
Triply Adaptive UC NIZK

Ran Canetti1?, Pratik Sarkar1??, and Xiao Wang2? ? ?

1 Boston University
2 Northwestern University

Abstract. Non-interactive zero knowledge (NIZK) enables proving the
validity of NP statement without leaking anything else. We study multi-
instance NIZKs in the common reference string (CRS) model, against
an adversary that adaptively corrupts parties and chooses statements to
be proven. We construct the first such triply adaptive NIZK that pro-
vides full adaptive soundness, as well as adaptive zero-knowledge, as-
suming either LWE or else LPN and DDH (previous constructions rely
on non-falsifiable knowledge assumptions). In addition, our NIZKs are
universally composable (UC). Along the way, we:

- Formulate an ideal functionality, FNICOM, which essentially captures
non-interactive commitments, and show that it is realizable by ex-
isting protocols using standard assumptions.

- Define and realize, under standard assumptions, Sigma protocols
which satisfy triply adaptive security with access to FNICOM.

- Use the Fiat-Shamir transform, instantiated with correlation in-
tractable hash functions, to compile a Sigma protocol with triply
adaptive security with access to FNICOM into a triply adaptive UC-
NIZK argument in the CRS model with access to FNICOM, assuming
LWE (or else LPN and DDH).

- Use the UC theorem to obtain UC-NIZK in the CRS model.

1 Introduction

Non-Interactive zero knowledge (NIZK) [BFM90, BSMP91] is a magical primi-
tive: with the help of a trusted reference string, it allows parties to publicly assert
knowledge of sensitive data and prove statements regarding the data while keep-
ing the data itself secret. Proofs are written once and for all, to be inspected
and verified by anyone at any time.

However, harnessing this magic in a concrete and realizable set of secu-
rity requirements has turned out to be non trivial. A first thrust provides ba-
sic formulations of soundness and zero knowledge in the presence of a refer-
ence string, and constructions that satisfy them under standard assumptions

? Supported by NSF Awards 1931714, 1801564, 1414119, and by DARPA under Agree-
ment No. HR00112020023.

?? Supported by NSF Awards 1931714, 1414119, and the DARPA SIEVE program.
? ? ? Supported by DARPA under Contract No. HR001120C0087, NSF award #2016240,

and research awards from Facebook and Google.

[BSMP91, FLS99, GR13]. Indeed, even these basic requirements turn out to
be non-trivial to formulate and obtain, especially in the case of multiple proofs
that use the same reference string and where the inputs and witnesses are chosen
adversarially in an adaptive way.

A second thrust addresses malleability attacks [SCO+01, DDN91], and more
generally universally composable (UC) security [CLOS02] in a multi-party set-
ting. In particular, UC NIZK has been used as a mainstay for incorporating NIZK
proofs in cryptographic protocols and systems - actively secure MPC [GMW87],
CCA secure encryption [NY90, DDN91], signatures [BMW03, BKM06] and cryp-
tocurrencies [BCG+14].

A third thrust is to construct NIZK protocols that are secure in a multi-party
setting where the adversary can corrupt parties adaptively [CLOS02, CSW20a,
AMPS21, CGPS21] as the computation proceeds. Here the traditional definition
(which requires that the attacker does not gain any advantage towards breaking
the security of the overall system beyond the ideal case where the NIZK is
replaced by a trusted party) is extended to the case where the attacker obtains
the hidden internal state of some provers after the proof was sent. Indeed, this
extended guarantee is essential whenever NIZK is used as a primitive within
larger protocols that purport to obtain security against adaptive corruptions3.

The first protocol that provides security against adaptive corruptions is that
of Groth, Ostrovsky, and Sahai [GOS06, GOS12] (GOS). That protocol is also
UC secure, even in a multi-proof, multi-party setting. However it only guarantees
culpable soundness, namely that the sequence of instances proven to be in a
language L during an execution of the protocol is indistinguishable (given the
reference string) from a sequence of instances that are actually in L. The works of
[KNYY19, KNYY20] have similar characteristics: they provide security against
adaptive corruptions, but only culpable adaptive soundness.

Abe and Fehr [AF07] show how to prove full adaptive soundness of a vari-
ant of the GOS protocol, under a knowledge-of-exponent (KOE) assumption4.
However, their analysis is incompatible with UC security [KZM+15], since KOE-
style assumptions require existence of a knowledge extractor that has full access
to, and whose code is larger than the code of the environment, In contrast, in
the UC framework a single extractor/simulator would have to handle arbitrary
poly-time environments. The recent work of [KKK21] investigated composable
security for knowledge assumptions in the generic group model. They rule out
general composition but demonstrate that it is possible under restricted settings.
We refer to their paper for more details. Proving composable security of [AF07]
in their model is still an open question.

3 In cases where the prover is able to immediately erase all records of its sensitive state
- specifically the witness and randomness used in generating the proof - adaptive
security is easy to obtain. However such immediate and complete erasure of local
state is not always practical.

4 [AF07] provides adaptive soundness and adaptive zero knowledge and claims security
against adaptive corruptions in Remark 11 of their paper.

2

We are thus left with the following natural question: Can we have triply
adaptive NIZK protocols, namely full-fledged UC NIZK protocols in the multi-
party, multi-proof setting, in the case of adaptive corruptions without erasures,
and with full adaptive soundness? And if so, under what assumptions?

1.1 Our Contributions

We develop a general methodology for obtaining triply adaptive NIZKs, namely
UC NIZKs with full adaptive soundness, withstanding adaptive corruptions with
no erasures. Using this methodology, we obtain triply adaptive NIZK protocols
from statically secure Sigma protocols. The NIZK protocols reuse a single crs
for multiple NIZK instances between different pairs of parties. Moreover, one
of the NIZK protocols also avoids expensive Karp reductions. Upon concrete
instantiation based on either Learning With Errors (LWE), or Decisional Diffie
Hellman (DDH) plus Learning Parity with Noise (LPN) assumption, we obtain
the following result:

Theorem 1. (Informal) Assuming either 1) LWE assumption holds or 2) both
DDH and LPN assumptions hold, there exists a multi-theorem NIZK protocol
that UC-securely implements the NIZK functionality(Fig. 2) against adaptive
corruptions in the crs model for multiple instances. Furthermore, it is adaptively
sound and adaptively zero knowledge.

As an independent result we also obtain a compiler that (assuming either
LWE or DDH) transforms a given NIZK protocol, where the length of the crs can
depend on the NP relation to be asserted, to a NIZK protocol where the length
of the crs depends only on the security parameter. Furthermore, we do so while
preserving triple adaptive security. Previous such compilers [GGI+15, CsW19]
were known only from LWE:

Theorem 2. (Informal) Assuming either 1) LWE assumption holds or 2) both
DDH and LPN assumptions hold, there exists a multi-theorem NIZK protocol
that UC-securely implements the NIZK functionality(Fig. 2) against adaptive
corruptions with short crs (i.e. |crs| = poly(κ) and κ is the computational secu-
rity parameter) for multiple instances. Furthermore, it is adaptively sound and
adaptively zero knowledge.

Furthermore, by plugging our NIZK protocol in the compiler of [CsW19]
we can obtain a triply adaptive NIZK protocol from LWE, where the reference
string size depends only on the security parameter and the proof size depends
on the witness size and the security parameter.

1.2 Our Techniques

Our approach follows the general paradigm of applying the Fiat-Shamir trans-
form (instantiated via correlation in tractable hash functions) to Sigma proto-
cols, as developed in [CGH98, HL18, CCH+19, PS19, BKM20, HLR21]. However,
to preserve triple adaptivity the transform should be applied with some care.

3

Starting Point. Let us briefly recall the definition of a Sigma protocol: A Sigma
protocol is a 3 round protocol for proving validity of an NP statement x ∈ L
(where L is the language) using the knowledge of an accepting witness w. The
prover sends the first message a, the verifier samples a random challenge c, and
based on the challenge c ∈ C the prover computes the response z. The verifier
accepts an honest proof when x ∈ L. Soundness ensures that the verifier rejects
cheating proofs with 1

|C| probability. Honest verifier zero knowledge (HVZK)

ensures that the simulator constructs an honest proof given a random challenge
c and the simulated proof is indistinguishable from an honest proof. However, the
usual Sigma protocols [FLS99, Blu86] are only secure against static corruption
of prover, i.e. upon post-execution corruption of prover the HVZK simulator
obtains witness w and is unable to provide randomness such that it is consistent
with the proof (a, c, z) constructed by the HVZK simulator.

New UC-Commitment Functionality FNICOM. To solve the above issue in a mod-
ular fashion, we first introduce a new non-interactive UC commitment func-
tionality, FNICOM, that enables modular analyzing of NIZK protocols that use
commitments as an underlying primitive. Specifically, FNICOM returns a commit-
ment string and a decommitment to the committer as an output of the commit
phase, where the committer commits to a message. The open phase allows non-
interactive verification of the commitment, decommitment and message tuple by
a verifier. Moreover, the functionality is provided with an explicit simulation al-
gorithm SC which extracts committed messages from maliciously generated com-
mitments and permits equivocation of simulated commitments. Looking ahead,
the CI-hash function would be equipped with the SC algorithm to run the bad
challenge function and yet we would argue security of the NIZK protocol in the
FNICOM model. Hence, FNICOM provides a cleaner abstraction of non-interactive
UC commitments. The formal description of the FNICOM functionality can be
found in Fig. 1. We also show that the [CF01] protocol satisfies FNICOM.

Strengthening Sigma protocols in FNICOM model. Now, we define the notion of an
adaptively secure Sigma protocol in the FNICOM model as a stepping stone towards
security against adaptive corruptions. These are Sigma protocols which provide
security against adaptive corruption of prover in the FNICOM model. To attain
constructions of such Sigma protocols, we replace the underlying commitment
scheme in the commit-and-open protocols of [Blu86, FLS99, HV16] with FNICOM.
Then we prove that these Sigma protocols are adaptively secure in the FNICOM

model, while preserving special soundness. Furthermore, these protocols satisfies
full adaptive soundness and provides adaptive ZK in the FNICOM model. If FNICOM

is concretely instantiated using an adaptively secure non-interactive commitment
in non-programmable crs model 5 then the protocol also preserves full adaptive
soundness and adaptive ZK.

5 The crs distribution in the real world is statistically close to the crs distribution in
the ideal world

4

Removing Interaction. It is now tempting to apply the Fiat-Shamir (FS) trans-
form [FS87] using correlation intractable (CI) hash functions [CGH98, HL18,
CCH+19, PS19, BKM20, HLR21], and conclude that the resulting protocol is a
NIZK. However, it is not clear how the transform would actually work: the bad
challenge function for the CI hash function cannot be defined given blackbox
access to a and the challenge space can be exponentially large, for example con-
sider Schnorr’s protocol [Sch90]. The current CI-based NIZKs [CGH98, HL18,
CCH+19, PS19] consider specific Sigma protocols to construct NIZKs. We take
a different route to solve this problem by relying on special soundness property.
Special soundness property of a Sigma protocol ensures that given two accepting
transcripts (a, c0, z0) and (a, c1, z1) for different challenges c0 6= c1 there exists
an extractor which extracts a valid witness from the transcripts. If the statement
x /∈ L is not in the language then the prover cannot construct two such accepting
transcripts for the same a.

We generalize the framework of [CD00] to construct our compiler. In our
compiler, the prover computes a, samples two challenges c0 and c1, computes
responses z0 and z1 and commits to (c0, z0) and (c1, z1) in FNICOM model. This
step is repeated for τ = O(κ) times, where κ is the security parameter. Let
Y denote the commitments to (c0, c1, z0, z1) for the τ iterations. The CI-hash
function is defined in the statistical mode equipped with the extraction algorithm
SC for FNICOM. The hash function is CI for the bad challenge function - for each
iteration (a, c0, c1, z0, z1) it outputs 0 if (a, c0, z0) is accepting. The prover invokes
the CI hash function on (a,Y) to obtain a challenge bit e for each iteration.
For each iteration, the prover computes the response as the decommitment to
(c0, c1, ze). Special soundness of the Sigma protocol ensures that a malicious
prover is unable to compute two such valid transcripts (a, c0, z0) and (a, c1, z1)
for a false statement x /∈ L.

CI-based NIZK Transformations for Arguments. Now we would like to apply the
analysis of [CCH+19] to argue soundness of the NIZK protocol, which says that
if the malicious prover is able to construct an accepting proof for x /∈ L then
it breaks correlation intractability. However, now we are faced with another
barrier: The [CCH+19] analysis for CI crucially needs the underlying Sigma
protocol to be statistically sound. In contrast, our Sigma protocols are only
computationally sound since it relies on the special soundness property (which
can be computational) of the Sigma protocol and the computational binding
property of the commitment scheme. Furthermore, this is inherent: Statistically
sound ZK protocols cannot possibly be secure against adaptive corruptions. In
particular, this means that we cannot “switch the crs in the hybrids to make the
sigma protocol statistically sound”: As soon as we do so, the protocol (in that
hybrid) stops being secure against adaptive corruptions.

We get around this barrier6 as follows: with each commitment made during
the interaction we can associate an event B, determined at the time of com-

6 The recent work of [CJJ21] also applied the Fiat-Shamir paradigm on an interactive
protocol which is not statistically sound using CI hash functions. However, their

5

mitment, such that: (a) event B can be shown to occur only with negligible
probability, and (b) conditioned on event B not occurring, the commitment
is statistically binding. Event B is the event where the adversary successfully
evades the extraction algorithm SC of FNICOM and yet the corresponding decom-
mitment is accepted. Given that event B does not occur, we then associate an
event D with each of the τ adaptively secure Sigma protocol executions, such
that: (a) event D can be shown to occur only with negligible probability, and (b)
conditioned on event D not occurring, the Sigma protocol is statistically sound.
The event D is the event where the adversary breaks special soundness property
of the Sigma protocol. The [CCH+19] analysis can now be resurrected, condi-
tioned on event B not occurring for any of the commitments made, and event
D not occurring for the Sigma protocols. Initializing the hash function in the
statistical mode ensures that soundness of the protocol is reduced to breaking
statistical correlation intractability of the hash function, provided event B and
event D does not occur.

Adaptive soundness of our protocol follows in a straightforward way from the
fact that the entire proof is performed without changing the distribution of the
crs in the FNICOM model. (Indeed, this important feature allows us to avoid the
main obstacle that prevents the [GOS12] protocol from being adaptively sound.)
Adaptive zero knowledge follows from the adaptive security of the Sigma protocol
in the FNICOM model. If FNICOM is concretely instantiated using an adaptively
secure non-interactive commitment in non-programmable crs model 7 then the
protocol also preserves full adaptive soundness and adaptive ZK.

Instantiations of Adaptively Secure Sigma protocols in FNICOM model. We demon-
strate that a wide variety of Sigma protocols satisfy (in FNICOM model) adaptive
security with special soundness and adaptive soundness - Schnorr’s protocol,
Sigma protocol of [FLS99] (FLS), Blum’s Hamiltonicity protocol and garbled
circuit (GC) based protocol of [HV16]. Furthermore, the GC based protocol
avoids expensive Karp reduction.

Instantiating the CI-hash and FNICOM. The CI function can be instantiated from
LWE [PS19], or it can be replaced by a CI-Approx [BKM20] function based on
LPN+DDH. FNICOM is instantiated using the protocol of [CF01] from equivocal
commitments and CCA-2 secure public key encryption with oblivious ciphertext
sampling property in the non-programmable crs model.

Reducing crs size. By applying techniques from GOS, we obtain a compiler which
reduces the crs size of a NIZK argument. Assuming reusable non-interactive
equivocal commitments with additive homomorphism and PKE (with oblivious
ciphertext sampleability) we compile any triply adaptive NIZK argument with

protocol is not adaptively sound. Meanwhile, the plain-model sigma protocol that
[CCH+19] start from is statistically sound.)

7 The crs distribution in the real world is statistically close to the crs distribution in
the ideal world

6

a long multi-proof crs, i.e. |crs| = poly(κ, |C|) to obtain a triply adaptive NIZK
argument with a short multi-proof common reference string scrs, where |scrs| =
poly(κ), C is the NP verification circuit and κ is the computational security
parameter. The prover commits to each wire value (of the circuit) and proves that
they are bit commitments using the NIZK. In addition, the prover applies some
homomorphic operation on the input wire and output wire commitments for each
gate. If the input and output wire values are consistent with the gate evaluation
then the homomorphically evaluated commitment will be a bit commitment. The
prover proves this using NIZK for every gate in the circuit. Each NIZK statement
is short and depends only on the committer’s algorithm (= poly(κ)) and not on
|C|. As a result the crs size of the NIZK can be short. The commitment can
be instantiated from DDH (Pedersen commitment or [CSW20b]) or LWE/SIS
[GVW15]. The encryption scheme can be instantiated from DDH assumption
using Elgamal encryption or LWE [GSW13] assumption.

Obtaining multi-session UC security. We add non-malleability to our NIZK
argument using standard techniques from GOS to obtain the multi-session UC-
secure NIZK in the short crs model. It relies on a tag-based simulation-sound
trapdoor commitment scheme and a strong one-time signature scheme . The tag-
based commitment can be instantiated from UC-commitments - DDH [CSW20b]
and LWE [CsW19]. Strong one-time signatures can be constructed from one-way
functions. This transformation also preserves triply adaptive security.

1.3 Related Work

The works of [GOS06, KNYY19, KNYY20] construct NIZKs which are se-
cure against adaptive corruptions but they lack adaptive soundness. The works
of [CCH+19, BKM20] construct statically secure NIZKs which attain adaptive
soundness and adaptive ZK. A concurrent work by [CPV20] compiled delayed
input Sigma protocol into a Sigma protocol which satisfies adaptive zero knowl-
edge. Upon applying the result of [CPS+16] they obtain adaptive soundness. The
Fiat-Shamir transform is applied using CI hash function to obtain NIZKs, but
they lack security against adaptive corruptions. The only work which achieves
triple adaptive security is [AF07] based on knowledge assumptions; which is
incompatible with the UC framework.

The literature consists of work [GGI+15, CsW19] that make the crs size inde-
pendent of |C| but those approaches are instantiatable only from LWE. Whereas,
our compiler can be instantiated from non-lattice based assumptions like DDH.

Paper Organization. In Section 2, we present the key intuitions behind our pro-
tocols. We introduce some notations and important concepts used in this paper
in Section 3. This is followed by our triply adaptively-secure NIZK compiler in
Section 4. We present our compiler to reduce the crs length in Section 5. Fi-
nally, we conclude with our multi-session UC-NIZK protocol in the short crs
model in Section 6. Throughout the paper we refer to security against adaptive
corruptions as adaptive security.

7

2 Technical Overview

In this section we provide an overview of our protocols. As discussed in the In-
troduction, a key component in our approach is to break the Fiat-Shamir trans-
formation into two steps: A first step that uses an ideal UC commitment fucn-
tionality, and a second step of instantiating this functionality with an adaptively
secure protocol. Validity of the approach would follow from the UC theorem and
the special soundness of the sigma protocol.

We first overview the new formulation of ideal UC commitments, FNICOM,
that enables our two-step approach, and argue that known protocols, that UC
realize the the traditional ([CF01]) formulation of ideal commitment, realize
FNICOM as well. Next, we overview our notion of fully adaptive Sigma protocols
that use FNICOM, followed by the first step of the Fiat-Shamir transform. We
demonstrate that the resulting NIZKs satisfy triply adaptive security in the
FNICOM-hybrid model, and that triple adaptivity is preserved even after replacing
FNICOM with a protocol that realizes it. Next, we show instantiations of adaptive
Sigma protocol. Finally we show how to reduce the crs size of our NIZK protocols
to poly(κ) by assuming homomorphic equivocal commitments. Till this point, all
our protocols are triply adaptive and single-prover UC-secure. Finally, we make
them UC-secure in the general, multi-prover sense by adding non-malleability.

2.1 Formalizing UC non-interactive commitment

Our new UC-commitment functionality FNICOM can be found in Fig. 1. The
functionality receives an algorithm SC algorithm from the adversary S. When
an honest committer P wants to commit to a message m for subsession ssid, the
functionality invokes SC for a commitment string π and an internal state st. π
is independent of the message m. The functionality then invokes SC with the
message m and the state st to obtain a decommitment d and an updated state st.
The functionality stores (ssid,P,m, π, d, st) and returns the commitment string π
and the decommitment d to the committer. The committer sends π as the com-
mitment to message m. An honest committer decommits to a commitment string
π′ by sending (m′, d′) to the verifier V . The verifier locally verifies the decom-
mitment by invoking FNICOM on the tuple (m′, π′, d′). The functionality returns
verified if the tuple is stored in memory corresponding to the subsession and the
same committer P. If the same commitment string π′ is stored but with dif-
ferent messages/decommitments/committers/ssid then the functionality rejects
the opening by sending verification-failed. Finally, if the commitment string has
never been stored in the memory of FNICOM then FNICOM invokes SC to extract
a valid message m′′ from the commitment string π′. If m′′ == m′ then the func-
tionality invokes SC with the opening (m′, π′, d′) to verify the decommitment.
If the decommitment correctly verifies then the functionality stores the tuple in
the memory and returns verified to V. Else, it rejects the decommitment.

Our model allows a prover to send a commitment that was not computed
by invoking the FNICOM functionality. Furthermore, access to the SC algorithm
enables extraction from a maliciously generated commitment and equivocating

8

Fig. 1. Non-Interactive UC-Commitment Functionality FNICOM

– At first activation, obtain algorithm SC from S.
– Commit: On input (Com, ssid,P,m) from committer P :
• obtain commitment π and internal state st as (π, st)← SC(Com, ssid,P)
• obtain decommitment d and state st as (d, st)← SC(Equiv, ssid,P, π, st,m)
• store (ssid,P,m, π, d, st) and output (Receipt, ssid,P, π, d) to P .

Ignore future (Com, ssid, ·) inputs with the same ssid.

– Open: On input (Open, ssid,P,m′, π′, d′) from verifier V :
• If (ssid,P,m′, π′, d′, st) is stored for some st, then return (verified, ssid,P)

to V .
• If (ssid,P,m′′, π′, d′′, st) is stored, and m′′ 6= m′ or d′′ 6= d′ then return

(verification-failed, ssid,P) to V .
• Else (i.e., no record (ssid, ...) is stored, or there is a stored record of the

form (ssid,P,m′′, π′′, d′′, st) where π′′ 6= π′):
- Obtain (m′′, st)← SC(Ext, ssid,P, π′).
- If m′′ 6= m′, set v = verification-failed.
- If m′′ = m′, set v ← SC(Verify, ssid,P, π′, d′, st).
- If v == verified, then store the tuple (ssid,P,m′, π′, d′, st) and return

(v, ssid,P) to V . Else return (verification-failed, ssid,P) to V .

– Corruption: When receiving (Corrupt, ssid) from S, mark ssid as corrupted.
Send all the stored tuples of the form (ssid, . . .) to S. If there does not exist
any tuple then send (ssid,⊥) to S.
On input (corrupt-check, sid, ssid), return whether (sid, ssid) is marked as cor-
rupted.

a simulated commitment. The SC(Equiv, ssid,P, π, st,m) command is used to
equivocate a commitment string π such that it opens tom. The SC(Ext, ssid,P, π)
command is used to extract a message from the commitment π. These algorithms
come in handy for simulation purposes when FNICOM is used in bigger protocols.

Implementing FNICOM. We implement FNICOM in the full version [CSW20c] using
the non-interactive commitment scheme of [CF01] based on equivocal commit-
ments and CCA-2 secure public key encryption with oblivious ciphertext sam-
pleability. The committer P commits to a bit message m as c = Com(m; r). The
commitment randomness is encrypted via a pair of encryptions. The committer
encrypts the corresponding randomness r, subsession id ssid and committer id
P using a CCA-2 secure PKE as Em = Enc(pk, (r, ssid,P); sm) with random-
ness sm. The other encryption E1−m is obliviously sampled using randomness
s1−m. The commitment consists of (c, E0, E1) and the opening information is
(m, r, s0, s1). The verifier performs the canonical verification by reconstructing
the commitment. The equivocal commitment can be instantiated from Pedersen
Commitment and the obliviously sampleable encryption scheme can be instan-
tiated from Cramer Shoup encryption [CS98], yielding a protocol from DDH.
Similarly, we can instantiate the equivocal commitment from LWE [CsW19] and
the obliviously sampleable encryption scheme from LWE [MP12].

9

2.2 Adaptively Secure Sigma Protocols in the FNICOM model

We recall the definition of a Sigma protocol and then we introduce the notion
of adaptively Sigma protocols in the FNICOM model.

Sigma Protocol. A Sigma protocol consists of a prover possessing an NP state-
ment x ∈ L (for language L) and witness w which validates the statement. The
verifier possesses the statement x. The prover constructs a first message a and
the honest verifier challenges the prover with a random challenge c ←R C from
the challenge space C. Based on the challenge, the prover computes a response
z and sends it to the verifier. Completeness ensures that an honest verifier al-
ways accepts the proof (a, c, z). Soundness ensures that the verifier accepts a
proof corresponding to an invalid statement x′ /∈ L with probability 1

|C| . The

protocol is repeated κ times to obtain negligible (in κ) soundness error. We
also require special soundness which guarantees a witness extractor given two
accepting transcripts (a, c, z) and (a, c′, z′) corresponding to the same first mes-
sage but different challenges c 6= c′ ∈ C. Finally, we need honest verifier zero
knowledge which allows a simulator to simulate an accepting proof given an
honestly sampled challenge c. The simulated proof should be indistinguishable
from an honestly generated proof.

Limitations of a Sigma protocol. A Sigma protocol does not necessarily guaran-
tee security against adaptive corruptions. The adversary can choose to corrupt
the prover after obtaining the simulated proof. In such a case, the simulator
obtains the witness and needs to provide prover’s randomness such that the
simulated proof is consistent with the witness. This problem crops up especially
when the first message of the Sigma protocol [FLS99] is statistically binding and
doesn’t allow equivocation later on. To tackle this issue, we introduce the notion
of adaptively secure Sigma protocols in the ideal UC commitment functionality
(for multiple subsessions) FNICOM model. The traditional UC commitment func-
tionality of [CF01] is not compatible with non-interactive commitments since
the functionality is required to interact with the parties during Commit and
open phases. So we use our new commitment functionality FNICOM which allows
non-interactive Commit and Open phases.

Adaptively Secure Sigma Protocols. As seen above, the traditional Sigma pro-
tocols does not necessarily guarantee security against adaptive corruptions. In
the light of this, we consider Sigma protocols in the FNICOM model. The prover
sends the first message a to the verifier, the verifier sends a random challenge
c to the prover and the prover computes the response z based on c. The prover
and verifier has access to the FNICOM functionality during the protocol execution.
In addition to HVZK and special soundness properties, we also require that the
simulator is able to produce consistent randomness for a simulated proof and
a valid witness when the prover gets corrupted post-execution. Looking ahead,
the first message a will consist of commitments that are obtained by invoking
FNICOM functionality. This enables the simulator to construct an HVZK proof

10

during protocol execution - where it opens few of the commitments in a which
are required for verification. The other commitments in a remain unopened dur-
ing the protocol. When the prover gets corrupted post-execution, the simulator
obtains the witness w, and it equivocates the unopened commitments in a to
produce a simulated prover’s randomness such that it is indistinguishable from
honestly sampled prover randomness (in the real world execution).

We also require special soundness property from our adaptively secure Sigma
protocol to construct a NIZK protocol. We say that the protocol satisfies spe-
cial soundness if there exists a extractor which extracts the witness given two
transcripts (a, c0, z0) and (a, c1, z1) corresponding to the same a.

2.3 Compiling to an adaptively-secure NIZK

Next, we implement the FNIZK functionality for a single session by using the
Fiat-Shamir transform on τ = O(κ) iterations of the adaptively secure Sigma
protocol. We instantiate the hash function in the Fiat-Shamir Transform using
a correlation intractable hash function H [PS19, CCH+19, BKM20].

Correlation Intractability. A correlation intractable hash function H has the
following property: For every efficient function f , given a hash function H ← H
from the hash family H, it is computationally hard to find an x s.t. f(x) = H(x).
Based on the first message a of a trapdoor-Sigma Protocol, the Fiat-Shamir
challenge e can be generated using the hash function as e = H(a). The prover
computes the third message z using e. Trapdoor-Sigma protocol ensures that for
every statement not in the language there can be only one bad challenge e = g(a)
s.t. (a, e, z) is an accepting transcript. By setting the function f = g as the bad
challenge function in H it is ensured that a malicious prover who constructs a
bad challenge e = H(a) can be used to break correlation intractability since
e = g(a) = f(a). This guarantees soundness of the NIZK protocol.

Protocol. We compile our adaptively secure Sigma protocol into an adaptively
secure NIZK in the FNICOM model (the FNICOM functionality is later instantiated
using an adaptively secure non-interactive commitment scheme [CF01]). The
prover computes the first message aj of the adaptively secure Sigma protocol
for the jth iteration where j ∈ [τ]. It samples two challenges cj0 and cj1 from the

challenge space such that cj0 6= cj1. The prover computes the responses zj0 and zj1
corresponding to both challenges cj0 and cj1 respectively. The prover commits to

the challenges cj0 and cj1, and the responses zj0 and zj1. Let us denote the set of
commitments as Y j . The prover repeats the above protocol for τ iterations. Let
Y = {Y j}j∈[τ] denote the complete set of commitments and let a = {aj}j∈[τ]
denote the complete set of first messages. The prover computes the challenge bit-
vector e = H(k, (a,Y)) (where k is the hash key) by invoking the hash function
on the commitments Y. The hash function is initialized in the statistical mode
and the hash key contains the algorithm SC obtained from FNICOM. The hash
function internally runs SC to extract from the commitments. The hash key k

11

is provided as part of the crs and it is computed as follows.

k = H.StatGen(Csk).

Csk is a poly-size circuit that takes Y as input and sk = SC is the secret
algorithm of FNICOM. Csk(a,Y) is the circuit computing the function fsk(a,Y) =
e s.t. for j ∈ [τ], ej = 0 iff (aj , cj0, z

j
0) is an accepting proof where Csk extracts the

challenges (cj0, c
j
1), and the responses (zj0, z

j
1) by running SC . Setting the hash

function in the statistical mode ensures that the hash function H is correlation
intractable for all relations of the form:

Rsk = {(a,Y, e) : e = fsk(a,Y)}

In the jth iteration, upon obtaining e as the challenge bit the prover decom-
mits to (cj0, c

j
1, z

j
e). The NIZK proof for the jth iteration is (aj , cj0, c

j
1, z

j
e) and the

decommitments corresponding to (cj0, c
j
1, z

j
e). The verifier checks that - 1) the de-

commitments are correct, 2) the challenges are different, i.e. cj0 6= cj1, 3) the proof
- (aj , cje, z

j
e) verifies. The verifier runs the verification protocols for every iteration

j ∈ [τ]. The verifier outputs accept if all the τ proofs verify correctly. Correct-
ness of the protocol follows from the correctness of the commitment scheme and
correctness of the sigma protocol.

Soundness and Proof of Knowledge. The soundness and proof of knowledge
argument follows through a sequence of hybrids. The correlation intractability
does not hold in the real world since we start off with an argument and not a
proof. The proof starts off with the real world protocol in the first hybrid. In
the second hybrid the proof relies on the binding and extractability property of
the commitment scheme to ensure that the committed messages can be either
correctly extracted or the commitment fails to open correctly. In the next hybrid,
we rely on the special soundness property of the Sigma protocol to ensure that
if for any jth iteration (for j ∈ [τ]) if the prover constructs an accepting proof
for both ej = 0 and ej = 1 then the witness extractor of the sigma protocol
correctly extracts the underlying witness. In the final hybrid, if the prover has
evaded the witness extractor and yet succeeded in creating an accepting proof
then it has predicted the challenge vector e correctly by breaking the correlation
intractability of the hash function. However, we know that there does not exist e
such that the following holds due to statistical correlation intractability and the
underlying Sigma protocol in this hybrid is a proof. This ensures that either the
witness extractor extracts an accepting witness from atleast one of the iterations
or the proof does not verify. This completes our soundness argument.

Adaptive Soundness. Adaptive Soundness follows along the same lines provided
the underlying the sigma protocol satisfies adaptive soundness. The distribution
of the crs is identical in the real and ideal world. Hence, we argue that the proof
fails to verify for a statement x /∈ L since there does not exist any valid witness.

12

Security against Adaptive Corruptions and Adaptive ZK. The ZK property cru-
cially relies on the adaptive security of the Sigma protocol and security against
adaptive corruptions of the commitment scheme. The ZK simulator of the NIZK
protocol invokes the HVZK simulator the sigma protocol to obtain a simulated
proof (aj , cj , zj) corresponding to a random ZK challenge cj for the jth itera-
tion. The simulator constructs the commitments Y in the equivocal mode and
invokes the hash function to obtain the challenge string e. Upon obtaining the
challenge bits ej (for j ∈ [τ]) the simulator opens the commitments correspond-
ing to ej to the simulated proof (aj , zj , cj). It also equivocates the commitment
for the ZK challenge corresponding to bit 1− ej to open to a different challenge
cj
′

as part of the protocol. The proof verifies correctly due to the HVZK prop-
erty of the Sigma protocol and equivocal property of the commitment scheme.
Upon post-execution corruption of the prover, the NIZK simulator obtains the
correct witness w and it invokes the simulator of the adaptively secure Sigma
protocol with w to obtain the internal prover state. Using these information
the NIZK simulator constructs the response corresponding to challenge cj

′
for

choice bit 1− ej . The simulator equivocates the commitments in Y (mainly the
commitment to the jth response for challenge bit 1 − ej) such that the proofs
corresponding to challenge bits 1− ej verify for every jth proof. Indistinguisha-
bility follows from the adaptive security of the Sigma protocol and the adaptive
security of the commitment scheme. Adaptive zero-knowledge also follows along
the same lines provided the sigma protocol satisfies adaptive zero-knowledge.

2.4 Constructing Adaptively Secure Sigma protocols with Special
Soundness

Next, we show various instantiations of our adaptively sigma protocol which also
satisfies special soundness. Plugging these protocols in a blackbox manner into
our above compiler would yield a triply adaptive NIZK protocol.

Schnorr’s [Sch90] Protocol. The classic Schnorr’s identification protocol pro-
vides HVZK and satisfies special soundness. It also provides security against
adaptive corruption. Let us recall the protocol and demonstrate that the Sigma
protocol trivially satisfies adaptive security.

In the Schnorr’s protocol the prover has a witness w ∈ Zq and statement
x ∈ G such that x = gw, where g ∈ G is a generator of the cyclic group G
where Discrete Log problem holds. The prover samples a random r ∈ Zq and
sets a = gr. Upon obtaining a random challenge c ∈ Zq from the verifier the

prover sends z = r+wc as the response. The verifier checks that gz
?
= a·xc.Given

two accepting trancripts (a, c, z) and (a, c′, z′) the witness w can be extracted

as w = (z−z′)
c−c′ . On the other hand, for HVZK the simulator samples a random

c ∈ Zq and a random z ∈ Zq and computes a = gz

xc . Upon post-execution
corruption of prover, the simulator obtains w and sets r = z−wc as the internal
state. It is straightforward to see that adaptive security follows.

13

Adaptive Soundness and Adaptive ZK. Adaptive soundness cannot be defined
for Schnorr’s protocol since every statement x′ ∈ G lies in the language corre-
sponding to the witness w′ ∈ Zq where x′ = gw

′
. Adaptive ZK follows from the

HVZK property of the protocol.

Sigma protocol of [FLS99]. We briefly recall the Sigma protocol of [FLS99]
(FLS) for the sake of completeness. Let RHam be the set of Hamiltonian graphs.
The prover P proves that an n-node graph G is Hamiltonian, i.e. G ∈ RHam,
given a Hamiltonian cycle σ as a witness. P samples a random n-node cycle H
and commits to the adjacency matrix of the cycle as the first message a. The
matrix contains n2 entries, and P commits to the edges as Com(1), and non-edges
as Com(0). The prover sends these commitments to the verifier V. V samples a
random challenge bit e and sends it to the prover. If c = 0, then P decommits
to the cycle H. Else, it computes a random permutation π s.t. H = π(σ) and
decommits to the non-edges in π(G) and sends π. P sends the decommitments
as its response z. Upon obtaining z, the verifier performs the following check:

– c = 0 : Verify that z contains decommitments to 1, and they form a valid
cycle, i.e. the prover must have committed to a valid n-node cycle.

– c = 1 : Verify that z contains decommitments to 0, and the decommitted
edges correspond to non-edges in π(G).

Special Soundness. There are only two possible challenges in the boolean chal-
lenge space. Given the transcripts (a, 0, z0) and (a, 1, z1) where ac and a′c are
computed as described above, the witness extractor obtains H from z0 and π
from z1. The extractor computes the witness cycle as σ = π−1(H). This proves
special soundness property of the Sigma protocol.

Honest Verifier Zero Knowledge. The FLS protocol achieves honest verifier zero
knowledge. The ZK simulator samples a random challenge e ∈ {0, 1} and based
on that he computes (a, z) as follows.

– c = 0 : The simulator samples a random n-node cycle H and commits to
the adjacency matrix of the cycle as a. It sets z as the decommitment to the
cycle.

– c = 1 : The simulator sets all the commitments to 0 in a, i.e. commits to
a null graph. It computes a random permutation π and decommits to the
non-edges in π(G). It sets z as π and the decommitments to the non-edges
in π(G).

Let us denote a proof as γ = (a, e, z). It can be observed that an honest γ is
identically distributed to a simulated γ when e = 0. When e = 1, an honestly
γ contains a committed cycle whereas γ contains commitments to 0. The two
proofs are indistinguishable due to the hiding of the commitment scheme.

14

Adaptive Security in FNICOM model. We observe that the FLS protocol satisfies
adaptive security if the commitments in a are computed in the FNICOM model.
We consider the simulated ZK proof and adaptive corruption of prover as follows:

– c = 0 : The HVZK simulator samples a random n-node cycle H and commits
to the adjacency matrix of the cycle as a by invoking FNICOM. It sets z as
the decommitment to the cycle.
Upon post execution corruption of prover, the simulator obtains the witness
cycle σ and it computes the permutation π such that H = π(σ). The internal
state of the prover is set as a, permutation π and the internal state of the
committer returned by FNICOM (for computing the commitments in a).

– c = 1 : The HVZK simulator sets a as the commitments to 0 in the FNICOM

model, i.e. the simulator commits to a null graph. It computes a random
permutation π, and sets z as the random permutation π and the decommit-
ments to the non-edges in π(G).
Upon post execution corruption of prover, the simulator obtains the witness
cycle σ and it computes the permutation π such that H = π(σ). The sim-
ulator equivocates the unopened commitments in a by invoking the FNICOM

simulator, such that the unopened commitments decommit to H. The in-
ternal state of the prover is set to the permutation π and the commitment
randomness returned by FNICOM for all the commitments.

For the case of c == 0, it can be observed that the simulated internal state is
identical to the honest prover internal state. When c == 1, the simulated proof
consists of commitments to 0 and the simulated prover internal state consists
of equivocation randomness which was returned by FNICOM. Hence, the real and
ideal world views are identically distributed in the FNICOM model. This shows
that the FLS protocol can be plugged into our NIZK compiler to obtain a NIZK
protocol which is secure against adaptive corruptions.

Adaptive Soundness and Adaptive ZK. In FLS, the first message a of the prover
is computed based on the parameter n without the knowledge of the graph or
the witness. After obtaining c from V, the prover requires the input graph G and
the witness cycle σ to construct the response. Thus, only the last message in this
protocol depends on the input. This property is called delayed-input property.
And hence the FLS protocol trivially satisfies adaptive soundness and adaptive
ZK in the FNICOM model where the input statement can be adversarially chosen
after observing the setup string distribution. This allows our NIZK protocol to
be adaptively sound and satisfy adaptive ZK when the FLS Sigma protocol is
plugged into the triply adaptive NIZK compiler.

Blum’s protocol for Hamiltonicity. Following the above idea, it can be
shown that the Blum’s protocol [Blu86] for hamiltonicity also satisfies adaptive
security and special soundness in the FNICOM model. The protocol itself does not
satisfy delayed input property since the first message of the prover depends on
the statement. However, the protocol does achieve adaptive soundness since a

15

malicious prover would be unsuccessful in generating an accepting proof for a
statement x /∈ L in the FNICOM model.

Garbled circuit based protocol of [HV16]. Next, we modify the GC based
protocol of [HV16] to obtain an adaptively secure sigma protocol with special
soundness in the FNICOM model. We recall their protocol and then discuss the
bottlenecks involved.

Protocol of [HV16]. The protocol of [HV16] constructs an adaptively secure
ZK proof from one-way functions in the plain model. Their protocol relies on
a special commitment scheme called adaptive-instance dependent commitment
(AIDCS) schemes. It depends on the statement being proven. AIDCS is statisti-
cally binding when the statement (being proven) is not in the language. AIDCS
is equivocal when the statement is in the language. The committer can open
a commitment to any message given an accepting witness for the statement.
In [HV16], the prover constructs a garbled circuit computing the NP relation
on the statement x. The prover commits to the garbled circuit GC (garbling
notations can be found in [HV16, CSW20c]), encoding information u and the de-
coding information v using the AIDCS. These commitments are jointly denoted
as the first message a. The verifier sends the challenge bit c. If the bit is c = 0
then the prover decommits to (GC,u,v). The verifier checks that the garbled
circuit was correctly constructed. If the bit is c = 1 then the prover computes
the input wire labels W corresponding to the witness w and decommits to W, the
decoding information v and the path of the computation as path = ΠEv(GC,W)
in the GC which corresponds to evaluation of GC on W. The verifier accepts if
the computation of the garbled circuit on W along the path outputs 1. When x
is not in the language the AIDCS is statistically binding and hence the prover
has to guess the verifier’s bit. For ZK, the ZK simulator will guess the random
challenge bit of verifier and it will rewind if the guess is wrong. When the prover
gets corrupted post-execution, the simulator can equivocate the commitments
given the witness w using the equivocal property of AIDCS.

Bottlenecks in obtaining NIZK. The proof is not binding when x ∈ L and a
corrupt prover knows the witness since the AIDCS is equivocal given the witness.
A malicious prover evades the special soundness property using the following
adversarial strategy: The adversary constructs the AIDCS in the equivocal mode
as the first message a and it constructs the responses as follows:

– c0 == 0 : It samples a garbled circuit as (GC,u,v) and sets z0 as (GC,u,v)
and the decommitment of a to (GC,u,v).

– c1 == 1 : It invokes the privacy simulator of the garbled circuit on output 1
to obtain a simulated GC and input wire labels for evaluation. The adversary
sets the response z1 as these wire labels and the path of GC evaluation. The
response z1 also contains the decommitments of a to the wire labels and the
evaluation path.

16

The adversary is able to equivocate the AIDCS to open to different values and
this hampers witness extraction from the two accepting transcripts (a, c0, z0)
and (a, c1, z1). This hampers the special soundness property.

Our Solution. We solve this issue by replacing the AIDCS with the FNICOM

model and demonstrate that the new Sigma protocol in the FNICOM model sat-
isfies adaptive security and special soundness property. The prover constructs a
garbled circuit computing the NP relation on the statement x. The prover sets
a as the commitment to garbled circuit GC, encoding information u and the
decoding information v in the FNICOM model. The prover sends a to the verifier.
The verifier sends the challenge bit c. The prover performs the following based
on challenge c:

– c = 0 : The prover decommits to the garbled circuit GC, encoding infor-
mation u and decoding information v as the response z0.

– c = 1 : The prover decommits to the input wire labels and the evaluation
path in the garbled circuit as the response z1.

The verifier performs verification using the original verifier algorithm of
[HV16]. Completeness is straightforward. We show that the above Sigma proto-
col satisfies special soundness property and adaptive security in FNICOM model.

Special Soundness. There are only two possible challenges in the boolean chal-
lenge space. Given two accepting transcripts (a, 0, z0) and (a, 1, z1), the witness
extractor obtains the encoding information u and the input wire labels W. As-
suming the garbling scheme is projective (for every input wire in the circuit
the encoding information consists of two posible wire labels corresponding to bit
values 0 and 1), it maps the wire labels with the encoding information to extract
the witness w. This proves special soundness property of the Sigma protocol.

Adaptive Security in FNICOM model. We describe the HVZK simulator and then
extend it to satisfy adaptive security in the FNICOM model. We crucially rely
on the reconstructability property of the garbling scheme to argue adaptive
security. Reconstructability property says that given a path of computation, the
input wire labels and the input to a garbled circuit for circuit C it is possible
to reconstruct the rest of the garbled circuit as being honestly generated by
the garbling algorithm. We define the HVZK simulator as follows based on the
challenge c :

– c = 0 : The HVZK simulator computes a fresh garbled circuit as (GC,u,v)
and commits to it using FNICOM as the first message a. It sets a as the
commitment to (GC,u,v). The simulator sends z0 as (GC,u,v) and the
decommitments to a.
When the prover gets adaptively corrupted, the simulator obtains the wit-
ness w and it sets the randomness used to garble GC and the commitment
randomness as the internal randomness.

17

– c = 1 : The HVZK simulator invokes the GC privacy simulator on output 1
and circuit C to obtain a simulated garbled circuit, input wire label, decoding
information and internal state - (GC′,W′,v′, st′). The HVZK simulator sets
a as the commitment to (GC′, 0|u|,v′) in the FNICOM model. The simulator
computes the path of computation as path = ΠEv(GC′,W′) on wire labels
W′. The simulator sends z1 as (path,W′) and decommitment to (path,W′)
from the set of commitments in a.
When the prover gets adaptively corrupted, the simulator obtains the wit-
ness w. Using input w, simulated input wire labels W′ and the computation
path path, it uses the reconstructability property of the garbling scheme
to reconstruct a fresh garbled GC, encoding information u and decoding
information v and the corresponding garbling randomness. It sets the gar-
bling randomness as the internal state and invokes the FNICOM simulator to
equivocate the commitments in a such that they open to (GC,u,v).

For the case of c == 0, it can be observed that the simulated internal state
is identical to the honest prover internal state. When c == 1, the proof contains
the evaluation path, the input wire labels and their decommitments. Upon post
execution corruption the simulator relies on the reconstructability property of
the garbling scheme to construct the garbled circuit. The distribution of the sim-
ulated a in the ideal world is indistinguishable from the honestly constructed a in
the real world in the FNICOM model due to the reconstructability property. The
garbling scheme of [LP09] based on one-way functions satisfies all the required
properties for the Sigma protocol. This was shown in the work of [HV16].

Adaptive Soundness and Adaptive ZK. The protocol achieves adaptive soundness
and adaptive ZK even when the functionality FNICOM is implemented by an
adaptively secure commitment protocol [CF01] in the crs model. The distribution
of crs is identical in the real and ideal world. A malicious prover fails to prove a
false statement x /∈ L without breaking the binding of the commitment scheme
(implementing FNICOM functionality). Adaptive ZK follows from the adaptive
security of the protocol.

3 Preliminaries

Notations. We denote by a ← D a uniform sampling of an element a from a
distribution D. The set of elements {1, 2, . . . , n} is represented by [n]. A func-
tion neg(·) is said to be negligible, if for every polynomial p(·), there exists a
constant c, such that for all n > c, it holds that neg(n) < 1

p(n) . We denote a

probabilistic polynomial time algorithm as PPT. We denote the computational
and statistical security parameters by κ by µ respectively. We denote compu-

tational and statistical indistinguishability by
c
≈ and

s
≈ respectively. When a

party P gets corrupted we denote it by P∗. Let RHam denote the set of n-node
Hamiltonian graphs for n > 1. We prove security of our protocol in the Universal
Composability (UC) model. We refer to the original paper [Can01] for details.

18

Our protocols are in the common reference string model where the parties of
a session (sid, ssid) have access to a public reference string crs sampled from a
distribution. In the one-time crs model, each crs is local to each (sid, ssid). In
the reusable crs model, the same crs can be reused across different sessions by
different parties. The simulator knows the trapdoors of the crs in both cases. We
refer to [CLOS02] for more details.

Definition 1. [DN00](PKE with oblivious ciphertext sampling) A public
key encryption scheme PKE = (KeyGen,Enc,Dec) over message space M, ci-
phertext space C and randomness space R satisfies oblivious ciphertext sampling
property if there exists PPT algorithms (oEnc, Inv) s.t. for any message m ∈M,
the following two distributions are computationally indistinguishable to a PPT
adversary A:∣∣Pr[A(m, c, r) = 1|m← A(pk), c← Enc(pk,m; r′), r ← Inv(pk, c)]

−Pr[A(m, c̃, r) = 1|m← A(pk), c̃← oEnc(pk; r)]
∣∣ ≤ neg(κ),

where (pk, sk)← KeyGen(1κ).

We instantiate CCA-2 secure PKE with oblivious ciphertext sampling from
DDH [CS98] and LWE [MP12].

3.1 Non-Interactive Zero Knowledge

We provide the ideal UC-NIZK functionality in Fig. 2 for a single prover and a
single proof. It also considers the case for adaptive corruption of parties where the
prover gets corrupted after outputting the proof π. In such a case, the adversary
receives the internal state of the prover.

Fig. 2. Single-Proof Non-Interactive Zero-Knowledge Functionality FNIZK

FNIZK is parametrized by an NP relationR. (The code treatsR as a binary function.)

– Proof: On input (prove, sid, x, w) from party P : If R(x,w) = 1 then send
(prove, P, sid, x) to S. Upon receiving (proof, sid, π) from S, store (sid, x, w, π)
and send (proof, sid, π) to P .

– Verification: On input (verify, sid, x, π) from a party V : If (sid, x, w, π)
is stored, then return (verification, sid, x, π,R(x,w)) to V . Else, send
(verify, V, sid, x, π) to S. Upon receiving (witness, sid, w) from S, store
(sid, x, w, π), and return (verification, sid, x, π,R(x,w)) to V .

– Corruption: When receiving (corrupt, sid) from S, mark sid as corrupted. If
there is a stored tuple (sid, x, w, π), then send it to S.

We also consider Fm
NIZK (Fig. 3) functionality where a single prover can par-

allelly prove multiple statements in a single session. The verifier verifies each of
them separately. It is a weaker notion than multi-session UC NIZK since Fm

NIZK

19

Fig. 3. Non-Interactive Zero-Knowledge Functionality Fm
NIZK for single prover multi-

proof setting

FNIZK is parametrized by an NP relationR. (The code treatsR as a binary function.)

– Proof: On input (prove, sid, ssid, x, w, P) from party P : If there exists
(sid, P ′) ∈ Q and P 6= P ′ or R(x,w) 6= 1 then ignore the input. Else
record Q = (sid, ssid, P). Send (prove, P, sid, ssid, x) to S. Upon receiving
(proof, sid, ssid, π) from S, store (sid, ssid, x, w, π) and send (proof, sid, ssid, π)
to P .

– Verification: On input (verify, sid, ssid, x, π) from a party V : If
(sid, ssid, x, w, π) is stored, then return (verification, sid, ssid, x, π,R(x,w)) to V .
Else, send (verify, V, sid, ssid, x, π) to S. Upon receiving (witness, sid, ssid, w) from
S, store (sid, ssid, x, w, π), and return (verification, sid, ssid, x, π,R(x,w)) to V .

– Corruption: When receiving (corrupt, sid, ssid) from S, mark (sid, ssid) as
corrupted. If there are stored tuples of the form (sid, ssid, x, w, π), then send it
to S.
On input (corrupt-check, sid, ssid), return whether (sid, ssid) is marked as cor-
rupted.

considers only a single session between a pair of parties with roles preserved.
Different provers have to use different instances of Fm

NIZK to prove statements.
Next, we define the notion of triple adaptive security for NIZK protocols

and provide the property-based definitions of NIZK for completeness. UC-secure
NIZKs in the crs model imply adaptive ZK since an environment can statically
corrupt the verifier, obtain the crs of the protocol and then choose the statement
x to be proven by the honest prover. The simulator against a corrupt verifier
ensures that it constructs an accepting simulated proof which is indistinguishable
from an honestly generated proof. Hence, UC-NIZK implies adaptive ZK if the
environment is allowed to choose the statement being proven after corrupting
the verifier.

Definition 2. A non-interactive zero-knowledge argument system (NIZK) for
an NP-language L consists of three PPT machines ΠNIZK = (Gen,P,V), that
have the following properties:

– Completeness: For all κ ∈ N, and all (x,w) ∈ R, it holds that:

Pr[V(crs, x,P(crs, x, w)) = 1|(crs, td)← Gen(1κ, 1|x|)] = 1.

– Soundness: For all PPT provers P∗ and x /∈ L the following holds for all
κ ∈ N:

Pr[V(crs, x, π) = 1|(crs, td)← Gen(1κ, 1|x|), π ← P∗(crs)] ≤ neg(κ).

– Zero knowledge: There exists a PPT simulator S such that for every
(x,w) ∈ R, the following distribution ensembles are computationally indis-
tinguishable:

{(crs, π)|(crs, td)← Gen(1κ, 1|x|), π ← P(crs, x, w)}κ∈N

20

≈ {(crs, {S(1κ, x, td)})|(crs, td)← Gen(1κ, 1|x|}κ∈N

Definition 3. (Full Adaptive Soundness) ΠNIZK is adaptively sound if for
every PPT cheating prover P∗ the following holds:

Pr[x /∈ L ∧ V(crs, x, π) = 1|(crs, td)← Gen(1κ, 1|x|), (x, π)← P∗(crs)] < neg(κ).

Definition 4. (Adaptive Zero-Knowledge) ΠNIZK is adaptively zero-knowledge
if for all PPT verifiers V∗ there exists a PPT simulator S such that the following
distribution ensembles are computationally indistinguishable:

{(crs,P(crs, x, w), aux)}
c
≈ {S(crs, td, 1κ, x)}κ∈N

where (crs, td)← Gen(1κ, 1|x|) and (x,w, aux)← V∗(crs).

The Gen algorithm takes the |x| (length of the statement) as input to generate
the crs. This shows that the crs size depends on |x|. When the crs is independent
of |x|, the Gen algorithm only takes 1κ as input.

Definition 5. (Triple Adaptive Security for a single instance)
Let ΠNIZK = (Gen,P,V) be a NIZK protocol in the crs model. Then ΠNIZK satis-
fies triple adaptive security for a single instance if it securely implements FNIZK

functionality for a single instance and provides adaptive soundness and adaptive
zero knowledge.

Definition 6. (Triple Adaptive Security for multiple instances)
Let ΠNIZK = (Gen,P,V) be a NIZK protocol in the crs model. Then ΠNIZK satis-
fies triple adaptive security for multiple instances if it UC-securely implements
FNIZK functionality for multiple instances and provides adaptive soundness and
adaptive zero knowledge.

3.2 Commitment Schemes

A commitment scheme Com = (Gen,Com,Ver,Equiv) allows a committing party
C to compute a commitment c to a message m, using randomness r, towards a
party V in the Com phase. Later in the open phase, C can open c to m by sending
the decommitment to V who verifies it using Ver. It should be binding, hiding and
equivocal using Equiv algorithm given trapdoor td of the crs. Moreover, we require
our commitment scheme to be additively homomorphic for message domain of
size at least four, i.e. Com(m1; r1) + Com(m2; r2) = Com(m1 + m2; r1 + r2).
We also need a tag-based simulation sound commitment consists of ComSST =
(KeyGen, Com, Ver, TCom, TOpen) for our protocols. Formal definitions can be
found in the full version [CSW20c].

21

FNICOM-model. We also provide a new non-interactive UC-commitment func-
tionality in Fig. 1. The FNICOM functionality (Fig. 1) is implemented against
adaptive adversaries using adaptively secure non-interactive UC commitments
[CF01] in the crs model. We perform this using equivocal commitments and CCA-
2 secure PKE with oblivious ciphertext sampleability in the non-programmable
crs model. It can be found in the full version [CSW20c]. We also prove that this
new functionality implies the old UC commitment functionality (of [CF01]) but
our new functionality is more compatible with non-interactive protocols.

3.3 Correlation Intractability.

As in [CCH+19, PS19, BKM20] we define efficiently searchable relations and
recall the definitions of correlation intractability, in their computational and
statistical versions.

Definition 7. We say that a relation R ⊆ X×Y is searchable in size S if there
exists a function f : X → Y that is implementable as a boolean circuit of size
S, such that if (x, y) ∈ R then y = f(x). (In other words, f(x) is the unique
witness for x, if such a witness exists.)

Definition 8. Let R = {Rκ} be a relation class, i.e., a set of relations for each
κ. A hash function family H = (Gen, H) is correlation intractable for R if for
every non-uniform PPT adversary A = {Aκ} and every R ∈ Rκ the following
holds:

Pr[(x,H(k, x)) ∈ R : k← Gen(1κ), x = Aκ(k)] ≤ neg(κ)

Definition 9. Let R = {Rκ} be a relation class. A hash function family H =
(Gen, H) with a fake-key generation algorithm StatGen is somewhere statistically
correlation intractable for R if for every R ∈ Rκ and circuits ∃zR ∈ Zκ s.t:

Pr[∃x s.t. (x,H(k, x)) ∈ R : k← StatGen(1κ, zR)] ≤ neg(κ).

and for every zκ ∈ Zκ if the following distributions the indistinguishable:

{StatGen(1κ, zκ)}κ
c
≈ {Gen(1κ)}κ.

Definition 10. A hash family H = (Gen, H), with input and output length n :=
n(κ) and, resp., m := m(κ), is said to be programmable if the following two
conditions hold:

– 1-Universality: For every κ ∈ N, x ∈ {0, 1}n and y ∈ {0, 1}m, the following
holds: Pr[H(k, x) = y : k← Gen(1κ)] = 2−m.

– Programmability: There exists a PPT algorithm Gen′(1κ, x, y) that samples
from the conditional distribution Sample(1κ)|H(k, x) = y.

4 Triply Adaptive NIZK Argument in the crs model

In this section, we present our NIZK protocol. First, we recall the definition of
Sigma protocol in the crs model and then build upon it to define adaptively Sigma
protocol in the FNICOM model. Finally, we compile adaptively Sigma protocols
into NIZKs using the Fiat-Shamir transform.

22

4.1 Sigma Protocol

We consider Sigma protocol [CPV20] Σ = (Setup,P1,V1,P2,V2) for relation R
between a prover P and a verifier V that receive a common input statement x.
P receives an additional private input a witness w for x. The protocol has the
following form:

– Setup(1κ) : The Setup algorithm runs on security parameter κ and generates
a common reference string crs and a trapdoor td. The crs is published as the
public setup string.

– P1(crs, x, w, 1κ; st) : The prover runs algorithm P1 on common input x, crs,
private input w, security parameter κ and randomness st obtaining a =
P1(x,w, 1κ; st) and sends a to verifier.

– V1(crs, a) : Verifier samples random challenge c←R C and sends c to prover.
– P2(crs, x, w, st, c) : The prover runs algorithm P2 on input x,w, crs, st, c and

obtain z. It sends z to verifier.
– V2(crs, x, a, c, z) : The verifier outputs 1 if it accepts the proof else it outputs

0 to reject the proof.

The above protocol should satisfy completeness, honest verifier zero knowledge
and special soundness. We refer to the full version [CSW20c] for the property
definitions of Sigma protocol.

4.2 Fully Adaptive Sigma Protocol in FNICOM model

The traditional Sigma protocols are not secure against adaptive corruption of
parties. Hence, we introduce the notion of fully adaptive Sigma protocols in the
UC-commitment functionality FNICOM model. Consider the above Sigma protocol
transcript (a, c, z). In the fully adaptive Sigma protocol, the prover has access
to the FNICOM functionality while computing the first message a. The prover
sends a to the verifier. Upon obtaining the challenge c, the prover computes the
response z and sends it to the verifier.

Definition 11. Let Σ = (Setup,P1,V1,P2,V2) be a Sigma protocol for relation
R over corresponding domains (A, C,Z), where parties make use of an instance
of FNICOM where the prover is the commiter, and where the first message con-
sists exclusively of a sequence of commitment strings that the prover obtains
from FNICOM. Then Σ is fully adaptive in the FNICOM model if the following
requirements hold:

1. Completeness. If (x,w) ∈ R, then honest transcripts of the form (x, a, c, z)
obtained by the verifier for (x,w) are accepting.

2. Computational Special soundness. There exists a PPT algorithm Ext
such that for any polytime adversarial prover P ∗ and two transcripts (a, c, z)
and (a, c′, z′), such that P ∗(κ)→ (SC , x, a) where SC is the adversarial code
used by FNICOM, P ∗(κ, c) → z, P ∗(κ, c′) → z′, c′ 6= c, and such that the
verifier accepts both transcripts when given access to FSC

NICOM, it holds that:

Pr[Ext(crs, SC , x, a, c, z, c
′, z′) = w & (x,w) /∈ R] < neg(κ)

23

3. Adaptive Honest-verifier zero knowledge. There exists PPT algorithm
S = (S1,S2) such that, for any (x,w) ∈ R, any PPT distinguisher A, and
any PPT adversarial code SC for FNICOM:

∣∣∣Pr
[
(a, c, z, st)← S1(crs, SC , x; td), r ← S2(st, w) : AF

SC
NICOM(a, c, z, r) = 1

]
−

Pr
[
r ← {0, 1}κ, (a, st)← P

FSC
NICOM

1 (x,w, r), c← C, z ← P
FSC

NICOM
2 (x,w, st, c) :

AF
SC
NICOM(a, c, z, r) = 1

]∣∣∣ ≤ neg(κ)

where (crs, td)← Setup(1κ).

4.3 Our NIZK Compiler in the FNICOM model

We apply the Fiat-Shamir transform on the Sigma protocol using correlation in-
tractable hash functions H to remove interaction and obtain our NIZK protocol.
The CI hash function is provided with the description of the SC algorithm to
extract the prover’s view and compute the bad challenge function. Our compiler
can be found in Figure. 4.

A corrupt prover breaks soundness of the protocol if it breaks the special
soundness of the adaptively secure Sigma protocol or it breaks the binding prop-
erty of the commitment scheme. In the former case, the witness can be extracted
by invoking the witness extractor algorithm Ext (according Def. 11) of the Sigma
protocol on the proof. We show that our NIZK protocol ΠNIZK implements FNIZK

functionality against adaptive corruption of parties by proving Thm. 3 in the full
version [CSW20c]. It can be further shown that the same protocol implements
the single prover multi-proof NIZK functionality Fm

NIZK.

Theorem 3. If H is a somewhere statistically correlation intractable hash func-
tion family with programmability, Σ = (Setup,P1,V1,P2,V2) is an adaptively se-
cure Sigma protocol (in the FNICOM model) with computational special soundness
then ΠNIZK implements FNIZK functionality in (crsNIZK,FNICOM) model against
adaptive corruption of parties.

Adaptive Soundness and Adaptive Zero knowledge. The NIZK protocol
can be made triply adaptive secure by adding adaptive soundness and adaptive
zero-knowledge. The NIZK protocol satisfies adaptive soundness if the underly-
ing Sigma protocol satisfies adaptive soundness and FNICOM is implemented using
a non-interactive UC-commitment Com in the non-programmable crsCom model
Com, whose real and ideal world crsCom distribution are identical. Moreover, the
NIZK protocol satisfies adaptive zero knowledge if the underlying Sigma pro-
tocol satisfies adaptive zero knowledge and Com is a non-interactive adaptively
secure commitment in the non-programmable crs model. This is summarized in
Thm. 4 and proven in the full version [CSW20c].

24

Fig. 4. Adaptively Secure NIZK Protocol ΠNIZK

– Primitives: Adaptively-secure Sigma Protocol Σ = (Setup,P1,V1,P2,V2),
that uses functionality FNICOM (with algorithm SC). Correlation Intractable
hash function family H = (Gen, StatGen, H).

– Public Inputs: Setup string crsNIZK = (k, crsΣ) where (crsΣ, tdΣ) ←
Σ.Setup(1κ) and k ← H.StatGen(1κ, Csk) where sk = (tdΣ ,SC). a The Sigma
protocol is repeated for τ = O(κ) times.

– Private Inputs: V has input statement x. P has the same input statement x
and secret witness w such that R(x,w) = 1.

P(crsNIZK, x, w, 1
κ) :

Upon invoked with command (prove, sid, x, w) the prover performs the following for
j ∈ [τ] :

– (aj , stjΣ)← Σ.P1(crsΣ, x, w, 1
κ).

– Sample cj0, c
j
1 ←R C such that cj0 6= cj1. Commit to challenges as

(Receipt, Cj , stjC)← FNICOM(Com, 3j + 2,P, (cj0, c
j
1)).

– For δ ∈ {0, 1}, the prover performs the following:
• Compute zjδ ← Σ.P2(crsΣ, x, w, stjΣ , c

j
δ).

• Commit to the responses as follows: (Receipt, 3j + δ,P, Zjδ , stjZ,δ) ←
FNICOM(Com, 3j + δ,P, zjδ).

– The commitments for the jth run are denoted as Y j = (Cj , Zj0 , Z
j
1).

Assemble the commitments as Y = {Y j}j∈[τ] and and the first messages as
a = {aj}j∈[τ]. Compute the challenge as e = {ej}j∈[τ] = H(k, (a,Y)). The prover
performs the following for j ∈ [τ]:

– Set the challenge as δ = ej ∈ {0, 1}.
– Construct the response as U j = (cj0, c

j
1, z

j
δ , stjC , stjZ,δ) by decommitting to the

challenges and the response zjδ .

The prover sends the NIZK proof γ = (a,Y,U) where U = {U j}j∈[τ] to the verifier.
V(crsNIZK, x, γ) :
Upon invoked with command (verify, sid, x, γ) the verifier performs the following:

– Parse the proof γ = (a,Y,U) = {aj , Y j , U j}j∈[τ].
– Compute the challenge string as e = {ej}j∈[τ] = H.H(k, (a,Y)) where e ∈
{0, 1}τ .

– For j ∈ [τ], the verifier performs the following :
• The verifier sets δ = ej ∈ {0, 1}.
• Parse the proof as Y j = (Cj , Zj0 , Z

j
1) and U j = (cj0, c

j
1, z

j , stjZ , stjC).
• Verifies the provided decommitments and proofs. Output

(verification, sid, x, γ, 0) if any of the following occurs:
1. If FNICOM(Open, 3j + 2,P, (cj0, c

j
1), Cj , stjC) returns verification-failed.

2. If FNICOM(Open, 3j + δ,P, zj , Zjδ , stjZ) returns verification-failed.
3. If Σ.V2(crsΣ , x, a

j , cjδ, z
j) = 0.

The verifier outputs (verification, sid, x, γ, 1) if all the above τ proofs verified cor-
rectly and the above decommitments were correct.

a Csk is a poly-size circuit computing the function fsk(a,Y) = e, such that
for every j ∈ [τ], ej = 0 iff Σ.V2(crsΣ, x, a

j , cj0, z
j) = 1 where (cj0, c

j
1) ←

FNICOM(SC ,Ext, 3j + 2,P, Cj), zj ← FNICOM(SC ,Ext, 3j,P, Zj0).

25

Theorem 4. If H is a somewhere statistically correlation intractable hash func-
tion family, Σ = (Setup,P1,V1,P2,V2) is a Sigma protocol satisfying adaptive
special soundness and adaptive zero knowledge, and FNICOM is implemented us-
ing an adaptively secure UC commitment in the non-programmable crsCom model
then ΠNIZK satisfies adaptive soundness and adaptive zero knowledge in the
(crsNIZK, crsCom) model.

Instantiations. The adaptively Sigma protocol can be instantiated using the
Schnorr’s protocol, Sigma protocol of FLS, Blum’s Hamiltonicity protocol or
the GC-based protocol of [HV16]. Detailed overview can be found in Sec. 2.4.
The CI hash function can be instantiated from LWE [PS19, CCH+19], or from
DDH+LPN assumption [BKM20]. This is discussed in the full version [CSW20c].
FNICOM is constructed from the UC-commitment scheme of [CF01] in the full
version [CSW20c] by relying on equivocal commitments and CCA-2 secure pub-
lic key encryption with oblivious sampleability. The equivocal commitment can
be instantiated from Pedersen Commitment and the obliviously sampleable en-
cryption scheme can be instantiated from Cramer Shoup encryption [CS98],
yielding a protocol from DDH. Similarly, we can instantiate the equivocal com-
mitment from LWE [CsW19] and the obliviously sampleable encryption scheme
from LWE [MP12].

5 Triply Adaptive NIZK Argument in the short crs model

In this section we present our compiler ΠsNIZK which obtains a triply adap-
tive NIZK protocol where the crs size is independent of the circuit size and
depends only on κ assuming a non-interactive equivocal commitment scheme
in the reusable crs model which supports additive homomorphism, PKE with
oblivious ciphertext sampleability and a triply adaptively secure NIZK protocol
ΠNIZK in the crs model. Our compiler is presented in the full version [CSW20c].
We prove triple adaptive security of ΠsNIZK by proving Thm. 5 in the full ver-
sion [CSW20c]. By applying this result, we reduce the crs size of ΠNIZK. The
homomorphic commitment scheme can be instantiated from DDH (Pedersen
commitment or [CSW20b]) or LWE [GVW15] asusmptions. The PKE can be
instantiated from DDH assumption (Elgamal encryption) or LWE [GSW13] as-
sumptions. This yields our compiler from DDH or LWE assumption.

Theorem 5. Assuming PKE is a public key encryption scheme with oblivi-
ous ciphertext sampling, Com is an equivocal additively homomorphic commit-
ment scheme in the reusable crsCom model and ΠNIZK implements Fm

NIZK against
adaptive corruption of parties, then ΠsNIZK UC-securely implements FNIZK func-
tionality for NP languages against adaptive adversaries in the crs model where
|crs| = poly(κ). ΠsNIZK is also adaptively sound and adaptively zero knowledge.

6 Triply Adaptive, multi-proof UC-NIZK Argument

In this section, we add non-malleability to our ΠsNIZK protocol to obtain our
multi-proof UC-NIZK protocol ΠUC-NIZK by using simulation sound tag-based

26

commitments ComSST and strong one-time signature scheme Sig. We add non-
malleability to our proof by signing the proof using a pair of keys (vk, sk) from
Sig and committing the witness using a ComSST where the tag is (vk, sid, ssid, x).
The adversary is bound to vk since vk is part of the tag used to encrypt w using
ComSST in the proof γ. Sig ensures that an adversary cannot forge a signature
using vk and this prevents non-malleability. The same crs is used for multiple
subsessions and this ensures adaptive soundness and adaptive zero knowledge.
The protocol and the proofs can be found in the full version [CSW20c]. Security
of ΠUC-NIZK is summarized in Thm. 6.

Theorem 6. If ΠsNIZK UC-realizes FNIZK for a single proof, Sig is a strong one-
time secure signature scheme, ComSST is a tag-based simulation-sound trapdoor
commitment and PKE is a public key encryption scheme with oblivious cipher-
text sampling property then ΠUC-NIZK UC-securely implements FNIZK for multiple
instances against adaptive adversaries. In addition, ΠUC-NIZK is adaptively sound
and adaptively zero knowledge.

References

AF07. Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In
Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 118–136.
Springer, Heidelberg, February 2007.

AMPS21. Navid Alamati, Hart Montgomery, Sikhar Patranabis, and Pratik Sarkar.
Two-round adaptively secure MPC from isogenies, lpn, or CDH. In ASI-
ACRYPT 2021, volume 13091 of LNCS, pages 305–334. Springer, 2021.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 459–474, 2014.

BFM90. Manuel Blum, Paul Feldman, and Silvio Micali. Proving security against
chosen cyphertext attacks. In Shafi Goldwasser, editor, CRYPTO’88, vol-
ume 403 of LNCS, pages 256–268. Springer, Heidelberg, August 1990.

BKM06. Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures:
Stronger definitions, and constructions without random oracles. In Shai
Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages
60–79. Springer, Heidelberg, March 2006.

BKM20. Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and
trapdoor hash via correlation intractability for approximable relations. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2020, Part III,
LNCS, pages 738–767. Springer, Heidelberg, August 2020.

Blu86. Manuel Blum. How to prove a theorem so no one else can claim it. In
Proceedings of the International Congress of Mathematicians, 1986.

BMW03. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of
group signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions. In Eli Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 614–629. Springer, Heidelberg,
May 2003.

27

BSMP91. Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano.
Noninteractive zero-knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

CCH+19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Roth-
blum, Ron D. Rothblum, and Daniel Wichs. Fiat-Shamir: from practice
to theory. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC,
pages 1082–1090. ACM Press, June 2019.

CD00. Jan Camenisch and Ivan Damg̊ard. Verifiable encryption, group encryption,
and their applications to separable group signatures and signature sharing
schemes. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of
LNCS, pages 331–345. Springer, Heidelberg, December 2000.

CF01. Ran Canetti and Marc Fischlin. Universally composable commitments. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40.
Springer, Heidelberg, August 2001.

CGH98. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited (preliminary version). In 30th ACM STOC, pages 209–218.
ACM Press, May 1998.

CGPS21. Suvradip Chakraborty, Chaya Ganesh, Mahak Pancholi, and Pratik Sarkar.
Reverse firewalls for adaptively secure MPC without setup. In ASIACRYPT
2021, volume 13091 of LNCS, pages 335–364. Springer, 2021.

CJJ21. Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive
batch arguments for NP from standard assumptions. In CRYPTO 2021,
volume 12828 of LNCS, pages 394–423. Springer, 2021.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In 34th ACM
STOC, pages 494–503. ACM Press, May 2002.

CPS+16. Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi,
and Ivan Visconti. Online/offline OR composition of sigma protocols.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 63–92. Springer, Heidelberg, May 2016.

CPV20. Michele Ciampi, Roberto Parisella, and Daniele Venturi. On adaptive secu-
rity of delayed-input sigma protocols and fiat-shamir nizks. In SCN 2020,
pages 670–690, 2020.

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack. In Hugo
Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 13–25.
Springer, Heidelberg, August 1998.

CsW19. Ran Cohen, abhi shelat, and Daniel Wichs. Adaptively secure MPC with
sublinear communication complexity. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages
30–60. Springer, Heidelberg, August 2019.

CSW20a. Ran Canetti, Pratik Sarkar, and Xiao Wang. Efficient and round-optimal
oblivious transfer and commitment with adaptive security. In ASI-
ACRYPT 2020, Part III, LNCS, pages 277–308. Springer, Heidelberg, De-
cember 2020.

CSW20b. Ran Canetti, Pratik Sarkar, and Xiao Wang. Efficient and round-optimal
oblivious transfer and commitment with adaptive security. In ASIACRYPT
2020, volume 12493 of LNCS, pages 277–308. Springer, 2020.

28

CSW20c. Ran Canetti, Pratik Sarkar, and Xiao Wang. Triply adaptive
UC NIZK. IACR Cryptology ePrint Archive, page 1212, 2020.
https://eprint.iacr.org/2020/1212.

DDN91. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography
(extended abstract). In 23rd ACM STOC, pages 542–552. ACM Press, May
1991.

DN00. Ivan Damg̊ard and Jesper Buus Nielsen. Improved non-committing encryp-
tion schemes based on a general complexity assumption. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 432–450. Springer,
Heidelberg, August 2000.

FLS99. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero
knowledge proofs under general assumptions. SIAM J. Comput., 29(1):1–
28, 1999.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

GGI+15. Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and
Adam D. Smith. Using fully homomorphic hybrid encryption to minimize
non-interative zero-knowledge proofs. Journal of Cryptology, 28(4):820–843,
October 2015.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

GOS06. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero
knowledge for NP. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 339–358. Springer, Heidelberg, May / June 2006.

GOS12. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for nonin-
teractive zero-knowledge. J. ACM, 59(3):11:1–11:35, 2012.

GR13. Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permu-
tations. Journal of Cryptology, 26(3):484–512, July 2013.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August
2013.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully
homomorphic signatures from standard lattices. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477. ACM Press,
June 2015.

HL18. Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong
one-way functions (or: One-way product functions and their applications).
In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 850–858. IEEE Com-
puter Society, 2018.

HLR21. Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-shamir via
list-recoverable codes (or: parallel repetition of gmw is not zero-knowledge).
In STOC 2021, pages 750–760, 2021.

29

HV16. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On the
power of secure two-party computation. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 397–
429. Springer, Heidelberg, August 2016.

KKK21. Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Composition with
knowledge assumptions. In CRYPTO 2021, volume 12828 of LNCS, pages
364–393. Springer, 2021.

KNYY19. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Exploring constructions of compact NIZKs from various assumptions. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 639–669. Springer, Heidelberg, Au-
gust 2019.

KNYY20. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Compact NIZKs from standard assumptions on bilinear maps. In Vincent
Rijmen and Yuval Ishai, editors, EUROCRYPT 2020, Part III, LNCS, pages
379–409. Springer, Heidelberg, May 2020.

KZM+15. Ahmed E. Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T.-H. Hubert
Chan, Charalampos Papamanthou, Rafael Pass, Abhi Shelat, and Elaine
Shi. How to use snarks in universally composable protocols. IACR Cryptol.
ePrint Arch., 2015:1093, 2015.

LP09. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for
two-party computation. Journal of Cryptology, 22(2):161–188, April 2009.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer,
Heidelberg, April 2012.

NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd ACM STOC, pages 427–437.
ACM Press, May 1990.

PS19. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP
from (plain) learning with errors. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
89–114. Springer, Heidelberg, August 2019.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–
252. Springer, Heidelberg, August 1990.

SCO+01. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Per-
siano, and Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO
2001, pages 566–598, 2001.

30

	Triply Adaptive UC NIZK

