
Counting Vampires: From Univariate Sumcheck
to Updatable ZK-SNARK

Helger Lipmaa1[0000−0001−8393−6821], Janno Siim1[0000−0001−5824−7215], and
Michał Zając2

1 Simula UiB, Bergen, Norway
2 Nethermind, London, UK

Abstract. We propose a univariate sumcheck argument Count of es-
sentially optimal communication efficiency of one group element. While
the previously most efficient univariate sumcheck argument of Aurora is
based on polynomial commitments, Count is based on inner-product com-
mitments. We use Count to construct a new pairing-based updatable and
universal zk-SNARK Vampire with the shortest known argument length
(four group and two finite field elements) for NP. In addition, Vampire
uses the aggregated polynomial commitment scheme of Boneh et al.

Keywords: Aggregatable polynomial commitment · Inner-product
commitment · Sumcheck · Updatable and universal zk-SNARK

1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zk-
SNARKs, [15,21,14,25]) are zero-knowledge argument systems for NP with
succinct argument length and efficient verification. In many applications, one
can describe the desired NP language instance as an instance R of the rank-1
constraint system (R1CS) [14], and the task of the verifier is to check that R is
satisfied on the partially-public input. Zk-SNARKs are immensely popular due
to applications in, say, verifiable computation and blockchain.

Non-interactive zero-knowledge arguments, and thus also zk-SNARKs, are
impossible in the plain model. To overcome this, one gives all parties access to
a trusted common reference string (CRS). The most efficient zk-SNARKs have
a relation-specific structured CRS (SRS). That is, they assume that there exists
a trusted third party who, given the description of R as an input, generates an
SRS srsR. The most efficient zk-SNARK by Groth [16] for R1CS with a relation-
specific SRS has an argument that consists of only three group elements.

A significant practical downside of such “non-universal” SNARKs is that one
has to construct a new SRS for every instance of the constraint system. This
observation has spurred an enormous effort to design universal zk-SNARKs, i.e.,
zk-SNARKs with an SRS that only depends on an upper bound on R’s size.
In addition, it is crucial to decrease the amount of trust in the SRS creator.
A popular approach is to design updatable and universal zk-SNARKs [17,24],

2 Helger Lipmaa, Janno Siim, and Michał Zając

where the universal SRS is updated sequentially by several parties such that
the soundness holds if at least one of the updaters is honest. For brevity, by
“updatable” we will sometimes mean “updatable and universal”.

Plonk [13] and Marlin [10] are the first efficient universal zk-SNARKs. Mar-
lin and many subsequent updatable and universal zk-SNARKs [26,9] work for
sparse R1CS instances, where the underlying matrices contain a linear (instead of
quadratic) number of non-zero elements. Chiesa et al. [10] define an information-
theoretic model, algebraic holographic proof (AHP). An AHP is an interactive
protocol, where at each step, the prover sends polynomial oracles, and the ver-
ifier sends to the prover random field elements. Polynomial oracles are usually
implemented using polynomial commitments [19]. In the end, the verifier queries
the polynomial oracles and performs low-degree tests. Then, [10] proposes a new
AHP for sparse R1CS, and then compiles it to a zk-SNARK named Marlin.

Marlin relies crucially on a univariate sumcheck. A sumcheck argument aims
to prove that the given polynomial sums to the given value over the given do-
main. The first sumcheck arguments [23] were for multivariate polynomials but
small domains. Ben-Sasson et al. [5] proposed a univariate sumcheck argument
for large domains and used it to construct a new zk-SNARK Aurora. Suppose
the domain is a multiplicative subgroup of the given finite field. In that case,
Aurora’s sumcheck argument requires the prover to forward two different poly-
nomial oracles and use a low-degree test on one of the polynomials.

Lunar [9] improves on Marlin. It defines PHPs (Polynomial Holographic
IOPs), a generalization of AHPs. Lunar notes that instead of opening all the
polynomial commitments, the verifier can often perform verification equations
on commitments themselves, thus obtaining better efficiency. It also defines a
simpler version of R1CS called R1CSLite, with one of the three characterizing
matrices ofR being the identity matrix. Moreover, it provides a more fine-grained
analysis of the zero-knowledge property and several additional optimizations.

Basilisk [26] gains additional efficiency by using a different technique to ob-
tain zero-knowledge and constructing a “free” low-degree test. In addition, [26]
constructs even more efficient zk-SNARKs for somewhat more limited constraint
systems. Both Lunar and Basilisk introduce new theoretical frameworks; e.g.,
Basilisk introduces checkable subspace sampling (CSS) arguments as a separate
primitive. For simplicity (of reading), we opted not to use such frameworks in
the context of the current paper.

In parallel to our work, Zhang et al. [28] proposed Vector Oracle Proofs
(VOProofs), a new information-theoretic model based on vector operations. They
use it to construct efficient zk-SNARKs for several well-known constraint systems
such as R1CS (VOR1CS) and Plonk’s constraint system (VOPlonk).

In Table 1, we overview the argument lengths of the most efficient updatable
and universal zk-SNARKs. Here, |X| denotes the representation length of an
element from X in bits, given the BLS12-381 curve, with |G1| = 384, |G2| = 768,
and |F| = 256. Thus, even the most efficient updatable and universal zk-SNARK
has an approximately two times longer argument than Groth16 [16].

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 3

Table 1. Comparison of some known updatable and universal zk-SNARKs.

Scheme Argument length Arithmetization

Elements Bits

Updatable and universal zk-SNARKs

Sonic [24] 20|G1|+ 16|F| 11776 [8] constraints
Marlin [10] 13|G1|+ 8|F| 7040 R1CS, sparse matrices
Basilisk [26] 10|G1|+ 3|F| 4608 R1CSLite, sparse matrices
Plonk [13] 7|G1|+ 7|F| 4480 Plonk constraints
LunarLite [9] 10|G1|+ 2|F| 4352 R1CSLite, sparse matrices
Basilisk [26] 8|G1|+ 4|F| 4096 Plonk constraints
VOR1CS* [28] 9|G1|+ 2|F| 3968 R1CS, sparse matrices
VOPlonk* [28] 7|G1|+ 2|F| 3200 Plonk constraints
Basilisk (full version, [27]) 6|G1|+ 2|F| 2816 Weighted R1CS with bounded fan-out
Vampire (this work) 4|G1|+ 2|F| 2048 R1CSLite, sparse matrices

Non-universal zk-SNARKs (relation-specific SRS)

Groth16 [16] 2|G1|+ 1|G2| 1536 R1CS

Moreover, Groth16 works for QAP [14] (i.e., full R1CS), while the most effi-
cient variant of Basilisk works for instances of R1CS where the relation-defining
matrices are limited to have a small constant number of elements per row (this
corresponds to arithmetic circuits of bounded fan-out). Thus, there is still a
non-trivial difference between the communication efficiency of relation-specific
zk-SNARKs and updatable and universal zk-SNARKs.

Our Contributions. The current paper has three related contributions:
1. The combined use of polynomial commitments and inner-product commit-

ments in the sumcheck and updatable and universal zk-SNARK design. The
use of polynomial commitment schemes in zk-SNARKs has dramatically in-
creased their popularity, and we hope the same will happen with inner-
product commitments. In particular, ILV inner-product commitments [18]
use a SRS made of non-consequent monomial powers.3

2. A new updatable (and universal) univariate sumcheck argument Count that
uses inner-product commitments to achieve optimal computation complexity
of a single group element. Since sumchecks are used in many different zk-
SNARKs (and elsewhere), we believe Count will have wider interest.

3. A new updatable and universal zk-SNARK Vampire for sparse R1CSLite
with the smallest argument length among all known updatable and universal
zk-SNARKs for NP-complete languages. (See Table 1.) Vampire uses Count
and thus inner-product commitments.

3 Inner-product commitments and arguments are commonly used in the zk-SNARK
design. However, the way we use them is markedly different from the prior work.

4 Helger Lipmaa, Janno Siim, and Michał Zając

1.1 Our Techniques

Non-Consequent Monomial SRSs. Groth et al. [17] proved that the SRS of
an updatable zk-SNARK cannot contain non-monomial polynomials. Moreover,
the SRS’s correctness must be verifiable. For example, if the SRS contains4
[1, σ, σ3, σ4]1 ∈ G4

1 for a trapdoor σ, it must also contain [σ, σ2]2 ∈ G2
2, so that

one can verify the consistency of the SRS elements by using pairing operations.
We observe that [σ2]1 does not have to belong to the SRS, and thus, an updatable
SRS may contain gaps. Similarly, the SRS can contain multivariate monomials.
However, most of the known updatable and universal zk-SNARKs ([17,24] being
exceptions) use SRSs that consist of consequent univariate monomials only, i.e.,
are of the shape ([(σi)m1

i=0]1, [(σ
i)mi=0]2) for some mi.

One reason why efficient updatable and universal zk-SNARKs use a con-
sequent monomial SRS is their reliance on polynomial commitment schemes
like KZG [19] that have such SRSs. While many other polynomial commitment
schemes are known, up to our knowledge, no efficient one uses non-consequent
monomial SRSs.5 In particular, AHP [10] and PHP [9] model polynomial com-
mitments as polynomial oracles and allow the parties to perform operations
(e.g., queries to committed oracles and low-degree tests) related to such oracles.
Low-degree tests model consequent monomial SRSs: a committed polynomial is
a degree-≤ m polynomial iff it is in the span of Xi for i ≤ m.

One can use non-consequent monomial SRSs to efficiently construct proto-
cols like broadcast encryption and inner-product commitments [20,18]. We use
non-consequent monomial SRSs in the context of sumchecks and updatable and
universal zk-SNARKs. We will not define an information-theoretic model, but
we mention two possible approaches that both have their limitations. First, the
pairing-based setting can be modeled as linear interactive proofs (LIPs, [6])
or non-interactive LIPs [16]. However, either model has to be tweaked to our
setting: namely, we allow the generation of updatable SRS for multi-round pro-
tocols, with the restrictions natural in such a setting (e.g., one can efficiently
“span test” that a committed element is in the span of the SRS). Such a model
is tailor-fit to pairings and might not be suitable in other algebraic settings.
Second, one can generalize PHPs by adding an abstract model of inner-product
commitment schemes and allowing for span tests. Such a model is independent of
the algebraic setting but restricts one to a limited number of cryptographic tools
(polynomial and inner-product commitment schemes), with a need to redefine
the model when more tools are found to be helpful.

We have chosen to remain agnostic on this issue by defining new arguments
without an intermediate information-theoretic model.

4 We rely on the pairing-based setting and use the by now standard additive bracket
notation, see Section 2 for more details.

5 A monomial SRS is a SRS of the form [(σi)i∈I1]1, [(σ
i)i∈I2]2, where I1, I2 are subsets

of [1,m]. A SRS is consequent if both I1 and I2 are intervals and non-consequent
otherwise. The definition generalizes naturally to the multivariate case.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 5

New Univariate Sumcheck Argument Count. Let F be a finite field and let H ⊂
F be a fixed multiplicative subgroup. In a univariate sumcheck argument (for
multiplicative subgroups), the prover convinces the verifier that the committed
polynomial f(X) ∈ F[X] sums to the given value vM ∈ F over H.

Let nh := |H| and ZH(X) :=
∏
χ∈H(X − χ). Aurora’s sumcheck [5] relies on

the fact that
∑
χ∈H f(χ) = nhf(0), when f ∈ F≤nh−1[X] is a polynomial with

deg f ≤ nh − 1. Then, for f ∈ F[X] of arbitrarily large degree,
∑
χ∈H f(χ) = vf

iff there exist polynomials R,Q ∈ F[X], such that (1) degR ≤ nh − 2, and (2)
f(X) = vf/nh +XR(X) + Q(X)ZH(X). In a cryptographic implementation of
Aurora’s sumcheck argument in say Marlin [10], the prover uses KZG [19] to
commit to R and Q; this means the communication of two group elements. In
addition, the prover uses a low-degree test to convince the verifier that (1) holds.

Based on the ILV inner-product commitment [18], we construct a new sum-
check argument Count for f ∈ F≤d[X]. ILV’s non-consequent monomial SRS
contains ([(σi)2Ni=0:i ̸=N+1]1, [(σ

i)Ni=0]2), where σ is a trapdoor and N is a large
integer. In ILV, the prover P commits to µ ∈ ZNp as [µ(σ)]1 ←

∑N
j=1 µj [σ

j]1.
When the verifier outputs ν ∈ ZNp , P returns the inner product v ← µ⊤ν to-
gether with a short evaluation proof (a single group element [op]1) that v is
correctly computed. ILV’s security relies on [σN+1]1 not belonging to the SRS.

We present an alternative extension of the equality
∑
χ∈H f(χ) = nhf(0) to

the case when d = deg f is arbitrarily large. Namely, we prove that if f(X) =∑d
i=0 fiX

i ∈ F≤d[X], then
∑
χ∈H f(χ) = nh · (

∑⌊d/nh⌋
i=0 fnhi). (See Lemma 1.)

Alternatively,
∑
χ∈H f(χ) = vf iff f⊤s = vf , where f = (fi) and s is a Boolean

vector that has ones in positions nh · i for i ≤ ⌊d/nh⌋.
In Count, the prover first ILV-commits to f and then ILV-opens the commit-

ment to f⊤s. Thus, the prover has to output one ILV commitment (one group
element) instead of two polynomial commitments (two group elements) in Au-
rora’s sumcheck. Moreover, there is no need for a low-degree test, making Count
even more efficient. In addition, in the application to Vampire, s has a small con-
stant number of non-zero elements. Thus, differently from Aurora’s sumcheck,
the prover’s computation is linear in both field operations and group operations.
Importantly, the prover does not have to use FFT or polynomial division. An
explicit cost of using ILV is that the SRS becomes larger: if the SRS, without
Count, contains [(σi)di=0]1 (where d is some constant, fixed by the rest of the
zk-SNARK), it now has to contain also [(σi)2di=d+2]1 and [(σi)di=0]2. (Although,
in our construction, we will add significantly less elements to G2.)

Since sumchecks have ubiquitous applications, Count is of independent inter-
est because of both excellent communication and linear-time prover. Linear-time
sumchecks are important per se. In particular, univariate sumcheck is used in
both updatable and universal zk-SNARKs and transparent zk-SNARKs. As an
important application, we will design a new updatable and universal zk-SNARK.
We leave it an open question to apply Count in transparent zk-SNARKs.

New zk-SNARK. We use Count to design a new pairing-based updatable and
universal zk-SNARK Vampire for the sparse R1CSLite constraint system [9].

6 Helger Lipmaa, Janno Siim, and Michał Zając

Vampire’s argument length is four elements of G1 and two elements of F, which
is less than in any known updatable and universal zk-SNARK. While Basilisk [26]
(as improved in the full version, [27]) has just 37.5% larger communication than
Vampire, it works for a version of R1CSLite with additional restrictions on the
underlying matrices; the version of Basilisk for the arithmetization handled by
Vampire is less communication-efficient than LunarLite or VOR1CS*.

Let us now give a very brief glimpse to the structure of Vampire. (The real
description, with a very long intuition behind Vampire’s construction, is given
in Section 4.) Following Lunar and Basilisk, we use the R1CSLite constraint
system, where an instance consists of two matrices L and R (the left and right
inputs to all constraints) over F instead of three in the case of R1CS. Let m
be the number of constraints. Following Marlin, Lunar, and Basilisk, we use the
setting of sparse matrices, where L and R have together at most |K| = Θ(m)
non-zero entries. Here, K is a multiplicative subgroup of F.

Let z be the interpolating polynomial of (x,w, rz), where rz is a short ran-
dom vector needed for zero-knowledge. The prover starts by committing to z̃,
where z̃ is a polynomial related to z. Using z̃ helps one efficiently check that the
prover used the correct public input. The verifier replies with a random field ele-
ment α. We reformulate the check that (x,w) (where w is encoded in z̃) satisfies
the R1CSLite instance as a univariate sumcheck argument that

∑
y∈H ψα(y) = 0,

for a well-chosen polynomial ψα. We then run Count, letting the prover send an
ILV-opening [ψipc(σ)]1 of ψα to the verifier. The verifier replies with another ran-
dom field element β. The prover’s final message consists of two field elements and
two group elements. These elements are needed to batch-open three polynomial
commitments at different locations, two of which are related to β. It involves a
complicated but by now standard step of proving the correctness of the arithme-
tization of a sparse matrix. This step involves using a univariate sumcheck the
second time. However, since here the summed polynomial is of a small degree,
we do not need to use Count. We refer to Section 4 for more details.

Vampire is based on the ideas of Marlin (e.g., we use a similar arithmetization
of sparse matrices), but it uses optimizations of both Lunar [9] and Basilisk [26].
These optimizations (together with an apparently novel combination of the full
witness to a single commitment) result in the argument length of 7 elements
of G1 and 2 finite field elements, which is already comparable to prior shortest
updatable and universal zk-SNARKs for any NP-complete constraint system.

Count helps to remove one more group element from the argument of Vampire.
This step is not trivial: the sumcheck argument requires that the sumchecked
polynomial f is committed to, which is not the case in Vampire. We solve this
issue using a batching technique similar to Lunar and Basilisk, asking the prover
to open two polynomial commitments. The second committed polynomial is a
linear combination of other polynomial commitments with coefficients known to
the prover and the verifier after opening the first polynomial.

Our second innovation is the use of polynomial commitment aggregation
at different points [13,7]. Intuitively, we commit to a single polynomial z̃ that
encodes both the left and right inputs of all constraints; this allows us to save one

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 7

more group element. When combining the result with the batching technique of
the previous paragraph, we need to open three polynomials at different points.
In particular, we aggregate the commitment of the second sumcheck, further
reducing the proof size by one group element. For batching, we use a technique
of [13,7]. However, differently from [13,7], our batching is not randomized since
the two opening points are different.

In Theorem 1, we prove that Vampire is knowledge-sound in the Alge-
braic Group Model (AGM, [12]). The proof structure is standard, involving two
branches depending on whether the verifier’s equations hold as polynomials (we
get a reduction to the well-known Power Discrete Logarithm assumption if not).
However, the proof of the former case is quite complicated, partially since one
has to consider several different polynomials sent by the prover, which depend
on different verifier’s challenge values.

We prove that Vampire is perfectly zero-knowledge by constructing a sim-
ulator that uses the trapdoor to make the sumcheck argument acceptable for
any, even an all-zero witness. For a simulated argument to be indistinguishable
from the real one, we add random terms (rz) to polynomial z̃(X) which, in the
case of real argument, encodes the witness, and, in the case of a simulated ar-
gument, encodes a (mostly) zero vector. This assures that even an unbounded
adversary who knows the instance and witness cannot tell apart commitments
to z̃(X) in real and simulated arguments. In the full version [22], we prove that
Vampire is also Sub-ZK (i.e., zero-knowledge even if the SRS generation is com-
promised, [4,1,11,2]) under the BDH-KE knowledge assumption [1].

On Efficiency. We study how much the argument length can be reduced in
updatable and universal SNARKs while only allowing minimal relaxations in
other efficiency parameters. We achieve the shortest argument by far. The SRS
size of our zk-SNARK is a constant factor larger than in the previous work,
which we believe is a reasonable compromise as the SRS needs to be transferred
only once. Importantly, the verifier has only to execute O(|x|) field operations
as opposed to O(|x|) group operations in Groth’s zk-SNARK [16].

However, differently from the prior work, prover’s computation time in
Vampire depends on the largest supported R1CSLite size. We discuss this is-
sue further and give a thorough efficiency comparison in the full version [22].

Demaking Vampire. It is possible to “demake” Vampire by removing some of the
aggressive length-optimization to obtain a larger argument size but better (say)
the SRS size. We leave it as an open question about which optimization should
be removed first or whether this is needed at all.

2 Preliminaries

Let F = Zp be a finite field of prime order p, and let F≤d[X] ⊂ F[X] be the
set of degree ≤ d polynomials. Define the set of (d, dgap)-punctured univariate

8 Helger Lipmaa, Janno Siim, and Michał Zając

polynomials over F as

PolyPuncF(d, dgap, X) := {f(X) =
∑dgap+d
i=0 fiX

i ∈ F≤dgap+d[X] : fdgap = 0} .

Let x ◦ y be the elementwise product of vectors x and y, ∀i.(x ◦ y)i = xiyi.
Let In ∈ Fn×n be the n-dimensional identity matrix. Denote matrix and vector
elements by using square brackets as in A[i, j] and a[i].

Interpolation. Let ω be the nh-th primitive root of unity in F and let H = {ωj :
0 ≤ j < nh} be a multiplicative subgroup of F. Then,
– For any T ⊂ F, the vanishing polynomial ZT (X) :=

∏
i∈T (X − i) is the

degree-|T | monic polynomial, such that ZT (i) = 0 for all i ∈ T . ZH(Y) =
Y nh − 1 can be computed in Θ(log nh) field operations.

– For i ∈ [1, nh], ℓHi (Y) is the ith Lagrange polynomial, i.e., the unique degree
nh − 1 polynomial, such that ℓHi (ωi−1) = 1 and ℓHi (ωj−1) = 0 for i ̸= j. It is
well known that

ℓHi (Y) = ZH(Y)
(Z′

H(ω
i−1)·(Y−ωi−1)) =

ZH(Y)ωi−1

(nh(Y−ωi−1)) .

Here, Z′
H(X) = dZH(X)/dX.

– LH
X(Y) := ZH(Y)X/ (nh(Y −X)) ∈ F(X,Y) (a lifted Lagrange rational

function), with Lωi−1(Y) = ℓHi (Y) for i ∈ [1, nh].
For f ∈ F[X], let f̂H(X) :=

∑nh

i=1 f(ω
i−1)ℓHi (X) be its low-degree extension. To

simplify notation, we often omit the accent ·̂ and the superscript H.

R1CSLite. R1CSLite [9,26] is a variant of the Rank 1 Constraint System [14,10].
An R1CSLite instance I = (F,m,m0,L,R) consists of a field F, instance size m,
input size m0, and matrices L,R ∈ Fm×m. An R1CSLite instance is sparse if L
and R have O(m) non-zero elements.
I = (F,m,m0,L,R) defines the following relation R = RI :

R :=

(x,w) : x = (z1, . . . , zm0)
⊤ ∧ w = (za

zb
) ∧ za, zb ∈ Fm−m0−1 ∧

zl =
(

1
x

za

)
∧ zr =

(
1m0+1

zb

)
∧ zl = L(zl ◦ zr) ∧ zr = R(zl ◦ zr)

 .

Equivalently, Wz∗ = 0, where

W =
(
Im 0 −L
0 Im −R

)
∈ F2m×3m , z∗ =

(
zl
zr

z=zl◦zr

)
. (1)

Basic Cryptography. We denote the security parameter by λ. For any algorithm
A, r ←$ RNDλ(A) samples random coins of sufficient length for A for fixed λ.
By y ← A(x; r), we denote that A outputs y on input x and random coins r.
PPT means probabilistic polynomial time.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 9

Pairings. A bilinear group generator Pgen(1λ) returns p = (p,G1,G2,GT , ê, [1]1,
[1]2), where p is a prime, G1, G2, and GT are three additive cyclic groups of order
p, ê : G1×G2 → GT is a non-degenerate efficiently computable bilinear pairing,
and [1]ι is a generator of Gι for ι ∈ {1, 2, T} with [1]T = ê([1]1, [1]2). In this
paper, F = Zp has always two large multiplicative subgroups H and K. Thus,
we assume implicitly that |H|, |K| | (p − 1). We require the bilinear pairing to
be Type-3, that is, not to have an efficient isomorphism between G1 and G2. In
practice, one uses a fixed pairing-friendly curve like BLS-381; then, |K|, |H| | 232.

We use the by now standard additive bracket notation, by writing [a]ι to
denote a[1]ι for ι ∈ {1, 2, T}. We denote ê([x]1, [y]2) by [x]1 • [y]2. Thus, [x]1 •
[y]2 = [xy]T . We freely use the bracket notation together with matrix notation;
for example, if A · B = C then [A]1 • [B]2 = [C]T .

Polynomial Commitment Schemes. In a polynomial commitment scheme [19],
the prover commits to a polynomial f ∈ F≤d[X] and later opens it to f(β)
for β ∈ F chosen by the verifier. The (non-randomized) KZG [19] polynomial
commitment scheme consists of the following algorithms:
Setup: Given 1λ, return p← Pgen(1λ).
Commitment key generation: Given a system parameter p and an upper-

bound d on the polynomial degree, compute the trapdoor tk = σ ←$ Z∗
p and

the commitment key ck← (p, [(σi)di=0]1, [1, σ]2). Return (ck, tk).
Commitment: Given a commitment key ck and a polynomial f ∈ F≤d[X],

return the commitment [f(σ)]1 ←
∑d
j=0 fj [σ

j]1.
Opening: Given a commitment key ck, a commitment [f(σ)]1, an evaluation

point β ∈ F, and a polynomial f ∈ F≤d[X], set v ← f(β) and fpc(X) ←
(f(X) − v)/(X − β). The evaluation proof is [fpc(σ)]1 ←

∑d−1
j=0(fpc)j [σ

j]1.
Return (v, [fpc(σ)]1).

Verification: Given a commitment key ck, a commitment [f(σ)]1, an evaluation
point β, a purported evaluation v = f(β), and an evaluation proof [fpc(σ)]1,
check [f(σ)− v]1 • [1]2 = [fpc(σ)]1 • [σ − β]2.

KZG’s security is based on the fact that (X − β) | (f(X)− v)⇔ f(β) = v.

Inner-Product Commitment Schemes. In an inner-product commitment
scheme [20,18], the prover commits to a vector µ ∈ FN and later opens it to the
inner product µ⊤ν for ν ∈ FN chosen by the verifier. The (non-randomized)
ILV [18] inner-product commitment scheme consists of the following algorithms:
Setup: Given 1λ, return p← Pgen(1λ).
Commitment key generation: Given a system parameter p and a vector di-

mension N , compute the trapdoor tk = σ ←$ Z∗
p and the commitment key

ck← ([(σi)2Ni=0:i ̸=N+1]1, [(σ
i)Ni=0]2). Return (ck, tk).

Commitment: Given a commitment key ck and a vector µ ∈ FN , compute
the coefficients of µ(X) ←

∑N
j=1 µjX

j ∈ F≤N [X]; [µ(σ)]1 =
∑N
j=1 µj [σ

j]1.
Return the commitment [µ(σ)]1.

Opening: Given a commitment key ck, a commitment [µ(σ)]1, the vector µ,
and a vector ν, let v ← µ⊤ν. Set ν∗(X) ←

∑N
j=1 νjX

N+1−j ∈ F≤N [X],

10 Helger Lipmaa, Janno Siim, and Michał Zając

and µipc(X) ← µ(X)ν∗(X) − vXN+1 ∈ PolyPuncF(N − 1, N + 1, X). The
evaluation proof is [µipc(σ)]1 ←

∑2N
i=1,i̸=N+1 µipc[σ

i]1. Return (v, [µipc(σ)]1).
Verification: Given a commitment key ck, a commitment [µ(σ)]1, a vector ν, a

purported inner product v = µ⊤ν, and an evaluation proof [µipc(σ)]1, check
[µipc(σ)]1 • [1]2 = [µ(σ)]1 •

∑N
j=1 νj [σ

N+1−j]2 − v[σN]1 • [σ]2.
ILV’s security follows since the coefficient of XN+1 in µipc(X) is µ⊤ν−v = 0 iff v
is correctly computed. In this paper, the vector ν is public and known in advance.
Then, the verifier only has to compute two pairings and no exponentiations.

Succinct Zero-Knowledge Arguments. The following definition is based on [9].
Groth et al. [17] introduced the notion of (preprocessing) zk-SNARKs with spe-
cializable universal structured reference string (SRS). This notion formalizes the
idea that the key generation forR ∈ UR, where UR is a universal relation, can be
seen as the sequential combination of two steps. First, a probabilistic algorithm
generating an SRS for UR and second, a deterministic algorithm specializing
this universal SRS into one for a specific R.

We consider relation families (Pgen, {URp,N}p∈range(Pgen),N∈N) parametrized
by p ∈ Pgen(1λ) and a size bound N ∈ poly(λ).6 A succinct zero-knowledge
argument Π = (Pgen,KGen,Derive,P,V) with specializable universal SRS for a
relation family (Pgen, {URp,N}p∈{0,1}∗,N∈N) consists of the following algorithms.
Setup: Given 1λ, return p← Pgen(1λ).
Universal SRS Generation: a probabilistic algorithm KGen(p, N)→ (srs, td)

that takes as input public parameters p and an upper bound N on the
relation size, and outputs srs = (ek, vk) together with a trapdoor. We assume
implicitly that elements like ek and vk contain p.

SRS Specialization: a deterministic algorithm Derive(srs,R) → (ekR, vkR)
that takes as input a universal SRS srs and a relation R ∈ URp,N , and
outputs a specialized SRS srsR := (ekR, vkR).

Prover/Verifier: a pair of interactive algorithms ⟨P(ekR,x,w),V(vkR,x)⟩ →
b, where P takes a proving key ekR for a relation R, a statement x, and a
witness w, s.t. (x,w) ∈ R, and V takes a verification key for a relationR and
a statement x, and either accepts (b = 1) or rejects (b = 0) the argument.

Π must satisfy the following four requirements.
Completeness. For all p ∈ range(Pgen), N ∈ N, R ∈ URp,N , and (x,w) ∈ R,

Pr

[
⟨P(ekR,x,w),V(vkR,x)⟩ = 1

(srs, td)← KGen(p, N);
(ekR, vkR)← Derive(srs,R)

]
= 1 .

Succinctness. Π is succinct if the running time of V is poly(λ+ |x|+ log |w|)
and the communication size is poly(λ+ log |w|).

6 Count and Vampire have several size bounds. The definitions generalize naturally.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 11

Knowledge-Soundness. Π is knowledge-sound, if for every non-uniform PPT ad-
versary A = (A1,A2), there exists a non-uniform PPT extractor ExtA

7, s.t.

Pr

 ⟨A2 (st; r) ,V(vkR,x)⟩ = 1
∧¬R(x,w)

∣∣∣∣∣∣∣∣
p← Pgen(1λ); (srs, td)← KGen(p, N);
r ←$ RNDλ(A); (R,x, st)← A1(srs; r);

w← ExtA(srs; r);
(ekR, vkR)← Derive(srs,R)

 = negl(λ) .

Zero-Knowledge.Π is (statistical) zero-knowledge if there exists a PPT simulator
Sim, s.t. for all unbound A = (A1,A2), all p ∈ range(Pgen), all N ∈ poly(λ),

Pr

 ⟨P (ekR,x,w) ,A2(st)⟩ = 1∧
R(x,w) ∧ R ∈ URp,N

∣∣∣∣∣∣
(srs, td)← KGen(p, N);
(R,x,w, st)← A1(srs);

(ekR, vkR)← Derive(srs,R)

 ≈s

Pr

 ⟨Sim (srs, td,R,x) ,A2(st)⟩ = 1∧
R(x,w) ∧ R ∈ URp,N

∣∣∣∣∣∣
(srs, td)← KGen(p, N);
(R,x,w, st)← A1(srs);

(ekR, vkR)← Derive(srs,R)

 .

Here, ≈s denotes the statistical distance as a function of λ. Π is perfect zero-
knowledge if the above probabilities are equal.

Π is subversion zero-knowledge (Sub-ZK, [4]), if it is zero-knowledge even
in the case the SRS is maliciously generated. For perfect zero-knowledge argu-
ments, Sub-ZK follows from the usual zero-knowledge (with trusted SRS), SRS
verifiability (there exists a PPT algorithm that checks that the SRS belongs
to range(KGen)), and a SNARK-specific knowledge assumption, [1,2]. We will
provide the formal definition in the full version [22].

Π is updatable [17], if the SRS can be sequentially updated by many up-
daters, such that knowledge-soundness holds if either the original SRS creator
or one of the updaters is honest. Groth et al. [17] showed that an updatable SRS
cannot contain non-monomial polynomial evaluations. Moreover, an updatable
SRS must be verifiable in the same sense as in the case of Sub-ZK.

Since Vampire is public-coin and has a constant number of rounds, we can
apply the Fiat-Shamir heuristic to obtain a zk-SNARK.

Sumcheck Arguments. In a sumcheck argument [23] over F, the prover con-
vinces the verifier that for H ⊆ F, f ∈ F[X1, . . . , Xc], and vf ∈ F, it holds that∑

(x1,...,xc)∈Hc f(x1, . . . , xc) = vf . Multivariate sumcheck has many applications,
with usually relatively small |H| but large c. In the context of efficient updatable
zk-SNARKs, one is often interested in univariate sumcheck, where c = 1 but |H|
is large. Univariate sumcheck arguments are most efficient when H is either an
affine subspace or a multiplicative subgroup [5].

The univariate sumcheck relation for multiplicative subgroups is the set of all
pairs Rsum := {((F, d,H, vf) , f)}, where F is a finite field, d is a positive integer,
H is a multiplicative subgroup of F, vf ∈ F, f ∈ F≤d[X], and

∑
χ∈H f(χ) = vf .

7 Note that although the protocol is interactive, extraction is done non-interactively.
This is sometimes called straight-line extractability.

12 Helger Lipmaa, Janno Siim, and Michał Zając

Aurora’s Sumcheck. As a part of the zk-SNARK Aurora, Ben-Sasson et al. [5]
proposed an efficient univariate sumcheck (“Aurora’s sumcheck”) for multiplica-
tive subgroups. Since the new univariate sumcheck relies on similar techniques,
we next recall Aurora’s sumcheck.

As before, let H = ⟨ω⟩ = {ωi : i ∈ [0, nh − 1]} be a cyclic multiplicative
subgroup of order nh = |H|. Fact 1 underlies Aurora’s sumcheck.

Fact 1 Let f ∈ F[X] with deg f ≤ nh − 1. Then
∑
χ∈H f(χ) = nhf(0).

In the case of a large-degree f , Ben-Sasson et al. [5] used Fact 2 to construct
Aurora’s sumcheck argument for proving that

∑
χ∈H f(χ) = vf .

Fact 2 (Core Lemma of Aurora’s Sumcheck) Let f ∈ F[X] with d =
deg f ≥ nh. Then,

∑
χ∈H f(χ) = vf iff there exist R ∈ F≤nh−2[X] and

Q ∈ F≤d−nh
[X], such that f(X) = vf/nh +R(X)X +Q(X)ZH(X).

Assume that d = deg f = poly(λ) while p = 2Θ(λ). In Aurora’s sumcheck
argument, the prover sends to the verifier polynomial commitments to f , R,
and Q. The verifier accepts if (1) R has a low degree ≤ nh − 2 and (2)
f(X) = vf/nh +R(X)X +Q(X)ZH(X).

On top of two polynomial commitments (two group elements), one has
to implement a low-degree test to check that degR ≤ nh − 2. As the low-
degree test, Aurora uses an interactive oracle proof for testing proximity to the
Reed–Solomon code, resulting in additional costs. The full version of Basilisk [27]
implementes a low-degree test in a partially costless way (without added ar-
gument size or verifier’s computation); however, one may need to add a large
number of elements to the SRS for their low-degree test to succeed.

Assumptions. Let d1(λ), d2(λ) ∈ poly(λ). Pgen is (d1, d2)-PDL (Power Discrete
Logarithm [21]) secure if for any non-uniform PPT A, Advpdld1,d2,Pgen,A(λ) :=

Pr
[
A
(
p, [(xi)d1i=0]1, [(x

i)d2i=0]2

)
= x p← Pgen(1λ);x←$ F∗

]
= negl(λ) .

Algebraic Group Model (AGM). AGM is an idealized model [12] for security
proofs. In the AGM, adversaries are restricted to be algebraic in the following
sense: if A inputs some group elements and outputs a group element, it provides
an algebraic representation of the latter in terms of the former. More precisely,
if A has received group elements [x1]1, [x2]2 so far and outputs [y1]1, [y2]2, then
there exists an extractor ExtA which on the same input and random coins outputs
integer vectors γ1, γ2 such that [y1]1 =

∑
i γ1,i[x1,i]1 and [y2]2 =

∑
j γ2,j [x2,j]2.

3 Count: New Univariate Sumcheck Argument

In this section, we propose Count, a new sumcheck argument with improved on-
line efficiency (including the argument size) but a larger SRS size than Aurora’s
univariate sumcheck. We first prove the following generalization of Fact 1, an
alternative to Fact 2 in the case f has degree larger than nh − 1.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 13

Lemma 1. Let f(X) =
∑d
i=0 fiX

i for d ≥ 0. Then,
∑
χ∈H f(χ) = nh ·∑⌊d/nh⌋

i=0 fnhi .

Proof. Write f(X) = R(X) +Q(X)ZH(X) for degR ≤ nh− 1. Based on Fact 1,∑
χ∈H f(χ) =

∑
χ∈HR(χ) = nhR(0). Since Xnh ≡ 1 (mod ZH(X)), f(X) =∑d

i=0 fiX
i ≡

∑nh−1
j=0 (

∑d
i=0:nh|(i−j) fi)X

j (mod ZH(X)). Since f(X) ≡ R(X)

(mod ZH(X)), R(0) =
∑⌊d/nh⌋
i=0 fnhi. Thus,

∑
χ∈H f(χ) = nh ·

∑⌊d/nh⌋
i=0 fnhi. ⊓⊔

Count is based on the following result.

Lemma 2 (Core Lemma of Count). Let H be an order-nh > 1 multi-
plicative subgroup of F∗. Let dgap, d > 0 with dgap ≥ nh · ⌊d/nh⌋, and f ∈
PolyPuncF(d, dgap, X). Define

S(X) :=
∑⌊d/nh⌋
i=0 Xdgap−nhi ∈ F≤dgap [X] .

Then,
∑
χ∈H f(χ) = vf and deg f ≤ d iff there exists fipc ∈

PolyPuncF(d, dgap, X), s.t.

f(X)S(X)− fipc(X) =
vf
nh
·Xdgap . (2)

Here, dgap is a parameter fixed by the master protocol (in our case, Vampire)
that uses Count as a subroutine.

Proof. Clearly, we need dgap ≥ nh · ⌊d/nh⌋ for S to be a polynomial.
(⇒) Define fipc(X) := f(X)S(X) − vf/nh · Xdgap . We must only show that

fipc ∈ PolyPuncF(d, dgap, X). Since deg f ≤ d and degS = dgap, we have deg fipc ≤
dgap + d. Since f(X)S(X) = (

∑d
i=0 fiX

i)(
∑⌊d/nh⌋
i=0 Xdgap−nhi), the coefficient of

Xdgap in f(X)S(X) is
∑⌊d/nh⌋
i=0 fnhi. By Lemma 1,

∑⌊d/nh⌋
i=0 fnhi = vf/nh. Thus,

the coefficient of Xdgap in fipc is 0 and fipc ∈ PolyPuncF(d, dgap, X).
(⇐) Suppose Eq. (2) holds for fipc ∈ PolyPuncF(d, dgap, X). Since degS = dgap

and deg fipc ≤ dgap + d, we have deg f ≤ d. As in (⇒), the coefficient of Xdgap in
f(X)S(X) is

∑⌊d/nh⌋
i=0 fnhi, which is equal to (

∑
χ∈H f(χ))/nh due to Lemma 1.

Since fipc is missing the monomial Xdgap , we get that vf =
∑
χ∈H f(χ). ⊓⊔

It is important that fipc has degree ≤ dgap + d. Thus, one cannot add elements
[σi]1 for i > dgap + d to the SRS of a master argument that uses Count.

Description of Count. Next, we describe Count as a zk-SNARK for the sum-
check relation; if needed, it is straightforward to modify it to the language of
polynomial oracles. In Count, the common input is ([f(σ)]1, vf). The prover sends
to the verifier a polynomial commitment to [fipc(σ)]1, and the verifier accepts
that

∑
χ∈H f(χ) = vf iff a naturally modified version of Eq. (2) holds on com-

mitted polynomials. See Fig. 1 for the full argument. Here, Derive does only
preprocessing and does not do any specialization.

Since we only use Count as a sub-argument of Vampire, we do not formally
have to prove that it is knowledge-sound or zero-knowledge. Nevertheless, for
the sake of completeness, we provide proof sketches.

14 Helger Lipmaa, Janno Siim, and Michał Zając

Pgen(p): generate p as usually. We implicitly assume nh | (p− 1).

KGen(p, nh, d, dgap): S1(X)← {(Xi)
dgap+d

i=0:i̸=dgap
}; S2(X)← {1, X, (Xdgap−nhi)

⌊d/nh⌋
i=0 };

σ ←$ F∗; td← σ; srs← (p, nh, d, dgap, [g(σ) : g ∈ S1(X)]1, [g(σ) : g ∈ S2(X)]2)

Derive(srs): S(X)←
∑⌊d/nh⌋

i=0 Xdgap−nhi ∈ F≤dgap [X]; ekR ← srs;
vkR ← (srs, [S(σ)]2, [σ

dgap]T); return (ekR, vkR);

P(ekR,x,w = f) /* x = ([f(σ)]1, vf) */ V(vkR,x)

. .Online phase. .
S(X)←

∑⌊d/nh⌋
i=0 Xdgap−nhi ∈ F≤dgap [X]; fipc(X)← f(X)S(X)− vf/nh ·Xdgap

[fipc(σ)]1

Check [f(σ)]1 • [S(σ)]2 − [fipc(σ)]1 • [1]2 = vf/nh · [σdgap]T

Fig. 1. The new univariate sumcheck zk-SNARK Count for
∑

χ∈H f(χ) = vf .

Lemma 3. The sumcheck zk-SNARK Count in Eq. (2) is complete and per-
fectly zero-knowledge. Additionally, the probability that any algebraic A can break
knowledge-soundness is bounded by Advpdld1,d2,Pgen,B(λ), where B is some PPT ad-
versary, d1 = dgap + d, and d2 = dgap.

Proof. Completeness follows from Lemma 2.
We sketch a knowledge-soundness proof in the AGM [12]. Since A is al-

gebraic, f(X), fipc(X) are in the span of Xi for i ∈ S1(X), i.e., f, fipc ∈
PolyPuncF(d, dgap, X). If Eq. (2) holds, then by Lemma 2, the prover is hon-
est. Otherwise, we have a non-zero polynomial V(X) := f(X)S(X)− fipc(X)−
vf/nh · Xdgap (its coefficients are known since the adversary is algebraic), such
that (since the verifier accepts) σ is a root of V. We construct a (d1, d2)-PDL
adversary B that gets (p, [(σi)d1i=0]1, [(σ

i)d2i=0]2) as an input. B constructs srs from
the challenge input, and runs A and its extractor ExtA to obtain V(X). When-
ever V(X) ̸= 0, B can find the root σ and break the PDL assumption.

We construct a simulator that on input (srs, td = σ, ([f(σ)]1, vf)) out-
puts an argument indistinguishable from the real argument. The simulator
just computes [fipc(σ)]1, such that the verification equation holds. That is,
[fipc(σ)]1 ← S(σ)[f(σ)]1 − vf/nh · σdgap [1]1. Zero-knowledge follows since in the
real argument, [fipc(σ)]1 is computed the same way. ⊓⊔

SRS Verifiability. As noted in Section 2, for both Sub-ZK and updatability,
it is required that the SRS is verifiable, i.e., that there exists a PPT algorithm
that checks that the SRS belongs to the span of KGen. One can verify Count’s
SRS by checking that [σ]1 • [1]2 = [1]1 • [σ]2, [σi]1 • [1]2 = [σi−1]1 • [σ]2 for
i ∈ [1, dgap+d]\{dgap, dgap+1}, [σdgap+1]1 • [1]2 = [σ]1 • [σdgap]2, [σdgap−1]1 • [σ]2 =
[1]1 • [σdgap]2, and [σnhi]1 • [σdgap−nhi]2 = [1]1 • [σdgap]2 for i ∈ [1, ⌊d/nh⌋]. Since, in
addition, Count’s SRS consists of monomial evaluations only, Count is updatable.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 15

Efficiency. In Count, the prover outputs a single group element instead of two
in Aurora’s univariate sumcheck argument. The latter also requires one to im-
plement a low-degree test, while there is no need for a low-degree test in Count.

Another important aspect of Count is the prover’s computation. In Aurora’s
univariate sumcheck, the prover computes polynomials R and Q, such that
f(X) = vf/nh+XR(X)+Q(X)ZH(X); this can be done in quasilinear number
of field operations. On the other hand, since in Vampire, S only has a small
number of non-zero coefficients, the prover of Count only executes a linear num-
ber of field operations. Both univariate sumchecks however require the prover to
use a linear number of G1 operations. Linear-time multivariate sumchecks are
well-known, and important in applications.

We emphasize that dgap needs to satisfy dgap ≥ nh · ⌊d/nh⌋, but it can be
bigger. In Vampire, dgap = d.

As a drawback, Count’s SRS contains more elements than in Aurora’s sum-
check. This is a consequence of using the ILV inner-product commitment scheme.

4 Vampire: New Updatable And Universal zk-SNARK

In this section, we will use Count to construct an efficient updatable and universal
zk-SNARK Vampire for the sparse R1CSLite constraint system. At a very high
level, we use the general approach of Marlin [10], taking into account optimiza-
tions of Lunar [9] and Basilisk [26]. On top of already aggressive optimization,
we use three novel techniques.

First, Marlin uses Aurora’s univariate sumcheck twice. We replace it with
Count in one of the instantiations. (In another one, the sumcheck is for a low-
degree polynomial; thus, we just use Fact 1.) Second, we use a variant of the
aggregated polynomial commitment scheme of Boneh et al. [7] to batch the open-
ings of three different polynomials at different points. While Boneh et al. [7] pro-
posed only a randomized batch-opening protocol, we observe that in our case, it
can be deterministic. Third, we use a single commitment to commit to left and
right inputs of each constraint. All the techniques together remove four group ele-
ments from the communication. In the end, Vampire is the most communication-
efficient updatable and universal zk-SNARK for any NP-complete constraint
system. (See Table 1 and the full version [22] for an efficiency comparison.)

4.1 Formulating R1CSLite as Sumcheck

Let F = Zp. As in [10,26,9], let H = ⟨ω⟩ and K be two multiplicative subgroups
of F. We use H to index the rows (and columns) and K to index the non-
zero elements of specific matrices. From now on, we assume that the R1CSLite
instance I = (F,H,K,m,m0,L,R) includes descriptions of H and K.

We want to demonstrate the satisfiability of I. Recall from Eq. (1) that for
this we need to show that W · z∗ = 0, where W = (I2m∥ −M), M =

(
L
R

)
, and

z∗ = (z⊤
l ∥z⊤

r ∥(zl ◦ zr)
⊤)⊤, where zl and zr are the vectors of all left and right

inputs of all R1CSLite constraints.

16 Helger Lipmaa, Janno Siim, and Michał Zając

Zero-Knowledge. To obtain zero-knowledge, we use a technique motivated
by [27]. Let |H| = nh := 2m+ b, for a randomizing parameter b ∈ N (to be fixed
to b = 4 in Theorem 2) that helps us to achieve zero knowledge. We add new
random elements to z∗ and zero elements to W; the latter are needed not to
disturb the knowledge-soundness proof. More precisely, for rz ←$ Fb, let

zl :=
(

1
x

za

)
∈ Fm , zr :=

(
1m0+1

zb

)
∈ Fm , and z :=

(
zl
zr
rz

)
.

Let Ib :=
(

Im 0 0
0 Im 0
0 0 0

)
and Mb :=

(
L 0
R 0
0 0

)
be nh × nh matrices. Let z′ :=

(zr
0nh−m

)
.

Our goal is to show
Wb · (z

z◦z′) = 0 , (3)

where Wb :=
(
Ib∥ −Mb

)
. Clearly, Eq. (3) is equivalent to W · z∗ = 0.

Next, Eq. (3) holds iff Ibz −Mb(z ◦ z′) = 0, i.e.,

∀x ∈ H.P [x] :=
∑
y∈H

(
Ib[x, y]−Mb[x, y]z′[y]

)
z[y] = 0 .

Language of Polynomials. Next, we replace vectors with their low-degree
encodings, with say z(Y) :=

∑
χ∈H z[χ]L

H
χ(Y) ∈ F≤nh−1[Y]. Let ΛbH(X,Y) and

M b be polynomials, fixed later, that interpolate the matrices Ib and Mb. That
is, ΛbH(x, y) = Ib[x, y] and M b(x, y) = Mb[x, y] for x, y ∈ H. Thus, Ib[x, y]z[y] =
ΛbH(x, y)z(y) for any x, y ∈ H. Moreover, since z(yωm) = z[yωm] = z′[y] for
y ∈ {ω0, . . . , ωm−1}, we get Mb[x, y]z′[y]z[y] = M b(x, y)z(yωm)z(y). On the
other hand, for x ∈ H and y ∈ {ωm, . . . , ωnh−1}, the value of z[yωm] does not
matter since we multiply it by M b(x, y) = 0.

Thus, Eq. (3) is equivalent to ∀x ∈ H.P (x) = 0, where

P (X) :=
∑
y∈H ψ(X, y), (4)

ψ(X,Y) :=
(
ΛbH(X,Y)−M b(X,Y)z(Y ωm)

)
z(Y) . (5)

To simplify it further, ΛbH(X,Y) and M b(X,Y) have to satisfy additional condi-
tions that we define in the rest of this subsection.

Interpolating Ib. Following Lunar [9], we interpolate I with the function

ΛH(X,Y) := ZH(X)Y−ZH(Y)X
nh(X−Y) . (6)

ΛH satisfies the following properties: (1) ΛH(x, y) is PPT computable, (2) ΛH is
a polynomial (this follows since ZH(X)Y − ZH(Y)X = X − Y +XY (Xnh−1 −
Y nh−1) = (X − Y)(1 + XY (

∑nh−2
i=0 Xnh−2−iY i)) divides by X − Y), (3) ΛH

is symmetric, ΛH(X,Y) = ΛH(Y,X), (4) ΛH(x, y) interpolates I over H2, i.e.,
∀x, y ∈ H.ΛH(x, y) = I[x, y] (this follows since ZH(x)y − ZH(y)x = 0 for all
x ̸= y ∈ H and 1+XY (

∑nh−2
i=0 Xnh−2−iY i) = 1+(nh−1)xnh = 1+nh−1 = nh

when X = Y = x ∈ H), (5) ΛH(x, y) = LH
x (y) for any x ∈ H, y ∈ F. Thus,

{ΛH(x, Y)}x∈H is a basis of F≤|H|−1[Y].

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 17

It is natural to define the interpolating polynomial of Ib as

ΛbH(X,Y) := ΛH(X,Y)−
∑b
i=1 ℓ

H
nh−b+i(X)ℓHnh−b+i(Y) .

Clearly, if b is small, then ΛbH(X,Y) is efficiently computable. Moreover,
ΛbH(X,Y) is symmetric since ΛH(X,Y) is symmetric.

Interpolating Mb. We use the sparse matrix encoding of Mb from Marlin [10]
that keeps track of the matrix’s non-zero entries. Let NZ := {(i, j) ∈ H × H :
Mb[i, j] ̸= 0} be the set of indices where Mb is non-zero. Let K be the minimum-
size multiplicative subgroup of F such that nk := |K| ≥ |NZ|.8 We encode Mb by
using polynomials row and col to keep track of the indices of its non-zero entries
while using a polynomial val for the values of these entries. That is, ∀κ ∈ K,
row(κ) ∈ H is the row index of the κth element (by using the natural ordering
of H2) of NZ, col(κ) ∈ H is the column index of the κth element of NZ, and
val(κ) = Mb[row(κ), col(κ)] ∈ F is the corresponding matrix entry. Let

row(Z) :=
∑
κ∈K row(κ)LK

κ (Z) ∈ F≤nk−1[Z]

be the low-degree extension of the vector (row(κ))κ∈K. Let col(Z) and val(Z)
be the low-degree extensions of (col(κ))κ∈K and (val(κ))κ∈K. Let zcv(Z),
rcv(Z), zrow(Z), zcol(Z), rc(Z), and zrc(Z) be the low-degree encodings
of Zcol(Z)val(Z), row(Z)col(Z)val(Z), Zrow(Z), Zcol(Z), row(Z)col(Z), and
Zrow(Z)col(Z). For example,

rcv(Z) :=
∑
κ∈K row(κ)col(κ)val(κ)LK

κ (Z) ∈ F≤nk−1[Z] .

We define M b ∈ F[X,Y] that interpolates Mb, as the low-degree extension of

∀x, y ∈ H.M b(x, y) := Mb[x, y] =
∑
κ∈K val(κ)ΛH(row(κ), x)ΛH(col(κ), y) .

Next, ΛH(row(κ), x) = (ZH(row(κ))x − ZH(x)row(κ))/(nh(row(κ) − x)). Since
ZH(row(κ)) = 0, ΛH(row(κ), x) = ZH(x)row(κ)/(nh(x − row(κ))). Similarly,
ΛH(col(κ), y) = ZH(y)col(κ)/(nh(y − col(κ))). Thus,

∀x, y ∈ H.M b(x, y) =
∑
κ∈K val(κ) · ZH(x)row(κ)

nh(x−row(κ)) ·
ZH(y)col(κ)
nh(y−col(κ))

=ZH(x)ZH(y)
n2
h

∑
κ∈K

rcv(κ)
(x−row(κ))(y−col(κ))

(∗)
= ZH(x)ZH(y)

n2
h

∑
κ∈K

rcv(κ)
xy−xcol(κ)−yrow(κ)+rc(κ) ,

where (*) follows from ∀κ ∈ K.rc(κ) = col(κ)row(κ). Thus, we define

M b(X,Y) := ZH(X)ZH(Y)
n2
h

∑
κ∈K

rcv(κ)
XY−Xcol(κ)−Y row(κ)+rc(κ) . (7)

Since degXM
b(X,Y) ≤ |H| − 1, ∀y ∈ H.M b(X, y) =

∑
χ∈HM

b(χ, y)ΛH(χ,X).
Clearly, M b interpolates Mb.
8 H and K can be arbitrary subsets of F, but the most efficient algorithms are known

when they are multiplicative subgroups. One can assume K = H by adding all-zero
rows and columns to the matrix, but we generally do not need that K = H. Keeping
|K| and |H| flexible allows us to achieve different trade-offs.

18 Helger Lipmaa, Janno Siim, and Michał Zając

Getting to Sumcheck. Next, we show that, under mild conditions on inter-
polating matrices that the above encodings satisfy, ∀x ∈ H.P (x) = 0 (and thus
also Eq. (3)) is equivalent to

∑
y∈H ψ(X, y) = 0.

Lemma 4. Assume degX ΛH(X,Y),degXM
b(X,Y) ≤ |H| − 1. Then, ∀x ∈

H.P (x) = 0 iff
∑
y∈H ψ(X, y) = 0.

Proof. (⇒) Assume ∀x ∈ H.P (x) = 0. Recall from Eq. (5) that ψ(X, y) =
(ΛbH(X, y) − M b(X, y)z(yωm))z(y). Since degX ΛH(X,Y),degXM

b(X,Y) ≤
|H| − 1, then also degX ψ(X, y) ≤ |H| − 1. Thus,∑

y∈H ψ(X, y) =
∑
y∈H

∑
x∈H ψ(x, y)Lx(X)

4
=

∑
x∈H P (x)Lx(X)

(∗)
= 0 ,

where (*) follows from ∀x ∈ H.P (x) = 0.
(⇐) Let

∑
y∈H ψ(X, y) = 0. By Eq. (4), ∀x ∈ H.P (x) =

∑
y∈H ψ(x, y) = 0. ⊓⊔

To enable efficient verification that the public input was correctly computed,
the prover transmits [z̃(σ)]1, for the polynomial z̃(Y) defined as follows. Let

Zinp(Y) :=
∏m0+1
i=1 (Y − ωi−1)(Y − ωm+i−1) ∈ F≤2(m0+1)[Y] ,

inp(Y) :=ℓH1 (Y) +
∑m0

i=1 xiℓ
H
i+1(Y) +

∑m0+1
i=1 ℓHm+i(Y) ∈ F≤nh−1[Y] ,

z̃(Y) :=
∑m−m0−1
i=1 za[i]

ℓHm0+1+i(Y)

Zinp(Y) +
∑m−m0−1
i=1 zb[i]

ℓHm+m0+1+i(Y)

Zinp(Y) +∑b
i=1 rz[i]

ℓH2m+i(Y)

Zinp(Y) .

(8)

Since ℓHi (Y) =
∏
j ̸=i(Y − ωj−1)/(ωi−1 − ωj−1), z̃(Y) ∈ F≤nh−2m0−3[Y]. Thus,

Zinp(Y)z̃(Y) =
∑m−m0−1
i=1 za[i]ℓ

H
m0+1+i(Y) +

∑m−m0−1
i=1 zb[i]ℓ

H
m+m0+1+i(Y) +∑b

i=1 rz[i]ℓ
H
2m+i(Y) interpolates (0⊤

m0+1∥z⊤
a ∥0⊤

m0+1∥z⊤
b ∥r⊤z)⊤. Moreover,

z(Y) = Zinp(Y)z̃(Y) + inp(Y) ∈ F≤nh−1[Y] . (9)

Thus, the existence of a polynomial z̃(Y), such that Eq. (9) holds, guarantees
that z(Y) interpolates (1∥x⊤∥z⊤

a ∥1⊤
m0+1∥z⊤

b ∥r⊤z)⊤ for some za, zb, and rz.

4.2 From Sumcheck to Vampire

According to the preceding discussion, one can handle R1CSLite by proving
that

∑
y∈H ψ(X, y) = 0. In the current subsection, we construct an argument for

the latter. We replace X with a random α chosen by the verifier, obtaining the
polynomial ψα(Y) := ψ(α, Y). We use Count to show that

∑
y∈H ψα(y) = 0. For

this, as in Section 3, the prover computes the polynomial ψipc and the verifier
checks φ(Y) := ψα(Y)S(Y) − ψipc(Y) is a zero polynomial. The latter can be
done by KZG-opening all involved polynomials (e.g., z̃(Y); see Eq. (5)), but
this is inefficient. Instead, the prover KZG-opens z̃(Y) at Y = βωm and Φ(Y),
M b(α, Y) at Y = β, where (1) Φ is a polynomial defined so that Φ(β) = φ(β) = 0,
and (2) one can verify efficiently the correctness, given vz ← z̃(βωm) and vM ←

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 19

M b(α, β). This requires us to open a polynomial related to the ILV-opening of
ψα(Y). We aggregate two KZG-openings by using the technique of Boneh et
al. [7]. Finally, we use a univariate sumcheck to check the correctness of vM ; this
step is complicated, but it follows closely [10,9]. Importantly, we also show that
one of the two commitments from the second sumcheck can be considered an
aggregated KZG-opening and thus batched with other KZG-openings.

To simplify some formulas, we assume always nh > 3. This is w.l.o.g., since
nh = 2m+ b, m ≥ 1, and b ≥ 2.

Details. Let α←$ F\H be sampled by the verifier. (We explain later why α /∈ H.)
To test that

∑
y∈H ψ(X, y) = 0, define

ψα(Y) := ψ(α, Y) ∈ F≤d[Y] .

From Eqs. (5) and (9), we get ψα(Y) =
(
ΛbH(α, Y)−M b(α, Y)z(Y ωm)

)
·

(Zinp(Y)z̃(Y) + inp(Y)) . Clearly, one can set

d := degψα = 3(nh − 1) . (10)

We use Count to prove that
∑
y∈H ψα(y) = 0. As in Lemma 2, we define

S(Y) :=
∑⌊d/nh⌋
i=0 Y dgap−nhi ∈ F≤dgap [Y] ,

ψipc(Y) := ψα(Y)S(Y) ∈ PolyPuncF(d, dgap, Y) . (11)

Here, dgap ∈ N is some integer, such that S(Y) and ψipc(Y) are polynomials, i.e.,
dgap ≥ nh · ⌊d/nh⌋ = nh · ⌊3(nh − 1)/nh⌋ = 2nh. (This holds for nh ≥ 3.) Taking
into account later considerations, we set

dgap :=3(nh − 1) . (12)

Thus, S(Y) = Y dgap + Y dgap−nh + Y dgap−2nh = Y 3nh−3 + Y 2nh−3 + Y nh−3.
According to Lemma 2, we need to check that the coefficient of Y dgap in

ψα(Y)S(Y) is 0. We do it by checking that
(i) ψipc(Y) ∈ PolyPuncF(d, dgap, Y), and
(ii) ψipc(Y) is the correct ILV-opening polynomial, i.e.,

φ(Y) :=ψα(Y)S(Y)− ψipc(Y)

=
(
Λb

H(α, Y)−Mb(α, Y)z(Y ωm)
)
(Zinp(Y)z̃(Y) + inp(Y)) · S(Y)− ψipc(Y)

is a zero polynomial.
The prover sends to the verifier KZG-commitments to z̃(Y) and ψipc(Y). Check-
ing i is free in the pairing-based setting. To check ii, we verify that φ(β) = 0,
where β ∈ Cβ ⊂ F\H is sampled by the verifier. (We will define and motivate Cβ
later.) More precisely, we verify that φ(β) = 0, where M b(α, β) is substituted by
a value vM computed by the prover. (The latter means that the verifier does not
have to compute M b(α, β) itself.) We first describe how to check that φ(β) = 0,
assuming vM is correct. After that, we use another sumcheck instantiation to
prove that vM is correctly computed.

20 Helger Lipmaa, Janno Siim, and Michał Zając

First: checking φ(β) = 0. A straightforward check that φ(β) = 0 requires, on
top of sending vM , the prover to KZG-open z̃(Y) both at Y = β and Y = βωm

and ψipc(Y) at Y = β. (The verifier can efficiently evaluate other polynomials
like ΛbH(X,Y), Zinp(Y), and S(Y) at (X,Y) = (α, β) itself.)

To improve on efficiency, we implicitly KZG-commit to Φ, where

Φ(Y) :=(Ψ(Y)S(Y)− ψipc(Y))/S(Y) = Ψ(Y)− ψα(Y) ∈ F≤d[Y] , and

Ψ(Y) :=
(
Λb

H(α, β)− vM · z(βωm)
)
(Zinp(β)z̃(Y) + inp(β)) ∈ F≤nh−2m0−3[Y] .

(13)

Ψ is obtained from ψα by replacingM b(α, β) with vM and all but one occurrences
of Y with β. Φ is a low-degree polynomial satisfying Φ(β) = φ(β) = 0.

We open KZG-commitments to z̃(Y) at Y = βωm (in order to compute
z(βωm)) and Φ(Y) at Y = β. For this, the prover sends

vz ← z̃(βωm) ∈ F .

Since Φ(β) = 0, Φ(β) is not transferred. We can open and verify the KZG-
commitment to Φ (see Eq. (13)) since we have KZG-commitments to z̃ and ψipc

(the need for the latter becomes apparent soon), KZG is homomorphic, and
the verifier knows all other information present in Φ like inp(β) and vM . More
precisely, the prover batch-opens the two KZG-commitments by computing the
KZG-opening polynomials

z̃pc(Y) := z̃(Y)−z̃(βωm)
Y−βωm ∈ F≤nh−2m0−4[Y] ,

Φpc(Y) :=Φ(Y)−Φ(β)
Y−β = Ψ(Y)−ψα(Y)

Y−β ∈ F≤d−1[Y] .

Since the prover batches these openings together with one more opening, we will
explain the batching process later.

Second (correctness of vM). We modify a technique from [10,9] by us-
ing batching. Recall that M b satisfies Eq. (7). Moreover, degXM

b(X,Y),
degY M

b(X,Y) ≤ nh − 1. Thus, M b(α, β) =
∑
κ∈K T (κ) ∈ F, where

num(Z) :=ZH(α)ZH(β)/n
2
h · rcv(Z) ∈ F≤nk−1[Z] ,

den(Z) :=αβ − α · col(Z)− β · row(Z) + rc(Z) ∈ F≤nk−1[Z] ,

T (Z) := num(Z)
den(Z) ∈ F(Z) .

(14)

Here, we need den(κ) = (α−row(κ))(β−col(κ)) ̸= 0 for any κ ∈ K. This explains
why we chose α, β /∈ H.

We use a sumcheck to check that vM =M b(α, β). Since this sumcheck is over
a low-degree polynomial, we do not need to use Count’s full power. Let

T̂ (Z) :=
∑
κ∈K T (κ)L

K
κ (Z) ∈ F≤nk−1[Z] .

Clearly, num(Z) − T̂ (Z)den(Z) ≡ 0 (mod ZK(Z)). Since
∑
κ∈K T̂ (κ) = vM , by

Fact 1, T̂ (Z) = ZR(Z) + vM/nk for

R(X)← (T̂ (Z)− vM/nk)/Z ∈ F≤nk−2[Z] . .

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 21

Thus, num(Z)− (ZR(Z)+ vM/nk)den(Z) ≡ 0 (mod ZK(Z)). Since this equality
has to hold only when Z ∈ K, we modify it as follows. Let

Q(Z)← (num(Z)−R(Z) · zden(Z)− vM/nk · den(Z))/ZK(Z) ∈ F≤nk−3[Z]

be such that

num(Z)−R(Z) · zden(Z)− vM/nk · den(Z) = Q(Z)ZK(Z) , where (15)
zden(Z) := αβZ − αzcol(Z)− βzrow(Z) + zrc(Z) ∈ F≤nk−1[Z] . (16)

Thus, zden(κ) = κden(κ) for κ ∈ K. This rewriting minimizes the degree of
polynomials (e.g., zcol(Z) ∈ F≤nk−1[Z] while Zcol(Z) ∈ F≤nk

[Z]).
Marlin and Lunar [10,9] now transferred polynomial commitment to Q(Z).

We improve on it, by interpreting Eq. (15) as saying that the polynomial
num(Z)−R(Z) · zden(Z)− vM/nk ·den(Z) opens to 0 at all points Z ∈ K. Thus,
Q(Z) is an aggregated polynomial opening of the left-hand side of Eq. (15) at
all points of K. Importantly, we can aggregate this opening with the openings
z̃pc(Z) and Φpc(Z) from before. Hence, we can save an additional one group
element. (We will explain batching in a few paragraphs.)

Thus, the prover only commits to R. When we add to srsR elements like
[rcv(σ), col(σ)]2, the verifier can compute the G2 elements in the last equation
since he knows α and β. Thus, polynomials like [rcv(σ)]2 need to be in srsR,
while monomials, needed for the V to be able to compute srsR, need to be in srs.
This explains the definition of srsR in Fig. 2.

One needs to check that degR ≤ nk−2. To perform this test without increas-
ing the argument size, we use a second trapdoor τ ←$ F∗. We add [(σiτ)nk−2

i=0]2 to
the SRS and use [R(σ)τ,Q(σ)τ]1 instead of [R(σ), Q(σ)]1. This modifies the veri-
fication equations. The idea is that if the SRS contains [(σi)i∈S , (σ

iτ)i∈S′]1, then
a verification [a]1•[1]2 = [b]1•[τ]2 guarantees in the AGM that a ∈ span(σiτ)i∈S′ .

Batching. The prover batches the openings of z̃(Y) at Y = βωm, Φ(Y) at
Y = β, and the left-hand side of Eq. (15) at all Y ∈ K as [Bpc(σ, τ)]1 ←
[z̃pc(σ)+Φpc(σ)+Q(σ)τ]1. Notably, since the polynomial openings are at different
locations (β, βωm, and all points of K, correspondingly), one does not have to
randomize this check. (See Section 5.1 for formal proof.) The latter is a general
fact, not mentioned in [13,7] and is thus an independent contribution.

Following [13,7], the verifier must check that [z̃(σ)− vz]1 • [(σ− β)ZK(σ)]2 +
[Φ(σ)]1 • [(σ− βωm)ZK(σ)]2 + [num(σ)−R(σ)zden(σ)− vM/nk · den(σ)]1 • [(σ−
β)(σ−βωm)]2 = [Bpc(σ)]1• [(σ−β)(σ−βωm)ZK(σ)]2, where [Φ(σ)]1 = [Ψ(σ)]1−
[ψα(σ)]1. Since the verifier does not know [ψα(σ)]1 but knows [ψipc(σ)]1 =
[ψα(σ)S(σ)]1, we multiply each term of the verification equation by S(σ). We
also modify the last addend on the left-hand side to allow the prover and the
verifier to compute it given the terms given in the SRS. Finally, we use the
trapdoor τ because we need to do a low-degree test.

As part of [Bpc(σ)]1, the prover has to compute [Φpc(σ)]1 ← [(Φ(σ) −
ψα(σ))/(σ − β)]1, where Φpc ∈ F≤d−1[Y] and σ is a trapdoor. For Count to

22 Helger Lipmaa, Janno Siim, and Michał Zając

Pgen(1λ): generate p as usually, assuming that nh, nk | (p− 1) and 3 ∤ nk;

KGen(p, nh, nk): S1(X,Xτ) = {(Xi)
dgap+d

i=0:i ̸=dgap
, (XiXτ)

nk−2
i=0 };

S2(X) = {1, X,X2, Xnk , Xnk+1, (Xdgap−jnh+i)j∈{0,1,2},i∈[0,nk+2]};
σ, τ ←$ F∗; td← (σ, τ);
srs← (p, nh, nk, [g(σ, τ) : g ∈ S1(X,Xτ)]1, [g(σ) : g ∈ S2(X)]2);

Derive(srs, I): ekR ← (p, I, [g(σ, τ) : g ∈ S1(X,Xτ)]1);

srsR ←

 [
(σ

i
S(σ))

3
i=0, rcv(σ)S(σ), col(σ)S(σ), row(σ)S(σ), rc(σ)S(σ),ZK(σ)

]
2
,[

σZK(σ), (σ
izcol(σ)S(σ), σizrow(σ)S(σ), σizrc(σ)S(σ), σi

ZK(σ)S(σ))
2
i=0

]
2

 ;

vkR ← (p, I, [1, τ, στ, σ2τ]1, [1]2, srsR);

Fig. 2. Vampire’s parameter and SRS generation, where I = (F,H,K,m,m0,L,R).

be secure, the SRS cannot contain [σdgap]1. Hence, we need to assume d ≤ dgap.
This motivates the choice of dgap = 3(nh − 1) in Eq. (10). The batch opening
reduces the communication by two group elements.

4.3 Description of Vampire

In Figs. 2 and 3, we describe interactive Vampire, the new succinct interactive
zero-knowledge argument with a specializable universal SRS. For the sake of
completeness, Figs. 2 and 3 define all used polynomials. Since this argument is
public-coin and has a constant number of rounds, we can apply the Fiat-Shamir
heuristic (we omit the details) to obtain the zk-SNARK Vampire.

We sample the challenge β from the set

Cβ =

{
β ∈ F β /∈ (H ∪K ∪ {0, σ, σ/ωm})∧

S(β) ̸= 0 ∧ S(βωm) ̸= 0 ∧ βωm /∈ K

}
.

We need β /∈ {σ, σ/ωm} to get perfect zero-knowledge (see the proof of The-
orem 2). One can efficiently verify that β /∈ {σ, σ/ωm}, given [σ]1 from the
SRS. In addition, in the knowledge-soundness proof we need that S(Y), ZK(Y),
Y −β, and Y −βωm are coprime. Hence, we need that (1) S(β) ̸= 0, S(βωm) ̸= 0,
ZK(β) ̸= 0, ZK(βω

m) = 0 (the latter two conditions hold iff β /∈ K and βωm /∈ K)
for coprimeness with Y − β and Y − βωm, and (2) β ̸= 0 (otherwise β = βωm,
and thus Y − β and Y − βωm cannot be coprime). As mentioned previously,
α, β /∈ H since otherwise den(κ) = 0 for any κ ∈ K. Note that if nh and dgap are
much smaller than |F| (which is typically the case), then β ←$ F is contained in
Cβ with an overwhelming probability. Thus, in practice, β can be sampled from
F, resulting in only a negligible security risk.

Since S1(X,Xτ) and S2(X) consist of monomials and one can verify the
correctness of its SRS efficiently, Vampire is updatable. We will prove the latter
in the full version [22]. See the full version [22] for a thorough efficiency analysis.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 23

P(ekR,x,w) V(vkR,x). Init .
Zinp(Y)←

∏m0+1
i=1 (Y − ωi−1)(Y − ωm+i−1) ∈ F≤2m0+2[Y];

inp(Y)← ℓH1 (Y) +
∑m0

i=1 xiℓ
H
i+1(Y) +

∑m0+1
i=1 ℓHm+i(Y) ∈ F≤nh−1[Y]; rz ←$ Fb;

z̃(Y)←
∑m−m0−1

i=1 za[i]
ℓHm0+1+i(Y)

Zinp(Y)
+

∑m−m0−1
i=1 zb[i]

ℓHm+m0+1+i(Y)

Zinp(Y)
+

∑b
i=1 rz[i]

ℓH2m+i(Y)

Zinp(Y)
;

z(Y)← Zinp(Y)z̃(Y) + inp(Y); // z̃(Y) ∈ F≤nh−2m0−3[Y]; z(Y) ∈ F≤nh−1[Y]

[z̃(σ)]1

α←$ F \Hα

Abort if α /∈ F \H
. Count:

∑
y∈H ψα(y) = 0 for ψα(Y) =

(
Λb

H(α, Y)−Mb(α, Y)z(Y ωm)
)
z(Y)

S(Y)←
∑⌊d/nh⌋

i=0 Y dgap−nhi ∈ F≤dgap [Y]; ψipc(Y)← ψα(Y)S(Y) ∈ PolyPuncF(d, dgap, Y);

[ψipc(σ)]1

β ←$ Cββ

.Low-degree sumcheck for
∑

κ∈K(num(κ)/den(κ)) = vM =Mb(α, β)
Abort if β /∈ Cβ ; vM ←Mb(α, β) ∈ F; vz ← z̃(βωm) ∈ F;
num(Z)← ZH(α)ZH(β)/n

2
h · rcv(Z) ∈ F≤nk−1[Z];

den(Z)← αβ − α · col(Z)− β · row(Z) + rc(Z) ∈ F≤nk−1[Z];
T (Z)← num(Z)/den(Z) ∈ F(Z); T̂ (Z)←

∑
κ∈K T (κ)L

K
κ(Z) ∈ F≤nk−1[Z];

R(Z)← (T̂ (Z)− vM/nk)/Z ∈ F≤nk−2[Z];
Q(Z)← (num(Z)−R(Z) · zden(Z)− vM/nk · den(Z))/ZK(Z) ∈ F≤nk−3[Z];
z(βωm)← Zinp(βω

m)vz + inp(βωm);

Ψ(Y)←
(
Λb

H(α, β)− vM · z(βωm)
)
(Zinp(β)z̃(Y) + inp(β)) ∈ F≤nh−m0−3[Y];

z̃pc(Y)← (z̃(Y)− vz)/(Y − βωm) ∈ F≤nh−m0−4[Y];

Φpc(Y)← (Ψ(Y)− ψα(Y))/(Y − β) ∈ F≤d−1[Y];

Bpc(Y,Xτ)← z̃pc(Y) + Φpc(Y) +Q(Y)Xτ ∈ F≤d−1[Y] ∪ (F≤nk−3[Y])[Xτ];

vz, vM , [R(σ)τ,Bpc(σ, τ)]1

[B1(σ)]2 ← [(σ − β)ZK(σ)S(σ)]2; [B2(σ)]2 ← [(σ − βωm)ZK(σ)S(σ)]2;
[B3(σ)]2 ← [(σ − βωm)ZK(σ)]2; [B4(σ)τ]1 ← [(σ − β)(σ − βωm)τ]1;

[ζ1(σ)]2 ← ZH(α)ZH(β)/n
2
h · [rcv(σ)S(σ)]2; // = [num(σ)S(σ)]2

[ζ2(σ)]2 ← αβ[S(σ)]2 − α[col(σ)S(σ)]2 − β[row(σ)S(σ)]2 + [rc(σ)S(σ)]2; // = [den(σ)S(σ)]2

[ζ3(σ)]2 ← αβ[(σ − β)(σ − βωm)σS(σ)]2 − α[(σ − β)(σ − βωm)zcol(σ)S(σ)]2−
β[(σ − β)(σ − βωm)zrow(σ)S(σ)]2 + [(σ − β)(σ − βωm)zrc(σ)S(σ)]2;

// = [(σ − β)(σ − βωm)zden(σ)S(σ)]2

inp(βωm)← ℓH1 (βω
m) +

∑m0
i=1 xiℓ

H
i+1(βω

m) +
∑m0+1

i=1 ℓHm+i(βω
m);

Zinp(βω
m)←

∏m0+1
i=1 (βωm − ωi−1)(βωm − ωm+i−1);
z(βωm)← Zinp(βω

m)vz + inp(βωm);

[Ψ(σ)]1 ←
(
Λb

H(α, β)− vM · z(βωm)
)
(Zinp(β)[z̃(σ)]1 + inp(β)[1]1);

(♯♯) Check ([z̃(σ)− vz]1 • [B1(σ)]2) + ([Ψ(σ)]1 • [B2(σ)]2 − [ψipc(σ)]1 • [B3(σ)]2)+(
[B4(σ)τ]1 • [ζ1(σ)− vM/nk · ζ2(σ)]2 − [R(σ)τ]1 • [ζ3(σ)]2

)
=? [Bpc(σ, τ)]1 • [(σ − β)(σ − βωm)ZK(σ)S(σ)]2;

Fig. 3. Vampire’s online phase: I = (F,H,K,m,m0,L,R) and w = (za
zb

) ∈ F2(m−m0−1).

24 Helger Lipmaa, Janno Siim, and Michał Zając

5 Security Proofs

We first provide additional preliminaries, needed to prove Vampire’s security.

Fact 3 (Schwartz-Zippel Lemma) Let f(X1, . . . , Xc) ̸= 0 be a total degree-d
polynomial over a field F and let S ⊆ Fc. Then, Pr[x←$ S : f(x) = 0] ≤ d/|S|.

Fact 4 (Bauer et al. [3]) Let V(X1, . . . , Xc) ∈ F[X1, . . . , Xc] be a non-zero
polynomial of total degree d. Define P(Z) ∈ (F[S1, . . . , Sc, R1, . . . , Rc])[Z] as
P(Z) := V(S1Z +R1, . . . , ScZ +Rc). Then the coefficient of the leading term in
P(Z) is a polynomial in F[S1, . . . , Sc] of degree d.

The following lemma (based on [19,13,7]) allows to batch-open several poly-
nomials in distinct points. The prior work [13,7] had a more general version where
the points do not have to be distinct; the cost of it is a randomized verification
that involves a value γ ←$ F sampled by the verifier. On the other hand, [13,7] did
not involve the polynomial S(Y) and worked only with univariate polynomials.

Lemma 5 (Aggregation lemma). Let fi ∈ F[Y,Xτ], Ti ⊂ F be mutually
disjoint sets, and let T := ∪iTi. Let S(Y) ∈ F[Y] be such that ∀s ∈ T.S(s) ̸= 0.
Fix vs ∈ F for all s ∈ T . Let v̂i ∈ F[Y] be a polynomial, such that v̂i(s) = vs for
all s ∈ Ti. Let bi ∈ {0, 1}. If there exists a polynomial Bpc ∈ F[Y,Xτ], such that∑

i(fi(Y,Xτ)− v̂i(Y))ZT\Ti
(Y)S(Y)bi = Bpc(Y,Xτ)ZT (Y)S(Y) , (17)

then ∀i.∀s ∈ Ti.fi(s,Xτ) = vs.

Proof. Since Ti are disjoint and the roots of S(Y) are not in T , Eq. (17) implies
that ∀i. (ZTi(Y) | (fi(Y,Xτ)− v̂i(Y))). The lemma follows. ⊓⊔

In our use, v̂i(Y) is either constant or the unique monic polynomial (e.g, La-
grange’s polynomial) of degree |Ti| − 1, such that v̂i(s) = vs for all s ∈ Ti.

Remark 1. When Ti∩Tj ̸= ∅, ∀i. (ZTi
(Y) | (fi(Y,Xτ)− v̂i(Y))) does not follow.

However, if we introduce another variable Z to Eq. (17), changing Eq. (17)
to

∑
i(fi(Y,Xτ)− v̂i(Y))ZT\Ti

(Y)S(Y)biZi−1 = Bpc(Z, Y,Xτ)ZT (Y)S(Y), then
the claim will again follow. This is essentially how the randomized batching in [7]
works (Z is substituted by a random β).

5.1 Knowledge-Soundness Proof

We start by proving two lemmas about coprimeness of some of the polynomials
used in Vampire. We need them later in the knowledge soundness proof.

Lemma 6. Recall that ZK(Y) =
∏
κ∈K(Y − κ) and S(Y) = Y dgap + Y dgap−nh +

Y dgap−2nh . If char(F) ̸= 3, nh ≥ 3, and 3 ∤ nk, then gcd(S(Y),ZK(Y)) = 1.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 25

Proof. Clearly, gcd(S(Y),ZK(Y)) = 1 iff K does not contain roots of S(Y). Since
S(Y) = Y 3nh−3+Y 2nh−3+Y nh−3 = Y nh−3(Y 2nh +Y nh +1), roots of S(Y) are
0 (when nh > 3), which is not in K, and roots of S∗(Y) := Y 2nh + Y nh + 1.

Consider the polynomial P (X) = X2 + X + 1 where Y nh from S∗(Y) is
substituted by X. Let a be a root of P (X). Since a2 = −a − 1, we have a3 =
−a2 − a = a + 1 − a = 1. Thus, the order of a divides three. The order cannot
be one since then a1 = a = 1, but P (1) = 1 + 1 + 1 ̸= 0 when char(F) ̸= 3.
Thus, the order of a is three. If a ∈ K, then by Lagrange’s theorem, 3 | nk,
violating the assumption 3 ∤ nk. Thus, a /∈ K. Finally, suppose that b is a root of
Y 2nh +Y nh +1. If b ∈ K, then bnh ∈ K and P (bnh) = 0. We already showed that
P (X) does not have roots in K and thus, S(Y) does not have roots in K. ⊓⊔

Lemma 7. If char(F) ̸= 3, nh ≥ 3, 3 ∤ nk, and β ∈ Cβ, then S(Y), ZK(Y),
Y − β, and Y − βωm are pair-wise coprime.

Proof. Let us look at all the pairs one-by-one.
1. We proved in Lemma 6 that S(Y) and ZK(Y) are coprime assuming

char(F) ̸= 3, nh ≥ 3, and 3 ∤ nk.
2. Suppose that β = βωm. Then, β(ωm − 1) = 0 and thus either β = 0 or
ωm = 1. However, 0 /∈ Cβ . Moreover, ωm ̸= 1 since m < nh. Thus, Y − β
and Y − βωm are coprime.

3. ZK(Y) is coprime with Y − β and Y − βωm since β and βωm are not roots
of ZK(Y) by the definition of Cβ .

4. For the same reason, S(Y) is coprime with Y − β and Y − βωm. ⊓⊔

Theorem 1. Assume that char(F) ̸= 3, nh ≥ 3 and 3 ∤ nk. Then, Vampire is
knowledge-sound in the AGM under the PDL assumption. More precisely, an
algebraic A breaks the knowledge-soundness of Vampire with probability at most

Advpdld1,d2,Pgen,B(λ) ·
|F|2

|F|2−q +
16nh+4m0−12

|Cβ | + nh−1
|F|−nh

, (18)

where B is some PPT adversary, d1 = max(dgap+ d, nk− 1), d2 = nk+ dgap+2,
and q ≤ 2 + nk + dgap + dmax such that dmax = max(dgap + d, nk − 1).

Proof. Let A = (A1,A2) be an arbitrary algebraic adversary in the knowledge
soundness game and ExtA its extractor. In each round, A sends some elements
of either G1 or F. For the elements of G1, ExtA outputs coefficients of a poly-
nomial where its monomials belong to S1(X,Xτ). We denote polynomials that
the adversary sends as z̃(Y,Xτ), ψipc(Y,Xτ), R(Y,Xτ), and Bpc(Y,Xτ), where
each of the polynomials is in the span of S1(Y,Xτ). We denote the field elements
vz, vM ∈ F, sent by the prover, as in the honest protocol description.

In Fig. 4, we depict the knowledge extractor Ext. Ext runs ExtA
9 to obtain

coefficients of z̃(Y,Xτ). Ext then evaluates z̃(Y, 0) · Zinp(Y) at points of Y ∈ H,
corresponding to za and zb in the honest argument. Ext then returns those
vectors. In the rest of this proof, we show that the value outputted by Ext is a
valid witness for x with an overwhelming probability.
9 Even though A is interactive, since we extract only from the first round message of
A, the knowledge soundness extractor is still non-interactive.

26 Helger Lipmaa, Janno Siim, and Michał Zając

Ext(srs, aux; r)

z̃(Y,Xτ)← ExtA(srs, aux; r);

za ←
(
z̃(ωm0+1, 0) · Zinp(ω

m0+1), . . . , z̃(ωm−1, 0) · Zinp(ω
m−1)

)⊤
;

zb ←
(
z̃(ωm+m0+1, 0) · Zinp(ω

m+m0+1), . . . , z̃(ω2m−1, 0) · Zinp(ω
2m−1)

)⊤
;

return w = (za
zb

);

Fig. 4. The knowledge-soundness extractor Ext for Vampire zk-SNARK where A is an
algebraic adversary and ExtA its extractor.

We have one verification check that guarantees V(σ, τ) = 0, where

V(Y,Xτ) := (z̃(Y,Xτ)− vz) · (Y − β)ZK(Y)S(Y)+

(Ψ(Y,Xτ)S(Y)− ψipc(Y,Xτ)) · (Y − βωm)ZK(Y)+((
num(Y)− vM

nk
den(Y)

)
Xτ −R(Y,Xτ)zden(Y)

)
· (Y − β)(Y − βωm)S(Y)−

Bpc(Y,Xτ) · (Y − β)(Y − βωm)ZK(Y)S(Y) ,

where Ψ(Y,Xτ) =
(
ΛbH(α, β)− vM · z(βωm)

)
(Zinp(β)z̃(Y,Xτ) + inp(β)) for

z(βωm) = Zinp(βω
m)vz + inp(βωm). (V(σ, τ) = 0 follows from (♯♯) in Fig. 3

when one allows polynomials like z̃(Y,Xτ) to be maliciously chosen.)
Clearly, Pr[A wins] ≤ Pr[A wins | V(Y,Xτ) = 0]+Pr[A wins | V(Y,Xτ) ̸= 0].

Below, we will analyze both conditional probabilities.

Lemma 8. Assume char(F) ̸= 3, nh ≥ 3, and 3 ∤ nk. For an algebraic A,
Pr[A wins | V(Y,Xτ) = 0] ≤ (16nh + 4m0 − 12)/|Cβ |+ (nh − 1)/(|F| − nh).

Proof. Assume V(Y,Xτ) = 0. Recall that by Lemma 7, S(Y), ZK(Y), Y − β,
and Y − βωm are pair-wise coprime. Hence, we can use Lemma 5 with f1(Y) =
z̃(Y,Xτ)S(Y), f2(Y) = Ψ(Y,Xτ)S(Y)−ψipc(Y,Xτ), f3(Y) = (num(Y)−vM/nk ·
den(Y))Xτ − R(Y,Xτ)zden(Y), T1 = {βωm}, T2 = {β}, T3 = K, vβωm = vz,
vβ = 0, and vy = 0 for y ∈ K. It follows from V = 0 and Lemma 5 that

z̃(βωm, Xτ) = vz , (19)
Ψ(β,Xτ)S(β)− ψipc(β,Xτ) = 0 , (20)

∀y ∈ K.
(
num(y)− vM

nk
den(y)

)
Xτ −R(y,Xτ)zden(y) = 0 . (21)

We analyze each of the three equations separately.
Equation (19). Denote z̃(Y,Xτ) = z̃′(Y)Xτ + z̃

′′(Y). It follows from Eq. (19)
that z̃′(βωm)Xτ + z̃′′(βωm) = vz. Thus, z̃′′(βωm) = vz and z̃′(βωm) = 0.

Equation (21). Write R(Y,Xτ) = R′(Y)Xτ + R′′(Y) and Q(Y,Xτ) =

Q′(Y)Xτ+Q
′′(Y). In particular, degR′(Y) ≤ nk−2 since the onlyXτ -dependent

monomials in S1(Y) are (Y iXτ)
nk−2
i=0 . Thus, from Eq. (21),

∀y ∈ K.
(
num(y)− vM

nk
den(y)−R′(Y)zden(y)

)
Xτ −R′′(y)zden(y) = 0.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 27

Hence, ∀y ∈ K.num(y) − vM/nk · den(y) − yR′(y)den(y) = 0, that is, ∀y ∈
K.T (y) := num(y)/den(y) = vM/nk + yR′(y). Since T̂ (Z) :=

∑
y∈K T (y)L

K
y (Z)

has degree ≤ nk − 1, we get that T̂ (Z) = ZR′(Z) + vM/nk. By Fact 1,

M b(α, β) =
∑
y∈K T (y) =

∑
y∈K T̂ (y) = vM . (22)

Equation (20). Denote ψipc(Y,Xτ) = ψ′
ipc(Y)Xτ + ψ′′

ipc(Y). Observe that
ψ′′
ipc(Y) ∈ PolyPuncF(d, dgap, Y). We express Ψ(Y,Xτ) as

Ψ(Y,Xτ) =
(
ΛbH(α, β)− vM · z(βωm)

)
· (Zinp(β)z̃(Y,Xτ) + inp(β))

=
(
ΛbH(α, β)− vM · z(βωm)

)
· (Zinp(β)(z̃

′(Y)Xτ + z̃′′(Y)) + inp(β))

=Ψ ′(Y)Xτ + Ψ ′′(Y) ,

where Ψ ′(Y) :=
(
ΛbH(α, β)− vM · z(βωm)

)
Zinp(β)z̃

′(Y) and Ψ ′′(Y) =(
ΛbH(α, β)− vM · z(βωm)

)
· (Zinp(β)z̃

′′(Y) + inp(β)).
Thus, Eq. (20) implies (Ψ ′(β)S(β)− ψ′

ipc(β))Xτ + Ψ ′′(β)S(β)− ψ′′
ipc(β) = 0.

Hence, Ψ ′′(β)S(β) = ψ′′
ipc(β).

Denote ψ(Y) :=
(
ΛbH(α, Y)−M b(α, Y) · z(Y ωm)

)
· (Zinp(Y)z̃′′(Y) + inp(Y)).

Let V3(Y) := ψ(Y)S(Y)−ψ′′
ipc(Y). By Eq. (22), ψ(β) = Ψ ′′(β) and thus V3(β) =

0. Since ψ(Y) and ψipc(Y) were fixed before the adversary received β, we can
apply the Schwartz-Zippel lemma to V3. Recall that (1) deg z̃′′ ≤ dgap + d,
(2) deg inp ≤ nh − 1, (3) degZinp ≤ 2(m0 + 1), (4) deg z ≤ dgap + d+ 2(m0 + 1),
(5) degY ΛH(α, Y) ≤ nh − 1, degY M

b(α, Y) ≤ nh − 1, (6) degψ′′
ipc ≤ dgap +

d, (7) degψ ≤ (nh − 1) + 2 (dgap + d+ 2(m0 + 1)) = 13nh + 4m0 − 9. Thus,
degV3 ≤ max(degψ + dgap,degψ

′′
ipc) ≤ max(16nh + 4m0 − 12, 6(nh − 1)) =

16nh + 4m0 − 12. If V3(Y) ̸= 0, then the verifier’s acceptance implies that
V3(β) = 0, which according to Schwartz-Zippel lemma can only happen with
probability (16nh + 4m0 − 12)/|Cβ |.

Let us consider the case V3(Y) = 0. Since ψ(Y)S(Y) = ψ′′
ipc(Y), degψ′′

ipc ≤
dgap+d and degS = dgap, then degψ(Y) ≤ d. Since Y dgap /∈ S1(Y,Xτ), the coeffi-
cient of Y dgap in ψ(Y)S(Y) = ψ′′

ipc(Y) =
∑dgap+d
i=0 (ψ′′

ipc)iY
i is 0. But this coefficient

is ψ0 + ψnh
+ ψ2nh

= 0. Thus, from Lemma 1, it follows that
∑
y∈H ψ(y) = 0.

Let us express ψ(Y) as ψ(X,Y), where X corresponds to α. We estab-
lished that

∑
y∈H ψ(α, y) = 0. For any y ∈ H, degψ(X, y) = nh − 1. If∑

y∈H ψ(X, y) ̸= 0, then by the Schwartz-Zippel lemma,
∑
y∈H ψ(α, y) = 0 with

probability at most (nh − 1)/(|F| − nh). Assume that
∑
y∈H ψ(X, y) = 0. By

Lemma 4, ∀x ∈ H.P (x) = 0, where P (x) is as in Eq. (4). In the beginning
of Section 4, we established that this equation is equivalent to R1CSLite. Since
z(Y) = Zinp(Y)z̃′′(Y)+inp(Y) = z̃′′(Y)

∏m0+1
i=1 (Y −ωi−1)(Y −ωm+i−1)+ℓH1 (Y)+∑m0

i=1 xiℓ
H
i+1(Y)+

∑m0+1
i=1 ℓHm+i(Y), then z(ωi−1) for i ∈ {1, . . . ,m0+1} correctly

encodes (1,x1, . . . ,xm0
). The extractor extracts z(ωi−1) for i ∈ {m0+2, . . . ,m}∪

{m+m0 + 2, . . . , 2m} which indeed corresponds to the R1CSLite witness. ⊓⊔

Lemma 9. Let d1 := max(dgap + d, nk − 1), d2 := nk + dgap + 2, and q ≤
2 + nk + dgap + dmax for dmax := max(dgap + d, nk − 1). For an algebraic A and

28 Helger Lipmaa, Janno Siim, and Michał Zając

V(Y,Xτ) as above, there exists a PPT B, such that Pr[A wins | V(Y,Xτ) ̸= 0] ≤
Advpdld1,d2,Pgen,B(λ) · |F|

2/(|F|2 − q).

Proof. The proof is standard and similar to [12]’s proof for Groth16 SNARK. We
sketch the main idea. We construct an adversary B that breaks the (d1, d2)-PDL
assumption if A wins in the knowledge soundness game and V(Y) ̸= 0.
B gets as an input (p; [(xi)d1i=0]1, [(x

i)d2i=0]2). B samples s1, s2, r1, r2 and defines
σ = s1x+ r1 and τ = s2x+ r2. Although B does not know σ or τ (they depend
on the challenge x), B is able to homomorphically compute elements of the form
[σi]ι and [σiτ]ι (e.g., [σ]1 = s1[x]1+r1[1]1). The degrees d1 and d2 are sufficiently
high so that B can compute srs where σ and τ are the trapdoors. Next, B runs A
and ExtA on this srs to obtain the argument and related argument polynomials.
B now knows coefficients of verification polynomial V(Y,Xτ).

When A wins, V(σ, τ) = 0. Let P(X) := V(S1X + R1, S2X + R2) ∈
(F[S1, S2, R1, R2])[X]. From Fact 4, if V(Y,Xτ) ̸= 0 has degree q, the coefficient
of the maximal degree of P(X) is some C(S1, S2) ∈ F[S1, S2] of degree q. Thus,
the coefficient of the leading term of P ′(X) := V(s1X + r1, s2X + r2) ∈ F[X]
is C(s1, s2). Since s1 and s2 are information-theoretically hidden from A (they
are masked by r1 and r2), by the Schwartz-Zippel lemma, C(s1, s2) = 0 at most
with probability q/|F|2. Thus, with an overwhelming probability, C(s1, s2) ̸= 0
and P ′(X) ̸= 0. Thus, B can find the roots of P ′(X). One of the roots must be
σ since P ′(σ) = V(s1σ + r1, s2σ + r2) = V(σ, τ) = 0. Finally, B outputs σ.

The total degree q of V is ≤ 2+ dgap + nk + dmax, where dmax := max(dgap +

d, nk − 2). Thus, Pr[A wins | V(Y) ̸= 0](1− q/|F|2) ≤ Advpdld1,d2,Pgen,B(λ). Hence,
Pr[A wins | V(Y) ̸= 0] ≤ Advpdld1,d2,Pgen,B(λ) · |F|

2/(|F|2 − q). ⊓⊔

It follows from these lemmas that Eq. (18) holds. This proves the claim. ⊓⊔

5.2 Zero-Knowledge Proof

Theorem 2. Let b = 4. Then, Vampire is perfectly zero-knowledge.

We prove zero-knowledge (and subversion zero-knowledge) in the full version.

Acknowledgment. Most of the work was done when Janno Siim was employed
by the University of Tartu and Michał Zając by Clearmatics Technologies.

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 3–33. Springer, Heidelberg (Dec 2017). https://doi.org/10.1007/
978-3-319-70700-6_1

2. Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On subversion-resistant
SNARKs. Journal of Cryptology 34(3), 17 (Jul 2021). https://doi.org/10.1007/
s00145-021-09379-y

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/s00145-021-09379-y
https://doi.org/10.1007/s00145-021-09379-y
https://doi.org/10.1007/s00145-021-09379-y
https://doi.org/10.1007/s00145-021-09379-y

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 29

3. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assump-
tions in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 121–151. Springer, Heidelberg (Aug
2020). https://doi.org/10.1007/978-3-030-56880-1_5

4. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: Secu-
rity in the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (Dec
2016). https://doi.org/10.1007/978-3-662-53890-6_26

5. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Heidelberg
(May 2019). https://doi.org/10.1007/978-3-030-17653-2_4

6. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (Mar 2013). https://doi.
org/10.1007/978-3-642-36594-2_18

7. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Efficient polynomial commitment
schemes for multiple points and polynomials. Cryptology ePrint Archive, Report
2020/081 (2020), https://eprint.iacr.org/2020/081

8. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (May 2016). https://doi.org/10.1007/978-3-662-49896-5_12

9. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: A tool-
box for more efficient universal and updatable zkSNARKs and commit-and-prove
extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS,
vol. 13092, pp. 3–33. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/
978-3-030-92078-4_1

10. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Pre-
processing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer,
Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45721-1_26

11. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Heidelberg (Mar
2018). https://doi.org/10.1007/978-3-319-76578-5_11

12. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applica-
tions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 33–62. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96881-0_2

13. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953

14. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (May 2013).
https://doi.org/10.1007/978-3-642-38348-9_37

15. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(Dec 2010). https://doi.org/10.1007/978-3-642-17373-8_19

https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://eprint.iacr.org/2020/081
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19

30 Helger Lipmaa, Janno Siim, and Michał Zając

16. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 305–326. Springer, Heidelberg (May 2016). https://doi.org/10.1007/
978-3-662-49896-5_11

17. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable
and universal common reference strings with applications to zk-SNARKs. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol.
10993, pp. 698–728. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96878-0_24

18. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-
interactive anonymous credentials with efficient attributes. In: Chen, L. (ed.) 13th
IMA International Conference on Cryptography and Coding. LNCS, vol. 7089, pp.
431–450. Springer, Heidelberg (Dec 2011)

19. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to poly-
nomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 177–194. Springer, Heidelberg (Dec 2010). https://doi.org/10.
1007/978-3-642-17373-8_11

20. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (Feb 2010). https://doi.org/10.
1007/978-3-642-11799-2_30

21. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive
zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 169–189. Springer, Heidelberg (Mar 2012). https://doi.org/10.1007/
978-3-642-28914-9_10

22. Lipmaa, H., Siim, J., Zajac, M.: Counting vampires: From univariate sumcheck
to updatable ZK-SNARK. Cryptology ePrint Archive, Report 2022/406 (2022),
https://eprint.iacr.org/2022/406

23. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: 31st FOCS. pp. 2–10. IEEE Computer Society Press (Oct 1990).
https://doi.org/10.1109/FSCS.1990.89518

24. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2111–2128.
ACM Press (Nov 2019). https://doi.org/10.1145/3319535.3339817

25. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE Computer Society Press (May 2013). https://doi.org/10.1109/SP.2013.
47

26. Ràfols, C., Zapico, A.: An algebraic framework for universal and updatable
SNARKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol.
12825, pp. 774–804. Springer, Heidelberg, Virtual Event (Aug 2021). https:
//doi.org/10.1007/978-3-030-84242-0_27

27. Ràfols, C., Zapico, A.: An Algebraic Framework for Universal and Updatable
SNARKs. Tech. Rep. 2021/590, IACR (May 5, 2021), https://ia.cr/2021/590,
last checked modification from August 19, 2021

28. Zhang, Y., Szepeniec, A., Zhang, R., Sun, S.F., Wang, G., Gu, D.: VOProof: Ef-
ficient zkSNARKs Generation for Algebra Dummies. In: ACM CCS 2022. pp. ?–?
ACM, Los Angeles, USA (Nov 11–15, 2022), accepted

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://eprint.iacr.org/2022/406
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-84242-0_27
https://ia.cr/2021/590

	Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK

