to obtain a
consistent but different crs∗2.

– If the crs = crs∗ in C is intact yet the statement-proof pair is modified,
then B runs the witness extractor to extract a valid witness, i.e., val′ used
to generate C. As the input obfuscated circuits received by B are properly
prepared by the challenger, the simulated proof given to the adversary A is
with respect to a true statement. In this case, the notion of true simulation
extractability allows B to extract a valid witness by running the extractor.
Thus, given val′ = f(val). B can prepare an obfuscation (with an arbitrary
associated data of val′), breaking the nonmalleability of iLock(·).
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Since A wins the nonmalleable experiment with a non-negligible probability,
one of the above case must happen with a non-negligible probability. This would
imply the contradiction we expect. The above two arguments complete the proof
of Theorem 6.

5.3 The Building Block – True Simulation Extractable NIZK

In this section, we present the building block used in Construction 3 – true
simulation extractable NIZK. The notion was introduced by Dodis et al. [32] as
a relaxation of all simulation extractable NIZK. We describe the notion in what
follows.

Definition 8. Let R be an NP relation on pairs (x,w) with corresponding lan-
guage LR = {x : ∃w such that (x,w) ∈ R}. A true-simulation extractable non-
interactive zero-knowledge (NIZK) argument for a relation R consists of three
algorithms (Setup,Prove,Verify) with the following syntax:

– (crs,TK,EK) ← Setup(1λ): creates a common reference string crs, a trap-
door TK, and an extraction key EK.

– π ← Prove(crs, x, w): creates an argument π that R(x,w) = 1.
– 0/1← Verify(crs, x, π): verifies whether or not the argument π is correct.

For presentation simplicity, we omit crs in the Prove and Verify. We require
that the following three basic properties hold:

– Completeness. For any (x,w) ∈ R, if (crs,TK,EK) ← Setup(1λ), π ←
Prove(x,w), then Verify(x, π) = 1.

– Soundness. For any PPT adversary A, the following probability is negligi-
ble: for (crs,TK,EK) ← Setup(1λ), (x∗, π∗) ← A(crs) such that x∗ /∈ LR
but Verify(x∗, π∗) = 1.

– Composable Zero-knowledge. There exists a PPT simulator S such that
for any PPT A, the advantage (the probability A wins minus one half) is
negligible in the following game.
• The challenger samples (crs,TK,EK)← Setup(1λ) and sends (crs,TK)

to A
• A chooses (x,w) ∈ R and sends to the challenger.
• The challenger generates π0 ← Prove(x,w), π1 ← Sim(x,TK), and then

samples a random bit b← {0, 1}. Then he sends πb to A.
• A outputs a guess bit b′, and wins if b′ = b.

– Extractibility. Additionally, true simulation extractability requires that there
exists a PPT extractor Ext such that for any PPT adversary A, the proba-
bility A wins is negligible in the following game:

• The challenger samples (crs,TK,EK)← Setup(1λ) and sends crs to A.
• A is allowed to make oracle queries to the simulation algorithm Sim′((x,w),TK)

adaptively. Sim′ first checks if (x,w) ∈ R and returns Sim(x, TK) if that
is the case.

• A outputs a tuple x∗, L∗, π∗.
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• The challenger runs the extractor w∗ ← Ext(L∗, (x∗, π∗),EK).

• A wins if (1) the pair (x∗, L∗) was not part of the simulator query, (2)
the proof π∗ verifies, and (3) R(x∗, w∗) = 0.

Briefly speaking, a true simulation extractable NIZK requires that the adver-
sary can only query the simulation oracle only on true statements, whereas all
simulation extractability allows the adversary to query on any (perhaps false)
statement. As shown by the work [32], the true simulation extractable NIZK can
be constructed in a fairly simple way as summarized by the following theorem.

Theorem 7 ([32]). Assume that there exists a CCA2 encryption and a regular
NIZK argument for NP languages, then there exists a true simulation extractable
NIZK for NP languages.

The work [32] showed how to instantiate the building blocks under the SXDH
assumption over bilinear groups. There is plausible evidence that the regular
NIZK can be constructed without the need of pairing groups, c.f. [28], under
some non-standard assumptions.

5.4 NIZK with Short Non-Tamperable CRS

The generic use of the NIZK from Dodis et al. [32] requires long CRS that would
depend on the language being proved, and this is a general fact for NIZKs. In
our application, however, this poses a challenge when we combine this with our
non-malleable obfuscation with associate data. Particularly, the correctness of
Theorem 2 requires a group that has a length larger than that of associated data.
We notice that the language L used in Construction 3 requires a long CRS, as
the statement and the witness are long. So, putting CRS as the associated data
in the non-malleable digital locker would require a significantly larger group,
which is undesirable.

To handle this technical subtlety, we present a simple transformation from
any NIZK into one whose CRS has the following structure: crs = (crs1, crs2),
where only crs1 is short and non-tamperable, crs2 can be arbitrarily long but
cannot be tampered consistently (computationally infeasible) as long as crs1
is kept intact. In this way, we can put crs1 as the associated data into our
non-malleable digital locker, and keep crs2 public, as we presented in the prior
section. Thus, the underlying group of the non-malleable obfuscation can be
significantly smaller.

To achieve this, given any crs′ from the underlying NIZK, we define a new
NIZK which is essentially the same as the original one, except in the CRS
generation: first it samples a collision resistant hash function h and computes
z = h(crs). It outputs crs = (crs1 = (h, z), crs2 = crs′) as the new CRS. The
verifier will always check whether h(crs2) = z and rejects immediately if it does
not hold. The security (zero-knowledge, soundness) is not affected by crs1, as it
can be generated just given crs′.
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6 Application to Fuzzy Extractors

In this section, we show that a nonmalleable digital locker suffices to build a ro-
bust fuzzy extractor [14,16,15,33] when combined with a standard secure sketch.
We note information-theoretic robust fuzzy extractor in the plain model or CRS
models requires the source to have an entropy of at least half its length [35]. In
this work, we consider computational robust fuzzy extractors in the plain model.
We begin with a few definitions.

Definition 9 (Secure Sketch). Let λ be a security parameter. Let W = Wλ

be a family of random variables over metric space (M, dis) = (Mλ, disλ). Then
SS,Rec is a (M,W, t, δ)-secure sketch if the following hold:

Correctness For all w,w′ ∈ M such that dis(w,w′) ≤ t, Pr[Rec(w′,SS(w)) =
w] ≥ 1− δ.

Security For all distributions W ∈ W it is true that H̃∞(W |SS(W )) ≥ ω(log λ).

Definition 10 (Robust Fuzzy extractor). An (M,W, `, t)-computationally
robust fuzzy extractor is a pair of PPT algorithms (Gen,Rep) where for all w,w′ ∈
M,

– (key, pub)← Gen(w), where key ∈ {0, 1}` and pub ∈ {0, 1}∗
– key′ ← Rep(pub, w′)

such that the following properties are true:

– Correctness : For all w,w′ ∈M such that dist(w,w′) ≤ t,

Pr
[
key′ = key

∣∣ (key, pub)← Gen(w), key′ ← Rep(pub, w′)
]
≥ 1− ngl(λ).

– Security : For any distribution W ∈ W, and for (key, pub)← Gen(W ), for
all PPT A there exists some ngl(λ) function such that

|Pr[A(key, pub) = 1]− Pr[A(U`, pub) = 1] ≤ ngl(λ).

where U` is a uniformly distributed random variable on {0, 1}`.
– Robustness: Let W,W ′ ∈M be (correlated) distributions such that

Pr
(w,w′)←(W,W ′)

[dis(w,w′) ≤ t] = 1

and W,W ′ ∈ W. For all W,W ′ ∈ W and for all adversaries A, the advantage
of A in the following experiment is at most ngl(λ):
1. Sample (w,w′)← (W,W ′).
2. Compute (key, pub)← FE.Gen(w) and send it to A.
3. A outputs pub′ and wins if pub′ 6= pub and FE.Rep(pub′, w′) 6∈ {⊥, key}.

Before introducing a common secure sketch which uses code syndromes we in-
troduce the notation of Wgt(x) = dis(x, 0) as the Hamming weight of x.
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Gen(w) :

1. Compute ss← SS(w).

2. Sample random key ∈ {0, 1}`.
3. Obfuscate unlockw,key ← lock(w, key).
4. Output key, pub = (ss, unlockw,key).

Rep(w′, ss′, unlock′):

1. If Vkey(unlock
′) = 0 output ⊥.

2. Let w∗ ← Rec(w′, ss′)
3. If dis(w′, w∗) > t or w∗ 6∈ Fnq output ⊥.
4. Output unlock′(w∗).

Fig. 3: Robust Fuzzy Extractor from nonmalleable digital locker and syndrome secure
sketch.

Definition 11 (Syndrome). Let A : Fkq → Fnq be a (n, k, d = 2t + 1)-linear

error code, then there exists a matrix Syn : Fnq → Fn−kq with two properties:

1. For all values x where Wgt(x) ≤ t the value Syn(x) is unique.
2. There is an efficient mapping from s ∈ Fn−kq to the value x of weight at most

t if one exists. Let Invert denote this mapping. If no such value exists then
the output of Invert is ⊥.

3. For any two values s, s′ where Wgt(s),Wgt(s′),Wgt(s−s′) ≤ t it is true that

Invert(Syn(s− s′)) = Invert(Syn(s)− Syn(s′))

= Invert(Syn(s))− Invert(Syn(s′)) = s− s′.

Definition 12 (Syndrome Secure Sketch [11,30,34]). Let W ∈ Fnq be the
set of all distributions W where H∞(W ) = (n − k) log q + ω(log λ). Let Syn be
the Syndrome of an (n, k, d = 2t+1)-error correcting code. Then define SS(w) =
Syn(w) and Rec(w′, s) = w′− Invert(Syn(w′)−s) = w′− Invert(Syn(w′−w)) = w.
Then (SS,Rec) is a (Fnq ,W, t, 0)-secure sketch.

Theorem 8. Assume the following:

1. (SS,Rec) be a syndrome secure sketch for distance 2t, that is, d = 4t+ 1,
2. W is the set of all efficiently sampleable distributions W where

H̃∞(W |SS(W )) ≥ ω(log λ),

3. (lock, unlock, Vkey) is a nonmalleable digital locker for (F ,X ) where F in-
cludes all functions f : Fnq → Fnq of the form f(x) = x + a and where X is
the set of all distributions X where H∞(X) = ω(log λ).

Then (Gen,Rep) described in Figure 3 is a (M,W, `, t)-robust fuzzy extractor
(Definition 10).

See the full version [3] for the full proof. The intuition behind the robustness
proof is that the adversary will be able to extract the function f from the robust
fuzzy extractor adversary’s output by computing Invert(ss′ − ss).
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Aligning tampering functions There is a subtlety when we instantiate the
fuzzy extractor of Theorem 8 – the digital locker in Theorem 8 requires a function
class of the domain Fnq , whereas the digital locker constructed in Figure 2 works in
Zp(λ). It is unclear whether there is an additively homomorphic mapping between
these spaces for arbitrary p, q, n. Therefore, a trivial plug-in of the digital locker
of Figure 2 does not work. In Section 6.1, we show that how to align readings in
a simple way at the cost of increased leakage of the secure sketch.

An alternative to efficiently sampleable W . Theorem 8 required W to
be efficiently sampleable. This is because in the proof the reduction samples a
w ← W to compute a secure sketch ss and create the conditional distribution
W |SS(w). An alternative approach is to define all of the objects throughout our
main technical sections to be nonmalleable in the presence of auxiliary infor-
mation Z such that H∞(W |Z) ≥ ω(log λ). In this case, A′ can receive ss as
auxiliary information and directly forward it to A.

All of the proofs contained in this work naturally extend to the setting of
auxiliary information. The major work needed to have confidence in the auxiliary
input approach is to show that [8, Assumption 3] holds in the non-uniform
generic group model [26] in the presence of auxiliary information. Importantly,
the distribution W has average min-entropy conditioned on SS(W ). There are
strong impossibility results on digital lockers that are secure against hard to
invert auxiliary information [19].

Applications of nonmalleable point function obfuscation. Nonmalleable
point obfuscation and nonmalleable point obfuscation with associated data (Def-
inition 4) can be used to build robust secure sketches and robust fuzzy extractors,
respectively.

– Robust secure sketch: Robustness for secure sketches is defined in a sim-
ilar fashion as for fuzzy extractors. For correlated distributions W,W ′, the
adversary receives SS(w) from the challenger and outputs SS′. The adver-
sary wins the robustness game if he succeeds in finding a value SS′ such
that Rec(SS′, w′) 6∈ {⊥, w}. Informally, suppose (lockPoint, unlockPoint) is
a nonmalleable point obfuscation and (SS,Rec) is a syndrome-based secure
sketch. Then Figure 4 describes a robust secure sketch. The formal theorem
and proof can be found in the full version [3].

– Robust fuzzy extractor: Let (lockPoint, unlockPoint) be a nonmalleable
point obfuscation with associated data, (SS,Rec) be a syndrome-based se-
cure sketch and ext be a randomness extractor. Then Figure 5 describes a
robust fuzzy extractor. We stress that this construction requires the remain-
ing entropy of W to be high conditioned on both the produced key which is
produced using a randomness extractor [47,51] and SS(w). There is no limi-
tation on the key length in the robust fuzzy extractor from the nonmalleable
digital locker (in Theorem 8). The formal theorem and proof can be found
in the full version [3].



26 D. Apon, C. Cachet, P. Hall, B. Fuller, F. Liu

SS′(w) :

1. Compute ss← SS(w).
2. Obfuscate

unlockPointw ← lockPoint(w).
3. Output (ss, unlockw).

Rec′(w′, ss′, unlockPoint′):

1. If Vobf(unlockPoint
′) = 0 output ⊥.

2. Compute w∗ ← Rec(w′, ss′)
3. If dis(w′, w∗) > t or w∗ 6∈ Fnq output ⊥.
4. Else if unlockPoint′(w∗) = 0 output ⊥.
5. Else output w∗.

Fig. 4: Robust Secure Sketch from nonmalleable point obfuscation and syndrome se-
cure sketch.

Gen(w) :

1. Sample random seed ∈ {0, 1}ρ.
2. Generate key← ext(w; seed).
3. Compute ss← SS(w).
4. Obfuscate

unlockPointw,seed ← lockPoint(w, seed).
5. Output key and

pub = (ss, unlockPointw,seed, seed).

Rep(w′, ss′, unlockPoint′, seed′):

1. If Vkey(unlockPoint
′) = 0 output ⊥.

2. Compute w∗ ← Rec(w′, ss′)
3. If dis(w′, w∗) > t or w∗ 6∈ Fnq output ⊥.
4. if unlockPoint′(w∗, seed′) = 0 output ⊥.
5. Output key← ext(w∗; seed′).

Fig. 5: Robust Fuzzy Extractor from nonmalleable point obfuscation with associated
data, syndrome secure sketch and randomness extractor.

6.1 Instantiations – Aligning the Tampering Function Classes

In this section, we show how to align the tampering function classes required by
the fuzzy extractor of Theorem 8 and the construction of Figure 2. This deals
with the mismatch in input domain for the syndrome (which takes inputs in Fnq )
and the nonmalleable digital locker (which takes inputs in Zp).

Assume that the input readings w,w′ are q-ary strings of length n. Instead of

using a q-ary error correcting code (A ∈ Fn×kq and Syn : Fn×(n−k)q ), we consider
an error correcting code with entries in Fq′ for some prime q′ ≥ 2(q − 1) + 1.
That is, let A′ ∈ Fn×kq be a (n, k, d = 4t + 1) linear error correcting code, and

let Syn′ be the corresponding syndrome. Furthermore, we make the restriction
p ≥ qn, where Zp is the input domain of the digital locker of Figure 2. In the
construction of Rep, note there is a check if the recovered value, w∗, is not q-
ary, in which case we output ⊥. Thus, for the adversary to successfully break
robustness they must produce a q-ary output.

Now we encode every string x ∈ Fnq as the natural q-ary representation, i.e.,

x 7→
∑
i∈[n] xiq

i−1 ∈ Zp, denoted as Enc(x). Moreover, the digital locker takes
input an encoded version of w, i.e.,

lockPoint(Enc(w), seed) and unlockPoint(Enc(w∗), seed′).

By setting things up in this way, Theorem 8 holds even if the underlying digital
locker is non-malleable for shift functions in Zp.
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In Theorem 8 the reduction extracts a tampering function f : Fnq → Fnq
where f(w) = w + Invert(ss′ − ss). With the modified syndrome construction,
the function f : Fnq → Fnq , as above, the reduction can extract a function f(w) =
w + Invert(ss′ − ss). By the check of w∗ ∈ Fnq and the initial condition that
w ∈ Fnq , this implies that wi + Invert(ss′ − ss)i ∈ Fq, we can first conclude
that Invert(ss − ss′) can be represented in {−(q − 1), ..., (q − 1)}n. Under this
representation, we conclude that for each i, wi + Invert(ss′ − ss)i ∈ Fq using
standard integer addition. So, for each i, we are guaranteed an element in Fq
(i.e., Enc(w∗) = Enc(w) + Enc(Invert(ss′ − ss))), which corresponds exactly to a
shift tampering function in Zp, and thus the reduction can break the underlying
non-malleable digital locker.

The effect of this transform is to increase the required entropy on the distri-
bution W . The standard analysis of the secure sketch assumes that SS(W ) leaks
(n−k) log q bits of information about W . By increasing the syndrome from q to q′

this increases the leakage of the secure sketch by (n−k) log(q′/q) ≈ (n−k) log 2.
This transform applies to the constructions in Figures 4 and 5 as well. We do
not include it in our proofs to show the general connection between syndrome
secure sketches and nonmalleable point obfuscation variants.
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11. C. H. Bennett, G. Brassard, C. Crépeau, and M.-H. Skubiszewska. Practical quan-
tum oblivious transfer. In Annual international cryptology conference, pages 351–
366. Springer, 1991.

12. A. Bishop, L. Kowalczyk, T. Malkin, V. Pastro, M. Raykova, and K. Shi. A simple
obfuscation scheme for pattern-matching with wildcards. In Annual International
Cryptology Conference, pages 731–752. Springer, 2018.

13. N. Bitansky and R. Canetti. On strong simulation and composable point obfusca-
tion. In Advances in Cryptology–CRYPTO 2010, pages 520–537. Springer, 2010.

14. X. Boyen. Reusable cryptographic fuzzy extractors. In Proceedings of the 11th
ACM conference on Computer and Communications Security, pages 82–91, 2004.

15. X. Boyen. Robust and reusable fuzzy extractors. In Security with Noisy Data,
pages 101–112. Springer, 2007.

16. X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith. Secure remote authen-
tication using biometric data. In Advances in Cryptology–EUROCRYPT 2005,
pages 147–163. Springer-Verlag, 2005.

17. Z. Brakerski and G. N. Rothblum. Obfuscating conjunctions. Journal of Cryptol-
ogy, 30(1):289–320, 2017.

18. Z. Brakerski, V. Vaikuntanathan, H. Wee, and D. Wichs. Obfuscating conjunc-
tions under entropic ring LWE. In Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, pages 147–156, 2016.

19. C. Brzuska, P. Farshim, and A. Mittelbach. Indistinguishability obfuscation and
UCEs: The case of computationally unpredictable sources. In Annual Cryptology
Conference, pages 188–205. Springer, 2014.

20. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Advances in Cryptology—-CRYPTO’97, pages 455–469. Springer,
1997.

https://eprint.iacr.org/2022/1108


Plain Model Nonmalleable Digital Lockers and Robust Fuzzy Extractors 29

21. R. Canetti and R. R. Dakdouk. Obfuscating point functions with multibit output.
In Advances in Cryptology–EUROCRYPT 2008, pages 489–508. Springer, 2008.

22. R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and A. Smith. Reusable fuzzy extrac-
tors for low-entropy distributions. Journal of Cryptology, 34(1):1–33, 2021.

23. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
J. ACM, 51(4):557–594, jul 2004.

24. R. Canetti, G. N. Rothblum, and M. Varia. Obfuscation of hyperplane membership.
In Theory of Cryptography Conference, pages 72–89. Springer, 2010.

25. R. Canetti and M. Varia. Non-malleable obfuscation. In O. Reingold, editor,
Theory of Cryptography, pages 73–90, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

26. S. Coretti, Y. Dodis, and S. Guo. Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In Annual International Cryptology Con-
ference, pages 693–721. Springer, 2018.

27. D. B. Cousins, G. Di Crescenzo, K. D. Gür, K. King, Y. Polyakov, K. Rohloff,
G. W. Ryan, and E. Savas. Implementing conjunction obfuscation under entropic
ring LWE. In 2018 IEEE Symposium on Security and Privacy (SP), pages 354–371.
IEEE, 2018.

28. G. Couteau, S. Katsumata, and B. Ursu. Non-interactive zero-knowledge in
pairing-free groups from weaker assumptions. Eurocrypt, 2020.

29. R. Cramer, Y. Dodis, S. Fehr, C. Padró, and D. Wichs. Detection of algebraic
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