Functional Encryption with Secure Key Leasing

Fuyuki Kitagawa'! and Ryo Nishimaki!

NTT Social Informatics Laboratories, Tokyo Japan
{fuyuki.kitagawa.yh,ryo.nishimaki.zk}@hco.ntt.co.jp

Abstract. Secure software leasing is a quantum cryptographic primitive
that enables us to lease software to a user by encoding it into a quantum
state. Secure software leasing has a mechanism that verifies whether a
returned software is valid or not. The security notion guarantees that
once a user returns a software in a valid form, the user no longer uses
the software.

In this work, we introduce the notion of secret-key functional encryption
(SKFE) with secure key leasing, where a decryption key can be securely
leased in the sense of secure software leasing. We also instantiate it with
standard cryptographic assumptions. More specifically, our contribution
is as follows.

— We define the syntax and security definitions for SKFE with secure
key leasing.

— We achieve a transformation from standard SKFE into SKFE with
secure key leasing without using additional assumptions. Especially,
we obtain bounded collusion-resistant SKFE for P/poly with secure
key leasing based on post-quantum one-way functions since we can
instantiate bounded collusion-resistant SKFE for P/poly with the
assumption.

Some previous secure software leasing schemes capture only pirate software
that runs on an honest evaluation algorithm (on a legitimate platform).
However, our secure key leasing notion captures arbitrary attack strategies
and does not have such a limitation.

As an additional contribution, we introduce the notion of single-decryptor
FE (SDFE), where each functional decryption key is copy-protected. Since
copy-protection is a stronger primitive than secure software leasing, this
notion can be seen as a stronger cryptographic primitive than FE with
secure key leasing. More specifically, our additional contribution is as
follows.

— We define the syntax and security definitions for SDFE.

— We achieve collusion-resistant single-decryptor PKFE for P/poly from
post-quantum indistinguishability obfuscation and quantum hardness
of the learning with errors problem.

1 Introduction

1.1 Background

Functional encryption (FE) [BSW11] is an advanced encryption system that
enables us to compute on encrypted data. In FE, an authority generates a master

secret key and an encryption key. An encryptor uses the encryption key to
generate a ciphertext ct, of a plaintext x. The authority generates a functional
decryption key fsk from a function f and the master secret key. When a decryptor
receives fsk and ct,, it can compute f(x) and obtains nothing beyond f(z). In
secret-key FE (SKFE), the encryption key is the same as the master secret key,
while the encryption key is public in public-key FE (PKFE).

FE offers flexible accessibility to encrypted data since multiple users can ob-
tain various processed data via functional decryption keys. Public-key encryption
(PKE) and attribute-based encryption (ABE) [SWO05] do not have this prop-
erty since they recover an entire plaintext if decryption succeeds. This flexible
feature is suitable for analyzing sensitive data and computing new data from
personal data without compromising data privacy. For example, we can compute
medical statistics from patients’ data without directly accessing individual data.
Some works present practical applications of FE (for limited functionalities):
non-interactive protocol for hidden-weight coin flips [CS19], biometric authenti-
cation, nearest-neighbor search on encrypted data [KKLM™ 18], private inference
on encrypted data [RPBT19].

One issue is that once a user obtains fsk, it can compute f(x) from a ciphertext
of z forever. An authority may not want to provide users with the permanent right
to compute on encrypted data. A motivative example is as follows. A research
group member receives a functional decryption key fsk to compute some statistics
from many encrypted data for their research. When the member leaves the group,
an authority wants to prevent the member from doing the same computation on
another encrypted data due to terms and conditions. However, the member might
keep a copy of their functional decryption key and penetrate the database of the
group to do the same computation. Another motivation is that the subscription
business model is common for many services such as cloud storage services (ex.
OneDrive, Dropbox), video on demand (ex. Netflix, Hulu), software applications
(ex. Office 365, Adobe Photoshop). If we can keep a copy of functional decryption
keys, we cannot use FE in the subscription business model (for example, FE can
be used as broadcast encryption in a video on demand). We can also consider
the following subscription service. A company provides encrypted data sets for
machine learning and a functional decryption key. A researcher can perform some
tasks using the encrypted data set and the key.

Achieving a revocation mechanism [NP01] is an option to solve the issue
above. Some works propose revocation mechanisms for advanced encryption such
as ABE [SSW12] and FE [NWZ16]. However, revocation is not a perfect solution
since we need to update ciphertexts to embed information about revoked users.
We want to avoid updating ciphertexts for several reasons. One is a practical
reason. We possibly handle a vast amount of data, and updating ciphertexts
incurs significant overhead. Another one is more fundamental. Even if we update
ciphertexts, there is no guarantee that all old ciphertexts are appropriately deleted.
If some user keeps copies of old ciphertexts, and a data breach happens after
revocation, another functional decryption key holder whose key was revoked still
can decrypt the old ciphertexts.

This problem is rooted in classical computation since we cannot prevent copy-
ing digital data. Ananth and La Placa introduce the notion of secure software
leasing [AL21] to solve the copy problem by using the power of quantum compu-
tation. Secure software leasing enables us to encode software into a leased version.
The leased version has the same functionality as the original one and must be a
quantum state to prevent copying. After a lessor verifies that the returned software
from a lessee is valid (or that the lessee deleted the software), the lessee cannot exe-
cute the software anymore. Several works present secure software leasing for simple
functionalities such as a sub-class of evasive functions (subEVS), PKE, signatures,
pseudorandom functions (PRFs) [AL21,ALLT21,KNY21,BJL"21,CMP20]. If we
can securely implement leasing and returning mechanisms for functional decryp-
tion keys, we can solve the problem above. Such mechanisms help us to use FE
in real-world applications.

Thus, the main question in this work is as follows.

Can we achieve secure a leasing mechanism for functional decryption keys of
FE?

We can also consider copy-protection, which is stronger security than secure
leasing. Aaronson [Aar09] introduces the notion of quantum copy-protection.
Copy-protection prevents users from creating a pirate copy. It does not have a
returning process, and prevents copying software. If a user returns the original
software, no copy is left behind on the user, and it cannot run the software.
Coladangelo, Liu, Liu, and Zhandry [CLLZ21] achieve copy-protected PRFs
and single-decryptor encryption (SDE)!. Our second question in this work is as
follows.

Can we achieve copy-protection for functional decryption keys of FE?

We affirmatively answer those questions in this work.

1.2 Our Result

Secure key leasing. Our main contributions are introducing the notion of SKFE
with secure key leasing and instantiating it with standard cryptographic assump-
tions. More specifically,
— We define the syntax and security definitions for SKFE with secure key
leasing.
— We achieve a transformation from standard SKFE into SKFE with secure
key leasing without using additional assumptions.
In SKFE with secure key leasing, a functional decryption key is a quantum state.
More specifically, the key generation algorithm takes as input a master secret key,
a function f, and an availability bound n (in terms of the number of ciphertexts),
and outputs a quantum decryption key fsk tied to f. We can generate a certificate
for deleting the decryption key fsk. If the user of this decryption key deletes fsk

! SDE is PKE whose decryption keys are copy-protected.

within the declared availability bound n and the generated certificate is valid,
the user cannot compute f(z) from a ciphertext of x anymore. We provide a
high-level overview of the security definition in Section 1.3.

We can obtain bounded collusion-resistant SKFE for P/poly with secure key
leasing from OWFs since we can instantiate bounded collusion-resistant SKFE for
P/poly with OWFs.? Note that all building blocks in this work are post-quantum
secure since we use quantum computation and we omit “post-quantum”.

Our secure key leasing notion is similar to but different from secure software
leasing [AL21] for FE because adversaries in secure software leasing (for FE)
must run their pirate software by an honest evaluation algorithm (on a legitimate
platform). This is a severe limitation. In our FE with secure key leasing setting,
adversaries do not necessarily run their pirate software (for functional decryption)
by an honest evaluation algorithm and can take arbitrary attack strategies.

We develop a transformation from standard SKFE into SKFE with secure
key leasing by using quantum power. In particular, we use (reusable) secret-
key encryption (SKE) with certified deletion [BI20,HMNY21], where we can
securely delete ciphertexts, as a building block. We also develop a technique based
on the security bound amplification for FE [AJLT19,JKMS20] to amplify the
availability bound, that is, the number of encryption queries before ct* is given.
This technique deviates from known multi-party-computation-based techniques
for achieving bounded many-ciphertext security for SKFE [GVW12,AV19].3 The
security bound amplification-based technique is of independent interest since
the security bound amplification is not directly related to the amplification of
the number of queries. These are the main technical contributions of this work.
See Section 1.3 and main sections for more details.

Copy-protected functional decryption keys. The other contributions are copy-
protected functional decryption keys. We introduce the notion of single-decryptor
FE (SDFE), where each functional decryption key is copy-protected. This notion
can be seen as a stronger cryptographic primitive than FE with secure key leasing,
as we argued in Section 1.1.

— We define the syntax and security definitions for SDFE.

— We achieve collusion-resistant public key SDFE for P/poly from sub-exponentially
secure indistinguishability obfuscation (IO) and the sub-exponential hardness
of the learning with errors problem (QLWE assumption).

First, we transform single-key PKFE for P/poly into single-key SDFE for P/poly
by using SDE. Then, we transform single-key SDFE P /poly into collusion-resistant
SDFE for P/poly by using an I0-based key bundling technique [KNT21,BNPW20)].

2 If we start with fully collusion-resistant SKFE, we can obtain fully collusion-resistant
SKFE with secure key leasing.

3 These techniques [GVW12,AV19] work as transformations from single-key FE into
bounded collusion-resistant FE. However, they also work as transformations from
single-ciphertext SKFE into bounded many-ciphertext SKFE. Many-ciphertext means
that SKFE is secure even if adversaries can send unbounded polynomially many
queries to an encryption oracle.

We can instantiate SDE with IO and the QLWE assumption [CLLZ21,CV21]
and single-key PKFE for P/poly with PKE [SS10,GVW12].

1.3 Technical Overview

We provide a high-level overview of our techniques. Below, standard math font
stands for classical algorithms and classical variables, and calligraphic font stands
for quantum algorithms and quantum states.

Syntax of SKFE with secure key leasing. We first recall a standard SKFE scheme.
It consists of four algorithms (Setup, KG, Enc, Dec). Setup is given a security
parameter 1* and a collusion bound 19 and generates a master secret key msk.
Enc is given msk and a plaintext = and outputs a ciphertext ct. KG is given msk
and a function f and outputs a decryption key fsk tied to f. Dec is given fsk and
ct and outputs f(z). Then, the indistinguishability-security of SKFE roughly
states that any QPT adversary cannot distinguish encryptions of zy and z; under
the existence of the encryption oracle and the key generation oracle. Here, the
adversary can access the key generation oracle at most ¢ times and can query
only a function f such that f(xzo) = f(z1).

An SKFE scheme with secure key leasing (SKFE-SKL) is a tuple of six
algorithms (Setup, XG, Enc, Dec, Cert, Vrfy), where the first four algorithms form
a standard SKFE scheme except the following difference on %G. In addition to
a function f, XG is given an availability bound 1" in terms of the number of
ciphertexts. Also, given those inputs, %G outputs a verification key vk together
with a decryption key fsk tied to f encoded in a quantum state, as (fsK, vk) <
KG(msk, f,1™). By using Cert, we can generate a (classical) certificate that a
quantum decryption key £ is deleted, as cert « Cert(fs€). We check the validity
of certificates by using vk and Vrfy, as T /L < Vrfy(vk, cert). In addition to the
decryption correctness, an SKFE-SKL scheme is required to satisfy the verification
correctness that states that a correctly generated certificate is accepted, that is,
T = Vrfy(vk, cert) for (fsk,vk) <= Kg(msk, f,1") and cert < Cert(fsk).

Security of SKFE-SKL. The security notion of SKFE-SKL we call lessor security
intuitively guarantees that if an adversary given fsk deletes it and the generated
certificate is accepted within the declared availability bound, the adversary cannot
use fsk any more. The following indistinguishability experiment formalizes this
security notion. For simplicity, we focus on a selective setting where the challenge
plaintext pair (x§,z7) and the collusion bound ¢ are fixed outside of the security
experiment in this overview.

1. Throughout the experiment, 4 can get access to the following oracles, where
L4 is a list that is initially empty.
Okgnc(x): This is the standard encryption oracle that returns Enc(msk, x)
given z.
Os;(f,17): This oracle takes as input a function f and an availability
bound 1", generate (fsk,vk) < XG(msk, f,1™), returns fs€ to 4, and

adds (f,1",vk, L) to Lgg. Differently from the standard SKFE, 4 can
query a function f such that f(x§) # f(z7). 4 can get access to the key
generation oracle at most ¢ times.

Ovriy(f, cert): Also, 4 can get access to the verification oracle. Intuitively, this
oracle checks that 4 deletes leased decryption keys correctly within the
declared availability bounds. Given (f, cert), it finds an entry (f, 1™, vk, M)
from Lgg. (If there is no such entry, it returns L.) If T = Vrfy(vk, cert)
and the number of queries to Og,c at this point is less than n, it returns
T and updates the entry into (f,1™,vk, T). Otherwise, it returns L.

2. When 4 requests the challenge ciphertext, the challenger checks if 4 has
correctly deleted all leased decryption keys for functions f such that f(zf) #
f(z7). If so, the challenger gives the challenge ciphertext ct* <— Enc(msk, %)

for random bit coin + {0,1} to 4, and otherwise the challenger output 0.
Hereafter, 4 is not allowed to send a function f such that f(xf) # f(z%) to
Ogg-

3. 4 outputs a guess coin’ of coin.

We say that the SKFE-SKL scheme is lessor secure if no QPT adversary can

guess coin significantly better than random guessing. We see that if 4 can use a

decryption key after once 4 deletes and the deletion certificate is accepted, 4 can

detect coin with high probability since 4 can obtain a decryption key for f such
that f(z3) # f(x7). Thus, this security notion captures the above intuition. We
see that lessor security implies standard indistinguishability-security for SKFE.

We basically work with the above indistinguishability based selective security
for simplicity. In the full version, we also provide the definitions of adaptive
security and simulation based security notions and general transformations to
achieve those security notions from indistinguishability based selective security.

Dynamic availability bound vs. static availability bound. In SKFE-SKL, we can
set the availability bound for each decryption key differently. We can also consider
a weaker variant where we statically set the single availability bound applied to
each decryption key at the setup algorithm. We call this variant SKFE with static
bound secure key leasing (SKFE-sbSKL). In fact, by using a technique developed
in the context of dynamic bounded collusion FE [AMVY21,GGLW21], we can
generically transform SKFE-sbSKL into SKFE-SKL if the underlying SKFE-
sbSKL satisfies some additional security property and efficiency requirement.
For the overview of this transformation, see Section 2.2. Therefore, we below
focus on how to achieve SKFE-sbSKL. For simplicity, we ignore those additional
properties required for the transformation to SKFE-SKL.

SKFE-sbSKL with the availability bound O from certified deletion. We start with a
simple construction of an SKFE-sbSKL scheme secure for the availability bound 0
based on an SKE scheme with certified deletion [BI20,HMNY21]. The availability
bound is 0 means that it is secure if an adversary deletes decryption keys without
seeing any ciphertext.

SKE with certified deletion consists of five algorithms (KG, Enc, Dec, Del , Vrfy).
The first three algorithms form a standard SKE scheme except that Enc output

a verification key vk together with a ciphertext encoded in a quantum state ct.
By using Del, we can generate a (classical) certificate that ct is deleted. The
certificate is verified using vk and Vrfy. In addition to the decryption correctness,
it satisfies the verification correctness that guarantees that a correctly generated
certificate is accepted. The security notion roughly states that once an adversary
deletes a ciphertext ¢t and the generated certificate is accepted, the adversary
cannot obtain any plaintext information encrypted inside ct, even if the adversary
is given the secret key after the deletion.

We now construct an SKFE-sbSKL scheme zSKFE-sbSKL that is secure for
the availability bound 0, based on a standard SKFE scheme SKFE = (Setup, KG,
Enc, Dec) and an SKE scheme with certified deletion CDSKE = (CD.KG, CD.Ene,
CD.Dec, CD.Del,CD.Vrfy). In the setup of zSKFE-sbSKL, we generate msk «
Setup(1*,19) and cd.sk <— CD.KG(1*), and the master secret key of zSKFE-shSKL
is set to zmsk = (msk, cd.sk). To generate a decryption key for f, we generate
a decryption key for f by SKFE as fsk +— KG(msk, f) and encrypt it by CDSKE
as (cd.ct,vk) « CD.Enc(cd.sk, fsk). The resulting decryption key is zfsk = cd.ct
and the corresponding verification key is vk. To encrypt a plaintext x, we just
encrypt it by SKFE as ct + Enc(msk,x) and append cd.sk contained in zmsk,
as zct = (ct,cd.sk). To decrypt zct with zfsk, we first retrieve fsk from cd.ct
and cd.sk, and compute f(z) < Dec(fsk,ct). The certificate generation and
verification are simply defined as those of CDSKE since zfsk is a ciphertext of
CDSKE.

The security of zSKFE-sbSKL is easily analyzed. Let (af, z7) be the challenge
plaintext pair. When an adversary A4 queries f to Ogg, 4 is given zfsk = cd.ct,
where fsk <— KG(msk, f) and (cd.ct,vk) <= CD.Enc(cd.sk, fsk). If f(zg) # f(z7),
A4 is required to delete zfsk. without seeing any ciphertext. This means that 4
cannot obtain cd.sk before zfsk is deleted. Then, from the security of CDSKE, 4
cannot obtain any information of fsk. This implies that 4 can obtain a decryption
key of SKFE only for a function f such that f(z§) = f(z7), and thus the lessor
security of zSKFE-sbSKL follows form the security of SKFE.

How to amplify the availability bound? We now explain how to amplify the
availability bound from 0 to any polynomial n. One possible solution is to
rely on the techniques for bounded collusion FE [GVW12,AV19]. Although the
bounded collusion techniques can be used to amplify “1-bounded security” to
“poly-bounded security”, it is not clear how to use it starting from “0-bounded
security”. For more detailed discussion on this point, see Remark 2.3. Therefore,
we use a different technique from the existing bounded collusion FE. At a high
level, we reduce the task of amplifying the availability bound to the task of
amplifying the security bound, which has been studied in the context of standard
FE [AJL119,JKMS20].

We observe that we can obtain an SKFE-sbSKL scheme with availability
bound n for any n that is secure with only inverse polynomial probability by
just using many instances of zZSKFE-sbSKL in parallel. Concretely, suppose we
use N = an instances of zSKFE-sbSKL to achieve a scheme with availabil-
ity bound n, where a € N. To generate a decryption key for f, we generate

(afsk ;, vk;) < 2KG(zmsk;, f) for every j € [N], and set the resulting decryption
key as (zfskj) jein) and the corresponding verification key as (vk;);en)- To en-
crypt «, we randomly choose j < [N], generate zct; < zEnc(zmsk;,), and set
the resulting ciphertext as (j,zct;). To decrypt this ciphertext with (zfskj)je[N],
we just compute f(z) <= zDec(zfsk;, zct;). The certification generation and verifi-
cation are done by performing them under all N instances. The security of this
construction is analyzed as follows. The probability that the j* chosen when gen-
erating the challenge ciphertext collides with some of n indices ji,- - - , j, used by
the first n calls of the encryption oracle, is at most n/N = 1/a. If such a collision
does not happen, we can use the security of j*-th instance of zZSKFE-sbSKL to
prove the security of this construction. Therefore, this construction is secure with
probability roughly 1 — 1/« (denoted by 1/a-secure scheme).

Thus, all we have to do is to convert an SKFE-sbSKL scheme with inverse poly-
nomial security into one with negligible security. As stated above, such security
amplification has been studied for standard FE. In this work, we adopt the ampli-
fication technique using homomorphic secret sharing (HSS) [AJLT19,JKMS20].

Amplification using HSS. In this overview, we describe our construction using
HSS that requires the LWE assumption with super-polynomial modulus to give a
high-level intuition. However, our actual construction uses a primitive called set
homomorphic secret sharing (SetHSS) [JKMS20], which is a weak form of HSS
and can be based on OWFs. * See Section 4 for our construction based on OWFs.

An HSS scheme consists of three algorithms (InpEncode, FuncEncode, Decode).
InpEncode is given a security parameter 1*, a number 1™, and an input x, and
outputs m input shares (s;);e[m]. FuncEncode is given a security parameter 1*, a
number 1™, and a function f, and outputs m function shares (f;);c[m). Decode
takes a set of evaluations of function shares on their respective input shares
(fi(si))iem)» and outputs a value f(z). Then, the security property of an HSS
scheme roughly guarantees that for any (i*,z, 27), given a set of input shares
(84)ie[m)\fi=} for some 7%, an adversary cannot detect from which of the challenge
inputs they are generated, under the existence of function encode oracle that is
given f such that f(z5) = f(27) and returns (fi(s:))icim)-

We describe SKFE-sbSKL scheme SKFE-sbSKL with the availability bound
n > 1 of our choice using a HSS scheme HSS = (InpEncode, FuncEncode, Decode).
In the setup of SKFE-sbSKL, we first set up 1/2-secure SKFE-sbSKL scheme
SKFE-sbSKL’ with the availability bound n. This is done by parallelizing 2n
instances of zZSKFE-sbSKL as explained before. We generate m master secret keys
msky, - - - , msk,, of SKFE-sbSKL'. Then, to generate a decryption key for f by
SKFE-sbSKL, we first generate (f;)icim) < FuncEncode(1*,1™, f), and generate
a decryption key fsk, tied to f; under msk; for each i € [m]. To encrypt z by
SKFE-sbSKL, we first generate (s;)ic(m] < InpEncode(1*,1™, z) and generate a
ciphertext ct; of s; under msk; for each i € [m]. The certification generation and

4 The definition of HSS provided below is not standard. We modify the definition to
be close to SetHSS. Note that HSS defined below can be constructed from multi-key
fully homomorphic encryption with simulatable partial decryption property [MW16].

verification are done by performing those of SKFE-SKL’ for all of the m instances.
When decrypting the ciphertext (ct;)icm) by (fK;)ie[m], We can obtain f;(s;)
by decrypting ct; with £k, for every i € [m]. By combining (f;(s;))ie[m] using
Decode, we can obtain f(x).

The lessor security of SKFE-sbSKL can be proved as follows. Each of m
instances of SKFE-sbSKL' is secure independently with probability 1/2. Thus,
there is at least one secure instance without probability 1/2™, which is negligible
by setting m = w(log A). Suppose i*-th instance is a secure instance. Let (zf, z7)
be the challenge plaintext pair, and let (s});c(n < InpEncode(1*, 1™, z%,) for
coin + {0,1}. In the security experiment, from the security of SKFE-sbSKL’
under msk;«, an adversary cannot obtain the information of s;« except for its
evaluation on function shares for a function f queried to O« that satisfies that
f(z3) = f(z7). Especially, from the security of SKFE-sbSKL' under msk;«, the
adversary cannot obtain an evaluation of s;« on function shares for a function
f such that f(xg) # f(«7), though 4 can query such a function to Ogg. Then,
we see that the lessor security of SKFE-sbSKL can be reduced to the security of
HSS. °

In the actual construction, we use SetHSS instead of HSS, as stated before.
Also, in the main body, we abstract the parallelized zZSKFE-sbSKL as index-based
SKFE-sbSKL. This makes the security proof of our construction using SetHSS
simple. Moreover, in the actual construction of an index-based SKFE-sbSKL, we
bundle the parallelized instances of zZSKFE-sbSKL using a PRF. This modification
is necessary to achieve the efficiency required for the above transformation into
SKFE-SKL.

Goyal et al. [CGO21] use a similar technique using HSS in a different setting
(private simultaneous message protocols). However, their technique relies on the
LWE assumption unlike ours.

Single decryptor PKFE. In this work, we also define the notion of single decryptor
PKFE, which is PKFE whose functional decryption key is copy-protected. The
definition is a natural extension of SDE (PKE with copy-protected decryption
keys). An adversary 4 tries to copy a target functional decryption key e
More specifically, 4 is given sk s« and outputs two possibly entangled quantum
distinguishers D; and D, and two plaintexts (g, x1) such that f*(xzq) # f*(x1).
If Dy or Dy cannot distinguish a given ciphertext is encryption of x(or x1, sﬁf*
is copy-protected. If both D and D, have sk ;-, they can trivially distinguish the
challenge ciphertext. Thus, the definition guarantees copy-protection security. We
provide a collusion-resistant single-decryptor PKFE scheme, where adversaries
obtain polynomially many functional decryption keys, based on IO.

We first show that a single-key single-decryptor PKFE can be constructed
from a single-key standard PKFE scheme and SDE scheme. The construction is
simple nested encryption. Namely, when encrypting a plaintext x, we first encrypt
it by the standard PKFE scheme and then encrypt the ciphertext by the SDE

5 Actual construction and security proof needs to use a technique called the trojan
method [ABSV15]. We ignore the issue here for simplicity.

scheme. The secret key of the SDE scheme is included in the functional decryption
key of the resulting single-decryptor PKFE scheme. Although a PKFE functional
decryption key can be copied, the SDE decryption key cannot be copied and
adversaries cannot break the security of PKFE. This is because we need to run
the SDE decryption algorithm before we run the PKFE decryption algorithm.

The security notion for SDE by Coladangelo et al. [CLLZ21] is not sufficient
for our purpose since SDE plaintexts are ciphertexts of the standard PKFE in
the construction. We need to extend the security notion for SDE to prove the
security of this construction because we need to handle randomized messages
(the PKFE encryption is a randomized algorithm). Roughly speaking, this new
security notion guarantees that the security of SDE holds for plaintexts of the
form g(z;7), where g and x respectively are a function and an input chosen by
an adversary and r is a random coin chosen by the experiment. We can observe
that the SDE scheme proposed by Coladangelo et al. [CLLZ21] based on 10
satisfies this security notion. Then, by setting g as the encryption circuit of the
standard PKFE, the security of the single-key single-decryptor PKFE scheme
above can be immediately reduced to the security of the SDE scheme. We also
extend adversarial quantum decryptors, which try to output an entire plaintext,
to adversarial quantum distinguishers, which try to guess a 1-bit coin used to
generate a ciphertext. We need this extension to use SDE as a building block. It
is easy to observe the SDE scheme by Coladangelo et al. [CLLZ21] is secure even
against quantum distinguishers.

Once we obtain a single-key single-decryptor PKFE scheme, we can transform
it into a collusion-resistant single-decryptor PKFE scheme by again using I0.
This transformation is based on one from a single-key standard PKFE scheme
into a collusion-resistant standard PKFE scheme [BNPW20,KNT21]. The idea is
as follows. We need to generate a fresh instance of the single-key scheme above
for each random tag and bundle (unbounded) polynomially many instances to
achieve collusion-resistance. We use IO to bundle multiple instances of single-key
SDFE. More specifically, a public key is an obfuscated circuit of the following
setup circuit. The setup circuit takes a public tag 7 as input, generates a key pair
(pk,, msk;) of the single-key SDFE scheme using PRF value Fg(7) as randomness,
and outputs only pk.. The master secret key is the PRF key K. We can generate
a functional decryption key for f by choosing a random tag 7 and generating
a functional decryption key sk, under msk,. A functional decryption key of
our collusion-resistant scheme consists of (7, sk). A ciphertext is an obfuscated
circuit of the following encryption circuit, where a plaintext x is hardwired. The
encryption circuit takes a public tag 7, generates pk,. by using the public key
explained above, and outputs a ciphertext of = under pk.. Due to this mechanism,
only one functional decryption key sk . under msk; is issued for each 7, but we
can generate polynomially many functional decryption keys by using many tags.
If we use a different tag 7/, an independent key pair (pk,,, msk,/) is generated and
it is useless for another instance under (pk,, msk;). The 10 security guarantees

10

that the information about K (and msk,) is hidden.® Thus, we can reduce the
collusion-resistance to the single-key security of the underlying single-decryptor
PKFE. Note that we need to consider super-polynomially many hybrid games
to complete the proof since the tag space size must be super-polynomial to
treat unbounded polynomially many tags. This is the reason why we need the
sub-exponential security for building blocks.

1.4 Organization

Due to the space limitation, we focus on SKFE-SKL in the rest of this version, and
we provide results on single decryptor FE in the full version. For the high-level
overview of our single-decryptor FE, please see Section 1.3. Also, please refer the
full version for preliminaries including notations.

In Section 2, we provide the definition of SKFE-SKL, and its variants SKFE-
sbSKL and index-based SKFE-sbSKL. In Section 3, we construct an index-based
SKFE-sbSKL scheme. In Section 4, we show how to transform an index-based
SKFE-sbSKL scheme into an SKFE-sbSKL scheme. In Section 5, we show how
to construct an SKFE-SKL scheme from an SKFE-sbSKL scheme.

2 Definition of SKFE with Secure Key Leasing

We introduce the definition of SKFE with secure key leasing and its variants.

2.1 SKFE with Secure Key Leasing
We first define SKFE with secure key leasing (SKFE-SKL).

Definition 2.1 (SKFE with Secure Key Leasing). An SKFE-SKL scheme
SKFE-SKL is a tuple of siz algorithms (Setup, XG, Enc, Dec, Cert, Vrfy). Below,
let X, Y, and F be the plaintext, output, and function spaces of SKFE-SKL,
respectively.

Setup(1*,19) — msk: The setup algorithm takes a security parameter 1* and a
collusion bound 19, and outputs a master secret key msk.

KG(msk, f,1™) — (fsk,vk): The key generation algorithm takes a master secret
key msk, a function f € F, and an availability bound 1™, and outputs a
functional decryption key fsk. and a verification key vk.

Enc(msk,) — ct: The encryption algorithm takes a master secret key msk and
a plaintext x € X, and outputs a ciphertext ct.

Dec(fsk,ct) — Tz The decryption algorithm takes a functional decryption key fsk.
and a ciphertext ct, and outputs a value .

Cert(fsk) — cert: The certification algorithm takes a function decryption key fsK,
and outputs a classical string cert.

5 We use puncturable PRFs and the puncturing technique here as the standard technique
for cryptographic primitives based on 10 [SW21].

11

Vrfy(vk, cert) — T/L: The certification-verification algorithm takes a verification
key vk and a string cert, and outputs T or L.
Decryption correctness: For everyxz € X, f € F, and q,n € N, we have

msk < Setup(1*,19)
Pr | Dec(fsk, ct) = f(x) | (fsk,vk) < KG(msk, f,1") | =1 — negl(X).
ct < Enc(msk, z)

Verification correctness: For every f € F and q,n € N, we have

msk « Setup(1*,19)
Pr | Vrfy(vk,cert) = T | (5K, vk) < KG(msk, f,1™) | =1 — negl(}).
cert < Cert(fsk)

Definition 2.2 (Selective Lessor Security). We say that SKFE-SKL is a
selectively lessor secure SKFE-SKL scheme for X,Y, and F, if it satisfies the
following requirement, formalized from the experiment Exp;i's_lstSETSKL(lA,coin)
between an adversary A4 and a challenger:

1. At the beginning, A4 sends (17, x{,x3) to the challenger. The challenger runs
msk < Setup(1*,19). Throughout the experiment, 4 can access the following
oracles.

Okgnc(z): Given x, it returns Enc(msk, z).

Osxg(f,17): Given (f, 1), it generates (fsk,vk) <= KG(msk, f,1"), sends fsk.
to 4, and adds (f,1",vk, L) to Lyg. A can access this oracle at most q
times.

Owry (f, cert): Given (f,cert), it finds an entry (f,1™,vk, M) from Lgg. (If
there is no such entry, it returns L.) If T = Vrfy(vk, cert) and the number
of queries to Ognc at this point is less than n, it returns T and updates
the entry into (f,1™,vk, T). Otherwise, it returns L.

2. When A requests the challenge ciphertext, the challenger checks if for any
entry (f,1",vk, M) in Lsg such that f(xg) # f(x7), it holds that M = T.
If so, the challenger generates ct* < Enc(msk,z?;,) and sends ct* to 4.
Otherwise, the challenger outputs 0. Hereafter, 4 is not allowed to sends a
function f such that f(x§) # f(x]) to Ogg.

3. 4 outputs a guess coin’ for coin. The challenger outputs coin’ as the final
output of the experiment.

For any QPT 4, it holds that
Pr | Exp3iE 2 (11,0) = 1] — Pr[Expiilei 2(1%,1) = 1]

< negl(A).

sel-lessor —
AdeKFE—SKL,ﬂO‘) =

Remark 2.1 (On the adaptive security). We can similarly define adaptive lessor
security where we allow 4 to adaptively choose the challenge plaintext pair
(x5, x7). For standard FE, we can generically convert a selectively secure one
into an adaptively secure one without any additional assumption [ABSV15]. We
observe that a similar transformation works for SKFE with secure key leasing.
Thus, for simplicity, we focus on selective lessor security in this work. See the
full version for the definition and transformation.

12

Remark 2.2 (On the simulation-based security). We can also define a simulation-
based variant of selective/adaptive lessor security where a simulator simulates
a challenge ciphertext without the challenge plaintext z* as the simulation-
based security for standard FE [BSW11,GVW12]. We can generically convert
indistinguishability-based lessor secure SKFE with secure key leasing into a
simulation-based lessor secure one without any additional assumptions as standard
FE [DIJ"13]. See the full version for the simulation-based definition and the
transformation.

2.2 SKFE with Static-Bound Secure Key Leasing

In this section, we define SKFE with static-bound secure key leasing (SKFE-
sbSKL). It is a weaker variant of SKFE-SKL in which a single availability bound
n applied to every decryption key is fixed at the setup time. We design SKFE-
sbSKL so that it can be transformed into SKFE-SKL in a generic way. For this
reason, we require an SKFE-sbSKL scheme to satisfy an efficiency requirement
called weak optimal efficiency and slightly stronger variant of the lessor security
notion. 7

Below, we first introduce the syntax of SKFE-sbSKL. Then, before introducing
the definition of (selective) lessor security for it, we provide the overview of the
transformation to SKFE-SKL since we think the overview makes it easy to
understand the security notion.

Definition 2.3 (SKFE with Static-Bound Secure Key Leasing). An SKFE-
sbSKL scheme SKFE-sbSKL is a tuple of six algorithms (Setup, XG, Enc, Dec, Cert, Vrfy).
The only difference from a normal SKFE scheme with secure key leasing is that

KG does not take as input the availability bound n, and instead, Setup takes it as

an input. Moreover, Setup takes it in binary as Setup(1*,1%,n), and we require

the following weak optimal efficiency.

Weak Optimal Efficiency: We require that the running time of Setup and Enc
is bounded by a fixed polynomial of A\, q, and logn.

Overview of the transformation to SKFE-SKL. As seen above, Setup and Enc
of an SKFE-sbSKL scheme SKFE-sbSKL is required to run in time logn. This is
because, in the transformation to SKFE-SKL, we use \ instances of SKFE-sbSKL
where the k-th instance is set up with the availability bound 2* for every &k € [\].
The weak optimal efficiency ensures that Setup and Enc of all A instances run in
polynomial time. The details of the transformation are as follows.

We construct an SKFE-SKL scheme SKFE-SKL from an SKFE-sbSKL scheme
SKFE-sbSKL = (Setup, %G, Enc, Dec, Cert, Vrfy). When generating a master secret
key skl.msk of SKFE-SKL, we generate msky, < Setup(1*, 19, 2¥) for every k € [)],
and set skl.msk := (mskg)rey)- To encrypt o by SKFE-SKL, we encrypt it by all

" We borrow the term weak optimal efficiency from the paper by Garg, Goyal, Lu, and

Waters [GGLW21], which studies dynamic bounded collusion security for standard
FE.

13

A instances, that is, generate ctj < Enc(msky, x) for every k € [A]. The resulting
ciphertext is skl.ct := (ctx)re[n- To generate a decryption key of SKFE-SKL for
a function f and an availability bound n, we first compute k' € [A] such that
oK' =1 < p < 2% Then, we generate (fsK .05 Vkir) = KG(msky, f). The resulting
decryption key is skl.fsk == (K, fsk,,) and the corresponding verification key
is vk := vkg/. Decryption is performed by decrypting cty included in skl.ct :==
(ctk)ke[r) by fsk,, - The certification generation and verification of SKFE-SKL are
simply those of SKFE-SKL.

We now consider the security proof of SKFE-SKL. In the experiment ExpzleE',ESFSE’_'SKL(1’\7 0),
an adversary 4 is given the challenge ciphertext skl.ct* = (ctj)re[y, Where
ct} < Enc(msky, z) for every k € [A]. The proof is done if we can switch all of
cty into Enc(msky, z7) without being detected by 4. To this end, the underlying
SKFE-sbSKL needs to satisfy a stronger variant of lessor security notion where
an adversary is allowed to declare the availability bound such that G does not
run in polynomial time, if the adversary does not make any query to the key
generation oracle. For example, to switch ct}, the reduction algorithm attacking
SKFE-sbSKL needs to declare the availability bound 2*, under which %G might
not run in polynomial time. Note that Setup and Enc run in polynomial time
even for such an availability bound due to the weak optimal efficiency. Thus, we
formalize the security notion of SKFE-sbSKL as follows.

Definition 2.4 (Selective Strtong Lessor Security). We define selective
strong lessor security for SKFE-sbSKL in the same way as that for SKFE-SKL
defined in Definition 2.2 , except the following changes for the security experiment.

— 4 outputsn at the beginning, and the challenger generates msk < Setup(1*, 19, n).
If 4 makes a query to Ogg or Ovygy, A is Tequired to output n such that XG
and Vrfy run in polynomial time.

— Ogg does not take 1" as an input.

Remark 2.8 (Insufficiency of existing bounded collusion techniques). In Sec-
tion 1.3, we stated that it is not clear how to use the existing bounded collusion
techniques [GVW12,AV19] for constructing SKFE-sbSKL. We provide a more
detailed discussion on this point.

The bounded collusion technique essentially enables us to increase the number
of decryption keys that an adversary can obtain. Thus, to try to use the bounded
collusion technique in our context, imagine the following naive construction using
standard SKFE SKFE and SKE with certified deletion CDSKE. This construction
is a flipped version of the naive construction provided in Section 1.3. In the
construction, we encrypt a ciphertext of SKFE by CDSKE, and we include the key
of CDSKE into the decryption key of the resulting scheme. The construction can
be seen as an SKFE scheme with certified deletion (for ciphertexts) that is secure
if an adversary deletes the challenge ciphertext before seeing any decryption key.
The roles of ciphertexts and decryption keys are almost symmetric in SKFE [BS18].
Thus, if we can amplify the security of this construction so that it is secure if an
adversary sees some decryption keys before deleting the challenge ciphertext, it
would lead to SKFE-sbSKL. The question is whether we can perform such an

14

amplification using the existing bounded collusion techniques [GVW12,AV19].
We observe that it is highly non-trivial to adapt the existing bounded collusion
technique starting from “O-bounded” security. Especially, it seems difficult to
design such a transformation so that the resulting SKFE-sbSKL obtained by
flipping the roles of ciphertexts and decryption keys satisfies weak optimal
efficiency and security against unbounded number of encryption queries such as
Definition 2.4.

We develop a different technique due to the above reason. Namely, we reduce
the task of amplifying the availability bound of SKFE-sbSKL into the task of
amplifying the security bound of it. In fact, our work implicitly shows that security
bound amplification for FE can be used to achieve bounded collusion-resistance.
We see that we can construct bounded collusion secure FE from single-key FE
by our parallelizing then security bound amplification technique.

2.3 Index-Based SKFE with Static-Bound Secure Key Leasing

We define index-based SKFE-sbSKL. Similarly to SKFE-sbSKL, it needs to
satisfy weak optimal efficiency and (selective) strong lessor security.

Definition 2.5 (Index-Base SKFE with Static-Bound Secure Key Leas-

ing). An index-base SKFE-sbSKL scheme iSKFE-sbSKL is a tuple of siz algo-

rithms (Setup, XG, iEnc, Dec, Cert, Vrfy). The only difference from an SKFE-sbSKL

scheme is that the encryption algorithm iEnc additionally takes as input an index

Jj € [n].

Decryption correctness: For everyx € X, f € F, ¢,n € N, and j € [n], we
have

msk < Setup(1*, 19, n)

Pr | Dec(fsk, ct) = f(x) | (fsk,vk) < KG(msk, f) | =1 — negl(X).
ct <+ Enc(msk, j, x)

Verification correctness: For every f € F and q,n € N, we have

msk < Setup(1*,19,n)
Pr | Vrfy(vk,cert) = T | (fsK, vk) <= KG(msk, f) | =1 — negl(\).
cert < Cert(fsK)

Weak Optimal Efficiency: We require that the running time of Setup and Enc
1s bounded by a fixed polynomial of X\, q, and logn.

Definition 2.6 (Selective Strong Lessor Security). We say that iSKFE-sbSKL
is a selectively strong lessor secure index-based SKFE-sbSKL scheme for XY,
and F, if it satisfies the following requirement, formalized from the experiment

Exp;e’li_ssklﬁés_‘;'tjsm(l)‘,coin) between an adversary A and a challenger:

1. At the beginning, 4 sends (19,n,j*, xf, x7) to the challenger. If 4 makes a
query to Ogg or Oviy, A is required to output n such that XG and Vrfy run
in polynomial time. The challenger runs msk < Setup(1*,1%,n). Throughout
the experiment, 4 can access the following oracles.

15

Ognc(j, x): Given j and x, it returns Enc(msk, j, x).

Osx;(f): Given f, it generates (fsk,vk) <= KG(msk, f), sends fsk to 4, and
adds (f,vk, L) to Lag. A can access this oracle at most q times.

Owviry (f, cert): Given (f, cert), it finds an entry (f,vk, M) from Lyg. (If there
is no such entry, it returns L.) If T = Vrfy(vk, cert), it returns T and
updates the entry into (f,vk, T). Otherwise, it returns L.

2. When A requests the challenge ciphertext, the challenger checks if for any
entry (f,vk, M) in Lgg such that f(x§) # f(x7), it holds that M =T, and
4 does not make a query with j* to Ognc at this point. If so, the challenger
generates ct* < Enc(msk, j*, z%;.) and sends ct* to 4. Otherwise, the chal-
lenger outputs 0. Hereafter, 4 is not allowed to sends a function f such that
F(x5) # £(@3) to Oxg.

3. 4 outputs a guess coin’ for coin. The challenger outputs coin’ as the final
output of the experiment.

For any QPT 4, it holds that

sel-s-lessor sel-s-lessor sel-s-lessor
AdViSKFE-sbSKL,z()\) = ‘Pr [EXPiSKFE-sbSKL,z(l)‘a 0) = 1} —Pr [ExpiSKFE—sbSKL,ﬂ(l)\vO) = 1} ‘

< negl(\).

3 Index-Base SKFE with Static-Bound Secure Key
Leasing

We present our index-based SFFE-sbSKL scheme in this section.

Tool. First, we introduce the definitions for reusable SKE with certified deletion
introduced by Hiroka et al. [HMNY21]

Definition 3.1 (Reusable SKE with Certified Deletion (Syntax)). A se-
cret key encryption scheme with certified deletion is a tuple of quantum algorithms
(KG, Enc, Dec, Del ,Vrfy) with plaintext space M and key space K.

KG(1*) — sk: The key generation algorithm takes as input the security parameter
1* and outputs a secret key sk € K.

Enc(sk,m) — (vk, ct): The encryption algorithm takes as input sk and a plaintext
m € M and outputs a verification key vk and a ciphertext ct.

Dec(sk, ct) — m’: The decryption algorithm takes as input sk and ct and outputs
a plaintext m’ € M or L.

Del (ct) — cert: The deletion algorithm takes as input ct and outputs a certifica-
tion cert.

Vrfy(vk, cert) — T or L: The verification algorithm takes vk and cert and outputs
T or L.

Decryption correctness: There exists a negligible function negl such that for
any m € M,

sk «+ KG(1%)

(vk, ct) < Enc(sk,m) | — 1= negl(A).

Pr [’Dec(sk, ct) =m

16

Verification correctness: There exists a negligible function negl such that for
any m € M,

sk + KG(1*)
Pr | Vrfy(vk, cert) = T | (vk, ct) <= Enc(sk,m) | =1 — negl(}).
cert < Del (ct)

We introduce a variant of certified deletion security where the adversary
can send many verification queries, called indistinguishability against Chosen
Verification Attacks (CVA). We use this security notion to achieve SKFE with
secure key leasing in this section.

Definition 3.2 (IND-CVA-CD Security for Reusable SKE with Certi-
fied Deletion). Let X = (KG, Enc, Dec, Del , Vrfy) be a secret key encryption with
certified deletion. We consider the following security experiment Expszk:;ert"’c’()\, b).

1. The challenger computes sk < KG(1%).

2. 4 sends an encryption query m to the challenger. The challenger computes
(vk,ct) « Enc(sk,m) to 4 and returns (vk,ct) to 4. This process can be
repeated polynomially many times.

4 sends (mg,m1) € M? to the challenger.

The challenger computes (vky, ctp) < Enc(sk,my) and sends ctp to 4.
Again, A can send encryption queries. 4 can also send a verification query
cert to the challenger. The challenger returns sk if T = Vrfy(vky, cert), L
otherwise. This process can be repeated polynomially many times.

6. A4 outputs b’ € {0,1}.

We say that X is IND-CVA-CD secure if for any QPT 4, it holds that

Guds o

AdVE Y0 (N) = ‘Pr [ExpREm(0,0) = 1] = Pr[Bxp¥ 5 °(A, 1) = 1” < negl(\).

Theorem 3.1. Known reusable SKE with certified deletion scheme [HMNY21]
satisfies IND-CVA-CD security.

We prove this theorem in the full version.

Scheme description. We construct an index-based SKFE-sbSKL scheme iSKFE-sbSKL =
(iSetup, iXG, iEnc, iDec, iCert, iVrfy) using the following tools:

— An SKFE scheme SKFE = (Setup, KG, Enc, Dec).
— An SKE scheme with Certified Deletion CDSKE = (CD.KG, CD.Enc, CD.Dec,
CD.Def, CD.Vrfy).
— APRFF.
The description of iISKFE-sbSKL is as follows.
iSetup(1*, 19, n):
— Generate K « {0,1}.
— Output skl.msk := (¢, n, K).

iXG(msk, f):

17

— Parse (q,n, K) + skl.msk.
Compute 7jl|lw; + Fg(j), msk; < Setup(1*,1%7;), and cd.sk; «
CD.KG(1*;w;) for every j € [n].
— Generate fsk; < KG(msk;, f) for every j € [n].
Generate (cd.ct;,vk;) <= CD.Enc(cd.sk;, fsk;) for every j € [n].
— Output skl.fsk := (cd.ct;)je[n) and vk := (vkj)je[n]-
iEnc(skl.msk, j, z):
— Parse (q,n, K) < skl.msk.
Compute 7l|w; < Fx(j), msk; « Setup(1*,1%7;), and cd.sk; <
CD.KG(1*; w;).
— Generate ct; < Enc(msk;, z).
Output skl.ct := (j, ct;, cd.sk;).
iDec(skl.fsk, skl.ct):
— Parse (cd.ctj)jepn) < skl.fsk and (g, ct;, cd.sk;) < skl.ct.
— Compute fsk; CD.Dec(cd.skj,skI.ﬁKj).
— Output y < Dec(fsk;, ct;).
iCert(skl.fsK):
— Parse (cd.ctj)jepn) « skl.fsK.
— Compute cert; <— CD.Del (cd.ct;) for every j € [n].
— Output cert := (cert;) c[n]-
iVrfy(vk, cert):
— Parse (vkj) e[n) ¢ vk and (cert;);epn) « cert.
— Output T if T = CD.Vrfy(vk;, cert;) for every j € [n], and otherwise L.
It is clear that iSKFE-sbSKL satisfies correctness and weak optimal efficiency.
For security, we have the following theorem.

Theorem 3.2. If SKFE is selective indistinguishability-secure, CDSKE 4s IND-
CVA-CD secure,® and F is a secure PRF, then iISKFE-shSKL satisfies selective

strong lessor security.

Proof of Theorem 3.2. We define a sequence of hybrid games to prove the theo-
rem.

Hyb,: This is the same as Expﬁ'i_ssklﬁsés_‘;LSKL(l)‘, 0).

1. At the beginning, 4 sends (19, n, j*, z§, x7) to the challenger. The chal-
lenger generates K < {0,1}*. Below, we let 7;||w; + Fr(j), msk; <
Setup(1*,19;7;), and cd.sk; < CD.KG(1*;w;) for every j € [n]. Through-
out the experiment, 4 can access the following oracles.

Oknc(j, z): Given j and z, it generates ct; «— Enc(msk;,z) and returns
skl.ct :== (j, ct;, cd.sk;).
Ox(f): Given f, it does the following.
— Compute fsk; <— KG(msk;, f) for every j € [n].
— Compute (cd.ctj,vk;) < CD.Enc(cd.skj, fsk;) for every j € [n].

8 See Definition 3.2 for the defition of IND-CVA-CD.

18

— Sets skl.fsk := (cd.ct;) jepn) and skl.vk == (vk;)jcpn)-
It sends skl.fsk to 4 and adds (f,skl.vk, L) to Lgg. 4 is allowed to
make at most g queries to this oracle.
Ovriy(f, cert == (cert;)jen)): Given (f,cert = (cert;);em), it finds an
entry (f,vk, M) from Lgg. (If there is no such entry, it returns L.) If
T = Vrfy(vk;, cert;) for every j € [n], it returns T and updates the
entry into (f, vk, T). Otherwise, it returns L.
2. When 4 requests the challenge ciphertext, the challenger checks if for any
entry (f,vk, M) in Lgg such that f(zj) # f(«7), it holds that M = T, and
4 does not make a query with j* to Og,¢ at this point. If so, the challenger
generates ct}. < Enc(msk;-,z{) and sends skl.ct® := (j*, ct}., cd.sk;~) to
4. Otherwise, the challenger outputs 0. Hereafter, 4 is not allowed to
sends a function f such that f(z§) # f(2]) to Ogg.
3. 4 outputs coin’. The challenger outputs coin’ as the final output of the
experiment.

Hyb,: This is the same as Hyb, except that r;|jw; is generated as a uniformly
random string for every j € [n].

We have |Pr[Hyb, = 1] — Pr[Hyb; = 1]| = negl()) from the security of F.
Hyby: This hybrid is the same as Hyb; except that when 4 sends f to Ogg,

if f(zy) # f(z7), the challenger generates cd.ctj~ included in skl.fsk =
(Cd-Ctj)je[n] as (cd.ctj*,vkj*) — CD.lec(Cd.Sk]’*,O).

We can show that |Pr[Hyb; = 1] — Pr[Hyb, = 1]| = negl(\) from the security
of CDSKE as follows. We say 4 is valid if when 4 requests the challenge ciphertext,
for any entry (f,vk, M) in Lgg such that f(zf) # f(«7), it holds that M =T,
and 4 does not make a query with j* to Ognc at this point. In the estimation
of |Pr[Hyb; = 1] — Pr[Hyb, = 1]|, we have to consider the case where 4 is valid
since if 4 is not valid, the output of the experiment is 0. In this transition
of experiments, we change a plaintext encrypted under cd.sk;-. If 4 is valid, 4
cannot obtain cd.sk;- before 4 is given skl.ct*, and 4 returns all ciphertexts under
cd.sk;- before it gets cd.sk;-. Although the reduction does not have vk;- here, it
can simulate Oy, by using the verification oracle in IND-CVA-CD game. Then,
we see that |Pr[Hyb, = 1] — Pr[Hyb, = 1]| = negl()) follows from the security of
CDSKE under the key cd.sk;-«.

Hybgz: This hybrid is the same as Hyb, except that the challenger generates ct}.
included in skl.ct” as ctj. < Enc(msk;-, z7).

By the previous transition, in Hyb, and Hyb;, 4 can obtain a decryption key
under msk;- for a function f such that f(z§) = f(x%). Thus, |Pr[Hyby = 1] — Pr[Hybs = 1]| =
negl(A) holds from the security of SKFE.

Hyb,: This hybrid is the same as Hyb; except that we undo the changes from

Hyb, to Hyb,. Hyb, is the same as Exp;ili_sskl,?sEs_‘;LSKL(l)‘, 1).

|Pr[Hybs = 1] — Pr[Hyb, = 1]| = negl(A) holds from the security of F and
CDSKE.
From the above discussions, iSKFE-sbSKL satisfies selective lessor security. m

19

4 SKFE with Static-Bound Secure Key Leasing

We construct an SKFE-sbSKL scheme SKFE-sbSKL = (sbSKL.Setup, sbSKL. X3,
sbSKL.Enc, sbSKL.Dec, sbSKL. Cert, sbSKL.Vrfy) from the following tools:
— An index-based SKFE-sbSKL scheme iSKFE-sbSKL = (iSetup, iXG, iEnc, iDec,
iCert, iVrfy).
— A set homomorphic secret sharing SetHSS = (SetGen, InpEncode, FuncEncode,
Decode).
— An SKE scheme SKE = (E, D).
The description of SKFE-sbSKL is as follows.
sbSKL.Setup(1*,19,n):
— Generate params := (p, !, (T;)ic[m)) < SetGen(1%).
— Generate msk; < iSetup(1*,19, N) for every i € [m], where N = n/p.
— Generate K < {0,1}*.
Output sbskl.msk := (params, N, (msk);c(m], K).
sbSKL.XG (sbskl.msk, f):
— Parse (params, N, (msk);c(m], K') < sbskl.msk.
— Generate sct; + E(K,0) for every i € [m].
— Generate (f;);e[m) < FuncEncode(params, f).
Generate (fsK,, vk;) < i&KG(msk;, F'[f;,sct;]) for every i € [m], where the
circuit F' is described in Figure 1.
— Output sbskl.fsk = (f5K)ic[m] and sbskl.vk = (vk;)ic[m]-
sbSKL.Enc(sbskl.msk, x):

— Parse (params, N, (msk);c(m], K') < sbskl.msk.
— Generate (8;)ic[m < InpEncode(params,).
Generate i < [N] for every i € [m].
— Generate ct; < iEnc(msk;, 7, (s;,0,0)) for every i € [m].
Output sbskl.ct := (ct;)ic[m]-
sbSKL.Dec(sbskl.fsk, sbskl.ct):
— Parse (5K,)icm) < sbskl.fsk and (ct;);e[m) ¢ sbskl.ct.
— Compute yr < iDec(fsK, ct;) for every i € [m].
— Output y < Decode((yi)icm])-
sbSKL. Cert(sbskl. fsk):
— Parse (5K,)ic[m] < sbskl.fsk.
— Compute cert; < iCert(fsKk,) for every i € [m)].
— Output sbskl.cert := (cert;)c[m]-
sbSKL.Vrfy(sbskl.vk, sbskl.cert):

— Parse (vk;)ic[m] ¢+ sbskl.vk and (cert;);cn) < sbskl.cert.
— Output T if T = iVrfy(vk,, cert;) for every i € [m], and otherwise L.
We show the correctness of SKFE-sbSKL. Let sbskl.fsk = (fsK,)icim) be a
decryption key for f and let sbskl.ct := (ct;)ic[m) be a ciphertext of x. From
the correctness of iSKFE-sbSKL, we obtain f;(s;) by decrypting ct; with £k,
for every i € [m], where (fi)icjm) ¢ FuncEncode(params, f) and (s;);em]

20

Circuit F[f;,sct;](s:, K,b)
Hardwired: A function share f; and an SKE’s ciphertext sct;.
Input: an input share s;, an SKE’s secret key K, and a bit b.
1. If b =1, output D(K,sct;).
2. Otherwise, output f;(s;).

Fig. 1: Description of F|[f;,sct;](s;, K, b).

InpEncode(params,). Thus, we obtains f(z) < Decode((fi(s;))ie[m]) from the
correctness of SetHSS. It is clear that SKFE-sbSKL also satisfies verification
correctness.

Also, the weak optimal efficiency of SKFE-sbSKL easily follows from that of
iISKFE-sbSKL since the running time of algorithms of SetHSS is independent of
n. Note that sbSKL.Enc samples indices from [N] = [n/p], but it can be done in
time log n.

For security, we have the following theorems.

Theorem 4.1. If iSKFE-sbSKL is a selectively strong lessor secure indez-based
SKFE-sbSKL scheme and SetHSS is a set homomorphic secret sharing scheme,
and SKE is a CPA secure SKE scheme, then SKFE-sbSKL is selectively strong
lessor secure.

Proof of Theorem 4.1. We define a sequence of hybrid games to prove the theo-
rem.

Hybg: This is the same as Expifﬁ'éi'ﬁéfgsm(l)‘, 0).

1. At the beginning, 4 sends (19, n, zjj, 27) to the challenger. The challenger
generates params = (p, £, (T})ie[m]) < SetGen(1*), msk; < iSetup(1*,19, N)
for every i € [m], and K + {0,1}*, where N = n/p. Throughout the
experiment, 4 can access the following oracles.

Oknc(2%): Given the k-th query z*, it returns sbskl.ct’ generated as
follows.
— Generate (sF);c(m) < InpEncode(params, z*).
— Generate k; < [N] for every i € [m].
— Generate ct? < iEnc(msk, i, k;, (s¥,0,0)) for every i € [m].
— Set sbskl.ct? := (ct?);em)-
Os(f): Given f, it generates sbskl.fsk and sbskl.vk as follows.
— Generate (f;)ie[m) < FuncEncode(params, f).
— Generate sct; < E(K, 0) for every i € [m].
— Generate (fsk,,vki) < iXG(msk;, F'[fi, sct;]) for every i € [m)].
— Set sbskl.fsk = (fsK,)ic[m) and sbskl.vk = (vk;)ic[m-
It sends sbskl.fsk to 4 and adds (f,sbskl.vk, L) to L.
Ovriy (f, cert == (cert;);epm)): Given (f,cert = (cert;);c(m)), it finds an
entry (f,vk, M) from Lgg. (If there is no such entry, it returns L.) If

21

T = Vrfy(vk;, cert;) for every ¢ € [m], it returns T and updates the
entry into (f, vk, T). Otherwise, it returns L.

2. When 4 requests the challenge ciphertext, the challenger checks if for any
entry (f,vk, M) in Lgg such that f(zj) # f(x7), it holds that M =T,
and the number of queries to Ogpc at this point is less than n. If so, the
challenger sends sbskl.ct* computed as follows to 4.

— Generate (5])ie[m) < InpEncode(params, 7).

— Generate x; < [N] for every i € [m].

— Generate ctf < iEnc(msk;, (sf,0,0)) for every i € [m)].

— Set sbskl.ct* := (ct});ec[m]-
Otherwise, the challenger outputs 0. Hereafter, 4 is not allowed to sends
a function f such that f(z§) # f(2]) to Ogg.

3. 4 outputs coin’. The challenger outputs coin’ as the final output of the
experiment.

Below, we call i € [m] a secure instance indez if i* # i* holds for every k € [n].
We also call ¢ € [m] an insecure instance index if it is not a secure instance index.
Let Ssecure C [m] be the set of secure instance indices, and Sipsecure = S\ Ssecure-
Since each i* is sampled from [N] = [n/p], for each i € [m], i is independently
included in Sipgecure With probability at most n/N = p. Then, from the existence
of unmarked element property of SetHSS, without negligible probability, there
exists e € [(] such that e & U, Ti. Below, for simplicity, we assume that
there always exists at least one such instance index, and we denote it as e*.

Hyb,: This is the same as Hyb, except that we generate i* for every i € [m] and
k € [n] and i* for every ¢ € [m] at the beginning of the experiment. Note
that by this change, secure instance indices and ¢* are determined at the
beginning of the experiment.
|Pr[Hyb, = 1] — Pr[Hyb; = 1]| = 0 holds since the change at this step is only

conceptual.

Hyb,: This is the same as Hyb; except that when 4 makes a query f to Ogg, if
f(x) = f(x7), it generates sct; as sct; < E(K, f;(s})) for every ¢ € Ssecure-
|Pr[Hyb, = 1] — Pr[Hyb, = 1]| = negl(\) holds from the security of SKE.

Hybs: This is the same as Hyb, except that the challenger generates ct} as
ctf < iEnc(msk;, *;, (0, K, 1)) for every i € Ssecure-
|Pr[Hyb, = 1] — Pr[Hybs = 1]| = negl(A) holds from the selective lessor secu-

rity of iISKFE-sbSKL. We provide the proof of it in Proposition 4.1.

Hyb,: This is the same as Hybs except that the challenger generates (s7);c[m) as
(57)iejm) < InpEncode(params, 7).
|Pr[Hybs = 1] — Pr[Hyb, = 1]| = negl(\) holds from the selective indistinguishability-

security of SetHSS. We provide the proof of it in Proposition 4.2.

Hybs: This is the same as Hyb, except that we undo the changes from Hyb, to
Hybs. This is the same experiment as Exp;‘ilgsK_,I:eéf;’gSKL(lk, 1).

22

|Pr[Hyb, = 1] — Pr[Hyb; = 1]| = negl(\) holds from the security of SKE and
iSKFE-sbSKL.

Proposition 4.1. |Pr[Hyb, = 1] — Pr[Hybs; = 1]| = negl()) holds if ISKFE-sbSKL
is selectively lessor secure.

Proof of Proposition 4.1. We define intermediate experiments Hyb, ;, between

Hyb, and Hybg for i’ € [m)].

Hyb, ;.2 This is the same as Hyb, except that the challenger generates ct] as
ctf < iEnc(msk;, %;, (0, K, 1)) for every i such that i € Ssecure and i < ¢,

Then, we have

[Pr[Hyb, = 1] — Pr[Hyb; = 1]|
S Z |PI‘|:Hyb27i/_1 - 1 A ZII S Ssecure} - Prl:Hyb2,i = 1 A i/ € Ssecure} |a (1)

i’Em

where we define Hyb, o = Hyb, and Hyb, ,, = Hyb;. To estimate each term of
Equation (1), we construct the following adversary B that attacks selective lessor
security of iSKFE-sbSKL.

1. B executes 4 and obtains (19, n, z{, z7). B generates params := (p, £, (T;)ic(m]) <
SetGen(1*). B generates i¥ « [N] for every i € [m] and k € [n] and i* + [N]
for every i € [m], and identifies Ssecure and Sipsecure, Where N = n/p. If i/ ¢
Ssecure, B aborts with output 0. Otherwise, B behaves as follows. Below, we let
Ssecure,<i’ = Ssecure N [i’ — 1]. B computes (s})ic[m) < InpEncode(params,).
B also generates K < {0,1}*. B sends (19, N,i'*, (s%,0,0), (0, K, 1)). B also
generates msk; < iSetup(1*, 19, N) for every i € [m]\ {i’}. B simulates oracles
for 4 as follows.

OEnc(xk): Given the k-th query z¥, B returns sbskl.ct® generated as follows.

Generate (s¥);e(m) < InpEncode(params, z*).

If k < n, use (i*);c[m generated at the beginning. Otherwise, Gener-
ate k; < [N] for every i € [m].

Query (kir, (s¥,0,0)) to its encryption oracle and obtain ctf.

— Generate ctf « iEnc(msk;, i*, (s¥,0,0)) for every i € [m]\ {i'}.

Set sbskl.ct? := (ct?);c(m).

Os5(f): Given f, B returns sbskl.fsk computed as follows.

— Generate (fi)ic[m) < FuncEncode(params, f).

— Generate sct; < E(K,0) for every i € Sipsecure- Generate also sct; <
E(K, fi(sf)) for every i € Ssecure if f(zf) = f(x7), and otherwise
generate sct; < E(K,0) for every i € Ssecure-

— Query F'[fy,scty] to its key generation oracle and obtain (5K, , vky’).

— Generate (fsK,Vk;) « iXG(msk;, F[f;, sct;]) for every i € [m] \ {i'}.

— Set sbskl.fsk = (ﬁkl),e[m]

Also, B adds (f, (Vki)ie[m]\{i’}a L) to Lgg.

23

Ovrsy (f, cert == (cert;);cpm)): Given (f,cert := (cert;);cim)), it finds an entry
(f, (vki)iepmp\{iry» L) from Lgg. (If there is no such entry, it returns L.)
B sends (f,cert;) to its verification oracle and obtains M. If M = T
and T = Vrfy(vk;, cert;) for every i € [m]\ {¢'}, B returns T and updates
the entry into (f, (vki)icfm)\{i7},). Otherwise, B returns L.

2. When 4 requests the challenge ciphertext, B checks if for any entry (f, (vk;)icm\ (i3, M)
in Lgg such that f(xz§) # f(x7), it holds that M = T. If so, B requests
the challenge ciphertext to its challenger and obtains ct,. B also gen-
erates ctf <« iEnc(msk;,i*, (0, K, 1)) for every i € Ssecure,<iv and ctf <«
iEnc(msk;,i*, (s}, 0,0)) for every i € [m]\(Ssecure,<i#U{?'}). B sends sbskl.ct :=
(ct})igim) to A. Hereafter, B rejects A’s query f to Ogg such that f(zg) #
f(x1).

3. When 4 outputs coin’, 8 outputs coin’.
B simulates Hyb, ;,_; (resp. Hyb, ;) if B runs in Exp;ﬁ'gﬁ,'fgf:gs“(ﬂ,o) (resp.

sel-s-lessor

Expl skre-ehsk (115 1)) and i’ € Ssecure- This completes the proof. m

Proposition 4.2. |Pr[Hyb; = 1] — Pr[Hyb, = 1]| = negl()) holds if SetHSS is a
set homomorphic secret sharing.

Proof of Proposition 4.2. We construct the following adversary B that attacks
the selective indistinguishability-security of SetHSS.

1. Given params = (p, £, (T})ic[m]), B executes 4 and obtains (19,n,xj, z7). B
generates i* « [N] for every i € [m] and k € [n] and i* < [N] for every
i € [m], and identifies Ssecure; Sinsecure, and the unmarked element e*, where
N = n/p. B sends (e*,zg,z7) to the challenger and obtains (s})ie(m).- >
where [m].-¢ denotes the subset of [m] consisting of i such that e* ¢ T;. B
also generates msk; < iSetup(1*,19, N) for every i € [m] and K <« {0, 1}*.
B simulates oracles for 2 as follows.

Oknc(z%): Given the k-th query z¥, B returns sbskl.ct’ generated as follows.
— Generate (sF);c[m) < InpEncode(params, z*).
— If k < n, use (ik)ie[m] generated at the beginning. Otherwise, Gener-
ate k; < [N] for every i € [m].
— Generate ct¥ « iEnc(msk;, k;, (s¥,0,0)) for every i € [m].
— Set sbskl.ct? == (ctF);cm)-
Og5(f): Given f, B returns sbskl.fsk computed as follows.

g
— Queries f to its function encode oracle and obtain (f;, y; = fi(5]))ic[m])
if f(xg) = f(27). Otherwise, compute (f;)ie[m) < FuncEncode(params, f).
— Generate sct; < E(K,0) for every i € Sipsecure- Generate also sct; <
E(K, fi(sf)) for every i € Ssecure if f(zf) = f(x7), and otherwise
generate sct; + E(K,0) for every i € Ssecure-
— Generate (fsk;,Vk;) < iXG(msk;, F'[f;, sct;]) for every i € [m].
— Set sbskl.fsk = (5K,)ic[m]-
Also, B adds (f, (Vki)icm], L) to Lyg.

24

Ovrsy (f, cert == (cert;);cpm)): Given (f,cert := (cert;);cim)), it finds an entry
(f, (vki)igim), L) from Lyg. (If there is no such entry, it returns L.) If
T = Vrfy(vk,, cert;) for every i € [m] and the number of queries to Ognc
at this point is less than n, B returns T and updates the entry into
(f, (vki)iem), T). Otherwise, B returns L.

2. When A4 requests the challenge ciphertext, B checks if for any entry (f, (vki)icm)\ (i}, M)
in L g such that f(x§) # f(«7), it holds that M = T. If so, B generates ct} <
iEnc(msk;, *;, (0, K, 1)) for every i € Sgecure and ct} < iEnc(msk;, *;, (s7,0,0))
for every i € Sinsecure, and B sends sbskl.ct := (ct});epm to 4. Otherwise, B
outputs 0 and terminates. Hereafter, B rejects A’s query f to Ogg such that
f(@5) # f(a).

3. When 4 outputs coin’, B outputs coin’.

B simulates Hybg (resp. Hyb,) if B runs in Expéﬂ{ﬁ”ﬁsﬁ(l)‘, 0) (resp. Expgeelt_,ij‘gsﬁ(lA, 1)).
This completes the proof. ®

From the above discussions, SKFE-sbSKL satisfies selective strong lessor secu-
rity. ®

Remark 4.1 (Difference from FE security amplification). A savvy reader notices
that although we use the technique used in the FE security amplification by Jain
et al. [JKMS20], we do not use their probabilistic replacement theorem [JKMS20,
Theorem 7.1 in eprint ver.] and the nested construction [JKMS20, Section 9 in
eprint ver.] in the proofs of Theorem 4.1. We do not need them for our purpose
due to the following reason.

Jain et al. need the nested construction to achieve a secure FE scheme whose
adversary’s advantage is less than 1/6 from one whose adversary’s advantage is
any constant € € (0,1). We do not need the nested construction since we can
start with a secure construction whose adversary’s advantage is less than 1/6 by
setting a large index space in the index-based construction.

Jain et al. need the probabilistic replacement theorem due to the following
reason. We do not know which FE instance is secure at the beginning of the FE
security game in the security amplification context, while the adversary in set
homomorphic secret sharing must declare the index of a secure instance at the
beginning. In our case, whether each index-based FE instance is secure or not
depends on whether randomly sampled indices collide or not. In addition, we can
sample all indices used in the security game at the beginning of the game, and a
secure FE instance is fixed at the beginning. Thus, we can apply the security of
set homomorphic secret sharing without the probabilistic replacement theorem.

5 SKFE with Secure Key Leasing

We construct an SKFE-SKL scheme SKFE-SKL = (SKL.Setup, SKL. %G, SKL.Enc,
SKL.Dec, SKL. Cert, SKL.Vrfy) from an SKFE-sbSKL scheme SKFE-sbSKL = (sbSKL.Setup,
sbSKL.KG, sbSKL.Enc, sbSKL.Dec, sbSKL. Cert, sbSKL.Vrfy). The description of SKFE-SKL
is as follows.

25

SKL.Setup(1*,19):
— Generate msky < sbSKL.Setup(1*,19,2%) for every k € [\].
— Output skl.msk := (msky,) e[y
SKL. %G (skl.msk, f,1™):
— Parse (mskg)re[r) < skl.msk.
— Compute &’ such that ok =1 <y < ¥
— Generate (fsk,,,Vkg) <= sbSKL. KG (mskg/, f).
— Output skl.fsk == (k', f5k,,) and vkg:.
SKL.Enc(skl.msk, x):
— Parse (mskg)re[r) < skl.msk.
— Generate cty, < sbSKL.Enc(mskg, x) for every k € [A].
— Output skl.ct := (cty)pe[n-
SKL.Dec(skl.sK s, skl.ct):
— Parse (K, f5k,,) < skl.fsk and (ctp)req) < skl.ct.
— Output y < sbSKL.Dec(fsk,,, Cty).
SKL.Cert(skl.sk)
— Parse (K, fsk,,) < skl.sk ;.
— Output cert < sbSKL.Cert(f5k,,).
SKL.Vrfy(vk, cert):
— Output T/L < sbSKL.Vrfy(vk, cert).

The correctness of SKFE-SKL follows from that of SKFE-sbSKL. Also, we
can confirm that all algorithms of SKFE-SKL run in polynomial time since
sbSKL.Setup and sbSKL.Enc of SKFE-sbSKL run in polynomial time even for the
availability bound 2* due to its weak optimal efficiency. For security, we have
the following theorem.

Theorem 5.1. If SKFE-sbSKL satisfies selective strong lessor security, then
SKFE-SKL satisfies selective lessor security.

Proof of Theorem 5.1. We define a sequence of hybrid games to prove the theo-
rem.
Hyb,: This is the same as Expf’lgﬁzsé’_rsm(lh, 0).

1. At the beginning, 4 sends (19, z, z7) to the challenger. The challenger
runs mskj, < sbSKL.Setup(1?, 19, 2%) for every k € [A]. Throughout the
experiment, 4 can access the following oracles.

Okgnc(z): Given z, it generates cty < sbSKL.Enc(msky, z) for every k €
[A] and returns skl.ct := (cty)re[r-

Oss(f,1™): Given (f,1"), it computes &k such that k=1 < < 2F gen-
erates (fsK, ,vky) < sbSKL.KG(msky, f), and sets skl.fsk := (k, fsk,).
It returns skl.fsk to 4 and adds (f, 1™, vkg, L) to Lsg. 4 can access
this oracle at most ¢ times.

Ovify (f, cert): Given (f,cert), it finds an entry (f,1",vk, M) from L.
(If there is no such entry, it returns L.) If T = Vrfy(vk, cert) and the
number of queries to Ognc at this point is less than n, it returns T
and updates the entry into (f, 1", vk, T). Otherwise, it returns L.

26

2. When 4 requests the challenge ciphertext, the challenger checks if for
any entry (f,1",vk, M) in Lgg such that f(zf) # f(«}), it holds that
M = T. If so, the challenger generates ct} < sbSKL.Enc(msky, zf) for
every k € [A] and sends skl.ct™ := (ct})re[x) to A. Otherwise, the challenger
outputs 0. Hereafter, 4 is not allowed to sends a function f such that
F(x3) # F(@1) to Osg.

3. 4 outputs a guess coin’ for coin. The challenger outputs coin’ as the final
output of the experiment.

We define Hyb,, for every k' € [A].

Hyby,: This hybrid is the same as Hyb,,_; except that ct}, is generated as
cty, < Enc(msky/, 7).

Hyb, is exactly the same experiment as Exp}i'é'ﬁ?@_rsm(l)‘, 1).
For every k' € [A], we let SUCy be the event that the output of the experiment
Hyb,, is 1. Then, we have

A
AdvErESkLa(A) = [Pr[Hyby = 1] — Pr[Hyby = 1] <) [Pr[SUCK 1] — Pr[SUC)]|.
k=1

Proposition 5.1. It holds that |Pr[Hyb,,_; = 1] — Pr[Hyb,, = 1]| = negl(\) for
every k' € [\] if SKFE-sbSKL is selectively lessor secure.

Proof of Proposition 5.1. We construct the following adversary B that attacks
selective lessor security of SKFE-sbSKL with respect to msky.

1. B executes 4 and obtains (19, z%, x7) from 4. B sends (19, %, 2%, 2%") to the
challenger. B generates msky, < sbSKL.Setup(1*, 17, 2%) for every k € [A\]\{k'}.
B simulates queries made by A4 as follows.

Ognc(x): Given z, B generates cty < sbSKL.Enc(msk,z) for every k €
[A]\ {K'}. B also queries x to its encryption oracle and obtains cty. B
returns skl.ct := (ctx)pe[n]-

Oy (f,1™): Given (f,1"), B computes k such that 2871 <n < 2K If k # K/,
B generates (fsK, , ki) < sbSKL.KG(msky, f), and otherwise B queries f
to its key generation oracle and obtains fsk, and sets vk := L. B returns
skl.fsk == fsk, . B adds (f,1",vky, L) to L.

Owirfy (f, cert): Given (f,cert), it finds an entry (f,1",vk, M) from Lgg. (If
there is no such entry, it returns 1.) If vk = L, B sends cert to its
verification oracle and obtains M, and otherwise it computes M =
Vrfy(vk, cert). If M = T and the number of queries to Ogpc at this point
is less than n, it returns T and updates the entry into (f, 1™, vk, T).
Otherwise, it returns L.

2. When 4 requests the challenge ciphertext, the challenger checks if for any
entry (f,1",vk, M) in Lgg such that f(x3) # f(«7), it holds that M = T.
If so, B requests the challenge ciphertext to its challenger and obtains ctj,,
generates ctj < sbSKL.Enc(msky,z}) for every 1 < k < k' and ctj «
sbSKL.Enc(mskg, z) for every k' < k < A, and sends skl.ct* := (ct})rep to

27

4. Otherwise, the challenger outputs 0. Hereafter, 4 is not allowed to sends
a function f such that f(x§) # f(27) to Ogg.
3. When 4 outputs coin’, B outputs coin’ and terminates.

B simulates Hyb,,_; (resp. Hyb,,) for 4 if 8 runs in Exp;flgﬁsé’_'sbsm(l)‘,())
(resp. Exp;ﬁ'g',i,isgfsbm(l*, 1).). This completes the proof. m

From the above discussions, SKFE-SKL satisfies selective lessor security. m

By Theorems 3.2, 4.1 and 5.1 and the fact that all building blocks used to
obtain these theorems can be based on OWFs, we obtain the following theorem.

Theorem 5.2. If there exist OWFs, there exists selectively lessor secure SKFE-
SKL for P/poly (in the sense of Definition 2.2).

Although we describe our results on SKFE-SKL in the bounded collusion-
resistant setting, our transformation from standard SKFE to SKFE-SKL also
works in the fully collusion-resistant setting. The fully collusion-resistance guar-
antees that the SKFE scheme is secure even if an adversary accesses the key
generation oracle a-priori unbounded times. Namely, if we start with fully
collusion-resistant SKFE, we can obtain fully collusion-resistant SKFE-SKL
by our transformations.

References

Aar09. S. Aaronson. Quantum Copy-Protection and Quantum Money. In Proceedings
of the 24th Annual IEEE Conference on Computational Complexity, CCC
2009, Paris, France, 15-18 July 2009, pages 229-242. 2009.

ABSV15. P. Ananth, Z. Brakerski, G. Segev, and V. Vaikuntanathan. From Selective
to Adaptive Security in Functional Encryption. In CRYPTO 2015, Part II,
pages 657-677. 2015.

AJLT19. P. Ananth, A. Jain, H. Lin, C. Matt, and A. Sahai. Indistinguishability
Obfuscation Without Multilinear Maps: New Paradigms via Low Degree
Weak Pseudorandomness and Security Amplification. In CRYPTO 2019,
Part 111, pages 284-332. 2019.

AL21. P. Ananth and R. L. La Placa. Secure Software Leasing. In EURO-
CRYPT 2021, Part II, pages 501-530. 2021.

ALL'21. S. Aaronson, J. Liu, Q. Liu, M. Zhandry, and R. Zhang. New Approaches
for Quantum Copy-Protection. In CRYPTO 2021, Part I, pages 526-555,
Virtual Event, 2021.

AMVY21. S. Agrawal, M. Maitra, N. S. Vempati, and S. Yamada. Functional Encryp-
tion for Turing Machines with Dynamic Bounded Collusion from LWE. In
CRYPTO 2021, Part IV, pages 239-269, Virtual Event, 2021.

AV19. P. Ananth and V. Vaikuntanathan. Optimal Bounded-Collusion Secure
Functional Encryption. In TCC 2019, Part I, pages 174-198. 2019.

BI20. A. Broadbent and R. Islam. Quantum Encryption with Certified Deletion.
In TCC 2020, Part I, pages 92—-122. 2020.

BJLT21. A. Broadbent, S. Jeffery, S. Lord, S. Podder, and A. Sundaram. Secure
Software Leasing Without Assumptions. In TCC 2021, Part I, pages 90-120.
2021.

28

BNPW20.

BS18.
BSW11.

CGO21.

CLLZ21.

CMP20.

CS19.

CV2l.

DIJ*13.

GGLW21.

GVW12.

HMNY21.

JKMS20.

KLM*18.

KNT21.

KNY21.
MW16.

NPO1.

N. Bitansky, R. Nishimaki, A. Passelegue, and D. Wichs. From Cryptomania
to Obfustopia Through Secret-Key Functional Encryption. Journal of
Cryptology, 33(2):357—-405, 2020.

7. Brakerski and G. Segev. Function-Private Functional Encryption in the
Private-Key Setting. Journal of Cryptology, 31(1):202-225, 2018.

D. Boneh, A. Sahai, and B. Waters. Functional Encryption: Definitions and
Challenges. In TCC 2011, pages 253-273. 2011.

M. Ciampi, V. Goyal, and R. Ostrovsky. Threshold Garbled Circuits and
Ad Hoc Secure Computation. In FEUROCRYPT 2021, Part III, pages 64-93.
2021.

A. Coladangelo, J. Liu, Q. Liu, and M. Zhandry. Hidden Cosets and
Applications to Unclonable Cryptography. In CRYPTO 2021, Part I, pages
556-584, Virtual Event, 2021.

A. Coladangelo, C. Majenz, and A. Poremba. Quantum copy-protection
of compute-and-compare programs in the quantum random oracle model.
Cryptology ePrint Archive, Report 2020/1194, 2020. https://eprint.iacr.
org/2020/1194.

R. J. Connor and M. Schuchard. Blind Bernoulli Trials: A Noninteractive
Protocol For Hidden-Weight Coin Flips. In USENIX Security 2019, pages
1483-1500. 2019.

E. Culf and T. Vidick. A monogamy-of-entanglement game for subspace
coset states. arXiv (CoRR), abs/2107.13324, 2021.

A. De Caro, V. Tovino, A. Jain, A. O’Neill, O. Paneth, and G. Persiano. On
the Achievability of Simulation-Based Security for Functional Encryption.
In CRYPTO 2013, Part II, pages 519-535. 2013.

R. Garg, R. Goyal, G. Lu, and B. Waters. Dynamic Collusion Bounded
Functional Encryption from Identity-Based Encryption. Cryptology ePrint
Archive, Report 2021/847, 2021. https://eprint.iacr.org/2021/847.

S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional Encryption with
Bounded Collusions via Multi-party Computation. In CRYPTO 2012, pages
162-179. 2012.

T. Hiroka, T. Morimae, R. Nishimaki, and T. Yamakawa. Quantum En-
cryption with Certified Deletion, Revisited: Public Key, Attribute-Based,
and Classical Communication. In ASTACRYPT 2021, Part I, pages 606—636.
2021.

A. Jain, A. Korb, N. Manohar, and A. Sahai. Amplifying the Security of
Functional Encryption, Unconditionally. In CRYPTO 2020, Part I, pages
717-746. 2020.

S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu.
Function-Hiding Inner Product Encryption Is Practical. In SCN 18, pages
544-562. 2018.

F. Kitagawa, R. Nishimaki, and K. Tanaka. Simple and Generic Construc-
tions of Succinct Functional Encryption. Journal of Cryptology, 34(3):25,
2021.

F. Kitagawa, R. Nishimaki, and T. Yamakawa. Secure Software Leasing
from Standard Assumptions. In TCC 2021, Part I, pages 31-61. 2021.

P. Mukherjee and D. Wichs. Two Round Multiparty Computation via
Multi-key FHE. In EUROCRYPT 2016, Part 11, pages 735-763. 2016.

M. Naor and B. Pinkas. Efficient Trace and Revoke Schemes. In FC' 2000,
pages 1-20. 2001.

29

https://eprint.iacr.org/2020/1194
https://eprint.iacr.org/2020/1194
https://eprint.iacr.org/2021/847

NWZ16.

RPB*19.

SS10.

SSW12.

SWO05.

SW21.

R. Nishimaki, D. Wichs, and M. Zhandry. Anonymous Traitor Tracing: How
to Embed Arbitrary Information in a Key. In FEUROCRYPT 2016, Part II,
pages 388-419. 2016.

T. Ryffel, D. Pointcheval, F. R. Bach, E. Dufour-Sans, and R. Gay. Partially
Encrypted Deep Learning using Functional Encryption. In NeurIPS 2019,
pages 4519-4530, 2019.

A. Sahai and H. Seyalioglu. Worry-free encryption: functional encryption
with public keys. In ACM CCS 2010, pages 463-472. 2010.

A. Sahai, H. Seyalioglu, and B. Waters. Dynamic Credentials and Ciphertext
Delegation for Attribute-Based Encryption. In CRYPTO 2012, pages 199—
217. 2012.

A. Sahai and B. R. Waters. Fuzzy Identity-Based Encryption. In EURO-
CRYPT 2005, pages 457-473. 2005.

A. Sahai and B. Waters. How to Use Indistinguishability Obfuscation:
Deniable Encryption, and More. SIAM J. Comput., 50(3):857-908, 2021.

30

	Functional Encryption with Secure Key Leasing

