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Abstract. While unconditionally-secure quantum bit commitment (al-
lowing both quantum computation and communication) is impossible,
researchers turn to study the complexity-based one, a.k.a. computational
quantum bit commitment. A computational canonical (non-interactive)
quantum bit commitment scheme refers to a kind of schemes such that
the commitment consists of just a single (quantum) message from the
sender to the receiver that later can be opened by uncomputing the com-
mit stage. In this work, we study general properties of computational
quantum bit commitments through the lens of canonical quantum bit
commitments. Among other results, we in particular obtain the follow-
ing two:
1. Any computational quantum bit commitment scheme can be con-

verted into the canonical (non-interactive) form (with its sum-binding
property preserved).

2. Two flavors of canonical quantum bit commitments are equivalent ;
that is, canonical computationally-hiding statistically-binding quan-
tum bit commitment exists if and only if the canonical statistically-
hiding computationally-binding one exists. Combining this result
with the first one, it immediately implies (unconditionally) that com-
putational quantum bit commitment is symmetric.

Canonical quantum bit commitments can be based on quantum-secure
one-way functions or pseudorandom quantum states. But in our opinion,
the formulation of canonical quantum bit commitment is so clean and
simple that itself can be viewed as a plausible complexity assumption
as well. We propose to explore canonical quantum bit commitment from
perspectives of both quantum cryptography and quantum complexity
theory in the future.

Keywords: quantum bit commitment · quantum binding · round com-
plexity · parallel composition.

1 Introduction

In the classical world, bit commitment is an important cryptographic primi-
tive. A bit commitment scheme defines a two-stage interactive protocol between

⋆ The full version of this paper is referred to [50].



a sender and a receiver, providing two security guarantees, hiding and bind-
ing. Informally, the hiding property states that the committed bit is hidden
from the receiver during the commit stage and afterwards until it is opened,
while the binding property states that the sender can only open the commit-
ment as at most one bit value (0 or 1, exclusively) in the reveal stage later.
Unfortunately, unconditionally (or information-theoretically)-secure bit commit-
ment is impossible. As a compromise, we turn to consider complexity-based bit
commitment, a.k.a. computational bit commitment. The one-way function as-
sumption is a basic computational hardness assumption without any mathemat-
ical structure; it is the minimum assumption in complexity-based cryptogra-
phy [25]. From a one-way function we can construct two flavors of bit commit-
ments: computationally-hiding (statistically-binding) bit commitment [37] and
(statistically-hiding) computationally-binding bit commitment [38,24]. However,
a major disadvantage of these constructions is that they are interactive: at least
two or even polynomial numbers of messages are needed to exchange in the
commit stage, and which seems inherent [34,23].

As quantum technology develops, existing cryptosystems are facing possible
quantum attacks in the near future. Regarding bit commitment, we thus have to
study bit commitment secure against quantum attacks, a.k.a. quantum bit com-
mitment. A general quantum bit commitment scheme itself could be a hybrid of
classical and quantum computation and communication. When the construction
is purely classical, we often call it “(classical) bit commitment scheme secure
against quantum attacks” or “post-quantum bit commitment scheme”1.

The concept of quantum bit commitment was proposed almost three decades
ago, aiming to make use of quantum mechanics to realize bit commitments [6,10].
Unfortunately, unconditionally-secure quantum bit commitment is impossible ei-
ther [35,33]. Based on complexity assumptions such as quantum-secure one-way
permutations or functions, we can also construct two flavors of quantum bit com-
mitments [2,52,17,30,31,14]. An interesting observation about these construc-
tions is that almost all of them (except for the one in [14]) are non-interactive
(in both the commit and the reveal stages). This is a great advantage over the
classical bit commitment. And this motivates us to ask the following question:

Is quantum bit commitment inherently non-interactive? Or, can any
quantum bit commitment scheme be “compressed” into a non-interactive
one that is still useful in applications?

This possible non-interactivity of quantum bit commitment is intriguing: if it is
true, then replacing post-quantum bit commitments with quantum bit commit-
ments in applications can potentially reduce the round complexity of the whole
construction.

While the idea of using quantum bit commitments in applications sounds
wonderful, unfortunately, it is well-known that the general binding property of

1 Even in case, it is still legal to call it “quantum bit commitment scheme”. This is
because classical computation and communication can be simulated by quantum
computation and communication, respectively, in a standard way.
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quantum bit commitment, i.e. sum-binding, is much weaker than the classical-
style binding2 [17,12,52,44], or unique-binding hereafter. This is because a quan-
tum cheating sender may commit to a bit 0 and 1 in an arbitrary superposition,
resulting in the committed value no longer unique. Thus, it is questionable a
priori whether quantum bit commitments could be useful in cryptographic ap-
plications, let alone the notorious difficulty (or general impossibility) of quantum
rewinding [21] in security analysis.

Canonical quantum bit commitment. Motivated by the study of complete
problems for quantum zero-knowledge [45,28,49] and more general quantum in-
teractive proofs [41,11], the so-called canonical (non-interactive) quantum bit
commitment3 was proposed [52,18].

Roughly speaking, by a canonical quantum bit commitment scheme, the com-
mitment consists of just a single (quantum) message from the sender to the
receiver, which can be opened later by uncompute the commit stage. Its def-
inition is sketched at the beginning of “Our contributions” shortly and given
in Definition 2 formally. A canonical quantum bit commitment scheme satis-
fies the so-called honest-binding property, which guarantees that any cheating
sender in the reveal stage cannot open an honest commitment to the bit 0 as
1, and vice versa. This honest-binding property appears even weaker than sum-
binding. Both flavors of canonical quantum bit commitments can be constructed
from quantum-secure one-way functions [52,30,31], or pseudorandom quantum
states by a more recent result [36] and this work.

Though its binding property appears extremely weak, interestingly, it turns
out that canonical quantum bit commitment is sufficient to construct quantum
zero-knowledge [52,18,51] and quantum oblivious transfer4 [18]. However, the
corresponding security (that will be based on quantum bit honest-binding) there
are more tricky to establish than the corresponding security based on unique-
binding.

Other quantum commitments and binding properties. There are also
other (classical or quantum) constructions of commitments that satisfy some
stronger binding properties (but which may not hold for general quantum bit
commitments) than sum-binding, including collapse-binding commitments [44,43],
and extractable commitments [22,5]; they are likely to be more versatile than
general quantum bit commitments in applications. However, both of them need
interactions in the standard model, losing the possible advantage of the non-
interactivity of quantum bit commitments.

2 That is, any quantum cheating sender cannot generate a commitment that can be
opened as both 0 and 1 successfully with non-negligible probability.

3 In the prior work (e.g. [52,18,51]) and an earlier draft of this paper (back in 2020), it
is called “generic” form. However, this name is misleading as pointed out by Ananth,
Qian, and Yuen [4], who also suggest the current name “canonical” to us. And we
accept.

4 In [18], a quantum oblivious transfer with a security that is weaker than the full
simulation-security [22,5] but still very useful in many scenarios was achieved.
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Restricting to quantum statistically-binding commitments, statistical unique-
binding can be achieved based on quantum one-way permutations [2], or even
functions by a recent result [7]. More recently, Ananth, Qian and Yuen [3] also
propose an extractor-based quantum statistical-binding property, hereafter AQY-
binding, and show that it can be satisfied by a construction of quantum bit
commitment based on pseudorandom quantum states. Though these binding
properties seem much stronger than the honest-binding property guaranteed by
canonical statistically-binding quantum bit commitment (whose instantiations
can be found either in [52], [50, Appendix D], or [36]), commitments satisfying
these binding properties turn out to be no more useful (at least in theory, as far
as we can tell) than canonical statistically-binding quantum bit commitments
in applications [18]. More discussion on this point is referred to Subsection 1.2
(where we will discuss the extractor-based AQY-binding property in greater
detail.)

Yet in some other work certain strong quantum binding properties are pro-
posed for applications [16,12], but no instantiations of the corresponding com-
mitments based on well-founded complexity assumptions are known even today.

This work. In this work, we show that the canonical quantum bit commitment
captures the computational hardness underlying general computational quantum
bit commitments, by providing a compiler that can transform any computational
quantum bit commitment scheme into the canonical (non-interactive) form. This
not only answer the motivating question aforementioned affirmatively, but also
allows us to study general properties of quantum bit commitments through the
lens of canonical quantum bit commitments.

We further propose to study canonical quantum bit commitment in the future
not only as a cryptographic primitive in the MiniQCrypt world (named after
[22]), but also as a basic (quantum) complexity-theoretic object whose existence
is an interesting open problem in its own right. Our proposal is based on our
current knowledge about canonical quantum bit commitment summarized as
follows: (Refer to Subsection 1.3 for more detail.)

1. Its formulation is clean and simple (Definition 2), inducing two basic quan-
tum complexity-theoretic open questions: one is on the existence of quantum
state ensembles that are computationally indistinguishable but far apart in
the trace distance, while the other on the existence of unitaries that cannot
be efficiently realized.

2. It is robust (Theorem 6), implying that the two basic open questions men-
tioned in the 1st item above are essentially the same question.

3. It captures the computational hardness underlying general computational
quantum bit commitments (Theorem 4).

4. It is useful in quantum cryptography [52,18,51,3,5].

5. Conversely, it is also implied by some basic quantum cryptographic primi-
tives such as quantum zero-knowledge [52] and quantum oblivious transfer
[14].
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6. It is implied by quantum complexity assumptions such as quantum-secure
one-way functions and pseudorandom quantum states in the MiniQCrypt
world [52,30,31,14,36]. But the converse is unknown.

Before introducing our contribution of this work in greater detail, we stress
that in this paper when we talk about statistical or computational binding with-
out explicitly mentioning other properties of binding, we mean the most general
sum-binding property (or equivalently, honest-binding w.r.t. canonical quantum
bit commitments, as will become clear shortly). In spite of this, we have already
known that canonical quantum bit commitments can satisfy some stronger bind-
ing properties than sum-binding that are interesting and useful in applications
[18,50,51]. We expect further exploration on the binding properties of canonical
quantum bit commitments in the future.

1.1 Our contribution

We first sketch what a canonical quantum bit commitment scheme looks like; its
formal definition is given in Definition 2. Informally speaking, a canonical (non-
interactive) quantum bit commitment scheme can be represented by an ensemble
of unitary polynomial-time generated quantum circuit pair {(Q0(n), Q1(n))}n,
where n is the security parameter. For the moment, let us drop the security
parameter n to simplify the notation. Both quantum circuits Q0 and Q1 perform
on a quantum register pair (C,R), which are composed of qubits. To commit a
bit b ∈ {0, 1}, the sender (of bit commitment) first initializes the register pair (C,
R) in all |0⟩’s state and then performs the quantum circuit Qb on them, sending
the commitment register C to the receiver. In the reveal stage, the sender sends
the bit b together with the decommitment register R to the receiver, who will
first perform the inverse of the quantum circuit Qb (since it is unitary) on the
register pair (C, R), and then measure each qubit of (C, R) in the computational
basis. The receiver will accept (i.e. the opening is successful) if and only if the
measurement outcome of each qubit is 0. We say that the scheme (Q0, Q1) is
hiding if the reduced quantum state of Q0 |0⟩ in the register C and that of Q1 |0⟩
are indistinguishable, and that the scheme is binding if there does not exist a
unitary performing on the register R that transforms the quantum state Q0 |0⟩
into Q1 |0⟩.

We obtain four main results on properties of canonical and more general
quantum bit commitments as follows:

1. Honest-binding is equivalent to sum-binding (w.r.t. the canonical
form)

Among various binding properties proposed for quantum (including post-
quantum) commitments [2,17,12,16,44,52,51], honest-binding [52] is the weakest.
Informally, it states that any cheating sender (in the reveal stage) cannot open
an honest commitment to 0 (resp. 1) as 1 (resp. 0). Its formal definition w.r.t.
a canonical quantum bit commitment scheme is given in Definition 2. A priori,
honest-binding seems to be too weak to be useful: anyway, it is unrealistic to
restrict a cheating sender’s behavior to be honest in the commit stage!
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Sum-binding is a general binding property of quantum bit commitment [17].
Roughly, let p0 and p1 denote the probability that a cheating sender (in the reveal
stage) can open the commitment (generated in the commit stage in which the
sender is also cheating) as 0 and 1, respectively. Then sum-binding requires that
p0 + p1 < 1 + negl(n), where negl(·) is some negligible function of the security
parameter. The formal definition of sum-binding w.r.t. a canonical quantum bit
commitment scheme is given in Definition 3.

While it is trivial that sum-binding implies honest-binding, in this work we
show that the converse is also true w.r.t. canonical quantum bit commitments5

(Theorem 2). This in turn establishes an equivalence between its semi-honest
security (against an honest-but-curious attacker, i.e. honest-hiding and honest-
binding; refer to Definition 2) and the full security (against an arbitrary attacker)
(Theorem 3). This equivalence not only explains at a high level why previous
applications of canonical quantum bit commitments only make use of its honest-
binding property [52,18,51], but also enables us to simplify the security analysis
of canonical quantum bit commitments schemes6. As an application, we can sig-
nificantly simplify the DMS construction [17] of computationally-binding quan-
tum bit commitment based on quantum-secure one-way permutations7. (The
detail is referred to [50, Section 5]).

2. Quantum bit commitment is inherently non-interactive

We answer the motivating question raised before affirmatively, i.e. quantum
bit commitment is inherently non-interacitve, by proving a round-collapse theo-
rem (Theorem 4). This theorem can also be viewed as an extension of converting
an arbitrary non-interactive quantum bit commitment scheme into the canonical
form [52,18]. Its basic idea follows the non-interactive case, with the only non-
trivial thing lying in identifying a sufficient yet as weak as possible condition
under which the same idea works for such an extension. A priori, one may expect
that for the compression of rounds, the original scheme itself should be firstly se-
cure (against quantum attacks), with some additional structure requirements (if
needed). Surprisingly, it turns out the condition for the round compression could
be extremely weak : even the original quantum bit commitment scheme need not
be fully secure; instead, it is sufficient that its purification is semi-honest secure!
In greater detail, we construct a general compiler that can convert any (interac-
tive) quantum bit commitment scheme whose purification is semi-honest secure
into a quantum bit commitment scheme of the canonical form. This resulting
scheme (of the canonical form), which will be referred to as the “compressed
scheme”, has perfect completeness and satisfies the same flavor of hiding and
binding properties as the original scheme. This theorem is interesting by noting
that we do not have a classical counterpart of it yet, which seems even un-

5 We do not claim that this holds for a general quantum bit commitment; the two
simple schemes presented in [50, Appendix C] also serve as two counterexamples in
this regard.

6 Then it suffices to show its semi-honest security.
7 Strictly speaking, we simplify the security analysis of the DMS scheme after it is
firstly converted into the canonical form (which is straightforward).
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likely [34,23]. An immediate consequence of the round-collapse theorem is that
any known quantum bit commitment scheme (of either flavor and based on any
complexity assumption) can be converted into the canonical form (Theorem 5).

If we want to apply the round-collapse theorem in applications, (seeing from
its statement) the relationship between the semi-honest security of the original
scheme and its purification becomes important. We thus initiate a study to-
wards this relationship. (The detail is referred to [50, Section 7, 9, and 10].) On
one hand, we identify many situations in which the semi-honest security of the
original scheme extends to its purification. On the other hand, we find two coun-
terexamples for which such an extension is impossible. (The detail is referred to
[50, Appendix C]). A bridge that connects these two notions of security is the se-
curity against a special kind of attack which we will refer to as the “purification
attack”, i.e. attacking by purifying all the party’s (honest) operations prescribed
by the protocol. A typical purification attack is not to perform the expected mea-
surements. It turns out that an (interactive) quantum bit commitment scheme
is secure against the purification attack if and only if its purification is semi-
honest secure [50, Proposition 15]. But in comparison, the security against the
purification attack is more convenient to work with in security analysis than the
semi-honest security of the purified scheme. We believe that this security against
the purification attack as well as techniques developed to establish it (refer to
“Technical overview” for a discussion) are of independent interest.

As an interesting application, we apply the round-collapse theorem to com-
press the classical NOVY scheme [38], obtaining yet another construction (be-
sides ones given in [17,30,31]) of non-interactive computationally-binding quan-
tum bit commitment based on quantum-secure one-way permutations [50, Sec-
tion 9]. This is interesting because we even do not know whether the original
NOVY scheme itself is secure against quantum attacks (when the underlying
quantum one-way permutation used is quantum secure). We also highlight that
our quantum security analysis here is (interestingly) much simpler than the clas-
sical analysis of the NOVY scheme in [38]. This simplification mainly comes from
that it suffices to show that the NOVY scheme is secure against the purification
attack (for the purpose of round compression).

3. Quantum bit commitment is symmetric, or two flavors of quantum
bit commitments are equivalent

Almost two decades ago, Crépeau, Légaré and Salvail [14] gave a way that
virtually can transform any quantum bit commitment scheme that is computa-
tionally hiding and statistically unique-binding into another one of the opposite
flavor, i.e. computationally binding and statistically hiding. In this work, we
generalize this result significantly by proving a symmetry8 in the sense as stated
in the following (unconditional) theorem:

Theorem 1. Computationally-hiding statistically-binding quantum bit commit-
ments exist if and only if statistically-hiding computationally-binding quantum
bit commitments exist.

8 This symmetry is in the same sense as that of oblivious transfer [48].
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The high-level idea of proving the theorem above is as follows. By the virtue
of the round-collapse theorem, it suffices to prove that the theorem holds w.r.t.
canonical quantum bit commitments (Theorem 6). In greater detail, given a
canonical quantum bit commitment scheme, we first feed it to a somewhat sim-
plified CLS construction [14] to convert its flavor, and then feed the resulting
scheme to the general compiler guaranteed by the round-collapse theorem to
obtain the final scheme (which will be in the canonical form automatically).

Our security analysis are significantly simpler than the related ones given in
[14,12]. Basically, the simplification comes from two aspects:

1. By the virtue of our round-collapse theorem (Theorem 4), the original CLS
scheme (with a canonical quantum bit commitment scheme plugged in) can
be simplified in the first place to just satisfy the security against the purifi-
cation attack before the compression.

2. Proving the security against the purification attack turns out to be much
easier than the full security.

Towards proving Theorem 6, we develop several techniques to establish the
security against the purification attack. Most of these techniques are adapted
from those used in [18,51]. Among others, we in particular show a computational
collapse caused by canonical quantum computationally-binding commitments
[50, Appendix F], which might be of independent interest. More discussion on
our techniques is referred to “Technical overview”.

We finally remark that as a by-product of the symmetry, we automatically
obtain a construction of canonical statistically-hiding computationally-binding
quantum bit commitment based on quantum-secure one-way functions or pseu-
dorandom quantum states. This is achieved by first plugging in the somewhat
simplified CLS construction a canonical computationally-hiding statistically-
binding quantum bit commitment scheme that is either based on quantum-
secure one-way functions or pseudorandom quantum states, and then compress-
ing the resulting scheme. We remark that the construction of statistically-hiding
computationally-binding quantum bit commitment based on pseudorandom quan-
tum states is previously unknown.

4. Quantum statistical string sum-binding (w.r.t. the canonical form)

A natural way to commit a string is to commit it in a bitwise fashion using
a quantum bit commitment scheme. So it is interesting to explore what binding
property can be obtained if a quantum bit commitment scheme is composed in
parallel. Since a canonical quantum bit commitment scheme satisfies the sum-
binding property, ideally, we may hope to prove such a dream version of the
quantum string sum-binding property as

∑
s∈{0,1}m ps < 1 + negl(n), where ps

denotes the success probability that the cheating sender can open a (claimed)
string commitment as the m-bit string s, and negl(·) denotes some negligible
function of the security parameter n. However, this string sum-binding property
seems too strong to be true generally when m = poly(n), in which case the
sender can attack by committing to a superposition of exponentially many m-
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bit strings [12]. Then bounding the error induced by such a superposition by a
negligible quantity becomes technically hard or even impossible9.

In spite of the above, we manage to show that composing a canonical statistically-
binding quantum bit commitment scheme in parallel indeed gives rise to a quan-
tum string commitment scheme satisfying a dream version of the quantum sta-
tistical string sum-binding property (Theorem 7). Since our proof relies heavily
on that the error (incurred by the statistical binding error) decreases exponen-
tially in the Hamming distance between the committed string and the string to
reveal, it does not extend to the case quantum computational binding.

1.2 Related (more recent) work

More recently10, Bitansky and Brakerski [7] construct a non-interactive statistically-
binding quantum bit commitment scheme based on quantum-secure one-way
functions. Their scheme deviates from the canonical one given in [52], managing
to achieve unique-binding and the classical reveal stage, but at the cost of more
complex construction and analysis.

Morimae and Yamakawa [36] construct a statistically-binding quantum bit
commitment scheme based on pseudorandom quantum states [26], a quantum
complexity assumption arguably weaker than quantum-secure one-way functions
[32]. Interestingly, we find their construction is just in the canonical form. So
by results of this work, their security analysis of quantum statistical binding
can be simplified to just show the quantum statistical honest-binding (rather
than sum-binding) property. Moreover, combining results in this work (Theorem
6), it follows that both flavors of canonical quantum bit commitments can be
constructed based on pseudorandom quantum states.

Ananth, Qian and Yuen [3] also construct a statistically-binding quantum
bit commitment scheme based on pseudorandom quantum states, which has
two messages in the commit stage and a single classical message in the reveal
stage. Clearly, this scheme is not in the canonical form. But they show that it
satisfies a strong (statistical) binding property such that an (inefficient) extractor
is associated with scheme, which can be used to extract (and thus collapse)
the committed value from the commitment at the end of the commit stage. We
find11 that this idea of introducing an extractor to quantum statistically-binding
commitments is very similar in spirit to the analysis framework introduced in [18]
but only for canonical perfectly/statistically-binding quantum bit commitments.
More discussion on the comparison between them is referred to [50, Appendix B],
where by tweaking techniques used in [18], we in particular prove that canonical
statistically-binding quantum bit commitments automatically satisfy the AQY-
binding property.

9 To the best of our knowledge, however, no impossibility result is known yet. In [12],
authors only vaguely argue that this seems impossible for quantum computationally-
binding commitments.

10 After the upload of the first preprint of this work to Cryptology ePrint Archive [50]
in 2020.

11 This is also observed in [36, Appendix B].
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While the extractor-based AQY-binding definition is more readily usable by
cryptographers, there seems no obvious way to extend it to the case of quantum
computational binding (when the commitment is statistically hiding). This is
because then the quantum commitments to different values are negligibly close
(in the trace distance); we cannot hope that a similar extractor exists. In con-
trast, the formalization of canonical quantum bit commitment schemes provide
a uniform way to capture both flavors of quantum bit commitments.

Moreover, Ananth, Qian and Yuen [3] propose studying pseudorandom quan-
tum states, instead of quantum-secure one-way functions, as a basic quantum
complexity assumption for quantum (rather than post-quantum) cryptography.
In this regard, we feel that it would be equally interesting to study the existence
of canonical quantum bit commitment schemes as a basic quantum complexity
assumption for quantum cryptography. More discussion on this point is referred
to the next subsection.

1.3 Quantum bit commitments: seeing from both quantum
cryptography and quantum complexity perspectives

Based on previous results and results in this paper, now let us give an overview
of quantum bit commitments from quantum cryptography and quantum com-
plexity perspectives, respectively.

Seeing from the quantum cryptography perspective, on one hand quantum bit
commitment can be constructed from quantum-secure one-way functions/permutations
[2,52,17,30,31,14,7], or pseudorandom quantum states [26,36,3]. It is interesting
to explore whether quantum bit commitments imply pseudorandom quantum
states (of any sort) conversely12. On the other hand, quantum bit commitments
are useful, and may help reduce the round complexity of cryptographic con-
structions [52,18,51]. In particular, there exists a certain equivalence between
quantum bit commitment and quantum zero-knowledge [52], and an equivalence
between quantum bit commitment and quantum oblivious transfer [54,14,18,5,3].
Thus, quantum bit commitment is likely to be an important primitive in the
MiniQCrypt world [22]. It is interesting to explore more cryptographic applica-
tions of quantum bit commitments in the future.

Seeing from the quantum complexity perspective, whether computational quan-
tum bit commitments exist is an interesting open problem. As mentioned, canon-
ical quantum bit commitment are motivated by the study of complete problems
for quantum zero-knowledge [45,49] and more general quantum interactive proofs
[41,11]. The existence of canonical statistically-hiding computationally-binding
quantum bit commitment schemes is closely related to the quantum complexity of
unitaries [1]. In greater detail, suppose that (Q0, Q1) is a canonical statistically-
hiding computationally-binding quantum bit commitment scheme. Then its sta-
tistical hiding property implies that quantum states Q0 |0⟩CR

and Q1 |0⟩CR
only

12 We do not expect that quantum bit commitments can imply quantum-secure one-
way functions, simply because a canonical quantum bit commitment scheme concerns
quantum states rather than any sort of functions.
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differ up to a unitary U performing on the decommitment register R. This is be-
cause restricting to the commitment register C, the corresponding two reduced
quantum states are negligibly close in the trace distance. However, the compu-
tational binding property implies that this unitary U is not efficiently realizable!

We can motivate the study of canonical computationally-hiding statistically-
binding quantum bit commitment by comparing it with a pair of efficiently
constructible probability distributions that are computationally indistinguishable
but statistically far apart in the classical setting. They look quite similar; we may
view the former as the quantum counterpart of the latter. Goldreich shows that
the existence of the latter implies one-way functions [20, an exercise in Chapter
3] and pseudorandom generators [19]. In a try to translate this result to the
quantum setting, it brings us back to the open question of whether quantum
bit commitments imply pseudorandom quantum states (which are the quantum
analog of pseudorandom generators) [26,36,3].

We finally remark that the round-collapse theorem and the equivalence be-
tween two flavors of quantum bit commitments established in this paper indicate
that the open question regarding the existence of computational quantum bit
commitments is very robust. And it will be more robust if the answer to the fol-
lowing open question, which concerns quantum hardness amplification, is “yes”:
can the computational binding error of a canonical quantum bit commitment
scheme be reduced by parallel repetition, say from 1/2 or even inverse polyno-
mial to some negligible quantity? This question looks very similar to the ampli-
fication of the hardness of inverting an arbitrary one-way function in classical
cryptography [53]. More interestingly, if the answer to this question is indeed
“yes”, then combining it with results in [45,52,18,51] will complete a proof for
an equivalence between quantum bit commitment and quantum zero-knowledge
like in the classical setting [40].

1.4 Technical overview

Honest-binding implies sum-binding. The proof is just a simple application
of the quantum rewinding lemma (Lemma 1) once used in [52,18,51], which in
a nutshell is another variant (other than the one used in [42] that is designed
specific for sigma protocols) of the gentle measurement lemma [47].

Round compression. Our compiler for the round compression is inspired by
the equivalence between the semi-honest security and the full security w.r.t.
canonical quantum bit commitments (Theorem 3).

Informally speaking, the compiler itself is extremely simple: in the new (non-
interactive) commit stage, the sender will simulate an honest execution of the
commit stage of the original (possibly interactive) scheme, and then send the
original receiver’s system as the commitment to the new receiver. Later in the
reveal stage, the new sender will send the residual system to the new receiver,
who will check the new sender’s whole computation in the commit stage via
the quantum reversible computation. For this construction to be legal, possible
irreversible computation of both parties in the commit stage prescribed by the
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original scheme should be simulated by corresponding unitary computation (in a
standard way) in the first place. This procedure of simulation is typically referred
to as the “purification” (of a quantum protocol).

At the first glance, the compiler constructed as above seems too simple to
be true: how can the idea of simply letting the new sender delegate all the
computation in the commit stage of (the purification of) the original scheme
work? After all, the new sender may deviate arbitrarily, and there seems no
way of restricting its behavior by just exchanging a single message in the (non-
interactive) commit stage! Clearly, this idea of compression does not work for
commitments in classical cryptography.

The reason why our compiler works is by the virtue of Theorem 3: it suffices
to show that the resulting compressed quantum bit commitment scheme (which
is just in the canonical form by our construction) is semi-honest secure. This
also provides some intuition why in the formal statement of our round-collapse
theorem (Theorem 4), it requires that the (purification) of the original scheme
(rather than the original scheme itself), or purified scheme hereafter, be semi-
honest secure. As for the proof of the round-collapse theorem, while the honest-
hiding property of the compressed scheme is trivial, its honest-binding property
can be roughly argued in the below.

Suppose (for contradiction) that at the beginning of the reveal stage, there
is a cheating sender who can transform the quantum state of the whole system
when a bit 0 is committed to the state when a bit 1 is committed, by just
performing some unitary operation U on its own system. This will gives rise to an
attack against the honest-binding property of the purified scheme as follows: the
sender commits to the bit 0 honestly following the purified scheme in the commit
stage. In the reveal stage, it first performs the operation U on its own system,
transforming the whole system to a state that is close to the state when the bit 1
is committed, and then proceeds honestly to open the commitment as 1. While
the intuition underlying this reduction is simple, to turn it into a formal proof,
we need a large amount of (and tedious) work in formalizing an execution of (the
commit stage of) a general (interactive) quantum bit commitment scheme and
its purification [50, Section 6], as well as their semi-honest security [50, Section
7].

Last, we would like to compare our round compression of a general interactive
quantum bit commitment scheme with that of a quantum interactive proof [27]
or a zero-knowledge proof [29]. Ideas in these two settings are very similar:
both of them rely heavily on the reversibility of quantum computation. The
key difference lies in that for the latter, since (even) the honest prover could
be computationally unbounded, an (interactive) swap test is introduced for the
purpose of checking the computation. In comparison, in our setting this test is
not necessary; this is because (as typical in cryptography) both the honest sender
and the honest receiver of bit commitment are polynomial-time bounded.

Proving an equivalence between two flavors of canonical quantum bit
commitments. The basic idea to convert the flavor of a canonical quantum
bit commitment scheme is to use the CLS construction [14]. In a nutshell, the
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original CLS scheme in [14] uses classical statistically unique-binding bit com-
mitments (e.g. Naor’s scheme [37]) to realize a 1-out-of-2 quantum oblivious
transfer (QOT) [13], which in turn can be used to construct a computationally-
binding quantum bit commitment scheme. In [18], it is shown that commitments
used in the CLS scheme, or QOT subprotocol more precisely, can be replaced
with canonical statistically/perfectly-binding quantum bit commitments. Then
combined with the round-collapse theorem (Theorem 4), this already proves one
direction of the equivalence.

For the other direction of the equivalence, however, it is still open whether one
can use computationally-binding quantum bit commitments in the CLS scheme
to obtain a statistically-binding quantum bit commitment scheme. Technically,
this is because we do not know whether using computationally-binding quantum
bit commitments can force the receiver of BB84 qubits in the QOT subprotocol
to measure these qubits upon receiving them. (We note that this is not a big
problem when statistically-binding quantum bit commitments are used [14,18].)
To overcome this difficulty, in [12] a tailored quantum string binding property
is proposed, by which they show that quantum commitments satisfying such
binding property are sufficient to show the security of the QOT protocol. Unfor-
tunately, we do not know whether quantum commitments satisfying such binding
property are instantiatable even today. In this work, we overcome this technical
difficulty by proving a computational collapse theorem [50, Appendix F], as will
be discussed shortly.

Actually, for our purpose of converting the flavor of canonical quantum bit
commitments, it suffices for us to use a somewhat simplified CLS construction:
all intermediate verifications of quantum commitments within the original CLS
scheme can be removed. We can do this is by the virtue of the round-collapse
theorem, namely, we only need a scheme whose purification is semi-honest secure
for the purpose of the round compression. In particular, we only need such a
QOT that satisfies the following security property: after the interaction, the
purified receiver of QOT does not know the other bit that the honest sender is
given as input, while the purified sender of QOT does not know which input bit
the honest receiver is aware of. This security is already much weaker than the
security against an arbitrary quantum attack considered in [54,14,18], let alone
the recently achieved simulation security [15,22,5]. Hence, one can imagine that
it is much easier to establish.

For the formal security analysis, we will first prove the semi-honest security
of this somewhat simplified CLS scheme, and then manage to extend it to its
purification. For such an extension, a crucial step is to show that quantum
commitments will cause an implicit collapse of the quantum state just like the
measurements prescribed by the QOT subprotocol were really performed. To
this end, we will use techniques introduced in the below.

Arguing the security against the purification attack. Seeing from the
statement of our round-collapse theorem, to apply it, one needs first to show that
the purification of the original (interactive) quantum bit commitment scheme is
semi-honest secure, or equivalently, the original scheme is secure against the
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purification attack. It turns out that this security is closely related to the semi-
honest security, thus often much easier to establish than the full security. In
particular, we show that in many interesting scenarios, the semi-honest security
of the original scheme extends to its purification. For such an extension, the basic
idea is to show that collapses prescribed by the original scheme are enforced
even after the purification. To have a taste of how to do this, note that messages
sent through the classical channel automatically collapse; when a message is
uniquely determined by some other collapsed messages, it can be viewed as
having collapsed as well.

A non-trivial case in which collapses are enforced is by quantum commit-
ments, as argued in [18] and within the proof of Theorem 6 in this paper. That is,
committing to a superposition using canonical statistically- or computationally-
binding quantum bit commitments (in a bitwise fashing) can be viewed as an
implicit way of measuring it (but without leaking its value)! In greater detail,
when canonical statistically-binding quantum bit commitments are used, col-
lapses can be shown using techniques (i.e. perturbation and commitment mea-
surement) developed in [18]. When canonical computationally-binding quantum
bit commitments are used, we will show a “computational collapse” (named af-
ter [12]) by proving a computational collapse theorem [50, Appendix F] in this
work. The technique used towards proving this theorem is inspired by the proof
of the quantum computational string predicate-binding property in [51], which
basically is a way of bounding exponentially many negligible errors in an ar-
bitrary superposition by a negligible quantity. We remark that currently, this
computational collapse theorem is only known to be suitable to apply when the
security against the purification attack is considered; whether it can be extended
to be suitable for the security analysis against an arbitrary quantum attack (like
in [12]) is left as an interesting open problem.

Last, we stress that the semi-honest security of an arbitrary (interactive)
quantum bit commitment scheme does not extend to its purification generally ;
two counterexamples are presented in [50, Appedix C].

1.5 Follow-up work

In preparing the camera-ready version of this extended abstract, we notice that
there is a follow-up work [9].

After reading an earlier draft of the full version of this extended abstract
[50] (the version uploaded to Cryptology ePrint Archive this February, 2022),
authors of [9] call the two ensembles of efficiently-generated quantum state that
are far in the trace distance but quantum computationally indistinguishable the
“EFI pair”. (As we have argued in this extended abstract, EFI pair and canonical
statistically-binding quantum bit commitment are actually the same object seen
from different perspectives.) They further explore the connections between EFI
pairs and some other cryptographic applications that are not discussed in this
extended abstract, in particular multiparty secure computations for classical
functionalities and quantum zero-knowledge proofs for languages beyond NP.
(Note that within NP, an equivalence between (instance-dependent) canonical
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statistically-binding quantum bit commitments (hence EFI pairs) and quantum
zero-knowledge proofs has already been established in [52] back in 2015.)

Organization. The remainder of this paper is organized as follows. In Section 2,
we review necessary preliminaries. In Section 3, we formally introduce the defi-
nition of a canonical quantum bit commitment scheme and its honest-hiding and
honest-binding properties. In Section 4, we show that w.r.t. canonical quantum
bit commitment, its honest-binding property is equivalent to the sum-binding
property. This equivalence will be used to prove the round-collapse theorem in
Section 5. As an application of the round-collapse theorem, in Section 6 we prove
an equivalence between two flavors of quantum bit commitments. In Section 7,
a very strong quantum string sum-binding property of the parallel composition
of canonical statistically-binding quantum bit commitments is established. We
conclude with Section 8, where several open problems are also raised.

2 Preliminaries

Notation. Denote [n] = {1, 2, . . . , n} for an integer n. Denote by Un the uniform
distribution/random variable ranging over the set {0, 1}n, i.e. all binary strings

of length n. We use “
$←” to denote the action of choosing an element uniformly

random from a given set, e.g. x
$← Un. Let negl(n) denote an arbitrary negligible

(i.e. asymptotically smaller than any inverse polynomial) function of the security
parameter n. Given two strings s, s′ ∈ {0, 1}n, let dist(s, s′) denote the Hamming
distance between s and s′.

Quantum formalism. Quantum registers/systems we use in this paper are
composed of multiple qubits. We sometimes explicitly write quantum register(s)
as a superscript of an operator or a quantum state to indicate on which register(s)
this operator performs or which register(s) hold this quantum state, respectively.

For example, we may write UA, |ψ⟩A or ρA, highlighting that the operator U
performs on the register A, and the register A is in pure state |ψ⟩ or mixed state
ρ, respectively. When it is clear from the context, we often drop superscripts to
simplify the notation.

We use F(·, ·) to denote the fidelity of two quantum states [46]. Given a
projector Π on a Hilbert space, we call {Π,1−Π} the binary measurement
induced by Π. This binary measurement is typically induced by a verification,
for which we call it succeeds, accepts, or the outcome is one, if the measured
quantum state collapses to the subspace on which Π projects.

For a bit b ∈ {0, 1}, let |b⟩+ and |b⟩× be the qubits in the state |b⟩ w.r.t. the
standard basis and Hadamard basis, respectively. For the former, we often drop
“+” and just write |b⟩.

We work with the standard unitary quantum circuit model. In this model, a
quantum algorithm can be formalized in terms of uniformly generated quantum
circuit family, where the “uniformly generated” means the description of the
quantum circuit coping with n-bit inputs can be output by a single classical
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polynomial-time algorithm on the input 1n. We assume without loss of generality
that each quantum circuit is composed of quantum gates chosen from some fixed
universal, finite, and unitary quantum gate set [39]. Given a quantum circuit
Q, we also overload the notation to use Q to denote its corresponding unitary
transformation; Q† denotes its inverse.

(In)distinguishability of quantum state ensembles

Definition 1 ((In)distinguishability of quantum state ensembles). Two
quantum state ensembles {ρn}n and {ξn}n are quantum statistically (resp. com-
putationally) indistinguishable, if for any quantum state ensemble {σn}n and any
unbounded (resp. polynomial-time bounded) quantum algorithm D which outputs
a single classical bit,

|Pr[D(1n, ρn ⊗ σn) = 1]− Pr[D(1n, ξn ⊗ σn) = 1]| < negl(n)

for sufficiently large n.

Remark. The quantum state ensemble {σn}n in the definition above plays the
role of the non-uniformity given to the distinguisher D. Since a mixed quantum
state can always be purified, we can assume without loss of generality that the
state σn is pure.

A quantum rewinding lemma

Lemma 1 (A quantum rewinding [18]). Let X and Y be two Hilbert spaces.
Unit vector |ψ⟩ ∈ X ⊗Y. Orthogonal projectors Γ1, . . . , Γk perform on the space
X ⊗ Y, while unitary transformations U1, . . . , Uk perform on the space Y. If

1/k ·
∑k

i=1

∥∥Γi(Ui ⊗ 1X) |ψ⟩
∥∥2 ≥ 1− η, where 0 ≤ η ≤ 1, then∥∥∥(U†

k ⊗ 1
X)Γk(Uk ⊗ 1X) · · · (U†

1 ⊗ 1X)Γ1(U1 ⊗ 1X) |ψ⟩
∥∥∥ ≥ 1−

√
kη. (1)

3 Canonical (non-interactive) quantum bit commitment

The definition of a canonical (non-interactive) quantum bit commitment scheme
is as follows.

Definition 2. A canonical (non-interactive) quantum bit commitment scheme
is represented by an ensemble of polynomial-time uniformly generated quantum
circuit pair {(Q0(n), Q1(n))}n as follows, where we drop the security parameter
n to simplify the notation:

– In the commit stage, to commit a bit b ∈ {0, 1}, the sender performs the
quantum circuit Qb on the quantum register pair (C,R)13 initialized in all
|0⟩’s state. Then the sender sends the commitment register C to the receiver,
whose state at this moment is denoted by ρb.

13 Their size depend on the security parameter n.
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– In the subsequent (canonical) reveal stage, the sender announces the bit b,
and sends the decommitment register R to the receiver. The receiver will first
perform Q†

b on the quantum register pair (C, R) and then measure each qubit
of (C, R) in the computational basis, accepting if measurement outcomes are
all 0’s.

The hiding (or concealing) and the binding properties of the scheme are de-
fined as follows:

– (Honest)-hiding. We say that the scheme is statistically (resp. computation-
ally) hiding if quantum states ρ0 and ρ1 are statistically (resp. computation-
ally) indistinguishable14.

– ϵ-(honest-)binding. First prepare the quantum register pair (C, R) in the
state Q0 |0⟩15. We say that the scheme is computationally (resp. statistically)
ϵ-binding if for any state |ψ⟩ of an auxiliary register Z, and any polynomial-
time (resp. physically) realizable unitary transformation U performing on
registers (R, Z), the reduced state of the quantum register pair (C, R) after
the transformation U is performed is far from the state Q1 |0⟩. Or formally,∥∥∥(Q1 |0⟩ ⟨0|Q†

1

)CR
URZ

(
(Q0 |0⟩)CR |ψ⟩Z

)∥∥∥ < ϵ. (2)

By the reversibility of quantum computation, this binding property can be
equivalently defined by swapping the roles of Q0 and Q1, in which case the
inequality (2) becomes∥∥∥(Q0 |0⟩ ⟨0|Q†

0

)CR
URZ

(
(Q1 |0⟩)CR |ψ⟩Z

)∥∥∥ < ϵ. (3)

As typical in cryptography, We say that the scheme is computationally (resp.
statistically) binding (without referring to the parameter ϵ) when the function
ϵ(·) is a negligible function (of the security parameter n).

Remark.

1. We call the binding property defined above honest-binding, because infor-
mally it states that any cheating sender cannot open the honest commitment
to a bit b as 1 − b. That is, in the definition of honest-binding, a cheating
sender is honest in the commit stage but may deviate arbitrarily in the reveal
stage. In this regard, the attack (U, |ψ⟩) of the sender just happens in the
reveal stage. Honest-binding is the weakest binding property that any mean-
ingful quantum bit commitment scheme should satisfy. This definition will
be generalized to the case of interactive quantum bit commitment schemes
in [50, Section 7].

14 Strictly speaking, it should be understood as the corresponding two quantum state
ensembles indexed by the security parameter n are indistinguishable.

15 Here the notation |0⟩ should be understood as multiple |0⟩’s, the number of which
depends on the security parameter; we just write a single |0⟩ to simplify the notation.
We will follow this rule throughout this paper.
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2. The hiding property of a bit commitment scheme is only defined w.r.t. the
commit stage. For the hiding property defined above, since the commit stage
is non-interactive (so that the receiver will send nothing during the commit
stage), the hiding against a semi-honest (i.e. honest-but-curious) receiver
and that against an arbitrary receiver are just the same security property.
In this regard, the honest-hiding is also the hiding against an arbitrary quan-
tum receiver. However, in the sequel when we consider a general (interac-
tive) quantum bit commitment scheme, these two notions are not necessarily
equivalent.

3. As commented in [52], the reveal stage in the definition above is canonical
in the sense that it is similar to the canonical opening of a classical bit
commitment: the sender sends all its random coins used in the commit stage
to the receiver, who then checks that these coins explain (i.e. are consistent
with) the conversation generated during the commit stage.

4. In [52,18], it is argued informally that any non-interactive statistically-
binding quantum bit commitment scheme can be converted into a scheme of
the canonical form. Actually, the same argument extends to the setting of
non-interactive computationally-binding quantum bit commitment schemes
in a straightforward way. In this work, we will further extend it, showing
that any (interactive) quantum bit commitment scheme can be converted
into this canonical form (Theorem 4).

5. In the sequel, to simplify the notation we often drop the security parameter
n and just write (Q0, Q1) to represent a canonical quantum bit commitment
scheme.

6. We can commit to a binary string s ∈ {0, 1}m in a bitwise fashion using a
canonical quantum bit commitment scheme (Q0, Q1). Then the correspond-
ing quantum circuit is given by

Qs
def
=

m⊗
i=1

Qsi , (4)

where si is the i-th bit of the string s and each quantum circuit Qsi performs
on one copy of the quantum register pair (C, R).

7. As discussed in “Introduction”, this definition of a canonical quantum bit
commitment scheme can also be viewed as a quantum complexity assumption
that is weaker than quantum-secure one-way functions and pseudorandom
quantum states [26].

4 Honest-binding is equivalent to sum-binding

Sum-binding is a general binding property of quantum bit commitment. Its def-
inition w.r.t. a canonical quantum bit commitment scheme is as follows.

Definition 3 (Sum-binding). At the beginning of the commit stage, the cheat-
ing sender prepares the whole system (C, R, Z) in an arbitrary quantum state
|ψ⟩. Then it sends the commitment register C to the receiver. In the reveal stage,
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to open the bit commitment as 0 (resp. 1), the sender performs U0 (resp. U1) on
the system (R, Z) and then send the decommitment register R to the receiver. Let
p0 (resp. p1) be the success probability that the sender opens the bit commitment
as 0 (resp. 1). The sum-binding requires that p0 + p1 < 1 + negl(n).

Compared with honest-binding (Definition 2), sum-binding is a security against
an arbitrary quantum sender, who may deviate from the scheme in both the
commit and the reveal stages. Clearly, sum-binding implies honest-binding, by
noting that if we fix p0 or p1 in Definition 3 to be 1, then we end up with honest-
binding. Interestingly, it turns out that the opposite direction is also true, i.e.
the seemingly weaker honest-binding also implies sum-binding. Combining them
we have the following theorem.

Theorem 2. Honest-binding is equivalent to sum-binding w.r.t. a canonical quan-
tum bit commitment scheme (of either flavors).

Proof. It is left to prove that honest-binding implies sum-binding. It turns out
that an attack which breaks the sum-binding property can be directly used to
break the honest-binding property without much modification. Detail follows.
We remark that the proof below holds for either flavors of canonical quantum
bit commitment schemes.

Let n be the security parameter. According to its definition (Definition 3),
an arbitrary attack of the sum-binding property of a canonical quantum bit
commitment scheme (Q0, Q1) can be modeled by (U0, U1, |ψ⟩). Now assume that
the attack (U0, U1, |ψ⟩) breaks the sum-binding property; that is,∥∥∥(Q0 |0⟩ ⟨0|Q†

0

)CR · URZ
0 |ψ⟩

∥∥∥2 + ∥∥∥(Q1 |0⟩ ⟨0|Q†
1

)CR · URZ
1 |ψ⟩

∥∥∥2 > 1 +
1

p
,

where p(·) is some polynomial of the security parameter n. We apply the quan-
tum rewinding lemma (Lemma 1) to the inequality above, with the parameters

k, η, U1, U2, Γ1 and Γ2 in the lemma replaced by 2, 1/2−1/(2p), U0, U1, Q0 |0⟩ ⟨0|Q†
0

and Q1 |0⟩ ⟨0|Q†
1, respectively. We obtain∥∥∥(U†

1 )
RZ

(
Q1 |0⟩ ⟨0|Q†

1

)CR
URZ
1 (U†

0 )
RZ ·

(
Q0 |0⟩ ⟨0|Q†

0

)CR
URZ
0 |ψ⟩CRZ

∥∥∥
≥ 1−

√
1− 1

p
>

1

2p
. (5)

An intuitive interpretation of this inequality is that the success probability of first
opening the bit commitment as 0 and then as 1 is at least some non-negligible
quantity.

We are next to devise an attack of the honest-binding property of the scheme
(Q0, Q1) given the attack (U0, U1, |ψ⟩). Specifically, suppose that in the commit
stage, the sender (honestly) prepares the quantum state Q0 |0⟩ in the quantum
register pair (C, R) and sends the commitment register C to the receiver. Later
at the beginning of the reveal stage, the sender receives the quantum state |ψ⟩,
which is stored in quantum registers (C′,R′,Z′) that are of the same size as
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registers (C,R,Z), respectively. Then the cheating sender S∗ proceeds as follows
to try to open the quantum bit commitment as 1:

1. Perform the unitary transformation U0 on the quantum registers (R′,Z′).

2. Perform the binary measurement induced by the projector Q0 |0⟩ ⟨0|Q†
0 on

the quantum register pair (C′,R′). (Intuitively, we expect that conditioned
on its outcome being 1, the reduced state of the register Z′ will help the
sender S∗ cheat.)

3. Perform the unitary transformation U1U
†
0 on the registers (R,Z′).

4. Send the decommitment register R to the receiver.

To show that S∗ breaks the honest-binding property of the scheme (Q0, Q1),
it suffices to prove a lower bound of the probability of both the following two
events happening simultaneously: (1) the measurement outcome in the step 2
being 1; and (2) the cheating sender S∗ succeeds. (Note that S∗ may also cheat
successfully while the measurement outcome of the step 2 is 0; but its probability
can be ignored for a lower bound of S∗’s success probability.) This probability
is given by the expression∥∥∥(U†

1 )
RZ′(

Q1 |0⟩ ⟨0|Q†
1

)CR
URZ′

1 · (U†
0 )

RZ′(
Q0 |0⟩ ⟨0|Q†

0

)C′R′

UR′Z′

0

(
(Q0 |0⟩)CR |ψ⟩C

′R′Z′ )∥∥∥2 .
A key observation is that conditioned on the measurement outcome in the

step 2 being 1, both the quantum register pair (C, R) and (C′,R′) will be in the
state Q0 |0⟩ at the end of the step 2. Thus, from then on, switching to perform
unitaries U0, U1 on registers (R′,Z′) (as opposed to (R,Z′)) and opening the
commitment in the register C′ will result in the same success probability. That
is, the expression above is equal to∥∥∥(U†

1 )
R′Z′(

Q1 |0⟩ ⟨0|Q†
1

)C′R′

UR′Z′

1 (U†
0 )

R′Z′
·
(
Q0 |0⟩ ⟨0|Q†

0

)C′R′

UR′Z′

0

(
(Q0 |0⟩)CR |ψ⟩C

′R′Z′ )∥∥∥2 .
Since now the quantum registers (C, R) are untouched, this expression will sim-
plify to∥∥∥(U†

1 )
R′Z′(

Q1 |0⟩ ⟨0|Q†
1

)C′R′

UR′Z′

1 (U†
0 )

R′Z′
·
(
Q0 |0⟩ ⟨0|Q†

0

)C′R′

UR′Z′

0 |ψ⟩C
′R′Z′

∥∥∥2 .
But this final expression can be lowerbounded by applying the inequality (5),
if we identify registers (C, R, Z) in the l.h.s. of the inequality (5) with registers
(C′,R′,Z′) here, respectively. This will yield a lower bound 1/4p2, which is non-
negligible.

Hence, S∗ breaks the honest-binding property of the scheme (Q0, Q1).

Remark. We highlight that the security reduction above is uniform.

Combing the second remark following Definition 2 with Theorem 2, we have
the following theorem as an immediate corollary.

Theorem 3. A canonical quantum bit commitment scheme (Q0, Q1) (of either
flavor) is secure if and only if it is semi-honest secure.

20



5 A round-collapse theorem

In this section, we will prove a round-collapse theorem (Theorem 4), which can
be viewed as an extension of converting an arbitrary non-interactive quantum
bit commitment scheme into the canonical form [52,18]. To understand the state-
ment and the proof of this theorem, in the first place we should have given a
formal treatment of a general quantum two-party interactive protocols, their pu-
rifications, as well as their semi-honest and related security. However, we cannot
do this in this extended abstract due to the limited space. Now let us informally
introduce these notions, while moving their formal treatments to [50, Section 6,
7].

Roughly, a general quantum two-party interactive protocols allows both clas-
sical and quantum computation and communication. We can assume without
loss of generality that quantum computation is limited to measurements in the
computational basis, as well as quantum operations realized by polynomial-size
quantum circuits composed of unitary quantum gates. A purification of an in-
teractive protocol refers to the protocol obtained by simulating all classical com-
putation and communication, as well as quantum measurements of the original
protocol, by unitary quantum operations in a standard way. The purification
attack against one party of the protocol refers to the attack by purifying all this
party’s operations.

Restricting to quantum bit commitment schemes, for our purpose we will de-
fine their semi-honest security as that both the semi-honest sender and receiver
will follow the protocol in the commit stage; but in the reveal stage later, the
semi-honest sender may deviate the protocol. Correspondingly, the purification
attack against the receiver refers to the attack by purifying all the honest re-
ceiver’s operations in the commit stage. And the purification attack against the
sender refers to the attack by purifying all the honest sender’s operations in the
commit stage; but the attack in the reveal stage could be arbitrary.

Theorem 4 (Round-collapse). If a quantum bit commitment scheme is se-
cure against the purification attack (or equivalently, its purification is semi-
honest secure), then it can be compressed into a scheme of the canonical form
(Definition 2) such that:

1. It has perfect completeness. That is, if both the sender and the receiver follow
the scheme honestly, then the receiver will not reject or abort in both the
commit and the reveal stages.

2. Both the hiding and binding properties of the original scheme are preserved
after the compression. That is, if the original scheme is statistically (resp.
computationally) hiding (resp. binding), then the new scheme is also statis-
tically (resp. computationally) hiding (resp. binding) as well.

At a high level, our compiler achieves the round-collapse by delegating the
computation of both parties in the commit stage prescribed by the purification of
the original scheme to the new sender. Later in the reveal stage, the new receiver
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will check this computation in the commit stage via the reversible quantum
computation.

Due to the space limitation, the proof of the round-collapse theorem can be
found in [50].

As a simple application of the round-collapse theorem, we can compress
Naor’s bit commitment scheme [37] to get a non-interactive one [50, Appendix
D]. Nevertheless, this application seems not a big deal, since there already exists
a more straightforward (and somewhat simpler) construction (also inspired by
Naor’s scheme [52]). Two non-trivial applications are referred to the subsequent
section and [50, Section 9], respectively.

Since the purification attack is just a special kind of attack among all possible
attacks, the following theorem is an immediate corollary of Theorem 4.

Theorem 5. Any secure (against an arbitrary quantum attack) interactive quan-
tum bit commitment scheme, in particular post-quantum secure (classical) bit
commitment scheme, can be compressed into a non-interactive one of the canon-
ical form (Definition 2) with perfect completeness and the same flavors of the
hiding and binding properties.

Remark. We stress again that in this work we consider general quantum binding
properties that all quantum bit commitment schemes can satisfy, for which sum-
binding is likely to be the strongest. A specific quantum bit commitment scheme
may satisfy even stronger binding properties (e.g. [2,44,43,22,5,7]) than sum-
binding. But if we feed it into our compiler for the round-compression, these
stronger binding properties may be lost; the resulting/compressed scheme is
only guaranteed sum-binding (or equivalently honest-binding, since it is of the
canonical form).

6 Application: an equivalence between two flavors of
quantum bit commitments

In this section, we show that quantum bit commitment is symmetric, or two
flavors of quantum bit commitments are equivalent (Theorem 1). This is an
immediate corollary of the following theorem combined with the round-collapse
theorem (Theorem 4).

Theorem 6. Canonical computationally-hiding statistically-binding quantum bit
commitments exist if and only if canonical statistically-hiding computationally-
binding quantum bit commitments exist.

Towards establishing the equivalence above, our basic idea is first using a
construction that is a simplification of the CLS scheme [14] to convert the flavor
of the given quantum bit commitment scheme, and then compressing the result-
ing (interactive) scheme into a canonical one using the round-collapse theorem
(Theorem 4).

In greater detail, our construction for the purpose of converting the flavor
of quantum bit commitments is basically the parallel composition of the atomic
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(interactive) scheme as described in Fig. 1, which we denote by QBC(n), with
the security parameter n (which we often drop to simplify the notation). Let
QBC(n)⊗n denote the parallel composition of n copies of the scheme QBC(n).
This construction is almost the CLS scheme given in [14], but with a significant
simplification: all intermediate verifications of the commitments by the sender
are removed. In spite of this, we will still call it CLS scheme in this paper.
Intuitively, these intermediate verifications can be removed because by the virtue
of the round-collapse theorem (Theorem 4), we only need a scheme that is just
secure against the purification attack for the purpose of the compression. That
is, we only need to show that the CLS scheme QBC(n)⊗n is secure against
the purification attack, or the purified CLS scheme is both honest-hiding and
honest-binding. This simplification of the construction will induce a significant
simplification of the analysis of the original CLS scheme [14], which is for the
full security and quite technically involved.

Security parameter: n

Commit stage: Let b ∈ {0, 1} be the bit to commit.

– (S1) For i = 1, 2, . . . , n, the sender chooses a bit xi
$← {0, 1} and a basis

θi
$← {+,×}, sending the qubit |xi⟩θi to the receiver.

– (R2) For i = 1, 2, . . . , n, the receiver chooses a basis θ̂i
$← {+,×} and measures

each received qubit |xi⟩θi in the basis θ̂i, obtaining the outcome x̂i. Then com-

mit to (θ̂i, x̂i) in a bitwise fashion using a canonical quantum bit commitment
scheme (Q0, Q1). (We can assume that the bases “+” and “×” are encoded as
0 and 1, respectively.)

– (S3) The sender sends all θi’s, i = 1, 2, . . . , n, to the receiver.

– (R4) The receiver chooses a random bit c
$← {0, 1}, as well as two random

subsets of indices I0, I1 ⊂ [n] such that |I0| = |I1| = n/3, I0 ∩ I1 = ∅, and
θi = θ̂i for each i ∈ Ic. Then send (I0, I1) to the sender.

– (S5) The sender chooses a bit a0
$← {0, 1} and sets a1 = a0⊕b. Then compute

â0 =
⊕

i∈I0
xi ⊕ a0, â1 =

⊕
i∈I1

xi ⊕ a1, and send (â0, â1) to the receiver.
– (R6) The receiver computes the bit dc =

⊕
i∈Ic

x̂i ⊕ âc.

Reveal stage:

– The sender sends the bits b and (a0, a1) to the receiver.
– The receiver verifies that b = a0 ⊕ a1 and dc = ac.

Fig. 1. The atomic scheme QBC, which composed in parallel gives a scheme that is a
somewhat simplification of the original CLS scheme

Due to the space limitation, the proof of Theorem 6 is referred to [50, Section
10].
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7 Parallel composition of a canonical statistically-binding
quantum bit commitment scheme

In cryptography, a typical way to commit a string is to commit it in a bitwise
fashion using a bit commitment scheme. We naturally ask, what binding property
can we obtain if we commit a string in a bitwise fashion using a canonical
quantum bit commitment scheme? The answer to this question on the parallel
composition of quantum bit commitments turns out to be elusive, especially
w.r.t. computationally-binding quantum bit commitment [12].

In this section, we will study the parallel composition of a canonical statistically-
binding quantum bit commitment scheme, establishing a very strong quantum
string binding property. We also show that this binding property implies the
CDMS-binding property of quantum string commitment (referred to [50, Sec-
tion 11]), which is useful in quantum cryptography [12]. However, we do not
expect the same binding property extends to canonical computationally-binding
quantum bit commitment schemes.

We first define the sum-binding property of a general quantum string com-
mitment scheme.

Definition 4 (Sum-binding). Suppose that a possibly cheating sender inter-
acts with an honest receiver prescribed by a quantum string commitment scheme,
and completes the commit stage. For any string s ∈ {0, 1}m(n), where m(·) is a
polynomial of the security parameter n, let ps denote the success probability that
the sender can open the commitment as the string s in the reveal stage. We say
that this quantum string commitment scheme is sum-binding if∑

s∈{0,1}m

ps < 1 + negl(n). (6)

Remark. The sum-binding property defined above is very strong for quantum
string commitment in the following sense. Note that a cheating sender can triv-
ially achieve

∑
s∈{0,1}m ps = 1, by committing to an arbitrary superposition of

the strings in {0, 1}m honestly and then open the commitment honestly. But
showing that the advantage of any cheating sender in opening a commitment is
negligible is likely to be hard or even impossible [12]. Roughly speaking, the main
difficulty comes from that there are exponentially many strings (2m, exactly) in
{0, 1}m, but we still hope to bound the sum of exponentially many advantages
by a negligible quantity.

In spite of the difficulty mentioned above, we can prove the following par-
allel composition theorem w.r.t. a canonical statistically-binding quantum bit
commitment scheme.

Theorem 7 (Parallel composition). Suppose that a canonical quantum bit
commitment scheme (Q0, Q1) is statistically binding. Then the quantum string
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commitment scheme obtained by composing it in parallel is statistically sum-
binding. Formally, if the scheme (Q0, Q1) is statistically ϵ(n)-binding where the
function ϵ(·) is negligible, then∑

s∈{0,1}m

ps ≤ 1 +O(m2ϵ). (7)

The proof of the theorem above will be information-theoretic, thus does not
extend to the computational setting. Due to the space limitation, its proof is
referred to [50, Section 11].

8 Conclusion and open problems

In this work, we study general properties of complexity-based/computational
quantum bit commitments. Specifically, we show that any quantum bit commit-
ment scheme can be compressed into the canonical form (Theorem 4), which is
non-interactive and whose semi-honest security implies the full security (Theo-
rem 3). This yields several applications [50, Appendix D and Section 9], allowing
us to not only obtain new constructions of quantum bit commitment but also
simplify the security analysis of existing ones. Moreover, it also enables us to
establish an equivalence between two flavors of quantum bit commitments (The-
orem 6). Regarding the parallel composition, we establish a very strong quantum
statistical string sum-binding property by composing a canonical statistically-
binding quantum bit commitment scheme in parallel (Theorem 7).

We propose to study quantum bit commitments in the future from both
quantum cryptography and quantum complexity theory perspectives. In the be-
low, we summarize and raise some open problems that are related to this work
and beyond:

1. Can canonical quantum bit commitments satisfy any stronger binding prop-
erties than sum-binding that are interesting? The answer to this question is
“yes” ([18,51] and [50, Appendix B]). We expect further exploration towards
this open question in the future.

2. In this work, we plug a canonical computationally-binding quantum bit com-
mitment scheme in a somewhat simplified CLS scheme for the purpose of
converting its flavor (Section 6). This construction essentially realizes a quan-
tum oblivious transfer (QOT) that satisfies the following security require-
ments: the purified receiver of QOT does not know the other bit that the
honest sender is given as input , while the purified sender of QOT does not
know which input bit the honest receiver is aware of. We highlight that this
security is neither the security against an arbitrary quantum attack nor the
simulation security [22,5] that is preferable in cryptography. Recall that we
prove a computational collapse theorem ([50, Appendix F]) for the analysis
this security. So a natural open question is, can this computational-collapse
technique be extended to show the same security but against an arbitrary
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quantum attack (as opposed to against the purification attack) for the orig-
inal QOT protocol (or some of its variant like the one considered in [12])
with a canonical computationally-binding quantum bit commitment scheme
plugged in [13]? Possibly combine it with the quantum sampling technique
devised in [8]? Though this security is not as good as the simulation security,
the corresponding construction is much simpler (in particular, consisting of
constant number of rounds). And it might be sufficient in some interesting
applications, just like [14] and here for the purpose of converting the flavor
of quantum bit commitment.

3. In this work, we show that the NOVY bit commitment scheme can be com-
pressed into the canonical form and shown secure against quantum attacks
[50, Section 9]. A natural and interesting extension of this result would be
compressing the construction of statistically-hiding computationally-binding
(classical) bit commitment scheme based on one-way functions [24] into the
canonical form and showing its quantum security (when the underlying one-
way function used is quantum secure).

4. As mentioned in Section 1.3, it is interesting to explore whether quantum bit
commitments conversely imply pseudorandom quantum states (of any sort).

5. This open question regards quantum hardness amplification. The big ques-
tion here is, if a unitary operation U is hard to realize (e.g. requires super-
polynomial number of elementary quantum gates), then is the unitary oper-
ation U⊗n (i.e. perform the unitary operation U n times in parallel) harder?
Specific to a canonical quantum bit commitment scheme, we ask: can the par-
allel composition of quantum bit commitments reduce the binding error? The
answer is a trivial “yes” w.r.t. a canonical statistically-binding quantum bit
commitment scheme, whose binding error can be captured by an information-
theoretic notion known as fidelity [52]. However, the answer becomes unclear
when it comes to a canonical computationally-binding quantum bit commit-
ment scheme. In particular, can the parallel composition reduce the computa-
tional binding error from, say 1/2 or even inverse polynomial, to a negligible
quantity? This question looks very similar to the question of amplifying the
one-wayness of one-way functions in classical cryptography [53]. If the an-
swer to this question is “yes”, then combining it with results in [45,52,18,51]
will complete the proof for an equivalence between quantum bit commitment
and quantum zero-knowledge like in the classical setting [40].

6. Some fancier open questions include: can quantum bit commitment find
more applications in quantum cryptography? Are there any other quantum
cryptographic applications (besides quantum zero-knowledge and quantum
oblivious transfer) that also imply quantum bit commitment? That is, can
quantum bit commitment serve as the foundation of quantum cryptography?

7. Finally, the perhaps biggest open question that is related to the quantum
complexity theory is: do computational quantum bit commitments really
exist?
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