
Compact FE for Unbounded Attribute-Weighted
Sums for Logspace from SXDH

Pratish Datta[0000−0002−3938−7594]1, Tapas Pal[0000−0001−6278−0418]2 and
Katsuyuki Takashima[0000−0001−5216−2229]3

1 NTT Research, Inc., Sunnyvale, CA 94085, USA
pratish.datta@ntt-research.com,

2 NTT Social Informatics Laboratories, Musashino-shi, Tokyo, Japan 180-8585
tapas.pal.wh@hco.ntt.co.jp,

3 Waseda University, Shinjuku-ku, Tokyo, Japan 169-8050
ktakashima@waseda.jp

Abstract. This paper presents the first functional encryption (FE) scheme
for the attribute-weighted sum (AWS) functionality that supports the
uniform model of computation. In such an FE scheme, encryption takes
as input a pair of attributes (x, z) where the attribute x is public while the
attribute z is private. A secret key corresponds to some weight function
f , and decryption recovers the weighted sum f(x)z. This is an important
functionality with a wide range of potential real life applications, many
of which require the attribute lengths to be flexible rather than being
fixed at system setup. In the proposed scheme, the public attributes are
considered as binary strings while the private attributes are considered as
vectors over some finite field, both having arbitrary polynomial lengths
that are not fixed at system setup. The weight functions are modelled as
Logspace Turing machines.

Prior schemes [Abdalla, Gong, and Wee, CRYPTO 2020 and Datta and
Pal, ASIACRYPT 2021] could only support non-uniform Logspace. The
proposed scheme is built in asymmetric prime-order bilinear groups and
is proven adaptively simulation secure under the well-studied symmetric
external Diffie-Hellman (SXDH) assumption against an arbitrary poly-
nomial number of secret key queries both before and after the challenge
ciphertext. This is the best possible level of security for FE as noted in
the literature. As a special case of the proposed FE scheme, we also ob-
tain the first adaptively simulation secure inner-product FE (IPFE) for
vectors of arbitrary length that is not fixed at system setup.

On the technical side, our contributions lie in extending the techniques of
Lin and Luo [EUROCRYPT 2020] devised for payload hiding attribute-
based encryption (ABE) for uniform Logspace access policies avoiding the
so-called “one-use” restriction in the indistinguishability-based security
model as well as the “three-slot reduction” technique for simulation-
secure attribute-hiding FE for non-uniform Logspace devised by Datta
and Pal [ASIACRYPT 2021] to the context of simulation-secure attribute-
hiding FE for uniform Logspace.

Keywords: functional encryption, attribute-weighted sums, Logspace,
Turing machines
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1 Introduction

Functional Encryption: Functional encryption (FE), formally introduced by
Boneh et al. [8] and O’Neill [22], redefines the classical encryption procedure
with the motivation to overcome the limitation of the “all-or-nothing” paradigm
of decryption. In a traditional encryption system, there is a single secret key
such that a user given a ciphertext can either recover the whole message or
learns nothing about it, depending on the availability of the secret key. FE in
contrast provides fine grained access control over encrypted data by generating
artistic secret keys according to the desired functions of the encrypted data to
be disclosed. More specifically, in a public-key FE scheme for a function class F ,
there is a setup authority which produces a master secret key and publishes a
master public key. Using the master secret key, the setup authority can derive
secret keys or functional decryption keys SKf associated with functions f ∈ F .
Anyone can encrypt messages msg belonging to a specified message space msg ∈
M using the master public key to produce a ciphertext CT. The ciphertext CT
along with a secret key SKf recovers the function of the message f(msg) at the
time of decryption, while unable to extract any other information about msg.
More specifically, the security of FE requires collusion resistance meaning that
any polynomial number of secret keys together cannot gather more information
about an encrypted message except the union of what each of the secret keys
can learn individually.

FE for Attribute-Weighted Sum: Recently, Abdalla, Gong and Wee [2] and
Datta and Pal [13] studied FE schemes for a new class of functionalities termed
as “attribute-weighted sums” (AWS). This is a generalization of the inner prod-
uct functional encryption (IPFE) [1,4]. In such a scheme, an attribute pair (x, z)
is encrypted using the master public key of the scheme, where x is a public at-
tribute (e.g., demographic data) and z is a private attribute containing sensitive
information (e.g., salary, medical condition, loans, college admission outcomes).
A recipient having a secret key corresponding to a weight function f can learn
the attribute-weighted sum f(x)z. The attribute-weighted sum functionality ap-
pears naturally in several real life applications. For instance, as discussed by
Abdalla et al. [2] if we consider the weight function f as a boolean predicate,
then the attribute-weighted sum functionality f(x) would correspond to the av-
erage z over all users whose attribute x satisfies the predicate f . Important
practical scenarios include average salaries of minority groups holding a par-
ticular job (z = salary) and approval ratings of an election candidate amongst
specific demographic groups in a particular state (z = rating).

The works of [2, 13] considered a more general case of the notion where the
domain and range of the weight functions are vectors, in particular, the attribute
pair of public/private attribute vectors (x, z), which is encrypted to a ciphertext
CT. A secret key SKf generated for a weight function f allows a recipient to learn
f(x)>z from CT without leaking any information about the private attribute z.

The FE schemes of [2, 13] support an expressive function class of arithmetic
branching programs (ABPs) which captures non-uniform Logspace computations.
Both schemes were built in asymmetric bilinear groups of prime order and are
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proven secure in the simulation-based security model, which is known to be
the desirable security model for FE [22, 8], under the (bilateral) k-Linear (k-
Lin)/ (bilateral) Matrix Diffie-Hellman (MDDH) assumption. The FE scheme
of [2] achieves semi-adaptive security, where the adversary is restricted to making
secret key queries only after making the ciphertext queries, whereas the FE
scheme of [13] achieves adaptive security, where the adversary is allowed to make
secret key queries both before and after the ciphertext queries.

However, as mentioned above, ABP is a non-uniform computational model.
As such, in both the FE schemes [2, 13], the length of the public and private
attribute vectors must be fixed at system setup. This is clearly a bottleneck in
several applications of this primitive especially when the computation is done
over attributes whose lengths vary widely among ciphertexts and are not fixed
at system setup. For instance, suppose a government hires an external audit ser-
vice to perform a survey on average salary of employees working under different
job categories in various companies to resolve salary discrepancy.The compa-
nies create salary databases (X,Z) where X = (xi)i contains public attributes
xi = (job title,department, company name) and Z = (zi)i includes private at-
tribute zi = salary. To facilitate this auditing process without revealing indi-
vidual salaries (private attribute) to the auditor, the companies encrypt their
own database (X,Z) using an FE scheme for AWS. The government provides
the auditor a functional secret key SKf for a function f that takes input a pub-
lic attribute X and outputs 1 for xi’s for which the “job title” matches with
a particular job, say manager. The auditor decrypts ciphertexts of the various
companies using SKf and calculates the average salaries of employees working
under that job category in those companies. Now, if the existing FE schemes for
AWS [2, 13] supporting non-uniform computations are employed then to make
the system sustainable the government would have to fix a probable size (an up-
per bound) of the number of employees in all the companies. Also, the size of all
ciphertexts ever generated would scale with that upper bound even if the num-
ber of employees in some companies, at the time of encryption, are much smaller
than that upper bound. This motivates us to consider the following problem.
Open Problem Can we construct an FE scheme for AWS in some uniform
computational model capable of handling public/private attributes of arbitrary
length?

Our Results. This work resolves the above open problem. For the first time in
the literature, we formally define and construct a FE scheme for unbounded AWS
(UAWS) functionality where the setup only depends on the security parameter of
the system and the weight functions are modeled as Turing machines. The pro-
posed FE scheme supports both public and private attributes of arbitrary lengths.
In particular, the public parameters of the system are completely independent of
the lengths of attribute pairs. Moreover, the ciphertext size is compact meaning
that it does not grow with the number of occurrences of a specific attribute in
the weight functions which are represented as Logspace Turing machines. The
scheme is adaptively simulation secure against the release of an unbounded
(polynomial) number of secret keys both before and after the challenge ci-
phertext. As noted in [8, 22], simulation security is the best possible and the
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most desirable model for FE. Moreover, simulation-based security also captures
indistinguishability-based security but the converse does not hold in general.

Our FE for UAWS is proven secure in the standard model based on the sym-
metric external Diffie-Hellman (SXDH) assumption in the asymmetric prime-
order pairing groups. Our main result in the paper is summarized as follows.

Theorem 1.1 (Informal) Assuming the SXDH assumption holds in asymmet-
ric pairing groups of prime-order, there exists an adaptively simulation secure
FE scheme for the attribute weighted sum functionality with the weight functions
modeled as Logspace Turing machines such that the lengths of public and pri-
vate attributes are unbounded and can be chosen at the time of encryption, the
ciphertexts are compact with respect to the multiple occurrences of attributes in
the weight functions.

Viewing IPFE as a special case of FE for AWS, we also obtain the first adaptively
simulation secure IPFE scheme for unbounded length vectors (UIPFE), i.e., the
length of the vectors is not fixed in setup. Observe that all prior simulation secure
IPFE [26, 2, 3, 13] could only support bounded length vectors, i.e., the lengths
must be fixed in the setup. On the other hand, the only known construction of
UIPFE [23] is proven secure in the indistinguishability-based model.

The proposed FE construction is semi-generic and extends the frameworks of
the works of Lin and Luo [18] and Datta and Pal [13]. Lin and Luo [18] develop an
adaptively secure attribute-based encryption (ABE) scheme for Logspace Tur-
ing machines proven secure in the indistinguishability-based model. Although
the input length of their ABE is unbounded, but an ABE is an “all-or-nothing”
type primitive which fully discloses the message to a secret key generated for
accepting policies. Further, the ABE of [18] is only payload hiding secure mean-
ing that the ciphertexts themselves can leak sensitive information about the
associated attributes. In contrast, our FE for UAWS provides more fine grained
encryption methodologies where the ciphertexts reveal nothing about the pri-
vate part of associated attributes but their weighted sums. Our FE construction
depends on two building blocks, an arithmetic key garbling scheme (AKGS) for
Logspace Turing machines which is an information-theoretic tool and a function
hiding (bounded) slotted IPFE scheme which is a computational primitive. An
important motivation of [18] is to achieve compact ciphertexts for ABEs. In other
words, they get rid of the so-called one-use restriction from prior adaptively se-
cure ABEs [16,15,20,17,21,25,9,6,10] by replacing the core information-theoretic
step with the computational primitive of function hiding slotted IPFE. The FE
of [13] is able to accomplish this property for non-uniform computations by de-
veloping a three-slot encryption technique. Specifically, three slots are utilized
to simulate the label functions obtained from the underlying AKGS garbling for
pre-ciphertext secret keys. Note that, the three-slot encryption technique is an
extension of dual system encryption methodologies [24, 16, 15]. In this work, we
extend their frameworks [18, 13] to avoid the one-use restriction in the case of
FE for UAWS that computes weights via Logspace Turing machines. It is non-
trivial to implement such three-slot techniques in the uniform model. The main
reason behind this fact is that in case of ABPs [13] the garbling randomness
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can be sampled knowing the size of ABPs, and hence the garbling algorithm
is possible to run while generating secret keys. However, in the case of AKGS
for Logspace Turing machines, the garbling randomness depends on the size of
the Turing machine as well as its input lengths. Consequently, it is not possi-
ble to execute the garbling in the key generation or encryption algorithms as
the information about the garbling randomness is distributed between these two
algorithms. We tackle this by developing a more advanced three-slot encryp-
tion technique with distributed randomness which enables us to carry out such
a sophisticated procedure for Logspace Turing machines.

Our FE for UAWS is a one-slot scheme. This means one pair of public-private
attribute can be processed in a single encryption. An unbounded-slot FE for
UAWS [2] enables us to encrypt unbounded many such pairs in a single encryp-
tion. Abdalla et al. [2] devise a generic transformation for bootstrapping from
one-slot to unbounded-slot scheme. However, this transformation only works if
the underlying one-slot scheme is semi-adaptively secure [13]. Thus, if we restrict
our scheme to semi-adaptive security then using such transformations [2,13] our
one-slot FE scheme can be bootstrapped to support unbounded slots.

Organization. We discuss a detailed technical overview of our results in Sec-
tion 2. We provide useful notations, related definitions, and complexity assump-
tions in Section 3. Our construction of a single key and single ciphertext secure
FE scheme for UAWS is described in Section 4. The simulator and security anal-
ysis of the scheme can be found in the full version. Next, we build our full fledge
1-slot FE scheme for UAWS in Section 5. The correctness and security analy-
sis of the scheme is available in the full version. For completeness, we present
the definition of function-hiding slotted IPFE and the construction of AKGS for
Turing machine computations [18] in the full version.

2 Technical Overview

We now present an overview of our techniques for achieving a FE scheme for AWS
functionality which supports the uniform model of computations. We consider
prime-order bilinear pairing groups (G1,G2,GT, g1, g2, e) with a generator gT =
e(g1, g2) of GT and denote [[a]]i by an element gai ∈ Gi for i ∈ {1, 2,T}. For any
vector z, the k-th entry is denoted by z[k] and [n] denotes the set {1, . . . , n}.

The unbounded AWS Functionality. In this work, we consider an unbounded
FE scheme for the AWS functionality for Logspace Turing machines (or the class
of L), in shorthand it is written as UAWSL. More specifically, the setup only
takes input the security parameter of the system and is independent of any
other parameter, e.g., the lengths of the public and private attributes. UAWSL

generates secret keys SK(M ,IM ) for a tuple of Turing machines denoted by
M = {Mk}k∈IM such that the index set IM contains any arbitrary number
of Turing machines Mk ∈ L. The ciphertexts are computed for a pair of public-
private attributes (x, z) whose lengths are arbitrary and are decided at the time
of encryption. Precisely, the public attribute x of length N comes with a poly-
nomial time bound T = poly(N) and a logarithmic space bound S, and the
private attribute z is an integer vector of length n. At the time of decryption,
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if IM ⊆ [n] then it reveals an integer value
∑
k∈IM Mk(x)z[k]. Since Mk(x)

is binary, we observe that the summation selects and adds the entries of z for
which the corresponding Turing machine accepts the public attribute x. An ap-
pealing feature of the functionality is that the secret key SK(M ,IM ) can decrypt
ciphertexts of unbounded length attributes in unbounded time/ (logarithmic)
space bounds. In contrast, existing FE for AWSs [2, 13] are designed to handle
non-uniform computations that can only handle attributes of bounded lengths
and the public parameters grows linearly with the lengths. Next, we describe the
formulation of Turing machines in L considered in UAWSL.

Turing machines Formulation. We introduce the notations for Logspace
Turning machines (TM) over binary alphabets. A Turing machineM = (Q,yacc, δ)
consists of Q states with the initial state being 1 and a characteristic vector
yacc ∈ {0, 1}Q of accepting states and a transition function δ. When an input
(x, N, T, S) with length N and time, space bounds T, S is provided, the com-
putation of M |N,T,S(x) is performed in T steps passing through configurations
(x, (i, j,W , q)) where i ∈ [N ] is the input tape pointer, j ∈ [S] is the work
tape pointer, W ∈ {0, 1}S the content of work tape, and q ∈ [Q] the state
under consideration. The initial internal configuration is (1, 1,0S , 1) and the
transition function δ determines whether, on input x, it is possible to move
from one internal configuration (i, j,W , q) to the next ((i′, j′,W ′, q′)), namely
if δ(q,x[i],W [j]) = (q′, w′,∆i,∆j). In other words, the transition function δ
on input state q, an input bit x[i] and an work tape bit W [j], outputs the
next state q′, the new bit w′ overwriting w = W [j] by w′ = W ′[j] (keeping
W [j′′] = W ′[j′′] for all j 6= j′′), and the directions ∆i,∆j ∈ {0,±1} to move
the input and work tape pointers.

Our construction of adaptively simulation secure UAWSL depends on two
building blocks: AKGS for Logspace Turing machines, an information-theoretic
tool and slotted IPFE, a computation tool. We only need a bounded slotted IPFE,
meaning that the length of vectors of the slotted IPFE is fixed in the setup,
and we only require the primitive to satisfy adaptive indistinguishability based
security. Hence, our work shows how to (semi-)generically bootstrap a bounded
IPFE to an unbounded FE scheme beyond the inner product functionality. Before
going to describe the UAWSL, we briefly discuss about these two building blocks.

AKGS for Logspace Turing machines. In [18], the authors present an ABE
scheme for Logspace Turing machines by constructing an efficient AKGS for se-
quence of matrix multiplications over Zp. Thus, their core idea was to represent
a Turing machine computation through a sequence of matrix multiplications.
An internal configuration (i, j,W , q) is represented as a basis vector e(i,j,W ,q)

of dimension NS2SQ with a single 1 at the position (i, j,W , q). We define a
transition matrix given by

M(x)[(i, j,W , q), (i
′
, j
′
,W
′
, q
′
)] =


1, if δ(q,x[i],W [j]) = (q′,W ′[j], i′ − i, j′ − j)

and W ′[j′′] = W [j′′] for all j′′ 6= j;

0, otherwise;

such that e>(i,j,W ,q)M(x) = e>(i′,j′,W ′,q′). This holds because the ((i, j,W , q),

(i′, j′,W ′, q′))-th entry of M(x) is 1 if and only if there is a valid transition
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from (q,x[i],W [j]) to (q′,W ′[j], i′ − i, j′ − j). Therefore, one can write the
Turing machine computation by right multiplying the matrix M(x) for T times
with the initial configuration e>(1,1,0S ,1) to reach of one of the final configurations

1[N ]×[S]×{0,1}S ⊗ yacc. In other words, the function M |N,T,S(x) is written as

M |N,T,S(x) = e>(1,1,0S ,1)(MN,S(x))T (1[N ]×[S]×{0,1}S ⊗ yacc) (2.1)

Thus, [18] constructs an AKGS for the the sequence of matrix multiplications as
in Equation (2.1). Their AKGS is inspired from the randomized encoding scheme
of [5] and homomorphic evaluation procedure of [7]. Given the function M |N,T,S
over Zp and two secrets z, β, the garbling procedure computes the label functions

Linit(x) = β + e>(1,1,0S ,1)r0,

for t ∈ [T ] : (Lt,θ)θ = −rt−1 + MN,S(x)rt,
(LT+1,θ)θ = −rT + z1[N ]×[S]×{0,1}S ⊗ yacc.

and outputs the coefficients of these label functions `init, `t = (`t,θ)θ where θ =

(i, j,W , q) and rt ← Z[N ]×[S]×{0,1}S×[Q]
p . To compute the functional value for

an input x, the evaluation procedure add `init with a telescoping sum e>(1,1,0S ,1) ·∑T
t=1(MN,S(x))t−1`t and outputs zM |N,T,S(x) + β. More precisely, it uses the

fact that

e>it+1,jt+1,Wt+1,qt+1
rt+1 = e>it,jt,Wt,qtrt + e>it,jt,Wt,qt(−rt + M(x)rt+1︸ ︷︷ ︸

`t+1

)

A crucial and essential property that the AKGS have is the linearity of evaluation
procedure, meaning that the procedure is linear in the label function values `s
and, hence can be performed even if `s are available in the exponent of a group.
Lin and Luo identify two important security notions of AKGS, jointly called
piecewise security. Firstly, `init can be reversely sampled given a functional value
and all other label values, which is known as the reverse sampleability. Secondly,
`t is random with respect to the subsequent label functions Lt′,θ for all t′ > t
and z, which is called the marginal randomness.

Function Hiding Slotted IPFE. A normal IPFE computes inner product
between two vectors v and u using a secret key IPFE.SKv and a ciphertext
IPFE.CTu. The IPFE is said to satisfy indistinguishability-based security if an
adversary having received many functional secret keys {IPFE.SKv} remains in-
capable to extract any information about the message vector u except the inner
products {v · u}. It is easy to observe that if encryption is done publicly then
no security can be ensured about v from the secret key IPFE.SKv [11] due to
the linear functionality. However, if the encryption algorithm is private then
IPFE.SKv can be produced in a fashion to hide sensitive information about v.
This is termed as function hiding security notion for private key IPFE. Slotted
IPFE [19] is a hybrid of public and private IPFE where vectors are divided into
public and private slots, and function hiding is only guaranteed for the entries
in the private slots. Further, Slotted IPFEs of [19, 18] generate secret keys and
ciphertexts even when the vectors are given in the exponent of source groups
whereas decryption recovers the inner product in the target group.
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2.1 From All-or-Nothing to Functional Encryption

We are all set to describe our approach to extend the framework of [18] from
all-or-nothing to functional encryption for the uniform model of computations.
In a previous work of Datta and Pal [13], an adaptively secure FE for AWS
functionality was built for the non-uniform model of computations, ABPs to be
precise. Their idea was to garble a function fk(x)z[k]+βk during key generation
(keeping z[k] and x as variables) and compute IPFE secret keys to encode the
m labels, and a ciphertext associated to a tuple (x, z) consists of a collection of
IPFE ciphertexts which encode the attributes:

SKf = {IPFE.SKvk,t<m
, ˜IPFE.SKṽk,m

}k,m :
vk,t<m = `k,t, ṽk,m = `k,m where

(`k,t)t ← Garble(fk(x)z[k] + βk) s.t.
∑
k βk = 0

CTx = (IPFE.CTu, { ˜IPFE.CTũk
}k) : u = (1,x), ũk = (1, z[k])

Therefore, using the inner product functionality, decryption computes the actual
label values with x, z[k] as inputs and recovers fk(x)z[k] + βk for each k, and
hence finally

∑
k fk(x)z[k]. However, this approach fails to build UAWSL because

we can not execute the AKGS garbling for the function Mk|N,T,S(x)z[k] + βk at
the time of generating keys. More specifically, the garbling randomness depends
on parameters N,T, S, n that are unknown to the key generator. Note that, in
contrast to the ABE of [18] where z can be viewed as a payload (hence n = 1),
the UAWS functionality has an additional parameter n (length of z) the value of
which is chosen at the time of encryption. Moreover, the compactness of UAWSL

necessitates the secret key size |SK(M ,IM )| = O(|IM |Q) to be linear in the
number of states Q and the ciphertext size |CT(x,T,S)| = O(nTNS2S) be linear
in TNS2S .

The obstacle is circumvented by the randomness distribution technique used
in [18]. Instead of computing the AKGS garblings in key generation or encryp-
tion phase, the label values are produced by a joint effort of both the secret
key and ciphertext. To do so, the garbling is executed under the hood of IPFE
using pseudorandomness, instead of true randomness. That is, some part of the
garbling randomness is sampled in key generation whereas the rest is sampled in
encryption. More specifically, every true random value rt[(i, j,W , q)] is written
as a product rx[(t, i, j,W )]rk,f [q] where rx[(t, i, j,W )] is used in the ciphertext
and rk,f [q] is utilized to encode the transition blocks of Mk in the secret key. To
enable this, the transition matrix associated to Mk is represented as follows:

M(x)[(i, j,W , q), (i′, j′,W ′, q′)] = δ(?)((i, j,W , q), (i′, j′,W ′, q′))×
Mx[i],W [j],W ′[j],i′−i,j′−j [q, q

′]

where δ(?)((i, j,W , q), (i′, j′,W ′, q′)) is 1 if there is a valid transition from the
configuration (i, j,W , q) to (i′, j′,W ′, q′), otherwise 0. Therefore, every block
of M(x)[(i, j,W , q), (i′, j′,W ′, q′)] is either a Q×Q zero matrix or a transition
block that belongs to a small set

T = {Mτ | τ = (x,w,w′,∆i,∆j) ∈ {0, 1}3 × {0,±1}2}
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The (i, j,W , q)-th block row Mτ = Mx,w,w′,∆i,∆j appears at MN,S(x)[(i, j,W , ),
(i′, j′,W ′, )] if x = x[i], w = W [j],∆i = i′ − i,∆j = j′ − j, and W ′ is W with
j-th entry changed to w′. Thus, every label `k,t[i, q] with i = (i, j,W ) can be
decomposed as inner product vk,q · uk,t,i,j,W . More precisely,
`k,t[i, q] = −rt−1[i, q] + Mk,N,S(x)[(i, q), ( , , , )]rt

= −rt−1[i, q] +
∑

w′,∆i,∆j

(Mk,x[i],W [j],w′,∆i,∆jrt[i
′
, ])[q] (i

′
= (i+ ∆i, j + ∆j,W

′
))

= rx[t− 1, i]rk,f [q] +
∑

w′,∆i,∆j

rx[t, i
′
](Mk,x[i],W [j],w′,∆i,∆jrk,f )[q]

= rx[t− 1, i]rk,f [q] +
∑

w′,∆i,∆j

rx[t, i
′
](Mk,τrk,f )[q] = vk,q · uk,t,i,j,W

so that one can set the vectors

vk,q = ( −rk,f [q], 0, (Mk,τrk,f )[q] ‖ 0 ),
ut,i = ( rx[t− 1, i], 0, cτ (x; rx) ‖ 0 )

where cτ (x; rx) (a shorthand of the notation cτ (x, t, i, j,W ; rx) [18]) is given by

cτ (x; rx) =

{
rx[t, i′], if x = x[i], w = W [j];

0, otherwise.

Similarly, the other labels can be decomposed: `k,init = (rk,f [1], βk, 0)·(rx[(0, 1, 1,
0S)], 1, 0) = βk+e>(1,1,0S ,1)r0 and `k,T+1[(i, q)] = ṽk,q·ũk,T+1,i,j,W = −rT [(i, q)]+

z[k]yk,acc[q] where

ṽk,q = ( −rk,f [q], yk,acc[q] ‖ 0 ),
ũT+1,i = ( rx[T, i], z[k] ‖ 0 )

A First Attempt. Armed with this, we now present the first candidate UAWSL

construction in the secret key setting and it supports a single key. We consider

two independent master keys imsk and ˜imsk of IPFE. For simplicity, we assume
the length of private attribute z is the same as the number of Turing machines
present in M = (Mk)k∈IM , i.e., n = |IM |. We also assume that each Turing
machine in the secret key share the same set of states.

SKM ,IM = {IPFE.SKvk,init , IPFE.SKvk,q , ˜IPFE.SKṽk,q}k∈IM :

[[vk,init]]2 = [[( −rk,f [1], βk, 0, ‖ 0 )]]2,
[[vk,q]]2 = [[( −rk,f [q], 0, (Mk,τrk,f )[q] ‖ 0 )]]2,
[[ṽk,q]]2 = [[( −rk,f [q], yk,acc[q] ‖ 0 )]]2

CTx = (IPFE.CTuinit , IPFE.CTu, { ˜IPFE.CTũk}k) :

[[uinit]]1 = [[( rx[(0, 1, 1,0S)], 1, 0, ‖ 0 )]]1,
[[ut<T,i]]1 = [[( rx[t− 1, i], 0, cτ (x; rx) ‖ 0 )]]1,

[[ũk,T+1,i]]1 = [[( rx[T, i], z[k] ‖ 0 )]]1
Observe that the inner products between the ciphertext and secret key vec-

tors yield the label values [[`k,init]]T, [[`k,t]]T = [[(`k,t,θ)θ]]T for θ = (i, j,W , q).
Now, the evaluation procedure of AKGS is applied to obtain the partial values
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[[z[k]Mk|N,T,S(x) + βk]]T. Combining all this values gives the required attribute
weighted sum

∑
kMk|N,T,S(x)z[k] Since

∑
k βk = 0.

However, this scheme is not fully unbounded, in particular, the setup needs
to know the length of the private attribute. To realise this, let us try to prove
the security of the scheme. The main idea of the proof would be to make all
the label values (`k,t,θ)θ truly random and simulated except the initial labels
`k,init so that one can reversely sample `k,init hardcoded with a desired functional
value. Suppose, for instance, the single secret key is queried before the challenge
ciphertext. In this case, the honest label values are first hardwired in the cipher-
text vectors and then the labels are transformed into their simulated version.
This is because the ciphertext vectors are computed after the secret key. So, the
first step is to hardwire the initial label values `k,init into the ciphertext vector
uinit and hence it indicates that the length of uinit must grow with respect to
the number of `k,init’s. The same situation arises while simulating the other label
values through ut,i. In other word, we need to know the size of IM or the length
of z in setup, which is against our desired functionality.

To tackle this, we increase the number of uinit and ut<T,i in the above system.
More specifically, each of these vectors are now computed for all k ∈ [n], just
like ũk,T+1,i. Although this fix the requirement of unboundedness of the system,
there is another issue related to the security that must be solved. Note that, in the
current structure, there is a possibility of mix-and-match attack since, for exam-
ple, ũk1,T+1,i can be paired with ṽk2,q and this results in some unwanted attribute
weighted sum of the form

∑
k 6=k1,k2

Mk(x)z[k] + Mk1(x)z[k2] + Mk2(x)z[k1].
We employ the index encoding technique used in previous works achieving un-
bounded ABE or IPFE [21,23] to overcome the attack. In particular, we add two
extra dimension ρk(−k, 1) in the ciphertext and πk(1, k) in the secret key for
encoding the index k in each of the vectors of the system. Observe that for each
Turing machine Mk an independent randomness πk is sampled. It ensures that
an adversary can only recover the desired attribute weighted sum and whenever
vectors from different indices are paired only a garbage value is obtained.
Combining the Ideas. After combining the above ideas, we describe our
UAWSL supporting a single key as follows.

SKM ,IM = {IPFE.SKvk,init , IPFE.SKvk,q , ˜IPFE.SKṽk,q}k∈IM :

[[vk,init]]2 = [[( πk(1, k), −rk,f [1], βk, 0, ‖ 0 )]]2,
[[vk,q]]2 = [[( πk(1, k), −rk,f [q], 0, (Mk,τrk,f )[q] ‖ 0 )]]2,
[[ṽk,q]]2 = [[( πk(1, k), −rk,f [q], yk,acc[q] ‖ 0 )]]2

CTx = {IPFE.CTuk,init , IPFE.CTuk,t<T,i , ˜IPFE.CTũk,T+1,i
}k :

[[uk,init]]1 = [[( ρk(−k, 1), rx[(0, 1, 1,0S)], 1, 0, ‖ 0 )]]1,
[[uk,t<T,i]]1 = [[( ρk(−k, 1), rx[t− 1, i], 0, cτ (x; rx) ‖ 0 )]]1,
[[ũk,T+1,i]]1 = [[( ρk(−k, 1), rx[T, i], z[k] ‖ 0 )]]1

Although the above construction satisfies our desired functionality, preserves
the compactness of ciphertexts and resists the aforementioned attack, we face
multiple challenges in adapting the proof ideas of previous works [23,18,13].
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Security Challenges and Solutions. Next, we discuss the challenges in prov-
ing the adaptive simulation security of the scheme. Firstly, the unbounded IPFE
scheme of Tomida and Takashima [23] is proved in the indistinguishability-based
model whereas we aim to prove simulation security that is much more chal-
lenging. The work closer to ours is the FE for AWS of Datta and Pal [13], but
it only supports a non-uniform model of computation and the inner product
functionality is bounded. Moreover, since the garbling randomness is distributed
in the secret key and ciphertext vectors, we can not adapt their proof tech-
niques [23, 13] in a straightforward manner. Although the ABE scheme of Lin
and Luo [18] handles a uniform model of computation, they only consider all-or-
nothing type encryptions and hence the adversary is allowed to query secret keys
which always fail to decrypt the challenge ciphertext. In contrast, we construct a
more advanced encryption mechanism which overcomes all the above constraints
of prior works, i.e., our UAWSL is an adaptively simulation secure functional en-
cryption scheme that supports unbounded inner product functionality with a
uniform model of computations over the public attributes.

Our proof technique is inspired by that of [18, 13]. One of the core tech-
nical challenges is involved in the case where the secret key is queried before
the challenge ciphertext. Thus, we focus more on “sk queried before ct” in this
overview. As noted above, in the security analysis of [18] the adversary A is
not allowed to decrypt the challenge ciphertext and hence they completely ran-
domize the ciphertext in the final game. However, since we are building a FE
scheme any secret key queried by A should be able to decrypt the challenge
ciphertext. For this, we use the pre-image sampleability technique from prior
works [12, 13]. In particular, the reduction samples a dummy vector d ∈ Znp
satisfying

∑
kMk|N,T,S(x)z[k] =

∑
kMk|N,T,S(x)d[k] where M = (Mk)k is a

pre-challenge secret key. To plant the dummy vector into the ciphertext, we first
need to make all label values {`k,t,i,q} truly random depending on the terms
rk,f [q]rx[t − 1, i]’s and then turn them into their simulated forms, and finally
traverse in the reverse path to get back the original form of the ciphertext with
d taking place of the private attribute z. In order to make all these labels truly
random, the honest label values are needed to be hardwired into the ciphertext
vectors (since these are computed later) so that we can apply the DDH assump-
tion in G1 to randomize the term rk,f [q]rx[t − 1, i] (hence the label values).
However, this step is much more complicated than [18] since there are two inde-
pendent IPFE systems in our construction and rk,f [q] appears in both vk,q and
ṽk,q (i.e., in both the IPFE systems). We design a two-level nested loop running
over q and t for relocating rk,f [q] from v’s and ṽk,q to u’s and ũk,T+1,i. To this
end, we note that the case of “sk queried after ct” is simpler where we embed the
reversely sampled initial label values into the secret key. Before going to discuss
the hybrids, we first present the simulator of the ideal world.

SKM ,IM = {IPFE.SKvk,init , IPFE.SKvk,q , ˜IPFE.SKṽk,q}k∈IM : (sk queried before ct)
[[vk,init]]2 = [[( πk(1, k), −rk,f [1], βk, 0 ‖ 0 )]]2,

[[vk,q]]2 = [[( πk(1, k), −rk,f [q], 0, (Mk,τrk,f )[q] ‖ 0 )]]2,
[[ṽk,q]]2 = [[( πk(1, k), −rk,f [q], yk,acc[q] ‖ 0 )]]2
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CTx = {IPFE.CTuk,init , IPFE.CTuk,t<T,i , ˜IPFE.CTũk,T+1,i
}k :

[[uk,init]]1 = [[( ρk(−k, 1), rx[(0, 1, 1,0S)], 1, 0, ‖ 1, 0 )]]1,
[[uk,t<T,i]]1 = [[( ρk(−k, 1), rx[t− 1, i], 0, cτ (x; rx) ‖ sx[t, i], 0 )]]1,
[[ũk,T+1,i]]1 = [[( ρk(−k, 1), rx[T, i], d[k] ‖ sx[T + 1, i], 0 )]]1

SKM ,IM = {IPFE.SKvk,init , IPFE.SKvk,q , ˜IPFE.SKṽk,q}k∈IM : (sk queried after ct)
[[vk,init]]2 = [[( πk(1, k), 0, 0, 0 ‖ `k,init, 0 )]]2,

[[vk,q]]2 = [[( πk(1, k), 0, 0, 0 ‖ sk,f [q], 0 )]]2,
[[ṽk,q]]2 = [[( πk(1, k), 0, 0 ‖ sk,f [q], 0 )]]2

where `k,init ← RevSamp((Mk,x,Mk[x]z[k] + βk, {`k,t,i,q}) s.t.∑
k∈IM βk = 0 if IM ⊆ [n]; otherwise βk ← Zp.

Security Analysis. We use a three-step approach and each step consists of a
group of hybrid sequence. At a very high level, we discuss the case of “sk queried
before ct”. In this overview, for simplicity, we assume that the challenger knows
the length of z while it generates the secret key.

First group of Hybrids: The reduction starts with the real scheme. In the first
step, the label function `k,init is reversely sampled with the value Mk[x]z[k] +βk
which is hardwired in uk,init.

vk,init = ( · · · , 1 , 0 , 0 ‖ 0, 0 ),

vk,q = ( · · · , −rk,f [q], 0, (Mk,τrk,f )[q] ‖ sk,f [q] , 0 ),

ṽk,q = ( · · · , −rk,f [q], yk,acc[q] ‖ 0, 0 )

uk,init = ( · · · , `k,init , 0 , 0, ‖ 0, 0 ),

uk,t<T,i = ( · · · , rx[t− 1, i], 0, cτ (x; rx) ‖ 0, 0 ),

ũk,T+1,i = ( · · · , rx[T, i], z[k] ‖ sx[T + 1, i] , 0 )

where `k,init ← RevSamp((Mk,x,Mk[x]z[k] +βk, {`k,t,i,q}) and `k,t,i,q’s are com-
puted honestly. Note that, the secret values {βk} are sampled depending on
whether the queried key is eligible for decryption. More specifically, if IM ⊆ [n],
then βk’s are sampled as in the original key generation algorithm, i.e.,

∑
k βk = 0.

On the other hand, if maxIM > n then βk’s are sampled uniformly at ran-
dom, i.e., they do not necessarily be secret shares of zero. This can be done
by the function hiding property of IPFE which ensures that the distributions
{{IPFE.SK

v
(b)
k

}k∈[n+1,|IM |], {IPFE.CTuk′}k′∈[n]} for b ∈ {0, 1} are indistinguish-

able where

v
(b)
k = ( πk, k · πk, 0, βk + b · rk, 0 ) for k ∈ [n+ 1, |IM |], rk ← Zp
uk′ = ( −k′ · ρk′ , ρk′ , 0, 1, 0 ) for k′ ∈ [n]

Thus, the indistinguishability between the group of hybrids can be guaranteed
by the piecewise security of AKGS and the function hiding security of IPFE.

Second group of Hybrids: The second step is a loop. The purpose of the loop
is to change all the honest label values `k,t,i,q to simulated ones that take the
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form `k,t,i,q = sx[t, i]sk,f [q] where sx[t, i] is hardwired in uk,t,i or ũk,T+1,i and
sk,f [q] is hardwired in vk,q or ṽk,q.

The whole procedure is executed in via a two-level loop with outer loop
running over t and inner loop running over q (both in increasing order). In each
iteration of the loop, we move all occurrences of rk,f [q] into the u’s in one shot
and hardwire the honest labels `k,t,i,q into uk,t,i for all i. Below we present two
crucial intermediate hybrids of the loop when t ≤ T .

vk,q = ( · · · , − 7rk,f [q] − ‖ 0 , 1 , 0 ),

ṽk,q = ( · · · , − 0 − ‖ 0, 1 , 0 ),

uk,t<T,i = ( · · · , − 3rk,f [q] − ‖ sx[t, i] ,
honest `k,t,i,q
= −rx[t− 1, i]rk,f [q] +· · · , 0 ),

ũk,T+1,i = ( · · · , rx[T, i], z[k] ‖ sx[T + 1, i],
honest `k,T+1,i,q

= −rx[T, i]rk,f [q] +· · · , 0 )

where 7rk,f [q] and 3rk,f [q] indicate the presence of rk,f [q] in their respective
positions. The indistinguishability can be argued using the function hiding secu-
rity of IPFE. Next, by invoking DDH in G1, we first make rx[t− 1, i]rk,f [q] truly
random for all i and then transform the label values into their simulated form
`k,i,q = sx[t, i]sk,f [q] again by using DDH in G1 for all i. We emphasize that the
labels `k,T+1,i,q are kept as honest and hardwired when the loop runs for t ≤ T .
Finally, the terms sk,f [q] are shifted back to vk,q or ṽk,q.

vk,q = ( · · · , −rk,f [q] , 0, (Mk,τrk,f )[q] ‖ sk,f [q] , 0 , 0 ),

ṽk,q = ( · · · , −rk,f [q] , yk,acc[q] ‖ 0, 0 , 0 ),

uk,t<T,i = ( · · · , − 0 − ‖ sx[t, i], 0 , 0 ),

ũk,T+1,i = ( · · · , rx[T, i], z[k] ‖ sx[T + 1, i], 0 , 0 )
After the two-label loop finishes, the reduction run an additional loop over q

with t fixed at T + 1 to make the last few label values `k,T+1,i,q simulated. The
indistinguishability between the hybrids follows from a similar argument as in
the two-level loop.

vk,q = ( · · · , −rk,f [q], 0, (Mk,τrk,f )[q] ‖ sk,f [q], 0, 0 ),

ṽk,q = ( · · · , −rk,f [q], yk,acc[q] ‖ sk,f [q] , 0, 0 ),

uk,t<T,i = ( · · · , −0− ‖ sx[t, i], 0, 0 ),

ũk,T+1,i = ( · · · , − 0 − ‖ sx[T + 1, i], 0, 0 )

Third group of Hybrids: After all the label values `k,t,i,q are simulated, the
third step uses a few more hybrids to reversely sample `1,init and `k,init|k>1 with
the hardcoded valuesM(x)>z+β1 and βk|k>1 respectively. This can be achieved
through a statistical transformation on {βk|

∑
k βk = 0}. Finally, we are all set
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to insert the dummy vector d in place of z keeping A’s view identical.

vk,init = ( · · · , 1, 0, 0 ‖ 0, 0, 0 ),

vk,q = ( · · · , − 0 − ‖ sk,f [q], 0, 0 ),

ṽk,q = ( · · · , − 0 − ‖ sk,f [q], 0, 0 ),

uk,init = ( · · · , `k,init , 0, 0, ‖ 0, 0, 0 ),

uk,t<T,i = ( · · · , −0− ‖ sx[t, i], 0, 0 ),

ũk,T+1,i = ( · · · , −0− ‖ sx[T + 1, i], 0, 0 )

where all the label values {`k,t,i,q} are simulated and the initial label values are
computed as follows

`1,init ← RevSamp(M1,x,M(x)>d+ β1, {`k,t,i,q}),
`k,init ← RevSamp(Mk,x, βk, {`k,t,i,q}), for all k > 1

From this hybrid we can traverse in the reverse direction all the way to the
very first hybrid while keeping the private attribute as d. We also rearrange the
elements using the security of IPFE so that the distribution of the ciphertext
does not change with the occurrence of the secret key whether it comes before
or after the ciphertext. This is important for the public key UAWSL. The formal
security is discussed in Theorem 4.1.
From Single Key to Full-Fledge UAWSL. The next and final goal is to
bootstrap the single key, single ciphertext secure UAWSL to a public key UAWSL

scheme that supports releasing many secret keys and ciphertexts. Observe that
our secret key UAWSL already supports multiple keys and single ciphertext.
However, it fails to remain secure if two ciphertexts are published. This is because
the piecewise security of AKGS can not be guaranteed if the label functions are
reused. Our bootstrapping procedure takes inspiration from prior works [18,13],
that is to sample a random multiplier s ← Zp at the time of encryption, which
will randomize the label values in the exponent of G2. In particular, using IPFE
security the random multiplier s is moved to the secret key vectors where the
DDH assumption ensures that s`k,t,i,q’s are pseudorandom in the exponent of
G2. To upgrade the scheme into public key setting, we employ the Slotted IPFE
that enables encrypting into the public slots using the public key whereas the
function hiding security still holds in the private slots. We describe below our
public key UAWSL scheme.

SKM ,IM = {IPFE.SKvpad IPFE.SKvk,init , IPFE.SKvk,q , ˜IPFE.SKṽk,q}k∈IM : α← Zp
[[vk,init]]2 = [[( 0, α, 0, 0, 0, ‖ 0 )]]2,
[[vk,init]]2 = [[( πk(1, k), 0, −rk,f [1], βk, 0, ‖ 0 )]]2,

[[vk,q]]2 = [[( πk(1, k), 0, −rk,f [q], 0, (Mk,τrk,f )[q] ‖ 0 )]]2,
[[ṽk,q]]2 = [[( πk(1, k), 0, −rk,f [q], αyk,acc[q] ‖ 0 )]]2

CTx = {IPFE.CTuk,init , IPFE.CTuk,t<T,i , ˜IPFE.CTũk,T+1,i
}k : s← Zp

[[upad]]1 = [[( 0, s, 0, 0, 0, ‖ ⊥ )]]1,
[[uk,init]]1 = [[( ρk(−k, 1), 0, s · rx[(0, 1, 1,0S)], s, 0, ‖ ⊥ )]]1,

[[uk,t<T,i]]1 = [[( ρk(−k, 1), 0, s · rx[t− 1, i], 0, s · cτ (x; rx) ‖ ⊥ )]]1,
[[ũk,T+1,i]]1 = [[( ρk(−k, 1), 0, s · rx[T, i], s · z[k] ‖ ⊥ )]]1
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The slots at the left/right of “ ‖ ” are public/private. The ciphertexts are com-
puted using only the public slots and the private slots are utilized only in the
security analysis. At a very high level, we utilize the triple-slot encryption tech-
nique devised in [13] to simulate the pre-challenge secret keys with a dummy
vector encoded into the ciphertext and hardwire the functional value into the
post-challenge secret keys. As mentioned earlier that the triple-slot encryption
technique [13] was devised for non-uniform model which crucially uses the fact
that the garbling randomness can be (fully) sampled in the key generation pro-
cess. It does not hold in our setting. Thus, we design a more advanced three-slot
encryption technique that is compatible with distributed randomness of AKGS
garbling procedure. More specifically, we add one additional hidden subspace
in order to realize such sophisticated mechanism for Logspace Turing machines.
This additional subspace enables us to simulate the post-ciphertext secret keys
with distributed randomness. However, shuttle technical challenges still remain
to be overcome due to the structure of AKGS for Logspace Turing machines. We
prove the security of the scheme in Theorem 5.1 and provide detailed security
analysis in the full version.

3 Preliminaries

In this section, we provide the necessary definitions and backgrounds that will
be used in the sequence.

Notations. We denote by λ the security parameter that belongs to the set of
natural number N and 1λ denotes its unary representation. We use the notation
s← S to indicate the fact that s is sampled uniformly at random from the finite
set S. For a distribution X , we write x ← X to denote that x is sampled at
random according to distribution X . A function negl : N → R is said to be a
negligible function of λ, if for every c ∈ N there exists a λc ∈ N such that for all
λ > λc, |negl(λ)| < λ−c.

Let Expt be an interactive security experiment played between a challenger
and an adversary, which always outputs a single bit. We assume that ExptCA is
a function of λ and it is parametrized by an adversary A and a cryptographic
protocol C. Let ExptC,0A and ExptC,1A be two such experiment. The experiments are
computationally/statistically indistinguishable if for any PPT/computationally
unbounded adversary A there exists a negligible function negl such that for all
λ ∈ N,

AdvCA(λ) = |Pr[1← ExptC,0A (1λ)]− Pr[1← ExptC,1A (1λ)]| < negl(λ)

We write ExptC,0A
c
≈ ExptC,1A if they are computationally indistinguishable (or

simply indistinguishable). Similarly, ExptC,0A
s
≈ ExptC,1A means statistically indis-

tinguishable and ExptC,0A ≡ ExptC,1A means they are identically distributed.

Sets and Indexing. For n ∈ N, we denote [n] the set {1, 2, . . . , n} and for
n,m ∈ N with n < m, we denote [n,m] be the set {n, n + 1, . . . ,m}. We use
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lowercase boldface, e.g., v, to denote column vectors in Znp and uppercase bold-
face, e.g., M, to denote matrices in Zn×mp for p, n,m ∈ N. The i-th compo-
nent of a vector v ∈ Znp is written as v[i] and the (i, j)-th element of a matrix
M ∈ Zn×mp is denoted by M[i, j]. The transpose of a matrix M is denoted

by M> such that M>[i, j] = M[j, i]. To write a vector of length n with all
zero elements, we write 0n or simply 0 when the length is clear from the con-
text. Let u,v ∈ Znp , then the inner product between the vectors is denoted as

u ·v = u>v =
∑
i∈[n] u[i]v[i] ∈ Zp. We define generalized inner product between

two vectors u ∈ ZI1
p ,v ∈ ZI2

p by u · v =
∑
i∈I1∩I2

u[i]v[i].

Tensor Products. Let u ∈ ZI1
p and v ∈ ZI2

p be two vectors, their tensor

product w = u ⊗ v is a vector in ZI1×I2
p with entries defined by w[(i, j)] =

u[i]v[j]. For two matrices M1 ∈ ZI1×I2
p and M1 ∈ ZI

′
1×I

′
2

p ,their tensor product

M = M = M1 ⊗M2 is a matrix in Z(I1×I′1)×I2×I′2
p with entries defined by

M[(i1, i
′
1), (i2, i

′
2)] = M1[i1, i2]M2[i′1, i

′
2].

Currying. Currying is the product of partially applying a function or specifying
part of the indices of a vector/matrices, which yields another function with fewer
arguments or another vector/matrix with fewer indices. We use the usual syntax
for evaluating a function or indexing into a vector/matrix, except that unspeci-

fied variables are represented by “ ”. For example, let M ∈ Z([I1]×[I2])×([J1]×[J2])
p

and i1 ∈ I1, j2 ∈ J2, then M[(i1, ), ( , j2)] is a matrix N ∈ Z[I2]×[J2]
p such that

N[i2, j1] = M[(i1, i2), (j1, j2)] for all i2 ∈ I2, j1 ∈ J1.

Coefficient Vector: Let f : ZIp → Zp be an affine function with coefficient

vector f ∈ ZSp for S = {const} ∪ {coefi| i ∈ I}. Then for any x ∈ ZIp , we have
f(x) = f [const] +

∑
i∈I f [coefi]x[i].

3.1 Bilinear Groups and Hardness Assumptions

We use a pairing group generator G that takes as input 1λ and outputs a tuple
G = (G1,G2,GT, g1, g2, e) where G1,G2,GT are groups of prime order p = p(λ)
and gi is a generator of the group Gi for i ∈ {1, 2}. The map e : G1 ×G2 → GT

satisfies the following properties:

– bilinear : e(ga1 , g
b
2) = e(g1, g2)ab for all a, b ∈ Zp.

– non-degenerate: e(g1, g2) generates GT.

The group operations in Gi for i ∈ {1, 2,T} and the map e are efficiently
computable in deterministic polynomial time in the security parameter λ. For
a matrix A and each i ∈ {1, 2,T}, we use the notation [[A]]i to denote gAi
where the exponentiation is element-wise. The group operation is written ad-
ditively while using the bracket notation, i.e. [[A + B]]i = [[A]]i + [[B]]i for
matrices A and B. Observe that, given A and [[B]]i, we can efficiently com-
pute [[AB]]i = A · [[B]]i. We write the pairing operation multiplicatively, i.e.
e([[A]]1, [[B]]2) = [[A]]1[[B]]2 = [[AB]]T.
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Assumption 3.1 (Symmetric External Diffie-Hellman Assumption) We
say that the SXDH assumption holds in a pairing group G = (G1,G2,GT, g1, g2, e)
of order p, if the DDH assumption holds in Gi, i.e., {[[a]]i, [[b]]i, [[ab]]i} ≈ {[[a]]i, [[b]]i,
[[c]]i} for i ∈ {1, 2,T} and a, b, c← Zp.

3.2 Turing Machine Formulation

In this subsection, we describe the main computational model of this work,
which is Turing machines with a read-only input and a read-write work tape.
This type of Turing machines are used to handle decision problems belonging
to space-bounded complexity classes such as Logspace predicates. We define
below Turing machines with time complexity T and space complexity S. The
Turing machine can either accept or reject an input string within this time/space
bound. We also stick to the binary alphabet for the shake of simplicity.

Definition 3.1 (Turing machine with time/space bound computation)

[18] A (deterministic) Turing machine over {0, 1} is a tuple M = (Q,yacc, δ),
where Q ≥ 1 is the number of states (we use [Q] as the set of states and 1 as the
initial state), yacc ∈ {0, 1}Q indicates whether each state is accepting, and

δ : [Q]× {0, 1} × {0, 1} → [Q]× {0, 1} × {0,±1} × {0,±1},
(q, x, w) 7→ (q′, w′,∆i,∆j)

is the state transition function, which, given the current state q, the symbol x
on the input tape under scan, and the symbol w on the work tape under scan,
specifies the new state q′, the symbol w′ overwriting w, the direction ∆i to
which the input tape pointer moves, and the direction ∆j to which the work
tape pointer moves. The machine is required to hang (instead of halting) once
it reaches on the accepting state, i.e., for all q ∈ [Q] such that yacc[q] = 1 and
all x,w ∈ {0, 1}, it holds that δ(q, x, w) = (q, w, 0, 0).

For input length N ≥ 1 and space complexity bound S ≥ 1, the set of internal
configurations of M is

CM,N,S = [N ]× [S]× {0, 1}S × [Q],

where (i, j,W , q) ∈ CM,N,S specifies the input tape pointer i ∈ [N ], the work
tape pointer j ∈ [S], the content of the work tape W ∈ {0, 1}S and the machine
state q ∈ [Q].

For any bit-string x ∈ {0, 1}N for N ≥ 1 and time/space complexity bounds
T, S ≥ 1, the machine M accepts x within time T and space S if there exists
a sequence of internal configurations (computation path of T steps) c0, . . . , cT ∈
CM,N,S with ct = (it, jt,Wt, qt) such that

i0 = 1, j0 = 1,W0 = 0S , q0 = 1(initial configuration),

for 0 ≤ t < T

{
δ(qt,x[it],Wt[jt]) = (qt+1,Wt+1[jt], it+1 − it, jt+1 − jt),

Wt+1[j] = Wt[j] for all j 6= jt (valid transitions);
yacc[qT ] = 1 (accepting).
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Denote by M |N,T,S the function {0, 1}N → {0, 1} mapping x to whether M
accepts x in time T and space S. Define TM = {M | M is a Turing machine} to
be the set of all Turing machines.

Note that,the above definition does not allow the Turing machines moving
off the input/work tape. For instance, if δ specifies moving the input pointer
to the left/right when it is already at the leftmost/rightmost position, there is
no valid next internal configuration. This type of situation can be handled by
encoding the input string described in [18]. The problem of moving off the work
tape to the left can be managed similarly, however, moving off the work tape to
the right is undetectable by the machine, and this is intended due to the space
bound. That is, when the space bound is violated, the input is silently rejected.

3.3 Functional Encryption for Unbounded Attribute-Weighted Sum
for Turing machines

We formally present the syntax of FE for unbounded attribute-weighted sum
(AWS) and define adaptive simulation security of the primitive. We consider the
set of all Turing machines TM = {M | M is a Turing machine} with time bound
T and space bound S.

Definition 3.2 (The AWS Functionality for Turing machines) For any n,
N ∈ N, the class of attribute-weighted sum functionalities is defined as

{
((x ∈ {0, 1}N , 1T , 12S

), z ∈ Znp ) 7→M(x)
>
z =

∑
k∈IM

z[k] ·Mk(x)

∣∣∣∣∣ N, T, S ≥ 1,
Mk ∈ TM ∀k ∈ [n],

IM ⊆ [n] with |IM | ≥ 1

}

Definition 3.3 (Functional Encryption for Attribute-Weighted Sum) An
unbounded-slot FE for unbounded attribute-weighted sum associated to the set
of Turing machines TM and the message space M consists of four PPT algorithms
defined as follows:

Setup(1λ): The setup algorithm takes as input a security parameter and outputs
the master secret-key MSK and the master public-key MPK.

KeyGen(MSK, (M,IM)): The key generation algorithm takes as input MSK
and a tuple of Turing machines M = (Mk)k∈IM . It outputs a secret-key
SK(M ,IM ) and make (M , IM ) available publicly.

Enc(MPK, ((xi, 1Ti , 1Si), zi)i∈[N ]): The encryption algorithm takes as input
MPK and a message consisting of N number of public-private pair of attributes
(xi, zi) ∈ M such that the public attribute xi ∈ {0, 1}Ni for some Ni ≥ 1 with
time and space bounds given by Ti, Si ≥ 1, and the private attribute zi ∈ Znip .
It outputs a ciphertext CT(xi,Ti,Si) and make (xi, Ti, Si)i∈[N ] available publicly.

Dec((SK(M,IM ), (M,IM)), (CT(xi,Ti,Si), (xi, Ti, Si)i∈[N ])): The decryption
algorithm takes as input SK(M ,IM ) along with the tuple of Turing machines and
index sets (M , IM ), and a ciphertext CT(xi,Ti,Si) along with a collection of
associated public attributes (xi, Ti, Si)i∈[N ]. It outputs a value in Zp or ⊥.
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Correctness: The unbounded-slot FE for unbounded attribute-weighted sum
is said to be correct if for all ((xi ∈ {0, 1}Ni , 1Ti , 1Si), zi ∈ Znip )i∈[N ] and for all
(M = (Mk)k∈IM , IM ), we get

Pr


Dec((SK(M,IM ), (M , IM )), (CT(xi,Ti,Si)

, (xi, Ti, Si)i∈[N ])) =
∑
i∈N

∑
k∈IM

Mk(xi)zi[k] :

(MSK,MPK)← Setup(1λ), SK(M,IM ) ← KeyGen(MSK, (M , IM )),

CT(xi,Ti,Si)
← Enc(MPK, ((xi, 1

Ti , 1Si ), zi)i∈[N ]), IM ⊆ [ni] ∀i ∈ N

 = 1

We now define the adaptively simulation-based security of FE for unbounded
attribute-weighted sum for Turing machines.

Definition 3.4 (Adaptive Simulation Security) Let (Setup,KeyGen,Enc,Dec)
be an unbounded-slot FE for unbounded attribute-weighted sum for TM and mes-
sage space M. The scheme is said to be (Φpre,ΦCT,Φpost)-adaptively simulation
secure if for any PPT adversary A making at most ΦCT ciphertext queries and
Φpre,Φpost secret key queries before and after the ciphertext queries respectively,

we have ExptUAWS
A,real(1

λ)
c
≈ ExptUAWS

A,ideal(1
λ), where the experiments are defined as

follows. Also, an unbounded-slot FE for attribute-weighted sums is said to be
(poly,ΦCT, poly)-adaptively simulation secure if it is (Φpre,ΦCT,Φpost)-adaptively
simulation secure as well as Φpre and Φpost are unbounded polynomials in the
security parameter λ.

ExptUAWS
A,real(1

λ)

1. 1N ← A(1λ);
2. (MSK,MPK)← Setup(1λ);
3. (((xi, 1

Ti , 1Si), zi ∈ Znip )i∈[N ]) ←
AOKeyGen(MSK,·)(MPK);

4. CT(xi,Ti,Si) ← Enc(MPK, ((xi, 1
Ti , 1Si),
zi)i∈[N ]);

5. return AOKeyGen(MSK,·)(MPK,CT)

ExptUAWS
A,ideal(1

λ)

1. 1N ← A(1λ);
2. (MSK∗,MPK)← Setup∗(1λ, 1N );
3. (((xi, 1

Ti , 1Si), zi ∈ Znip )i∈[N ]) ←
AOKeyGen∗0(MSK∗,·)(MPK)

4. CT(xi,Ti,Si) ← Enc∗(MPK,MSK∗, (xi, 1
Ti ,

1Si , ni)i∈[N ],V);

5. return A
O

KeyGen∗1(MSK∗,(xi,1
Ti ,1Si )i∈[N ],·,·)(MPK,

CT(xi,Ti,Si))

OKeyGen(MSK,·)

1. input: (M , IM )
2. output: SK(M ,IM )

OKeyGen∗0(MSK∗,·)

1. input: (Mφ, IMφ
) for φ ∈ [Φpre]

2. output: SK(Mφ,IMφ
)

Enc∗(MPK,MSK∗, (xi, 1
Ti , 1Si , ni)i∈[N ], ·)

1. input: V =
{(Mφ, IMφ

),
∑
i∈[N ]Mφ(xi)

>zi
: φ ∈ [Φpre]}

2. output: CT(xi,Ti,Si)

OKeyGen∗1(MSK∗,(x∗i )i∈[N],·,·)

1. input: (Mφ, IMφ
),
∑
i∈NMφ(xi)

>zi
for φ ∈ [Φpost]

2. output: SK(Mφ,IMφ
)

3.4 Arithmetic Key Garbling Scheme for Turing machines

Lin and Luo [18] introduced arithmetic key garbling scheme (AKGS). The notion
of AKGS is an information theoretic primitive, inspired by randomized encodings
[5] and partial garbling schemes [14]. It garbles a function f : Znp → Zp (possibly
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of size (m + 1)) along with two secrets z, β ∈ Zp and produces affine label
functions L1, . . . , Lm+1 : Znp → Zp. Given f , an input x ∈ Znp and the values
L1(x), . . . , Lm+1(x), there is an efficient algorithm which computes zf(x) + β
without revealing any information about z and β. Lin and Luo [18] additionally
design AKGS for Turing machines with time/space bounds. Many parts of this
section is verbatim to the sections 5 and 7.1 of [18]. Thus, the reader familiar
with the notion of AKGS for Turing machines can skip this section. We define
AKGS for the function class

F = {M |N,T,S : ZNp → Zp, N, T, S ≥ 1, p prime}

for the set of all time/space bounded Turing machine computations. We refer
to [18] for a detailed discussion on the computation of Turing machines as a
sequence of matrix multiplications, and the construction of AKGS for matrix
multiplication.

Definition 3.5 (Arithmetic Key Garbling Scheme (AKGS), [18]) An arith-
metic garbling scheme (AKGS) for the function class F , consists of two efficient
algorithms:

Garble((M, 1N , 1T , 1S, p), z, β): The garbling is a randomized algorithm that
takes as input a tuple of a function M |N,T,S over Zp from F , an input length N ,
a time bound T , a space bound S with N,T, S ≥ 1, a prime p, and two secret
integers z, β ∈ Zp. It outputs a set of affine functions Linit, (Lt,θ)t∈[T+1],θ∈CM,N,S :

ZNp → Zp which are called label functions that specifies how an input of length
N is encoded as labels. Pragmatically, it outputs the coefficient vectors `init,
(`t,θ)t∈[T+1],θ∈CM,N,S .

Eval((M, 1N , 1T , 1S, p), x, `init, (`t,θ)t∈[T+1],θ∈CM,N,S
): The evaluation is a

deterministic algorithm that takes as input a function M |N,T,S over Zp from F ,
an input vector x ∈ ZNp and the integers `init, (`t,θ)t∈[T+1],θ∈CM,N,S ∈ Zp which

are supposed to be the values of the label functions at x ∈ ZNp . It outputs a
value in Zp.

Correctness: The AKGS is said to be correct if for all tuple (M, 1N , 1T , 1S , p),
integers z, β ∈ Zp and x ∈ ZNp , we have

Pr

 Eval((M, 1N , 1T , 1S , p),x, `init, (`t,θ)t∈[T+1],θ∈CM,N,S ) = zM |N,T,S(x) + β :

(`init, (`t,θ)t∈[T+1],θ∈CM,N,S )← Garble((M, 1N , 1T , 1S , p), z, β),where `← L(x)

 = 1

The scheme have deterministic shape, meaning that the number of label func-
tions,m = 1+(T+1)NS2SQ, is determined solely by the tuple (M, 1N , 1T , 1S , p),
independent of z, β and the randomness in Garble. The number of label func-
tions m is called the garbling size of M |N,T,S under this scheme. For the shake of
simpler representation, let us number the label values (or functions) as 1, . . . ,m
in the lexicographical order where the first two label values are `init, `(1,1,1,0S ,1)

and the last label value is `(T+1,N,S,1S ,Q).
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Linearity: The AKGS is said to be linear if the following conditions hold:

– Garble((M, 1N , 1T , 1S , p), z, β) uses a uniformly random vector r ← Zmp as its

randomness, where m is determined solely by (M, 1N , 1T , 1S , p), independent
of z, β.

– The coefficient vectors `1, . . . , `m produced by Garble((M, 1N , 1T , 1S , p), z, β)
are linear in (z, β, r).

– Eval((M, 1N , 1T , 1S , p),x, `1, . . . , `m) is linear in `1, . . . , `m.

For our UAWS, we consider the piecewise security notion of AKGS defined by
Lin and Luo [18]4.

Definition 3.6 (Piecewise Security of AKGS, [18]) An AKGS = (Garble,
Eval) for the function class F is piecewise secure if the following conditions
hold:

– The first label value is reversely sampleable from the other labels together
with (M, 1N , 1T , 1S , p) and x. This reconstruction is perfect even given all the
other label functions. Formally, there exists an efficient algorithm RevSamp
such that for all M |N,T,S ∈ F , z, β ∈ Zp and x ∈ ZNp , the following distribu-
tions are identical:{

(`1, `2, . . . , `m) :
(`1, . . . , `m)← Garble((M, 1N , 1T , 1S , p), z, β),
`1 ← L1(x)

}
,

(`1, `2, . . . , `m) :
(`1, . . . , `m)← Garble((M, 1N , 1T , 1S , p), z, β),
`j ← Lj(x) for j ∈ [2,m],

`1 ← RevSamp((M, 1N , 1T , 1S , p),x, zM |N,T,S(x) + β, `2, . . . , `m)


– For the other labels, each is marginally random even given all the label

functions after it. Formally, this means for allM |N,T,S ∈ F , z, β ∈ Zp,x ∈ Znp
and all j ∈ [2,m], the following distributions are identical:{

(`j , `j+1, . . . , `m) :
(`1, . . . , `m)← Garble((M, 1N , 1T , 1S , p), z, β),
`j ← Lj(x)

}
,

{
(`j , `j+1, . . . , `m) :

(`1, . . . , `m)← Garble((M, 1N , 1T , 1S , p), z, β),
`j ← Zp

}

We now define special structural properties of AKGS as given in [18], related to
the piecewise security of it.

Definition 3.7 (Special Piecewise Security of AKGS, [18]) An AKGS =
(Garble,Eval) for a function class F is special piecewise secure if for any (M, 1N ,
1T , 1S , p) ∈ F , z, β ∈ Zp and x ∈ ZNp , it has the following special form:

– The first label value `1 is always non-zero, i.e., Eval((M, 1N , 1T , 1S , p),x, 1, 0,
. . . , 0) 6= 0 where we take `1 = 1 and `j = 0 for 1 < j ≤ m.

4 The usual simulation-based security considered in previous works [14, 13] follows
from the piecewise security of AKGS.
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– Let r ← Zmp be the randomness used in Garble((M, 1N , 1T , 1S , p), z, β). For

all j ∈ [2,m]. the label function Lj produced by Garble((M, 1N , 1T , 1S , p), z,
β; r) can be written as

Lj(x) = kjr[j − 1] + L′j(x; z, β, r[j], r[j + 1], . . . , r[m])

where kj ∈ Zp is a non-zero constant (not depending on x, z, β, r) and L′j is
an affine function of x whose coefficient vector is linear in (z, β, r[j], r[j +
1], . . . , r[m]). The component r[j − 1] is called the randomizer of Lj and `j .

Lemma 3.1 ( [18]) A special piecewise secure AKGS = (Garble,Eval) for a
function class F is also piecewise secure. The RevSamp algorithm (required in
piecewise security) obtained for a special piecewise secure AKGS is linear in
γ, `2, . . . ,
`m+1 and perfectly recovers `1 even if the randomness of Garble is not uniformly
sampled. More specifically, we have the following:

Eval((M, 1
N
, 1
T
, 1
S
, p),x, `1, . . . , `m)

= `1Eval((M, 1
N
, 1
T
, 1
S
, p),x, 1, 0, . . . , 0) + Eval((M, 1

N
, 1
T
, 1
S
, p),x, 0, `2, . . . , `m) (3.1)

RevSamp((M, 1
N
, 1
T
, 1
S
, p),x, γ, `2, . . . , `m)

= (Eval((M, 1
N
, 1
T
, 1
S
, p),x, 1, 0, . . . , 0))

−1
(γ − Eval((M, 1

N
, 1
T
, 1
S
, p),x, 0, `2, . . . , `m)) (3.2)

Note that, Equation (3.1) follows from the linearity of Eval and Equation (3.2)
ensures that RevSamp perfectly computes `1 (which can be verified by Equa-
tion (3.1) with γ = zM |N,T,S(x) + β).

Lemma 3.2 ( [18]) A piecewise secure AKGS = (Garble,Eval) is also special
piecewise secure after an appropriate change of variable for the randomness used
by Garble.

4 (1-SK, 1-CT, 1-Slot)-FE for Unbounded AWS in L

In this section, we build a secret-key, 1-slot FE scheme for the unbounded attribute-
weighted sum functionality in L. At a high level, the scheme satisfies the following
properties:
– The setup is independent of any parameters, other than the security parame-

ter λ. Specifically, the length of vectors and attributes, number of Turing ma-
chines and their sizes are not fixed a-priori during setup. These parameters
are flexible and can be chosen at the time of key generation or encryption.

– A secret key is associated with a tuple (M , IM ), where M = (Mk)k∈IM
is a tuple of Turing machines with indices k from an index set IM . For
each k ∈ IM ,Mk ∈ L, i.e., Mk is represented by a deterministic log-space
bounded Turing machine (with an arbitrary number of states).

– Each ciphertext encodes a tuple of public-private attributes (x, z) of lengths
N and n respectively. The runtime T and space bound S for all the machines
in M are associated with x which is the input of each machine Mk.

– Finally, decrypting a ciphertext CTx that encodes (x, z) with a secret key
SKM ,IM that is tied to (M , IM ) reveals the value

∑
k∈IM z[k] · Mk(x)

whenever IM ⊆ [n].
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We build an FE scheme for the functionality sketched above (also described
in Definition 3.2) and prove it to be simulation secure against a single cipher-
text and secret key query, where the key can be asked either before or after
the ciphertext query. Accordingly, we denote the scheme as SK-UAWSL(1,1,1) =
(Setup,KeyGen,Enc,Dec), where the index (1, 1, 1) represents in order the num-
ber of secret keys, ciphertexts and slots supported. Below, we list the ingredients
for our scheme.

1. IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec): a secret-key, function-
hiding IPFE based on G, where G = (G1,G2,GT, g1, g2, e) is pairing group
tuple of prime order p. We can instantiate this from [18].

2. AKGS = (Garble,Eval): a special piecewise-secure AKGS for the function class
M = {M |N,T,S : ZNp → Zp | M ∈ TM, N, T, S ≥ 1, p prime} describing the
set of time/space bounded Turing machines. In our construction, the Garble
algorithm would run implicitly under the hood of IPFE and thus, it is not
invoked directly in the scheme.

We are now ready to describe the SK-UAWSL(1,1,1) = (Setup,KeyGen,Enc,Dec).

Setup(1λ): On input the security parameter, fix a prime integer p ∈ N and
define the slots for two IPFE master secret keys as follows:

S1-UAWS =
{
index1, index2, init, rand, rand

temp, randcomp, randtemp,comp, acc, sim, simtemp, simcomp
}⋃{

tbτ , tb
temp
τ , tbcomp

τ , tbtemp,comp
τ

∣∣ τ ∈ T },
S̃1-UAWS =

{
index1, index2, init, rand, rand

temp, randtemp,comp, acc, acctemp, sim, simtemp
}

Finally, it returns MSK = (IPFE.MSK, IPFE.M̃SK).
KeyGen(MSK, (M , IM )): On input the master secret key MSK = (IPFE.MSK,

IPFE.M̃SK) and a function tuple M = (Mk)k∈IM indexed w.r.t. an index
set IM ⊂ N of arbitrary size, parse Mk = (Qk,yk, δk) ∈ TM ∀k ∈ IM and
sample the set of elements{

βk ← Zp |
∑
k

βk = 0 mod p

}
k∈IM

For all k ∈ IM , do the following:
1. ForMk = (Qk,yk, δk), compute its transition blocks Mk,τ ∈ {0, 1}Qk×Qk ,
∀τ ∈ T .

2. Sample independent random vectors rk,f ← ZQkp and a random element
πk ∈ Zp.

3. For the following vector vk,init, compute a secret key IPFE.SKk,init ←
IPFE.KeyGen(IPFE.MSK, [[vk,init]]2):

vector index1 index2 init rand acc tbτ
the other
indices

vk,init πk k · πk rk,f [1] 0 βk 0 0

4. For each q ∈ [Qk], compute the following secret keys

IPFE.SKk,q ← IPFE.KeyGen(IPFE.MSK, [[vk,q]]2) and

˜IPFE.SKk,q ← IPFE.KeyGen(IPFE.M̃SK, [[ṽk,q]]2),

where the vectors vk,q, ṽk,q are defined as follows:
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vector index1 index2 init rand acc tbτ
the other
indices

vk,q πk k · πk 0 −rk,f [q] 0 (Mk,τrk,f ) [q] 0

vector index1 index2 rand acc the other
indices

ṽk,q πk k · πk −rk,f [q] yk[q] 0

Finally, it returns the secret key as

SK(M,IM ) =

(
(M , IM ),

{
IPFE.SKk,init,

{
IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}
k∈IM

)
.

Enc(MSK, (x, 1T , 12S ), z): On input the master secret key MSK = (IPFE.MSK,

IPFE.M̃SK), a public attribute x ∈ {0, 1}N for some arbitrary N ≥ 1 with

time and space complexity bounds given by T, S ≥ 1 (as 1T , 12S ) respectively,
and the private attribute z ∈ Znp for some arbitrary n ≥ 1, it does the
following:

1. Sample a random vector rx ← Z[0,T ]×[N ]×[S]×{0,1}S
p .

2. For each k ∈ [n], do the following:
(a) Sample a random element ρk ← Zp.
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.Enc(IPFE.MSK, [[uk,init]]1)

for the vector uk,init:
vector index1 index2 init rand acc tbτ

the other
indices

uk,init −k · ρk ρk rx[(0, 1, 1, 0S)] 0 1 0 0

(c) For all t ∈ [T ], i ∈ [N ], j ∈ [S],W ∈ {0, 1}S , do the following:
(i) Compute the transition coefficients cτ (x; t, i, j,W ; rx),∀τ ∈ T

using rx.
(ii) Compute the ciphertext IPFE.CTk,t,i,j,W ← IPFE.Enc(IPFE.MSK,

[[uk,t,i,j,W ]]1) for the vector uk,t,i,j,W :
vector index1 index2 init rand acc tbτ

the other
indices

uk,t,i,j,W −k · ρk ρk 0 rx[(t−1, i, j,W )] 0 cτ (x; t, i, j,W ; rx) 0

(d) For t = T+1, compute the ciphertext ˜IPFE.CTk,T+1,i,j,W ← ĨPFE.Enc

(IPFE.M̃SK, [[ũk,T+1,i,j,W ]]1) for the vector ũk,T+1,i,j,W :
vector index1 index2 rand acc the other

indices

ũk,T+1,i,j,W −k · ρk ρk rx[(T, i, j,W )] z[k] 0

3. Finally, it returns the ciphertext as

CT(x,T,S) =

(
(x, T, S) ,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T ],

˜IPFE.CTk,T+1,i,j,W

}
k∈[n],i∈[N],j∈[S],W∈{0,1}S

)
.

Dec(SK(M ,IM ),CT(x,T,S)): On input a secret key SK(M ,IM ) and a ciphertext
CT(x,T,S), do the following:
1. Parse SK(M ,IM ) and CT(x,T,S) as follows:

SK(M,IM ) =

((
(Mk)k∈IM , IM

)
,
{
IPFE.SKk,init,

{
IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}
k∈IM

)
,

Mk = (Qk,yk, δk),

CT(x,T,S) =

(
(x, T, S) ,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T ],

˜IPFE.CTk,T+1,i,j,W

}
k∈[n],i∈[N],j∈[S],W∈{0,1}S

)
,x ∈ {0, 1}N .
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2. Output ⊥, if IM 6⊆ [n]. Else, select the sequence of ciphertexts for the
indices k ∈ IM as

CT(x,T,S) =

(
(x, T, S) ,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T ],

˜IPFE.CTk,T+1,i,j,W

}
k∈IM ,i∈[N],j∈[S],W∈{0,1}S

)

3. Recall that ∀k ∈ IM , CMk,N,S = [N ]× [S]× {0, 1}S × [Qk], and that we
denote any element in it as θk = (i, j,W , q) ∈ CMk,N,S where the only
component in the tuple θk depending on k is q ∈ [Qk]5. Invoke the IPFE
decryption to compute all label values as:
∀k ∈ IM : [[`k,init]]T = IPFE.Dec(IPFE.SKk,init, IPFE.CTk,init)

∀k ∈ IM , t ∈ [T ], θk = (i, j,W , q) ∈ CMk,N,S :
[[`k,t,θk ]]T = IPFE.Dec(IPFE.SKk,q, IPFE.CTk,t,i,j,W )

∀k ∈ IM , θk = (i, j,W , q) ∈ CMk,N,S :

[[`k,T+1,θk ]]T = IPFE.Dec( ˜IPFE.SKk,q, ˜IPFE.CTk,T+1,i,j,W )
4. Next, invoke the AKGS evaluation and obtain the combined value

[[µ]]T =
∏

k∈IM

Eval

((
Mk, 1

N
, 1
T
, 1

2S
, p

)
,x, [[`k,init]]T,

{
[[`k,t,θk ]]T

}
t∈[T+1],θk∈CMk,N,S

)

5. Finally, it returns µ = DLoggT
([[µ]]T), where gT = e(g1, g2). Similar

to [2], we assume that the desired attribute-weighted sum lies within
a specified polynomial-sized domain so that discrete logarithm can be
solved via brute-force.

Correctness: Correctness follows from that of IPFE and AKGS. The first step
is to observe that all the AKGS label values are correctly computed as functions
of the input x. This holds by the correctness of IPFE and AKGS encoding of
the iterated matrix-vector product representing any TM computation. The next
(and final) correctness follows from the linearity of AKGS.Eval.

In more detail, for all k ∈ IM , θk = (i, j,W , q) ∈ CMk,N,S , let Lk,init, Lk,t,θk
be the label functions corresponding to the AKGS garbling of Mk = (Qk,yk, δk).
By the definitions of vectors vk,init,uinit and the correctness of IPFE, we have

`k,init = (−kρkπk + kπkρk) + rx[(0, 1, 1,0S)]rk,f [1] + βk

= r0[(1, 1,0S , 1)] + βk = eT(1,1,0S ,1)r0 + βk = Lk,init(x).

Next, ∀k ∈ IM , t ∈ [T ], q ∈ [Qk], the structures of vk,q,ut,i,j,W and the
correctness of IPFE yields
`k,t,i,j,W ,q = (−kρkπk + kπkρk)− rx[(t− 1, i, j,W )]rk,f [q] +

∑
τ∈T

cτ (x; t, i, j,W ; rx)(Mk,τrk,f )[q]

= −rt−1[(i, j,W , q)] +
∑
τ∈T

cτ (x; t, i, j,W ; rx)(Mk,τrk,f )[q] = Lk,t,i,j,W ,q(x)

5 For simplicity of notations, we enumerate the states of each Mk as 1, . . . , q, i.e.,
[Qk] = [Q] for some Q ∈ N.
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Finally, ∀k ∈ IM , q ∈ [Qk], the vectors ṽk,q, ũk,T+1,i,j,W and the ĨPFE cor-
rectness again yields

`k,T+1,i,j,W ,q = (−kρkπk + kπkρk)− rx[(T, i, j,W )]rk,f [q] + z[k]yk[q]

= −rT [(i, j,W , q)] + z[k]
(
1[N ]×[S]×{0,1}S ⊗ yk

)
[(i, j,W , q)]

= Lk,T+1,i,j,W ,q(x).
The above label values are computed in the exponent of the target group

GT. Once all these are generated correctly, the linearity of Eval implies that the
garbling can be evaluated in the exponent of GT. Thus, this yields

[[µ]]T =
∏

k∈IM

Eval

((
Mk, 1

N
, 1
T
, 1

2S
, p

)
,x, [[`k,init]]T,

{
[[`k,t,θk ]]T

}
t∈[T+1],θk∈CMk,N,S

)

= [[
∑

k∈IM

Eval((Mk, 1
N
, 1
T
, 1

2S
, p),x, `k,init, {`k,t,θk}t∈[T+1],θk∈CMk,N,S

)]]T

= [[
∑

k∈IM

(z[k] ·Mk|N,T,S(x) + βk)]]T = [[
∑

k∈IM

z[k] ·Mk|N,T,S(x)]]T = [[M(x)
>
z]]T

Theorem 4.1 Assuming the SXDH assumption holds in G and the IPFE is func-
tion hiding secure, the above construction of (1-SK, 1-CT, 1-Slot)-FE for UAWS
is adaptively simulation secure.

The security analysis is provided in the full version.

5 1-Slot FE for Unbounded AWS for L

In this section, we construct a public key 1-slot FE scheme for the unbounded
attribute-weighted sum functionality for L. The scheme satisfies the same prop-
erties as of the SK-UAWSL(1,1,1). However, the public key scheme supports releas-
ing polynomially many secret keys and a single challenge ciphertext, hence we
denote the scheme as PK-UAWSL(poly,1,1).

Along with the AKGS for Logspace Turing machines we require a function-
hiding slotted IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.SlotEnc, IPFE.Dec)
based on G, where G = (G1,G2,GT, g1, g2, e) is pairing group tuple of prime or-
der p. We now describe the PK-UAWSL(poly,1,1) = (Setup,KeyGen,Enc,Dec).

Setup(1λ): On input the security parameter, fix a prime integer p ∈ N and
define the slots for generating two pair of IPFE master keys as follows:

Spub =
{
index1, index2, pad, init

pub, randpub, accpub
}
∪ {tbpubτ |τ ∈ T },

Scopy = {initcopy, randcopy} ∪ {tbcopyτ |τ ∈ T },
Spriv = Scopy ∪ S1-UAWS ∪ {padcopy, padtemp, accperm, simcopy},

S̃pub ={index1, index2, rand
pub, accpub},

S̃1,copy ={randcopy1 , acccopy1 }, S̃2,copy = {randcopy2 , acccopy2 },

S̃priv = S̃1,copy ∪ S̃2,copy ∪ S̃1-UAWS ∪ {simcopy}
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It generates (IPFE.MPK, IPFE.MSK) ← IPFE.Setup(Spub,Spriv) and

(IPFE.M̃PK, IPFE.M̃SK) ← IPFE.Setup(S̃pub, S̃priv) and returns MSK =

(IPFE.MSK, IPFE.M̃SK) and MPK = (IPFE.MPK, IPFE.M̃PK).
KeyGen(MSK, (M , IM )): On input the master secret key MSK = (IPFE.MSK,

IPFE.M̃SK) and a function tuple M = (Mk)k∈IM indexed w.r.t. an index
set IM ⊂ N of arbitrary size, it parses Mk = (Qk,yk, δk) ∈ TM ∀k ∈ IM
and samples the set of elements{

α, βk ← Zp | k ∈ IM ,
∑
k

βk = 0 mod p

}
.

It computes a secret key IPFE.SKpad ← IPFE.KeyGen(IPFE.MSK, [[vpad]]2) for
the following vector vpad:

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
vpad 0 0 α 0 0 0 0 0

For all k ∈ IM , do the following:
1. For Mk = (Qk,yk, δk), compute transition blocks Mk,τ ∈ {0, 1}Qk×Qk ,
∀τ ∈ Tk.

2. Sample independent random vector rk,f ← ZQkp and a random element
πk ∈ Zp.

3. For the following vector vk,init, compute a secret key IPFE.SKk,init ←
IPFE.KeyGen(IPFE.MSK, [[vk,init]]2):

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
vk,init πk k · πk 0 rk,f [1] 0 βk 0 0

4. For each q ∈ [Qk], compute the following secret keys

IPFE.SKk,q ← IPFE.KeyGen(IPFE.MSK, [[vk,q]]2) and

˜IPFE.SKk,q ← IPFE.KeyGen(IPFE.M̃SK, [[ṽk,q]]2)

where the vectors vk,q, ṽk,q are defined as follows:
vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
vk,q πk k · πk 0 0 −rk,f [q] 0 (Mk,τrk,f )[q] 0

vector index1 index2 randpub accpub in S̃priv
ṽk,q k k · πk −rk,f [q] α · yk[q] 0

Finally, it returns the secret key as

SK(M,IM ) =

(
(M , IM ), IPFE.SKpad,

{
IPFE.SKk,init,

{
IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}
k∈IM

)
.

Enc(MPK, (x, 1T , 12S ), z): On input the master public key MPK = (IPFE.MPK,

IPFE.M̃PK), a public attribute x ∈ {0, 1}N for some arbitrary N ≥ 1 with

time and space complexity bounds given by T, S ≥ 1 (as 1T , 12S ) respectively,
and the private attribute z ∈ Znp for some arbitrary n ≥ 1, it samples s← Zp
and compute a ciphertext IPFE.CTpad ← IPFE.Enc(IPFE.MPK, [[upad]]1) for
the vector upad :
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vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
upad 0 0 s 0 0 0 0 0

Next, it does the following:

1. Sample a random vector rx ← Z[0,T ]×[N ]×[S]×{0,1}S
p .

2. For each k ∈ [n], do the following:
(a) Sample a random element ρk ← Zp.
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.SlotEnc(IPFE.MPK,

[[uk,init]]1) for the vector uk,init:
vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
uk,init −k · ρk ρk 0 s · rx[(0, 1, 1, 0S)] 0 s 0 ⊥

(c) For all t ∈ [T ], i ∈ [N ], j ∈ [S],W ∈ {0, 1}S , do the following:

(i) Compute the transition coefficients cτ (x; t, i, j,W ; rx),∀τ ∈ T
using rx.

(ii) Compute IPFE.CTk,t,i,j,W ← IPFE.SlotEnc(IPFE.MPK,
[[uk,t,i,j,W ]]1) for the vector uk,t,i,j,W :

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
uk,t,i,j,W −k ·ρk ρk 0 0 s · rx[(t− 1, i, j,W )] 0 s ·cτ (x; t, i, j,W ; rx) ⊥

(d) For t = T + 1, and for all i ∈ [N ], j ∈ [S],W ∈ {0, 1}S , compute

˜IPFE.CTk,T+1,i,j,W ← IPFE.SlotEnc(IPFE.M̃PK, [[ũk,T+1,i,j,W ]]1) for
the vector ũk,T+1,i,j,W :

vector index1 index2 randpub accpub in S̃priv
ũk,T+1,i,j,W −k · ρk ρk s · rx[(T, i, j,W )] s · z[k] ⊥

3. Finally, it returns the ciphertext as

CT(x,T,S) =

(
(x, T, S) , n, IPFE.CTpad,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T ],

˜IPFE.CTk,T+1,i,j,W

}
k∈[n],i∈[N],j∈[S],W∈{0,1}S

)
.

Dec(SK(M ,IM ),CT(x,T,S)): On input a secret key SK(M ,IM ) and a ciphertext
CT(x,T,S), do the following:
1. Parse SK(M ,IM ) and CT(x,T,S) as follows:

SK(M,IM ) =

((
(Mk)k∈IM , IM

)
, IPFE.SKpad,

{
IPFE.SKk,init,

{
IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}
k∈IM

)
,Mk = (Qk,yk, δk),

CT(x,T,S) =

(
(x, T, S) , n, IPFE.CTpad,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T ],

˜IPFE.CTk,T+1,i,j,W

}
k∈[n],i∈[N],j∈[S],W∈{0,1}S

)
.

2. Output ⊥, if IM 6⊂ [n]. Else, select the sequence of ciphertexts for the
indices k ∈ IM as

CT(x,T,S) =

(
(x, T, S) ,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T ],

˜IPFE.CTk,T+1,i,j,W

}
k∈IM ,i∈[N],j∈[S],W∈{0,1}S

)
.
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3. Use the IPFE decryption to obtain [[µpad]]T ← IPFE.Dec(IPFE.SKpad,
IPFE.CTpad).

4. Recall that ∀k ∈ IM , CMk,N,S = [N ]× [S]× {0, 1}S × [Qk], and that we
denote any element in it as θk = (i, j,W , q) ∈ CMk,N,S where the only
component in the tuple θk depending on k is q ∈ [Qk]. Invoke the IPFE
decryption to compute all label values as:

∀k ∈ IM : [[`k,init]]T = IPFE.Dec(IPFE.SKk,init, IPFE.CTk,init)
∀k ∈ IM , t ∈ [T ], θk = (i, j,W , q) ∈ CMk,N,S :

[[`k,t,θk ]]T = IPFE.Dec(IPFE.SKk,q, IPFE.CTk,t,i,j,W )
∀k ∈ IM , θk = (i, j,W , q) ∈ CMk,N,S :

[[`k,T+1,θk ]]T = IPFE.Dec( ˜IPFE.SKk,q, ˜IPFE.CTk,T+1,i,j,W )

5. Next, invoke the AKGS evaluation procedure and obtain the combined
value

[[µ]]T =
∏

k∈IM

Eval

((
Mk, 1

N
, 1
T
, 1

2S
, p

)
,x, [[`k,init]]T,

{
[[`k,t,θk ]]T

}
t∈[T+1],θk∈CMk,N,S

)

6. Finally, it returns µ′ such that [[µ]]T = ([[µpad]]T)µ
′
, where gT = e(g1, g2).

Similar to [2], we assume that the desired attribute-weighted sum lies
within a specified polynomial-sized domain so that µ′ can be searched
via brute-force.

The correctness of our PK-UAWSL(poly,1,1) can be shown similarly to our secret
key scheme of the previous section. Please see the full version of the paper for
details.

Theorem 5.1 Assuming the SXDH assumption holds in G and the IPFE is func-
tion hiding secure, the above construction of 1-Slot FE for UAWS is adaptively
simulation secure.

The description of the simulator and the proof of the above theorem is given
in the full version.
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