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Abstract. In this paper, we study zero-knowledge (ZK) proofs for cir-
cuit satisfiability that can prove to n verifiers at a time efficiently. The
proofs are secure against the collusion of a prover and a subset of t
verifiers. We refer to such ZK proofs as multi-verifier zero-knowledge
(MVZK) proofs and focus on the case that a majority of verifiers are
honest (i.e., t < n/2). We construct efficient MVZK protocols in the
random oracle model where the prover sends one message to each veri-
fier, while the verifiers only exchange one round of messages. When the
threshold of corrupted verifiers t < n/2, the prover sends 1/2 + o(1) field
elements per multiplication gate to every verifier; when t < n(1/2 − ε)
for some constant 0 < ε < 1/2, we can further reduce the communi-
cation to O(1/n) field elements per multiplication gate per verifier. Our
MVZK protocols demonstrate particularly high scalability: the proofs are
streamable and only require a memory proportional to what is needed
to evaluate the circuit in the clear.

1 Introduction

Zero-knowledge (ZK) proofs allow a prover P, who knows a witness w, to con-
vince a verifier V that C(w) = 0 for a circuit C, in the way that V learns
nothing beyond the validity of the statement. One important type of ZK proofs
is non-interactive ZK (NIZK), where the prover just needs to send one mes-
sage to a verifier. This is particularly useful as the prover’s message (i.e., the
proof) can be reused to convince multiple verifiers. The efficiency of NIZK proofs
has been significantly improved in recent years, based on different frameworks
(e.g., [44,35,42,34,12,15,17,49,11,10,48,18,54,3,13] and references therein). An-
other important type of ZK proofs is designated-verifier ZK (DVZK), where an
interactive protocol needs to be executed between the prover and the verifier.
Compared to NIZK, DVZK protocols can often achieve a higher efficiency to
prove to one verifier and scale to a very large circuit with a small memory. For
example, recent DVZK proof systems [50,28,8,51,6,27] can prove tens of millions
of gates per second with very limited bandwidth. However, such an advantage
diminishes when the number of verifiers increases: DVZK protocols require the
prover to execute the protocol with every verifier, while an NIZK proof enables
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all verifiers to verify the proof concurrently after the prover generates and pub-
lishes the proof.

In this work, we explore the middle ground between NIZK and DVZK: we
study the efficiency of ZK proofs when a prover wants to prove to multiple
verifiers (i.e., multi-verifier ZK, MVZK in short). This setting was first studied
by Abe, Cramer and Fehr [2]. Specifically, we consider that a prover P needs
to convince n verifiers V1, . . . ,Vn, and the adversary can potentially corrupt a
subset of t verifiers and optionally the prover. More specifically, we focus on the
honest-majority setting, meaning that t < n/2 verifiers could be corrupted and
can collude with the prover. Such an MVZK protocol is closely connected to
DVZK in which the prover can only prove to a designated set of verifiers who
are known ahead of the protocol execution. However, due to the fact that there
is a majority of honest verifiers, it turns out the MVZK protocol can achieve
some surprising features, e.g., being non-interactive between the prover and the
verifiers in the information-theoretic setting.

Because of the involvement of multiple verifiers, there are two types of com-
munications: 1) between the prover and verifiers and 2) between different veri-
fiers. We say that the protocol is a non-interactive multi-verifier ZK (NIMVZK)
proof if the prover only sends one message to each verifier. We say that the
protocol is a strong NIMVZK proof if it is an NIMVZK and that there is only
one round of communication between verifiers. We allow the verifiers to commu-
nicate for one round because without any communication between the verifiers,
constructing NIMVZKs appears as difficult as constructing NIZKs.

In the MVZK setting, the known protocol [2] or those that can be implicitly
constructed from the known techniques [14,16] either are not concretely efficient
or only prove some specific circuits instead of generic circuits. Furthermore, none
of the prior work considers how to stream the MVZK proofs, which is a crucial
property to prove large-scale circuits.

1.1 Our Contribution

In this paper, we propose streamable NIMVZK protocols on generic circuits
with both theoretical insights and practical implication. The protocols work in
the honest-majority setting, meaning that the number t of corrupted verifiers
is less than n/2, where n is the total number of verifiers. Compared to NIZKs,
our NIMVZK protocols are much cheaper in terms of computational cost and
use significantly less memory. Compared to DVZK, our protocols have three
advantages: 1) the computation is still cheaper; 2) we can achieve the strongly
non-interactive property; and 3) the communication is lower, especially when the
number of verifiers is large. Specifically, our results are summarized as follows:

1. We present an information-theoretic NIMVZK protocol, where the prover
sends 1 + o(1) field elements per multiplication gate to every verifier in one
message (thus non-interactive), and the verifiers interact in both communi-
cation and rounds logarithmic to the circuit size. We consider the protocol
as a stepping stone to introduce the following two main NIMVZK protocols.
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2. Assuming a random oracle (and thus in the computational setting), we con-
struct a strong NIMVZK proof based on Shamir secret sharing, where the
verifiers only need to communicate for one round. The prover needs to send
1/2 + o(1) field elements per multiplication gate to each verifier and the
communication cost between verifiers is still logarithmic.
The challenge is that the message sent by the prover consists of the shares
of every verifier that are private information and thus cannot be revealed.
This makes the verifiers have no way to compute the public message that can
be used as the input of a random oracle in the Fiat-Shamir transform. We
proposed an efficient approach to allow Fiat-Shamir to work across multiple
verifiers, i.e., enabling the prover to generate a small public message that can
be securely used in the Fiat-Shamir transform, even if a minority of verifiers
collude with the malicious prover.

3. When the corruption threshold is smaller (i.e., t < n(1/2− ε) for some con-
stant 0 < ε < 1/2), we use packed secret sharing (PSS) [30] to construct a
strong NIMVZK protocol for proving a single generic circuit, which further
reduces the communication complexity to O(1/n) field elements per mul-
tiplication gate per verifier, while the communication complexity between
verifiers is logarithmic to the circuit size. If applying the state-of-art se-
cure multi-party computation (MPC) protocol [39] based on PSS to design
an interactive MVZK protocol, the resulting protocol can achieve the same
communication complexity. However, the constant in the O notation is sig-
nificantly larger than our protocol.
For a single generic circuit, PSS has been used in MPC protocols [24,32,31,39]
in the honest-majority setting, but the overhead is often high due to the
constraint how to pack the wire values to realize secure evaluation of the
circuit. In the ZK setting, our strong NIMVZK protocol can remove the
constraint, and achieve optimality for packing wire values and significantly
better efficiency for checking correctness of packed sharings. For example,
the state-of-the-art PSS-based MPC protocol [39] incurs a total communica-
tion cost of O(n5k2) to check the consistency between packed input sharings
and output sharings, where k > εn + 1/2 is the number of secrets packed
in a single sharing. When being improved in the ZK setting, the total com-
munication cost of our protocol can be reduced to O(n2k2). Furthermore,
we develop a non-interactive verification technique for checking correctness
of PSS-based multiplication tuples, while the approach used in MPC [39]
requires logarithmic rounds.

In summary, we designed concretely efficient MVZK protocols, which provide the
attractive properties of NIZK (non-interactivity) and DVZK (memory efficiency
and prover-computation efficiency). Although it is not applicable to all settings
(due to the assumption of honest-majority verifiers), when it is applicable, the
performance improvements to existing protocols are huge.

Streamable property of our NIMVZK. Although the communication com-
plexity between the prover and verifiers is linear to the circuit size, all our pro-
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tocols as described above are streamable, meaning that the prover can generate
and send the proof on-the-fly and no party needs to store the whole proof during
the protocol execution. As a result, the memory consumption of our protocols
is proportional to what is needed to evaluate the statement in the clear. Fur-
thermore, we make our strong NIMVZK proofs streamable in the way that the
rounds among verifiers keep unchanged (i.e., only one round between verifiers is
needed for proving multiple batches of gates).

Asymmetric property of our strong NIMVZK. One surprising feature of
our two strong NIMVZK protocols in the computational setting is the asymmetry
among verifiers. Specifically, among all verifiers, a subset of t verifiers only has
a sublinear communication complexity: each verifier only receives O(n+ log |C|)
field elements from the prover, and only needs to send O(n) field elements to
other verifiers, where |C| is the number of multiplication gates in a circuit C. It
makes the protocols particularly suitable for the applications where the verifiers
are a mix of powerful servers and lower-resource mobile devices.

1.2 Applications

Non-interactive MVZK proofs have the following applications:

1. Drop-in replacement to NIZK and DVZK. NIMVZK can be used in
normal ZK applications as long as the identifies of the verifiers are known
ahead of time and satisfy the security requirement (e.g., a majority of verifiers
are honest for our NIMVZK protocols). For example, as described in [21], a
ZK proof could potentially be used by Apple for auditing their Child Sexual
Abuse Material detection protocol. Our NIMVZK protocol can be used when
such an auditing needs to be performed to multiple agencies efficiently.

2. Honest-majority MPC with input predicate check. In some compu-
tational tasks, it is desired to execute the MPC protocol among multiple
parties only if the input of every party is valid, where the validity is defined
by some predicate. Although generic MPC can realize this functionality, us-
ing our NIMVZK protocols could further reduce the overhead of proving the
predicate. As our protocols are based on Shamir sharings, it can be seam-
lessly integrated with MPC protocols also based on Shamir sharings.

3. Private aggregation systems. Systems like Prio [23] use a set of servers
to collect and aggregate users’ data. To prevent mistakes and attacks, users
need to prove to the servers that their data is valid, which was done via
secret-shared non-interactive proof in Prio. However, the protocol assumes
the prover not to collude with any verifier for soundness. Our protocol could
be a more efficient alternative and is sound even when a user colludes with a
minority of servers. On the other hand, for zero-knowledge, Prio can tolerate
all-but-one corrupted servers, while our protocols need to assume an honest
majority of servers.
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1.3 Related Work

The concept of multi-verifier ZK proofs was first discussed by Burmester and
Desmedt [19], where they focus on how to save broadcasts. Lepinski, Micali
and shelat [45] proposed a fair ZK proof, which ensures that even malicious
verifiers who collude with the prover can learn nothing beyond the validity of
the statement if the honest verifiers accept the proof. More recently, Baldimtsi et
al. [5] proposed a crowd verifiable zero-knowledge proof, where the focus is to
transform a Sigma protocol to their setting. All of the above works focus on
extending the ZK functionality rather than the concrete efficiency of ZK proofs.

Abe, Cramer and Fehr [2] first studied the MVZK setting, and proposed a
strong NIMVZK protocol for circuit satisfiability if at most t < n/3 verifiers are
corrupted. Their protocol builds on the technique [1], and adopts the Pedersen
commitment and verifiable secret sharing. Due to the usage of public-key op-
erations for every non-linear gate, their protocol is not concretely efficient. In
addition, the ZK proof by Groth and Ostrovsky [43] could be transformed into
a strong NIMVZK proof in the corruption threshold of t < n/2, but their proof
requires public-key operations per gate and thus is not concretely efficient. Com-
pared to the NIMVZK proofs [2,43], our proofs do not require any public-key
operation and are concretely efficient.

Although Boneh et al. [14] did not explicitly consider the MVZK setting, the
ZK proofs proposed by them work in this setting. However, these protocols are
only efficient applicable for circuits that can be represented by low-degree poly-
nomials (instead of generic circuits). Recently, Boyle et al. [16] shown how to
use the ZK proof [14] to design honest-majority MPC protocols with malicious
security. However, they only considered how to prove correctness of degree-2
relations, and did not involve MVZK proofs on generic circuits yet. In addi-
tion, Boyle et al. [16] proposed an approach based on Fiat-Shamir to make the
ZK proof on inner-product tuples non-interactive, where the difference between
the secret and randomness needs to be sent. One can generalize their approach
into our MVZK framework, and make the resulting MVZK proof strongly non-
interactive. However, their approach requires 3× larger communication than
ours. Both works [14,16] did not consider how to make the ZK proofs stream-
able, which is addressed by our work.

One can also use maliciously secure MPC protocols in the honest-majority
setting (e.g., [32,46,47,22,16,40,41,38,39]) to directly obtain interactive MVZK
proofs. However, both of communication and computation costs will be signifi-
cantly larger than our NIMVZK protocols. While NIZK can be transformed into
NIMVZK directly, these NIZK proofs with performance similar to our proofs
(e.g., recent succinct non-interactive proofs [48,18,54,13,53]) require memory
linear to the circuit size, which could lead to a huge memory consumption for
circuits with billions of gates. Our NIMVZK protocols are streamable, and the
memory consumption of these protocols is proportional to what is needed to
evaluate the circuit in the clear (meaning that these protocols only need a small
memory cost for proving very large circuits). Compared to MVZK that is con-
structed from the recent VOLE-based DVZK proofs [50,28,8,51,6,27] by execut-
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ing the protocol with every verifier, our strong NIMVZK proofs reduce round
complexity from O(1) to only one round between the prover and verifiers, and
significantly improve efficiency.

Very recently, two works by Applebaum et al. [4] and Baum et al. [7] also
presented MVZK protocols in the setting that a majority of verifiers are honest.
Applebaum et al. [4] focuses on a theoretical perspective, and gave two strong
NIMVZK protocols based on “Minicrypt”-type assumptions in the plain model.
Baum et al. [7] adopted an approach similar to ours, and aim to construct con-
cretely efficient MVZK protocols. In particular, they proposed two NIMVZK
protocols that allow to identify the cheating verifiers (and thus have stronger
security than ours); however, their protocols only tolerate a smaller number of
corrupted verifiers (either t < n/3 or t < n/4). Neither of the works [4,7] adopted
packed secret sharings and achieve the communication complexity of O(1/n) per
multiplication gate per verifier.

2 Preliminaries

We discuss some important preliminaries here and provide more preliminaries
(e.g., security model) in the full version [52].

Notation. We use λ and ρ to denote the computational and statistical security
parameters, respectively. We use x← S to denote that sampling x uniformly at
random from a finite set S. For a, b ∈ Z with a ≤ b, we write [a, b] = {a, . . . , b}.
We will use bold lower-case letters like x for column vectors, and denote by xi
the i-th component of x with x1 the first entry. For two vectors x,y of dimension
m, x � y denotes the inner product of x and y (i.e., x � y =

∑
i∈[1,m] xi · yi).

Sometimes, when the dimension of vectors x,y is 1 (i.e., x = x and y = y),
we abuse the notation x � y to denote the multiplication x · y for the sake of
simplicity. We use logk to denote the logarithm in base k, and denote by log the
logarithm notation log2 for simplicity. For a finite field F, we use K to denote
a degree-r extension field of F. In particular, we fix some monic, irreducible
polynomial f(X) of degree r and write K ∼= F[X]/f(X). Every field element
w ∈ K can be denoted uniquely as w =

∑
h∈[1,r] wh · Xh−1 with wh ∈ F for

all h ∈ [1, r]. When we write arithmetic expressions involving both elements of
F and elements of K, it is understood that field elements in F are viewed as the
polynomials lying in K that have only constant terms. For a circuit C, we use
|C| to denote the number of multiplication gates.

Zero-knowledge functionality. Our ZK functionality for proving circuit satis-
fiability against multiple verifiers is shown in Figure 1. Let n be the total number
of verifiers. We consider the MVZK protocols in the honest-majority setting, i.e,
the adversary allows to corrupt at most t < n/2 verifiers. The adversary is also
allowed to corrupt the prover. When the prover is honest, functionality Fmvzk

defined in Figure 1 captures zero-knowledge, meaning that t malicious verifiers
cannot learn any information on the witness. When the prover is malicious, Fmvzk
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Functionality Fmvzk

This functionality runs with a prover P and n verifiers V1, . . . ,Vn. Let H denote
the set of honest verifiers. This functionality operates as follows:

1. Upon receiving (prove, C,w) from P and (verify, C) from Vi for all i ∈ [1, n]
where C is a circuit, set b := true if C(w) = 0 and b := false otherwise.

2. Send b to the adversary. For each i ∈ H, wait for an input from the adversary,
and then do the following:
– If it is continuei, send b to the verifier Vi.
– If it is aborti, send abort to the verifier Vi.

Fig. 1: Zero-knowledge functionality for honest-majority verifiers.

captures soundness, i.e., the malicious prover cannot make the honest verifiers
accept if C(w) 6= 0, even though it colludes with t malicious verifiers.

We can consider MVZK protocols as special MPC protocols. Thus, we adopt
the notion of security with abort in the MPC setting to define Fmvzk and other
functionalities defined in the subsequent sections, where the corrupted verifiers
may receive output while the honest verifiers do not. Our definition does not
guarantee unanimous abort, meaning that some honest verifiers may receive out-
put while other honest verifiers abort. Nevertheless, it is easy to tune our pro-
tocols to satisfy the security notion of unanimous abort, by having the verifiers
broadcast whether they will abort or not at the end of the protocol execution [36].

Communication model. The default communication between the prover and
verifiers is private channel, unless otherwise specified. We assume that all ver-
ifiers are connected via authenticated channels. In the computational setting,
the prover sometimes needs to communicate with all verifiers over a broadcast
channel. Since we allow abort, the broadcast channel can be established using a
standard echo-broadcast protocol [36], where the communication overhead can
be improved to be constant small using a collision-resistant hash function. In
our strong NIMVZK protocols, the verifiers need to exchange the shares in one
round at the end of protocol execution. In parallel with the communication of
shares, every verifier can send the hash output of the messages broadcast by the
prover to all other verifiers. Therefore, although the echo-broadcast protocol is
used in our MVZK proofs, we can still achieve strongly non-interactive.

Linear secret sharing scheme. In our NIMVZK protocols, we will extensively
use linear secret sharing schemes (LSSSs) with a threshold t. A t-out-of-n LSSS
enables a secret x to be shared among n parties, such that no subset of t parties
can learn any information on x, while any subset of t+1 parties can reconstruct
the secret. To align with the description of our NIMVZK protocols, we let the
prover P play the role of the dealer and let every verifier Vi obtain the shares.
We require that LSSS supports the following procedures:
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– [x] ← Share(x): In this procedure, a dealer P shares a secret x among the
parties V1, . . . ,Vn, such that Vi gets a share xi for i ∈ [1, n]. The sharing of
x output by this procedure is denoted by [x].

– x ← Open([x]): Given a sharing [x], this procedure is executed by parties
V1, . . . ,Vn. At the end of the execution, if [x] is not valid, then all honest
parties abort; otherwise, every party will output x.

– Linear combination: Given the public coefficients c0, c1, . . . , c` and secret
sharings [x1], . . . , [x`], V1, . . . ,Vn can locally compute [y] =

∑`
i=1 ci · [xi]+c0,

such that y =
∑`
i=1 ci · xi + c0 holds.

We describe two LSSS instantiations shown in the full version [52], where one is
Shamir secret sharing and the other is packed secret sharing (a generalization of
Shamir secret sharing). For Shamir secret sharing, for a vector x = (x1, . . . , xm),
we will use [x] to denote ([x1], . . . , [xm]). For packed secret sharing, for a vector
x ∈ Fk, we will use [x] to denote a single packed sharing that stores k secrets of
x. We assume that the shares of any t parties are uniformly random, which is
satisfied by the two instantiations.

3 Technical Overview

We describe the ideas in our NIMVZK protocols and how we come up with these
constructions in this section. We leave the full details and their proofs of security
in later sections.

3.1 Information-Theoretic Non-Interactive MVZK

We introduce our non-interactive MVZK proofs starting from an information-
theoretic NIMVZK protocol that is a warm-up to describe the techniques in our
strong NIMVZK protocols.

Our approach for NIMVZK. Our NIMVZK proofs follow the “commit-and-
prove” paradigm, where secrets are committed using Shamir sharings and the
security of commitments is guaranteed in the honest-majority setting. At a high
level, our information-theoretic protocol (as well as other two protocols discussed
later) have the following steps.

1. For the output z of each circuit-input gate or multiplication gate, the prover
runs Share(z) to distribute the shares of [z] to all verifiers. Since LSSS is
used, the addition gates can be locally computed by the verifiers.

2. For a circuit with N multiplication gates, we have N multiplication triples
([xi], [yi], [zi]) over a field F that the verifiers need to check. All parties jointly
sample a uniform element χ ∈ K, and then compute the inner-product tuple:

[x] :=
(
[x1], . . . , χ

N−1 · [xN ]
)
, [y] := ([y1], . . . , [yN ]) , [z] :=

∑N
i=1χ

i−1 · [zi].

If there exists one incorrect multiplication triple, then the inner-product
tuple defined as above is also incorrect, except with probability N−1

|K| .
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3. The verifiers check correctness of the inner-product tuple ([x], [y], [z]) with
logarithmic communication.

In the information-theoretic setting, the verifiers can call a coin-tossing func-
tionality (shown in the full version [52]) to sample the coefficient χ, but χ is
not available to the prover while keeping non-interactive between the prover and
verifiers. The distributed ZK proofs by Boneh et al. [14] could check correctness
of an inner-product tuple, but it only works when the prover knows the secrets.
To use their protocol directly, we would need the verifiers to send χ to the prover,
and then the round complexity between the prover and verifiers will be at least
3 rounds. Our task is to design a non-interactive protocol that verifies correct-
ness of an inner-product tuple, where the secrets are shared among verifiers and
unknown to the prover. We adapt the checking approach by Goyal et al. [40,41]
(building upon the technique [14]) from the MPC setting to the MVZK setting,
and construct a verification protocol to check correctness of inner-product tuples.
In particular, our verification protocol makes the prover generate the random
sharings and random multiplication triples (instead of letting the verifiers run
the DN multiplication protocol [25] that is done in [40,41]), which is sufficient
for MVZK as zero-knowledge only needs to hold for an honest prover.

3.2 Distributing Fiat-Shamir for Strong Non-Interactive MVZK

With the above preparation, we now discuss how to construct a strong NIMVZK
proof, where the verifiers communicate for only one round. This is a highly non-
trivial task, as it is even unclear how to sample a random coefficient χ ∈ K as
needed in step 2. Since every verifier can only send one message to other verifiers,
using a secure coin-tossing protocol is not possible. The other randomness source
that we can use is random oracle (i.e., adopting the Fiat-Shamir heuristic).
However, only the shares are sent by the prover where the shares need to be
kept secret, and thus the verifiers has no way to compute a public message that
can be used as the input of a random oracle. This was in fact attempted in the
distributed ZK proof [14] as well, but their non-interactive solution does not
allow the prover to collude with any verifier.

Let’s first review how Boneh et al. [14] use Fiat-Shamir in the case that
all verifiers do not collude with the prover. Suppose that the prover P sends a
message Msgi along with a randomness ri to a verifier Vi for i ∈ [1, n], where
Msgi and ri need to be kept secret. Every verifier Vi can send νi := H(Msgi, ri)
to other verifiers where H is a random oracle, and then generates a random
challenge χ :=

⊕
i∈[1,n] νi, when ignoring some details for simplicity. Prover P

can also compute the challenge χ as it knows all messages and randomness. When
the prover is corrupted (and thus we are concerning soundness), all verifiers are
assumed to be honest and thus can exchange the correct values {νi}i∈[1,n], so that
the verifiers can compute a random challenge χ to execute the protocol. However,
when P colludes with a verifier Vi∗ , this method does not work anymore: P can
cheat when the challenge is some value χ∗ 6=

⊕
i∈[1,n] H(Msgi, ri); after receiving

the values of other verifiers, Vi∗ can compute νi∗ = H(Msgi∗ , ri∗) and the correct
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challenge χ, and then send ν′i∗ = νi∗ ⊕ χ ⊕ χ∗ to every other verifier such that
the invalid proof can still go through.

Because of the round-complexity requirement on the verifier side, we cannot
let the verifiers to sample χ. So it appears that in order to get a strong NIMVZK,
we must find an approach to enable the prover to generate public messages via
some sort of Fiat-Shamir transformation in the distributed setting so that: 1) the
protocol tolerates the collusion of the prover and a minority of verifiers, and
2) does not require the verifiers to interact more than one round. Let H,H′ be
two random oracles with exponentially large ranges. Our technique to support
Fiat-Shamir is presented as follows.

1. Suppose that the prover P sends (Msgi, ri) to every verifier Vi over a private
channel, where Msgi consists of the shares held by Vi for our protocols.

2. Now, P also broadcasts commitments comi := H(Msgi, ri) for all i ∈ [1, n]
to all verifiers, where the broadcast does not increase the rounds between
verifiers that has been explained in Section 2.

3. Every verifier Vi checks that comi = H(Msgi, ri). As we assume that t < n/2,
we can guarantee that a majority of commitments in com1, . . . , comn are
computed correctly.

4. The verifiers can generate a random challenge χ := H′(com1, . . . , comn), as
they now know the public messages com1, . . . , comn. Then, the verifiers use
χ to transform the verification of N multiplication triples into that of an
inner-product tuple as described in Section 3.1.

If H has a 2λ-bit output length and thus is collision-resistant, then it would make
comi binding and the proof can easily go through, where all the commitments
{comi} held by n − t honest verifiers will uniquely define the secrets on all
wires. However, we make a key observation that it is sufficient to prove security,
if the challenge χ is guaranteed to be defined after the secrets on all wires
have been determined (i.e., χ is independent of these secrets). Therefore, it is
unnecessary to require the collision resistance for H, but rather we only need H
to be second preimage-resistant, which allows to achieve better efficiency, e.g.,
using the construction [26]. In particular, if χ has been defined and known by the
malicious prover, then it must make a query (com1, . . . , comn) to random oracle
H′. Then, the malicious prover cheats to find a pair (Msg′i, r

′
i) associated with χ,

and then sends it to some honest verifier Vi. The cheat will not be detected only
if comi = H(Msg′i, r

′
i), which is equivalent to find either a preimage or a second

preimage of comi. The Fiat-Shamir approach as described above only introduces
a small communication overhead, i.e., O(n2λ) bits in total between the prover
and all verifiers that is independent of the circuit size.

Through the above approach, the verifiers can generate a random challenge
non-interactively, and then use it to convert the verification of multiplication
triples into that of an inner-product tuple. We can simplify the verification tech-
nique (shown in Section 3.3) by viewing Shamir secret sharing as a special case
of packed secret sharing, and then use it to verify the inner-product tuple in one
round between verifiers. The resulting strong NIMVZK protocol is streamable
while keeping the round complexity between verifiers unchanged (see below).
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3.3 More Efficient Strong NIMVZK from Packed Secret Sharing

The above discussion shows a strong NIMVZK protocol where a prover sends
one message to each verifier and the verifiers communicate only one round. It
is secure against the adversary corrupting up to a minority of verifiers (i.e.,
t < n/2) and the prover. However, the downside is the communication of 1/2 +
o(1) field elements per multiplication gate per verifier, and a majority of the
proof is used to transmit the shares of wire values. We now discuss the strong
NIMVZK protocol that reduces the communication cost to O(1/n) field elements
per multiplication gate per verifier, when the threshold of corrupted verifiers
t < n(1/2− ε) for any 0 < ε < 1/2. This protocol adopts packed secret sharing
(PSS) [30] as the underlying LSSS, where each sharing packs k = O(n) secrets.

Using packed secret sharing efficiently for a single generic circuit is a huge
challenge, because the layout of the circuit could be complicated for packing
k gates, and it is not possible to move around any individual wire when using
PSS. In fact, because of this, prior MPC works [37,9] using PSS focus on SIMD
operations (i.e., repeated circuits). For a single generic circuit, the state-of-the-
art PSS-based MPC protocol [39] requires to evaluate the circuit layer-by-layer
that needs the rounds linear to the circuit depth, and splits each output wire
into different output wires that each can be used only once. Fortunately, we
observe that even a single generic circuit can be packed optimally in the context
of zero-knowledge, and can remove the constraints in MPC. Particularly, the
prover can prove a circuit in a streamable way without the constraint of proving
the circuit layer-by-layer, as the prover knows all the wire values.

Consistency check of wire values. In our NIMVZK protocol, if the out
degree of a gate is greater than 1, we allow an output wire to appear multiple
times (instead of splitting the output wire into multiple output wires), which
enables us to obtain better communication. In this case, we need to use the
consistency check to ensure that the same wire is assigned with the same value.
Specifically, for each input packed sharing [y], if the j-th secret yj comes from
the i-th secret xi stored in an output packed sharing [x], then we need to check
xi = yj . This corresponds to the wire that carries the value xi = yj . Following
the work [39], we refer to ([x], [y], i, j) as a wire tuple. For the consistency check
of wire tuples, we reduce the total communication complexity from O(n5k2) in
MPC [39] to O(n2k2) for our strong NIMVZK protocol. For each i, j ∈ [1, k],
let ([x1], [y1], i, j), . . . , ([xm], [ym], i, j) be the wire tuples with the same indices
i, j. We use the random-linear-combination approach to check the consistency.
Specifically, the prover P samples two random vectors x0,y0 such that x0,i =
y0,j , and then distributes the shares of [x0] and [y0] to all verifiers. To support
Fiat-Shamir, we need P to generate these shares in two steps: 1) distributing
the shares of two random sharings [r] and [s]; and 2) broadcasts the differences
u = x0+r and v = y0+s to all verifiers. Then the verifiers can locally compute
[x0] := u − [r] and [y0] := v − [s]. P and all verifiers can generate a random
challenge α = H′(χ,u,v, i, j), where χ is another random challenge related to
the secrets {(xh,yh)}h∈[1,m]. Then, the verifiers can now check correctness of
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the following wire tuple:

[x] :=
∑m
h=1α

h · [xh] + [x0], [y] :=
∑m
h=1α

h · [yh] + [y0].

This check can be done by letting the verifiers open ([x], [y]) and check xi = yj .
When streaming the strong NIMVZK protocol, the verification of wire tuples do
not increase the rounds between verifiers (see Section 6.1 for details).

Verification of PSS-based inner-product tuples. Once we enable Fiat-
Shamir as shown in Section 3.2, we also get another benefit that now the chal-
lenge χ is also known to the prover P. Thus, we can non-interactively transform
the verification of PSS-based multiplication tuples into that of a packed inner-
product tuple. We present a non-interactive technique to verify the correctness
of a packed inner-product tuple, which is inspired by prior work [14,16,40,41,39].
We also adapt the technique by Baum et al. [8] from the DVZK setting to
the MVZK setting in order to further improve computational efficiency. Our
verification approach has lower round complexity than that used in PSS-based
MPC [39] (one round vs logarithm rounds). At a high level, our protocol for
verifying correctness of a packed inner-product tuple works as follows:

1. Suppose that all verifiers hold the shares of a dimension-M packed inner-
product tuple (([x1], . . . , [xM ]), ([y1], . . . , [yM ]), [z]), where {xi,yi}i∈[1,M ]

and z are secret vectors in Kk. Prover P knows all the secret vectors, and
wants to prove z =

∑
i∈[1,M ] xi ∗ yi where ∗ denotes the component-wise

product.
2. The verifiers recursively reduce the dimension of (([x1], . . . , [xM ]), ([y1], . . . ,

[yM ]), [z]) to 2. This is performed by splitting a packed inner-product tuple
(([x1], . . . , [xm]), ([y1], . . . , [ym]), [z]) into two inner-product tuples (([a1,1],
. . . , [a1,`]), ([b1,1], . . . , [b1,`]), [c1]) and (([a2,1], . . . , [a2,`]), ([b2,1], . . . , [b2,`]),
[c2]), where ` = m/2 and [z] = [c1] + [c2]. Then, we use a protocol to
compress the two packed inner-product tuples into one inner-product tuple.

3. To realize the above splitting step, P can directly distribute the shares of
[c1] = [

∑
h∈[1,`] a1,h ∗ b1,h] to all verifiers. However, this does not support

Fiat-Shamir, as no public message is available. Instead, we let P distribute
the shares of a random packed sharing [r], and then broadcast a public
message u = c1 + r to all verifiers, who can locally compute [c1] := u− [r].
Then, the verifiers can locally compute [c2] := [z]− [c1].

4. We adopt the polynomial approach to compress two packed inner-product tu-
ples (([a1,1], . . . , [a1,`]), ([b1,1], . . . , [b1,`]), [c1]) and (([a2,1], . . . , [a2,`]), ([b2,1],
. . . , [b2,`]), [c2]) into a single tuple (([x1], . . . , [x`]), ([y1], . . . , [y`]), [z]), which
has been used in prior work such as [39]. Differently, we will use the Fiat-
Shamir transform to realize the non-interactive compression. Specifically,
the parties compute the sharings of polynomials [fj(·)], [gj(·)] for j ∈ [1, `]
and [h(·)], such that fj(i) = ai,j , gj(i) = bi,j and h(i) = ci for i ∈ [1, 2].
Then P needs to convince the verifiers that h(X) =

∑
j∈[1,`] fj(X) ∗ gj(X),

which can be realized by proving h(α) =
∑
j∈[1,`] fj(α)∗gj(α) for a random

challenge α. P and all verifiers can generate α by computing H′(γ,msg)
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where γ is the challenge used in the previous iteration and msg is the
public message sent in the current iteration. Now, the parties can define
([xj ] = [fj(α)], [yj ] = [gj(α)]) for j ∈ [1, `] and [z] = [h(α)], and execute
the next iteration.

5. Let (([x1], [x2]), ([y1], [y2]), [z]) be the packed inner-product tuple after the
dimension reduction was completed. We can adapt the randomization tech-
nique [14,39] to check the correctness of this tuple. In the same way, we can
split it into two multiplication tuples ([x1], [y1], [z1]) and ([x2], [y2], [z2])
with [z] = [z1] + [z2]. The prover P can distribute the shares of a random
multiplication tuple ([x0], [y0], [z0]) with z0 = x0 ∗ y0 to all verifiers in the
way compatible with Fiat-Shamir. Then, P and the verifiers can compress
{([xi], [yi], [zi])}i∈[0,2] into ([x], [y], [z]). All verifiers can run the Open pro-
cedure to obtain (x,y, z) and check that z = x ∗ y.

Streaming strong NIMVZK with the same round complexity. We can
use the strong NIMVZK protocol to prove a very large circuit in a streamable
way, such that between the prover and verifiers are non-interactive for proving
a batch of N = k · M multiplication gates each time, and the verifiers still
communicate only one round for proving the whole circuit. For a batch of N =
k ·M multiplication gates, the parties can transformM PSS-based multiplication
tuples into a packed inner-product tuple with dimension M , and then compress
it into a packed inner-product tuple denoted by IPtuple1 with dimension M/2c

for some integer c ≥ 1. For another batch of multiplication gates, the parties can
generate another packed inner-product tuple IPtuple2 with dimension M/2c in
the same way. Then, the prover and verifiers can compress IPtuple1 andIPtuple2
into a packed inner-product tuple IPtuple3 with the same dimensionM/2c, where
the challenge α for this compression is computed with random oracle H′ and
two challenges to obtain IPtuple1 andIPtuple2. After the whole circuit has been
evaluated, the verifiers can check correctness of the final packed inner-product
tuple (with dimension M/2c) stored in memory by communicating only one
round. As a result, all parties only need memory linear to what is needed to
evaluate the statement in the clear.

4 Information-Theoretic NIMVZK Proof

We present a non-interactive multi-verifier zero-knowledge (NIMVZK) protocol
with information-theoretic security in the (Fcoin,Fverifyprod)-hybrid model, as-
suming an honest majority of verifiers, where Fcoin is a coin-tossing functionality
shown in the full version [52]. Functionality Fverifyprod allows to verify the cor-
rectness of an inner-product tuple secretly shared among verifiers. It is possible
to instantiate Fverifyprod using prior work on fully linear PCP (or IOP) [14], but
we can improve its communication (or rounds) by adapting the technique by
Goyal et al. [40,41] in the MPC setting to the MVZK setting.
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Functionality Fverifyprod

This functionality runs with a prover P and n verifiers V1, . . . ,Vn. Let ([x], [y], [z])
be an inner-product tuple defined over a field K, where the dimension of vectors
x,y is N . This functionality operates as follows:

1. Upon receiving the shares of [x], [y], [z] from honest verifiers, run as follows:
– Reconstruct the secret vectors x,y ∈ FN and secret z ∈ F from these

shares.
– Compute the shares of [x], [y], [z] held by corrupted verifiers, and send

them to the adversary.
– If P is corrupted, send (x,y, z) to the adversary.

2. If z 6= x � y, then set b := abort, otherwise set b := accept. Send b to
the adversary. For i ∈ H, wait for an input from the adversary, and do the
following:
– If it is continuei, send b to Vi.
– If it is aborti, send abort to Vi.

Fig. 2: Zero-knowledge verification functionality for an inner-product tuple.

4.1 From General Adversaries to Maximal Adversaries for MVZK

Before we describe the NIMVZK protocol, we prove an important lemma that
can be used to simplify the proofs of the MVZK protocols in this paper and the
future works. Informally, this lemma states that if an MVZK protocol is secure
against exactly t malicious verifiers, then the protocol is also secure against at
most t malicious verifiers. The proof of this lemma is based on that of a similar
lemma for honest-majority MPC by Genkin et al. [33]. This lemma allows us
to only consider the maximum adversaries who corrupt exactly t verifiers, and
thus simplifies the security proofs of MVZK protocols. One caveat is that the
proof of this lemma needs to specially deal with the case that the honest verifiers
will receive output as well as the possible random-oracle queries (e.g., the Fiat-
Shamir transform [29] is used).

Lemma 1. Let Π be an MVZK protocol proving the satisfiability of a circuit C
for n ≥ 2t+1 verifiers. Then, if protocol Π securely realizes Fmvzk in the presence
of any malicious adversary corrupting exactly t verifiers, then Π securely realizes
Fmvzk against any malicious adversary corrupting at most t verifiers.

The proof of the above lemma is given in the full version [52]. The above lemma
can be applied to not only our information-theoretic NIMVZK protocol but also
the strong NIMVZK proofs in the computational setting that will be described
in Section 5 and Section 6.

4.2 Our Information-Theoretic NIMVZK Protocol

In Figure 3, we describe the detailed NIMVZK protocol with information theo-
retic security in the (Fcoin,Fverifyprod)-hybrid model. For each circuit-input gate
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Protocol Π it
nimvzk

Inputs: A prover P holds a witness w ∈ Fm. P and all verifiers V1, . . . ,Vn hold
an arithmetic circuit C over a field F with |F| > n. Let N denote the number of
multiplication gates in the circuit. P will convince the verifiers that C(w) = 0.

Circuit evaluation: In a predetermined topological order, P and all verifiers
evaluate the circuit as follows:

– For each circuit-input wire with input value w ∈ F, P (acting as the dealer)
runs [w]← Share(w) to distribute the shares to all verifiers.

– For each addition gate with input sharings [x] and [y], all verifiers locally
compute [z] := [x] + [y], and P computes z := x+ y ∈ F.

– For each multiplication gate with input values x, y ∈ F, P computes z :=
x · y ∈ F, and then executes [z]← Share(z) which distributes the shares to all
verifiers.

Verification of multiplication gates: Let ([xi], [yi], [zi]) be the sharings on the
i-th multiplication gate for i ∈ [1, N ]. All verifiers and P execute as follows:

1. The verifiers call the coin-tossing functionality Fcoin to generate a random
element χ ∈ K, and then set the following inner-product tuple:

[x] :=
(

[x1], . . . , χN−1 · [xN ]
)
, [y] := ([y1], . . . , [yN ]) , [z] :=

∑
i∈[1,N ]

χi−1 · [zi].

2. The verifiers and P call functionality Fverifyprod on ([x], [y], [z]) to check that
z = x� y. If the verifiers receive abort from Fverifyprod, then they abort.

Verification of circuit output: Let [η] be the input sharing associated with
the single circuit-output gate. All verifiers execute η ← Open([η]), and abort if
outputting abort in the Open procedure. If η = 0, then the verifiers output true,
otherwise they output false.

Fig. 3: Information-theoretic NIMVZK in the (Fcoin,Fverifyprod)-hybrid model.

or multiplication gate, the prover directly shares the output value to all veri-
fiers. The verifiers can locally compute the shares on the output wires of ad-
dition gates. Then, all verifiers check the correctness of all multiplication gates
by transforming multiplication triples into an inner-product tuple and then call-
ing functionality Fverifyprod. In parallel, the verifiers also check correctness of the
single circuit-output gate via running the Open procedure.

In Figure 2, we give the precise definition of functionality Fverifyprod. In partic-
ular, if the prover is honest, the adversary can only obtain the shares of corrupted
verifiers from this functionality, which does not reveal any information on the
secrets. In other words, this functionality naturally captures zero-knowledge. If
the prover is corrupted, this functionality reveals all secrets to the adversary, as
the secrets have been known anyway by the adversary. We can view deciding the
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correctness of an inner-product tuple as a statement which is shared among n ver-
ifiers. Functionality Fverifyprod guarantees that the malicious prover cannot make
any honest verifier accept a false statement, and thus captures soundness. In
the full version [52], we present an efficient protocol to securely realize Fverifyprod,
where the communication and round complexities are O((n + τ) logτ |C|) field
elements per verifier and logτ |C|+3 rounds between verifiers respectively, where
τ ≥ 2 is a parameter.

Theorem 1. Protocol Π it
nimvzk shown in Figure 3 securely realizes functional-

ity Fmvzk with information-theoretic security and soundness error N−1
|K| in the

(Fcoin,Fverifyprod)-hybrid model in the presence of a malicious adversary corrupt-
ing up to a prover and t verifiers.

The proof of this theorem can be found in the full version [52].

5 Strong NIMVZK Proof in the Honest-Majority Setting

In this section, we present a strong NIMVZK proof based on the Fiat-Shamir
transform, where a minority of verifiers are allowed to be corrupted and collude
with the prover. Our strong NIMVZK protocol adopts a non-interactive com-
mitment based on random oracle to non-interactively transform the verification
of multiplication triples into the verification of an inner-product tuple. This pro-
tocol still works in the Fverifyprod-hybrid model, where functionality Fverifyprod can
now be non-interactively realized using the Fiat-Shamir transform.

In Figure 4, we describe the strong NIMVZK protocolΠ fs
snimvzk in the Fverifyprod-

hybrid model, where the shares are computed over a field F and the verification
of multiplication gates is performed over an extension field K with |K| ≥ 2λ.
The strong NIMVZK protocol is the same as the protocol shown in Figure 3,
except for the verification of multiplication gates. In the strong NIMVZK proto-
col, the verification of multiplication gates is executed non-interactively using a
non-interactive commitment based on a random oracle H1, where a commitment
com on a message x is defined as H1(x, r) for a randomness r ∈ {0, 1}λ. However,
we do not require that the commitment is binding. Instead, we only need the
commitment to be hard to find a pair (x′, r′) such that H1(x

′, r′) = H1(x, r) and
x′ 6= x, after H1(x, r) has been defined. This has been explained in Section 3.2
(see the proof of Theorem 2 for details). The random challenge χ ∈ K is now
generated using another random oracle H2 and the public commitments, instead
of calling Fcoin. In this case, the prover can compute the secrets (x,y, z) under-
lying the inner-product tuple using the public coefficient χ and the secret wire
values. At first glance, the secrets (x,y, z) seem to be useless for the protocol
execution of Π fs

snimvzk. Nevertheless, the prover can use (x,y, z) to compute all
the secrets involved in the protocol that securely realizes functionality Fverifyprod.
In this case, we can securely compute Fverifyprod in a strongly non-interactive way
by making the prover distribute the shares of all secrets non-interactively and
all verifiers interact only one round for Open.
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Protocol Π fs
snimvzk

Inputs: A prover P holds a witness w ∈ Fm. P and the verifiers V1, . . . ,Vn hold
an arithmetic circuit C over a field F with |F| > n such that C(w) = 0. Let N
denote the number of multiplication gates in the circuit. Let H1 : {0, 1}∗ → {0, 1}λ
and H2 : {0, 1}∗ → K be two random oracles.

Circuit evaluation: P and all verifiers evaluate the circuit in the same way as
described in Figure 3.

Verification of multiplication gates: For all m circuit-input wires, the verifiers
V1, . . . ,Vn hold the shares of [w1], . . . , [wm], and P has the witness w = (w1, . . . ,
wm). For all N multiplication gates, P and the verifiers respectively hold the se-
crets and the shares of multiplication triples ([x1], [y1], [z1]), . . . , ([xN ], [yN ], [zN ]).
For j ∈ [1,m], let w1

j , . . . , w
n
j be the shares of [wj ] held by all verifiers, which are

also known by P. For j ∈ [1, N ], let z1j , . . . , znj be the shares of [zj ], which are also
obtained by P. All verifiers V1, . . . ,Vn and P execute as follows:

1. For each i ∈ [1, n], P samples ri ← {0, 1}λ and computes

comi := H1(wi1, . . . , w
i
m, z

i
1, . . . , z

i
N , ri).

Then, P broadcasts (com1, . . . , comn) to all verifiers, and also sends ri to
every verifier Vi over a private channel.

2. Every verifier Vi checks that comi = H1(wi1, . . . , w
i
m, z

i
1, . . . , z

i
N , ri), and aborts

if the check fails.
3. P and all verifiers compute χ := H2(com1, . . . , comn) ∈ K.
4. P and all verifiers respectively compute the secrets and the shares of the

following inner-product tuple:

[x] := ([x1], . . . , χN−1 · [xN ]), [y] := ([y1], . . . , [yN ]) , [z] :=
∑
i∈[1,N ] χ

i−1 · [zi].

5. The verifiers and P call functionality Fverifyprod on ([x], [y], [z]) to check that
z = x� y. If the verifiers receive abort from Fverifyprod, then they abort.

Verification of circuit output: All verifiers check the correctness of a single
circuit-output gate in the same way as shown in Figure 3.

Fig. 4: Strong non-interactive MVZK protocol in the Fverifyprod-hybrid model
and random oracle model.

Theorem 2. Let H1 and H2 be two random oracles. Protocol Π fs
snimvzk shown

in Figure 4 securely realizes functionality Fmvzk with soundness error at most
Q1n+(Q2+1)N

2λ
in the Fverifyprod-hybrid model in the presence of a malicious adver-

sary corrupting up to a prover and t verifiers, where Q1 and Q2 are the number
of queries to random oracles H1 and H2 respectively.

The proof of the above theorem is given in the full version [52].
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Optimizations. For Shamir secret sharing , P can send a random seedi ∈
{0, 1}λ to Vi for each i ∈ [1, t], who computes all its shares with seedi and
a pseudo-random generator (PRG). This reduces the communication by a half.
Furthermore, for each i ∈ [1, t], P can send comi = H1(seedi, ri) to Vi, who checks
the correctness of comi using seedi and ri. This will reduce the computational
cost of generating and verifying t commitments. Using the optimization, the
communication among verifiers is asymmetry. In particular, among all verifiers,
t verifiers V1, . . . ,Vt only has a sublinear communication complexity. That is,
each verifier only receives O(n + log |C|) field elements from the prover, and
only needs to send O(n) field elements to other verifiers. It makes our strong
NIMVZK protocol particularly suitable for the applications where V1, . . . ,Vt are
lower-resource mobile devices and the other verifiers are powerful servers.

Strong NIMVZK proof for inner-product tuples. Boneh et al. [14] intro-
duced a powerful tool, called distributed zero-knowledge (DZK) proof (a.k.a., ZK
proof on a distributed or secret-shared statement), to prove the inner-product
statements (and other useful statements). We can use their DZK proof with
logarithmic communication to securely realize functionality Fverifyprod shown in
Figure 2. When applying the Fiat-Shamir transform [16] into their DZK proof,
the prover non-interactively sends a proof to all verifiers, and the verifiers execute
one-round communication to verify correctness of an inner-product tuple. Note
that the proof on the inner-product statement can be sent in parallel with our
proof on circuit satisfiability shown in Figure 4. Therefore, using the DZK proof
to instantiate Fverifyprod, our MVZK protocol is strongly non-interactive. While
Boneh et al. [14] originally instantiated the DZK proof with replicated secret
sharing, Boyle et al. [16] shown that their DZK proof also works for verifiable
Shamir secret sharing meaning that a consistency check is needed to guarantee
either all verifiers hold a consistent sharing of the secret or honest verifiers abort.

We can simplify the technique by Boneh et al. [14] by avoiding the use of ver-
ifiable secret sharing, and slightly optimize the communication from 4.5 log |C|+
5n field elements to 3 log |C|+ 3n field elements. We can also improve the hash
computation cost for Fiat-Shamir. The improved approach has been described in
Section 3 by considering Shamir secret sharing as a special case of packed secret
sharing. The detailed protocol to strongly non-interactively realize Fverifyprod can
be directly obtained by simplifying the PSS-based protocol Πpss

verifyprod shown in
Figure 8 of Section 6.2 via setting the number of packed secrets k = 1.

6 Strong NIMVZK Proof with Lower Communication

Based on packed secret sharing (PSS), we present a strong NIMVZK proof with
communication complexity O(|C|/n) per verifier, when the threshold of cor-
rupted verifiers t < n(1/2−ε) for any 0 < ε < 1/2. Our strong NIMVZK protocol
is highly efficient for proving satisfiability of a single generic circuit. In the ZK
setting, we use PSS optimally. In particular, we eliminate the constraints in the
state-of-the-art PSS-based MPC protocol [39] including: 1) evaluating a circuit
layer-by-layer, 2) interactively permuting the secrets in a single packed sharing,
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Functionality Fpss
verifyprod

The packed inner-product tuple over a field K is denoted by ([x1], . . . , [x`]),
([y1], . . . , [y`]) and [z]. This functionality runs with a prover P and n verifiers
V1, . . . ,Vn, and operates as follows:

1. Upon receiving the shares of {[xi], [yi]}i∈[1,`] and [z] from all honest verifiers,
execute the following:
– Reconstruct the secrets (x1, . . . ,x`), (y1, . . . ,y`) and z from the shares

of honest verifiers in HH .
– Compute the shares of corrupted verifiers on ([x1], . . . , [x`]),

([y1], . . . , [y`]) and [z], and then send these shares to the adversary.
– If P is corrupted, send the shares of

(
{[xi], [yi]}i∈[1,`], [z]

)
held by honest

verifiers in H and the secrets
(
{xi,yi}i∈[1,`],z

)
to the adversary.

2. If z 6=
∑
h∈[1,`] xh ∗yh where ∗ denotes the component-wise product, then set

b := abort, otherwise set b := accept. Send b to the adversary. For i ∈ H, wait
for an input from the adversary, and do the following:
– If it is continuei, send b to Vi.
– If it is aborti, send abort to Vi.

Fig. 5: ZK verification functionality for packed inner-product tuples.

3) interactively collecting the secrets from different packed sharings and 4) split-
ting an output wire into multiple output wires, where all these constraints will
make the rounds and communication cost significantly larger than our protocol.

Firstly, we discuss how to transform a general circuit C into another circuit
C ′ with the same output and |C ′| = |C| + O(k), such that 1) the number of
circuit-input wires, addition gates and multiplication gates is the multiple of k;
2) there are at least k circuit-output wires; 3) the gates with the same type are
divided into groups of k. This is done by adding “dummy” wires and gates, and is
described in the full version [52]. Then, we present the detailed strong NIMVZK
protocol in the Fpss

verifyprod-hybrid model, where Fpss
verifyprod verifies the correctness of

a packed inner-product tuple. Next, we present a strong non-interactive MVZK
protocol to securely realize functionality Fpss

verifyprod.

6.1 Strong NIMVZK based on Packed Secret Sharing

Before showing the detailed strong NIMVZK protocol, we give the definition of
functionality Fpss

verifyprod.

Functionality for verifying packed inner-product tuples. Let HH ⊂ H
be a fixed (d+1)-sized subset of honest verifiers and HC = H\HH , where recall
that H is the set of all d+ k honest verifiers and d is the degree of polynomials
for PSS. For a degree-d packed sharing [x], we use [x]H to denote the whole
sharing that is reconstructed from the shares of honest verifiers in HH . Given
the shares of honest verifiers in H as input, we can reconstruct the whole sharing
[x] as follows:
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1. Use the d+1 shares of honest verifiers inHH to reconstruct the whole sharing
[x]H. Define the shares of corrupted verifiers on [x] as that on [x]H. Following
prior MPC work [39], we always assume that the corrupted verifiers in C hold
the correct shares that they should hold, while they may use incorrect shares
during the protocol execution, where C is the set of corrupted verifiers.

2. Define the secrets of [x] to be that of [x]H.
3. Define the shares of [x] held by honest verifiers in H as the shares input by

the verifiers directly.

The zero-knowledge verification functionality for packed inner-product tuples
is shown in Figure 5. This functionality takes as input a packed inner-product
tuple and then checks correctness of the tuple, where each sharing packs k secrets.
This functionality sends the shares of corrupted verifiers for each packed sharing
to the adversary, where the shares are computed by the above approach based on
the shares of honest verifiers in HH . If the prover is corrupted, this functionality
also sends the shares of all honest verifiers and the secrets in all packed sharings
to the adversary, as these shares and secrets have been known by the adversary.

PSS-based strong NIMVZK protocol from the Fiat-Shamir transform.
Our PSS-based strong non-interactive MVZK protocol in the Fpss

verifyprod-hybrid
model is described in Figures 6 and 7, where the circuit is defined over a field F
and the verification is performed over an extension field K with |K| ≥ 2λ.

The prover and all verifiers first transform the circuit C into an equivalent
circuit C ′, which satisfies the requirements of packed secret sharings. For an
input vector w ∈ Fk, if the j-th secret of w for j ∈ [1, k] corresponds to a
dummy circuit-input wire, the secret is set as 0. If w corresponds to k dummy
circuit-input wires, then w = 0k and [w] can be locally generated by all verifiers
without any communication (as shown in the full version [52]).

Using the non-interactive commitment based on a random oracle, we adopt
a similar approach as described in the previous section to transform the check of
multiplication tuples into the check of a packed inner-product tuple. Then, by
calling functionality Fpss

verifyprod, the verifiers can check correctness of the packed
inner-product tuple. Note that the prover can compute the secrets of the packed
inner-product tuple, which will be useful for designing a strongly non-interactive
protocol to securely realize Fpss

verifyprod as shown in Section 6.2.
During the protocol execution, we need to check the consistency of some se-

crets stored in two different packed sharings. We perform the consistency check
using the random-linear-combination approach based on the Fiat-Shamir trans-
form, which is inspired by the recent checking approach by Goyal et al. [39] for
information-theoretic MPC. In particular, the prover will generate a packed in-
put sharing [y] on k multiplication gates, addition gates or circuit-output gates,
such that the j-th secret yj of [y] comes from the i-th secret xi of a packed out-
put sharing [x] of k circuit-input gates, multiplication gates or addition gates.
We need to check that xi = yj to guarantee the consistency of yj . This corre-
sponds to the wire which carries the value xi = yj in the circuit. We refer to
a tuple ([x], [y], i, j) as a wire tuple following prior work [39]. We perform the
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Protocol Πpss
snimvzk

Inputs: A prover P holds a witness w̄. P and n verifiers V1, . . . ,Vn hold a circuit C
over a field F. Let k denote the number of secrets that are packed in a single sharing.
Let m be the number of packed sharings on circuit-input wires, where each packs
k circuit-input gates. LetM = d|C|/ke denote the number of multiplication tuples
where each packs k multiplication gates. Let N = O(|C|/k) represent the number
of wire tuples in the form of ([x], [y], i, j) with xi = yj . Let H1 : {0, 1}∗ → {0, 1}λ
and H2 : {0, 1}∗ → K be two random oracles.

Preprocess circuit: All parties run the PrepCircuit procedure shown in the full
version [52] to preprocess the circuit C, and obtain an equivalent circuit C′ such
that C′(w̄) = C(w̄) for any input w̄.

Circuit evaluation: In a predetermined topological order, P and all verifiers
evaluate the circuit C′ as follows:
– Let w1, . . . ,wm ∈ Fk be the secret vectors where each associates with k

circuit-input wires. For each group of k circuit-input wires with an input
vector w ∈ {w1, . . . ,wm}, P runs [w]← Share(w) to distribute the shares to
all verifiers.

– For each group of k addition gates with input sharings [x] and [y], all verifiers
locally compute [z] := [x] + [y], and P computes z := x + y ∈ Fk.

– For each group of k multiplication gates with input sharings [x] and [y], P
computes z := x ∗ y ∈ Fk where ∗ denotes the component-wise product, and
executes [z]← Share(z) which distributes the shares to all verifiers.

– For each group of k input wires of multiplication, addition, or circuit-output
gates, such that the corresponding input vector y ∈ Fk has not been stored
in any single packed input sharing, P runs [y]← Share(y), which distributes
the shares to all verifiers.

Locally prepare packed sharings. All verifiers locally do the following:
– For each input sharing [y] on a group of k multiplication, addition, or circuit-

output gates, for each position j ∈ [1, k], suppose that yj comes from the i-th
secret of [x] that is an output sharing on a group of k circuit-input, multipli-
cation, or addition gates. If [y] 6= [x], then set a wire tuple as ([x], [y], i, j).

– Denote these wire tuples by ([x1], [y1], i1, j1), . . . , ([xN ], [yN ], iN , jN ).
– Remove the repetitive packed sharings in [y1], . . . , [yN ], and then denote the

resulting sharings as [y′1], . . . , [y′`], where ` denotes the number of different
packed sharings in [y1], . . . , [yN ].

All verifiers hold the shares of the following packed sharings:
– The shares of [w1], . . . , [wm] on all circuit-input wires, which are denoted by

(ŵ1
i , . . . , ŵ

n
i ) for i ∈ [1,m].

– Let ([xi], [yi], [zi]) be the i-th multiplication tuple packing the secrets of k mul-
tiplication gates for i ∈ [1,M ]. The shares of {([xi], [yi], [zi])}i∈[1,M ], where
ẑ1i , . . . , ẑ

n
i denote the shares of [zi] for i ∈ [1,M ].

– The shares of {[y′i]}i∈[1,`], which are denoted by ŷ1i , . . . , ŷni for i ∈ [1, `].
P holds the whole sharings {[wi]}i∈[1,m], {([xi], [yi], [zi])}i∈[1,M ] and {[y′i]}i∈[1,`].

Fig. 6: PSS-based strong NIMVZK in the Fpss
verifyprod-hybrid model and random

oracle model.
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Protocol Πpss
snimvzk, continued

Procedure for Fiat-Shamir: All verifiers V1, . . . ,Vn and P execute as follows:

1. For i ∈ [1, n], P samples ri ← {0, 1}λ and computes

comi := H1(ŵi1, . . . , ŵ
i
m, ẑ

i
1, . . . , ẑ

i
M , ŷ

i
1, . . . , ŷ

i
`, ri).

Then, P broadcasts (com1, . . . , comn) to all verifiers, and sends ri to every
verifier Vi over a private channel.

2. Each verifier Vi checks that comi = H1(ŵi1, . . . , ŵ
i
m, ẑ

i
1, . . . , ẑ

i
M , ŷ

i
1, . . . , ŷ

i
`, ri),

and aborts if the check fails.
3. P and all verifiers compute χ := H2(com1, . . . , comn) ∈ K.

Verification of multiplication tuples: P and all verifiers execute as follows:

1. P and all verifiers respectively compute the secrets and the shares of [x̃i] =
χi−1 · [xi], [ỹi] = [yi] for i ∈ [1,M ] and [z̃] :=

∑
i∈[1,M ] χ

i−1 · [zi].
2. The verifiers and P call functionality Fpss

verifyprod on packed inner-product tuple
(([x̃1], . . . , [x̃M ]), ([ỹ1], . . . , [ỹM ]), [z̃]) to check that z̃ =

∑
h∈[1,M ] x̃h ∗ ỹh. If

the verifiers receive abort from Fpss
verifyprod, then they abort.

Verification of consistency of wire tuples: For all i, j ∈ [1, k], P and all
verifiers initiate an empty list L(i, j). Then, from h = 1 to N , they insert
([xh], [yh], ih, jh) into the list L(ih, jh). For each i, j ∈ [1, k], P and all verifiers
check the consistency of the wire tuples in L(i, j) as follows:

1. Let N ′ be the size of L(i, j). Let ([a1], [b1], i, j), . . . , ([aN′ ], [bN′ ], i, j) denote
the wire tuples in L(i, j).

2. P samples a0, b0 ← Kk with a0,i = b0,j , and also picks r, r′ ← Kk. Then P
and all verifiers execute the following:
(a) P runs [r]← Share(r) and [r′]← Share(r′), which distributes the shares

to all verifiers.
(b) P computes u := a0 + r and u′ := b0 + r′, and then broadcasts (u,u′)

to all verifiers.
(c) The verifiers compute [a0] := u− [r] and [b0] := u′ − [r′].

3. All verifiers compute α := H2(χ,u,u′, i, j) ∈ K.
4. All verifiers compute [a] :=

∑N′

h=0 α
h · [ah] and [b] :=

∑N′

h=0 α
h · [bh].

5. All verifiers run a ← Open([a]) and b ← Open([b]). If abort is output for the
Open procedure, the verifiers abort. Otherwise, they check that ai = bj , and
abort if the check fails.

Verification of circuit output: Let [z] be the sharing on the group of k circuit-
output wires including the single actual circuit-output wire. All verifiers execute
z ← Open([z]), and abort if receiving abort from the Open procedure. If z = 0k,
then the verifiers output true, otherwise they output false.

Fig. 7: PSS-based strong NIMVZK in the Fpss
verifyprod-hybrid model and random

oracle model, continued.
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consistency check of wire tuples in the total communication complexity O(nk2)
elements between the prover and verifiers and O(n2k2) elements among verifiers.

Theorem 3. Let H1 and H2 be two random oracles. Protocol Πpss
snimvzk shown in

Figures 6 and 7 securely realizes functionality Fmvzk with soundness error at most
Q1n+(Q2+1)(M+N)

2λ
in the Fpss

verifyprod-hybrid model in the presence of a malicious
adversary corrupting up to a prover and t = d − k + 1 verifiers, where degree-d
packed sharings are used in protocol Πpss

snimvzk, each sharing packs k secrets, and
Q1 and Q2 are the number of queries to H1 and H2 respectively.

The proof of Theorem 3 can be found in the full version [52].
Protocol Πpss

snimvzk shown in Figures 6 and 7 are streamable, i.e., the circuit
can be proved on-the-fly. The prover P can prove a batch of addition and mul-
tiplication gates each time, and stores the secrets that will be used as the input
wire values in the next batches of gates. In Section 3.3, we give an approach
overview on how to stream our protocol Πpss

snimvzk with the same round among
verifiers. In the full version [52], we provide more details.

6.2 Strong NIMVZK Proof for Packed Inner-Product Tuples

Below, we present a strongly non-interactive MVZK protocol with logarithmic
communication complexity to verify packed inner-product tuples, which is in-
spired by the technique by Goyal et al. [39] for MPC that is in turn built on the
techniques [14,40,41]. While the MPC protocol [39] requires logarithmic rounds
to check correctness of packed inner-product tuples, our strong NIMVZK pro-
tocol needs only one round between verifiers. Furthermore, our protocol reduces
the communication overhead for verification by making the prover generate the
random sharings and messages associated with secrets, compared to the verifi-
cation of packed inner-product tuples directly using the MPC protocol [39].

Our PSS-based strong NIMVZK protocol Πpss
verifyprod for verifying a packed

inner-product tuple is described in Figure 8. This protocol invokes two sub-
protocols Πpss

inner-prod and Πpss
compress that are described in Figures 9 and 10 respec-

tively, where Πpss
inner-prod is used to generate the inner product of two vectors and

Πpss
compress is used to compress two packed inner-product tuples into a single tuple.

In the dimension-reduction and randomization phases of this protocol, we adapt
the approach by Baum et al. [8] used in the DVZK setting to non-interactively
generate a challenge α used in sub-protocol Πpss

compress based on the Fiat-Shamir
transform. Based on the round-by-round soundness [20,8], we can prove that the
soundness error of our protocol is negligible (see Theorem 4). In the dimension-
reduction phase of Πpss

verifyprod, we always assume that the dimension m of the
packed inner-product tuple is the multiple of 2 for each iteration. If not, we can
pad the dummy zero sharing [0] into the packed inner-product tuple to satisfy
the requirement, where [0] can be locally computed by all verifiers.

In the protocol Πpss
verifyprod shown in Figure 8, we assume that P and all veri-

fiers input a public challenge χ, which is determined after the secrets packed in
the input inner-product tuple (([x1], . . . , [xM ]), ([y1], . . . , [yM ]), [z]) have been
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Protocol Πpss
verifyprod

Inputs: Prover P and all verifiers V1, . . . ,Vn respectively hold the secrets and
shares of a packed inner-product tuple (([x1], . . . , [xM ]), ([y1], . . . , [yM ]), [z]). P
and all verifiers also hold a public value χ, which is determined after these secrets
have been defined. The verifiers will check that z =

∑
h∈[1,M ] xh ∗ yh ∈ Kk. Let

H2 : {0, 1}∗ → K be a random oracle where |K| ≥ 2λ.

– Dimension-reduction: Let m denote the dimension of the packed inner-
product tuple in the current iteration, where m is initialized as M . Let γ be
the public value in the current iteration, which is initialized as χ.
While m > 2, P and all verifiers do the following:
1. Let ` = m/2. P and all verifiers define ([a1,1], . . . , [a1,`]) :=

([x1], . . . , [x`]) and ([a2,1], . . . , [a2,`]) = ([x`+1], . . . , [xm]), where P
holds all the secrets and the verifiers hold the shares. Similarly,
they define ([b1,1], . . . , [b1,`]) := ([y1], . . . , [y`]) and ([b2,1], . . . , [b2,`]) =
([y`+1], . . . , [ym]).

2. P and all verifiers execute the sub-protocol Πpss
inner-prod (shown in Figure 9)

on ([a1,1], . . . , [a1,`]) and ([b1,1], . . . , [b1,`]) to compute the whole sharing
[c1] = [

∑
h∈[1,`] a1,h ∗ b1,h], where the secrets and the shares are output

to P and the verifiers respectively. P and all verifiers also obtain u ∈ Kk.
3. P and all verifiers compute [c2] := [z]− [c1], where P obtains c2 and the

verifiers get the shares of [c2].
4. P and all verifiers execute sub-protocol Πpss

compress on ([ai,1], . . . , [ai,`]),
([bi,1], . . . , [bi,`]) and [ci] for i ∈ [1, 2] and (γ,u), where Πpss

compress is de-
scribed in Figure 10.

5. P and all verifiers update γ as the public element α output by Πpss
compress,

and also set m := m/2. Then, P and the verifiers use the whole out-
put sharings (([a1], . . . , [a`]), ([b1], . . . , [b`]), [c]) from Πpss

compress to update
(([x1], . . . , [xm]), ([y1], . . . , [ym]), [z]).

– Randomization: Let γ ∈ K along with the inner-product tuple (([x1], [x2]),
([y1], [y2]), [z]) be the final output from the previous phase. P and all verifiers
execute the following procedure:
1. P samples x0,y0 ← Kk, and then runs [x0] ← Share(x0) and [y0] ←

Share(y0), which distribute the shares to all verifiers.
2. For i ∈ [0, 1], P and all verifiers execute the sub-protocol Πpss

inner-prod on
([xi], [yi]) to compute the whole sharing [zi] = [xi ∗ yi]. Additionally, P
and the verifiers also obtain u0,u1 ∈ Kk.

3. P and all verifiers compute [z2] := [z]− [z1], where P obtains z2 and the
verifiers get the shares of [z2].

4. P and all verifiers execute sub-protocol Πpss
compress on {([xi], [yi], [zi])}i∈[0,2]

and (γ,u0,u1). Then, all verifiers obtain the output ([a], [b], [c]).
5. All verifiers run v ← Open([v]) for each v ∈ {a, b, c}. If abort is received

during the Open procedure, then the verifiers abort. Then, the verifiers
check that c = a∗b. If the check fails, the verifiers output abort. Otherwise,
they output accept.

Fig. 8: One-round ZK verification protocol for packed inner-product tuples.
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Protocol Πpss
inner-prod

Inputs: Prover P and verifiers V1, . . . ,Vn respectively hold the secrets and the
shares of packed sharings ([x1], . . . , [x`]) and ([y1], . . . , [y`]) over a field K.

Protocol execution: P and all verifiers execute as follows:
1. P samples r ← Kk, and then runs [r]← Share(r) that distributes the shares

to all verifiers.
2. P computes z :=

∑
h∈[1,`] xh ∗yh ∈ Kk, and then broadcasts u := z+r ∈ Kk

to all verifiers.
3. The verifiers compute [z] := u − [r]. Then, P and the verifiers respectively

output the secrets and shares of [z], and also output u ∈ Kk.

Fig. 9: Non-interactive inner-product protocol for packed sharings secure up
to additive errors.

Protocol Πpss
compress

Inputs: Let m be the number of packed inner-product tuples, and ` be the dimen-
sion of each packed inner-product tuple. For i ∈ [1,m], prover P and all verifiers
V1, . . . ,Vn respectively hold the secrets and shares of packed inner-product tuple
(([xi,1], . . . , [xi,`]), ([yi,1], . . . , [yi,`]), [zi]). P and all verifiers also input γ ∈ K and
v1, . . . ,vd ∈ Kk. Let H2 : {0, 1}∗ → K be a random oracle.

Protocol execution: P and all verifiers execute as follows:
1. For each j ∈ [1, `], P computes vectors of degree-(m − 1) polynomials fj(·)

and gj(·), such that fj(i) = xi,j and gj(i) = yi,j for all i ∈ [1,m].
2. For j ∈ [1, `], all verifiers locally compute [fj(·)] and [gj(·)] using their shares

of {[xi,j ]}i∈[1,m] and {[yi,j ]}i∈[1,m] respectively.
3. For i ∈ [m + 1, 2m − 1], P and all verifiers respectively compute the secrets

and shares of packed sharings [fj(i)] and [gj(i)] for j ∈ [1, `]. Then, for i ∈
[m + 1, 2m− 1], they execute the sub-protocol Πpss

inner-prod (shown in Figure 9)
on ([f1(i)], . . . , [f`(i)]) and ([g1(i)], . . . , [g`(i)]) to compute the whole sharing
[zi] = [

∑
j∈[1,`] fj(i) ∗ gj(i)], where P obtains zi and the verifiers get the

shares of [zi]. Besides, P and the verifiers obtain um+1, . . . ,u2m−1 ∈ Kk.
4. P and all verifiers locally compute the whole sharing [h(·)] from [z1], . . . ,

[z2m−1], such that h(·) is a vector of degree-2(m−1) polynomial and h(i) = zi
for i ∈ [1, 2m− 1].

5. P and all verifiers compute α := H2(γ,v1, . . . ,vd,um+1, . . . ,u2m−1) ∈ K. If
α ∈ [1,m], the verifiers abort.

6. P and all verifiers output the secrets and shares of ([f1(α)], . . . , [f`(α)]),
([g1(α)], . . . , [g`(α)]) and [h(α)] respectively, and also output the element α.

Fig. 10: Protocol for compressing packed inner-product tuples.

defined. In particular, χ can be defined as H2(com1, . . . , comn) as shown in Fig-
ure 7. When using Πpss

verifyprod to realize functionality Fpss
verifyprod, χ ∈ K can be

generated by P and all verifiers in the main NIMVZK protocol shown in Fig-
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ures 6 and 7. For the sake of simplicity, we ignore the case that the adversary
(who corrupts P) did not make a query to obtain χ but made a query to get a
challenge α = H2(χ, · · · ) used in protocol Πpss

verifyprod, which occurs with probabil-
ity at most 1

|K| ≤
1
2λ
. When the adversary makes a query (com1, . . . , comn) to

random oracle H2 and obtains χ, the challenge χ is determined after the secrets
stored in the input packed tuple have been defined, except with probability at
most Q1n

2λ
following the proof of Theorem 3.

Sub-protocol for computing inner product. Sub-protocol Πpss
inner-prod shown

in Figure 9 is used to compute the inner product of two vectors ([x1], . . . , [x`])
and ([y1], . . . , [y`]). The prover now knows all the challenges due to the use
of the Fiat-Shamir transform, and thus holds all the secrets involved in the
verification procedure. Thus, the prover can directly distribute the shares of [z]
with z =

∑
h∈[1,`] xh ∗ yh to all verifiers. To support Fiat-Shamir, the verifiers

need to know public messages instead of secret shares. Therefore, we first let the
prover generate a random packed sharing [r], and then make it broadcast the
public difference u = z + r to all verifiers. The prover and verifiers also need
to output the message u, which will be used in the Fiat-Shamir transform of
the main verification protocol. When the prover is malicious, it can introduce an
additive error to the sharing [z] output by the verifiers, which is harmless when
integrating Πpss

inner-prod into the main protocol Πpss
verifyprod.

Sub-protocol for compression. Sub-protocol Πpss
compress shown in Figure 10

is used to compress m packed inner-product tuples into a single packed inner-
product tuple. In particular, this protocol invokes the sub-protocol Πpss

inner-prod
instead of calling an inner-product functionality, which seems necessary to sup-
port Fiat-Shamir, where the messages related to the secrets need to be used as
the input of a random oracle H2. For every protocol execution of Πpss

compress, the
prover and all verifiers generate a random challenge α ∈ K using the Fiat-Shamir
transform. To realize non-interactively recursive compression in the main verifi-
cation protocol, the prover and verifiers also input the public challenge γ from
the previous iteration and the public messages produced in the current iteration.

Theorem 4. Let H2 : {0, 1}∗ → K be a random oracle. Protocol Πpss
verifyprod shown

in Figure 8 securely realizes functionality Fpss
verifyprod with soundness error at most

4dlogMe+5Q2

2λ−3 in the presence of a malicious adversary corrupting up to the prover
and exactly t verifiers, where Q2 is the number of queries to random oracle H2.

The proof of Theorem 4 is given in the full version [52].
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