
YOLO YOSO: Fast and Simple Encryption and
Secret Sharing in the YOSO Model

Ignacio Cascudo1∗[0000−0001−5520−5386], Bernardo David2†, Lydia Garms1,3‡,
and Anders Konring2§

1 IMDEA Software Institute, Madrid, Spain. ignacio.cascudo@imdea.org
2 IT University of Copenhagen, Copenhagen, Denmark.

bernardo@bmdavid.com, konr@itu.dk
3 Keyless Technologies Limited. lydia.garms@keyless.io

Abstract. Achieving adaptive (or proactive) security in cryptographic
protocols is notoriously difficult due to the adversary’s power to dynami-
cally corrupt parties as the execution progresses. Inspired by the work of
Benhamouda et al. in TCC 2020, Gentry et al. in CRYPTO 2021 intro-
duced the YOSO (You Only Speak Once) model for constructing adap-
tively (or proactively) secure protocols in massively distributed settings
(e.g. blockchains). In this model, instead of having all parties execute
an entire protocol, smaller anonymous committees are randomly chosen
to execute each individual round of the protocol. After playing their
role, parties encrypt protocol messages towards the the next anonymous
committee and erase their internal state before publishing their cipher-
texts. However, a big challenge remains in realizing YOSO protocols:
efficiently encrypting messages towards anonymous parties selected at
random without learning their identities, while proving the encrypted
messages are valid with respect to the protocol. In particular, the pro-
tocols of Benhamouda et al. and of Gentry et al. require showing ci-
phertexts contain valid shares of secret states. We propose concretely
efficient methods for encrypting a protocol’s secret state towards a ran-
dom anonymous committee. We start by proposing a very simple and
efficient scheme for encrypting messages towards randomly and anony-
mously selected parties. We then show constructions of publicly verifi-
able secret (re-)sharing (PVSS) schemes with concretely efficient proofs
of (re-)share validity that can be generically instantiated from encryp-
tion schemes with certain linear homomorphic properties. In addition,

∗Ignacio Cascudo was supported by the Spanish Government under the project
SecuRing (ref. PID2019-110873RJ-I00/MCIN/AEI/10.13039/501100011033), by the
Madrid Government as part of the program S2018/TCS-4339 (BLOQUES-CM) co-
funded by EIE Funds of the European Union, and by a research grant from Nomadic
Labs and the Tezos Foundation.
†Bernardo David was supported by the Concordium Foundation and by the Inde-

pendent Research Fund Denmark (IRFD) grants number 9040-00399B (TrA2C), 9131-
00075B (PUMA) and 0165-00079B.
‡Lydia Garms was supported by a research grant from Nomadic Labs and the Tezos

Foundation.
§Anders Konring was supported by the IRFD grant number 9040-00399B (TrA2C).

2 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

we introduce a new PVSS with proof of sharing consisting of just two
field elements, which as far as we know is the first achieving this, and
may be of independent interest. Finally, we show that our PVSS schemes
can be efficiently realized from our encyption scheme.

1 Introduction

Cryptographic protocols traditionally rely on secure channels among parties
whose identities are publicly known. However, while knowing parties’ identities
makes it easy to construct secure channels, it also makes it easy for an adaptive
(or mobile) adversary to corrupt parties as a protocol execution proceeds. Re-
cently, an elegant solution for this problem has been suggested [1,12]: instead of
keeping secret state throughout the execution, parties periodically transfer their
state to randomly selected anonymous parties, potentially after computing on
this state (as is the case of MPC).

YOSO model: We say protocols with the aforementioned property are in the
YOSO (i.e. You Only Speak Once) model, since parties are only required to act
in a protocol execution when selected at random, which potentially only happens
once. The YOSO model is especially interesting in massively distributed settings
(e.g. blockchains), where a huge number of parties are potentially involved but
it is desirable to have only smaller committees execute a protocol for the sake of
efficiency. Using small committees saves computation and communication, and
since the identity of parties in the committee currently holding secret states is
not known, an adversary cannot do better than corrupt random parties. Recent
work [17] improves the work of [12] by achieving guaranteed output delivery in
a constant number of rounds without relying on trusted setup.

Role Assignment: At the core of protocols in the YOSO model is a scheme
for encrypting messages towards roles rather than parties. A party randomly
selected to perform a role can decrypt the messages sent to that role. This
allows for executing traditional secret sharing [1] or MPC [12] protocols among
roles that are performed by different parties as the execution proceeds. Besides
passing confidential messages among parties assigned to certain roles, it is also
paramount to allow parties to authenticate outgoing messages on behalf of the
role they have just performed. This task has been modeled [12] and realized [1,14]
as a functionality that outputs public keys for a random subset of anonymous
parties in such a way that these parties can both decrypt messages encrypted
under these keys and prove they were the rightful receivers. However, existing
methods for role assignment [1,14,5] are still based on powerful primitives (e.g.
FHE), incur too high costs and, most importantly, are incompatible with efficient
techniques for publicly proving that encrypted secret shares are valid.

In this work we design schemes for role assignment that are not only efficient
in sending messages to parties selected in the future but also amenable to the
currently best techniques for publicly proving that encrypted messages are valid
shares of a secret state, which is central to protocols in the YOSO model.

Fast and Simple Encryption and Secret Sharing in the YOSO Model 3

1.1 Related Works

Keeping Secrets: The seminal solution of [1] starts by selecting an auxiliary
committee via an anonymous lottery (e.g. based on a VRF). Each party in this
committee generates an ephemeral key pair and publishes the ephemeral public
key and an encryption of the ephemeral secret key under the long-term public key
of a party they choose at random. Encrypting towards an anonymous party can
be done by encrypting under its ephemeral public key. However, since corrupted
parties in the auxiliary committee will always choose other corrupted parties
while the honest parties choose at random, this method needs a corruption ratio
of 1/4 of the parties in order to arrive at an honest majority committee.

RPIR: The constraint on corruption ratio of [1] was subsequently solved
in [14] via random-index private information retrieval (RPIR). RPIR allows a
client to retrieve a random index from a database in such a way that the servers
holding the database do not learn what index was retrieved. The solution of [14]
consists in running a RPIR protocol with a database holding the public keys of
all parties and having parties in a committee execute the client using MPC,
outputting re-randomized versions of the public keys output by RPIR. While
this solution allows for working in an honest majority scenario and achieves
better asymptotic efficiency than [1], the concrete complexity is still quite high.

Encryption to the Future: A different approach is taken in [5], which
constructs a primitive called Encryption to the Future (ETF). Instead of having
committees actively participate in selecting future committees and help them
receive their messages, ETF allows for non-interactively encrypting towards the
winner of a lottery that is executed as part of an underlying blockchain ledger.
Also, it allows for a party to prove it was the winner of this lottery (i.e. the
receiver of a ciphertext) without exposing whether it won future lotteries. Al-
though this solution can be constructed from simple tools like garbled circuits
and oblivious transfer (after a setup phase), each encryption still requires com-
munication and computational complexities linear in the total number of parties.

The ETF construction of [5] relies on a relaxation of Witness Encryption
called Witness Encryption over Commitments (cWE), where one can encrypt a
message towards the holder of an opening of a commitment to a valid witness
of an NP relation. More specifically, we are interested in the case of Encryption
to the Current Winner (ECW), where the data needed to determine the party
selected to perform a role is already in the underlying blockchain (but still does
not reveal who the party is). In order to realize ECW, each party commits to
a witness of a predicate showing they win a lottery for the current parameter.
A party encrypting towards a role simply encrypts the message towards the
party who has such a committed witness to winning the lottery for a current
parameter. A party who wins can decrypt the message encrypted towards the
role using their witness. They can perform Authentication from the Past (AfP)
on a message by doing a signature of knowledge on that message using their
lottery winning witness.

The ETF constructions of [5] suffer from a major drawback: every encryption
towards an anonymously selected party has communication complexity O(nκ)

4 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

where n is the total number of parties and κ is the security parameter. Even if
preprocessing is allowed, these constructions still require the sender to publish n
cWE ciphertexts or to have the eligible receivers perform a round of anonymous
broadcast that is only usable for a single encryption. On the other hand, the
AfP constructions only have O(κ) communication complexity.

PVSS Compatibility: A drawback in current role assignment [1,14,5] is
that they are not amenable to publicly verifiable secret (re)sharing. Both in
YOSO proactive secret sharing [1] and YOSO MPC [12], the committees exe-
cuting each round of the protocol do not simply send unstructured messages but
shares of a secret that must be verified. While this can be done via generic non-
interactive zero knowledge proofs of encrypted shares validity, such a solution
incurs very high computational and communication costs.

Publicly Verifiable Secret Sharing (PVSS): An integral part of YOSO
protocols is having each committee perform PVSS towards the next committee.
A PVSS scheme allows for any party to check that an encrypted share vector is
valid. A number of PVSS constructions are known [22,11,21,2,20,16] that differ-
ent techniques for proving that a vector of encrypted shares are valid shares of
a given secret. Recently, the SCRAPE [6] and ALBATROSS [7] PVSS schemes
have significantly improved on the complexity of such schemes by making the
share validity check and reconstructions procedures cheaper than previous works.
While these works are based on number theoretical assumptions, a recent work
has shown how to efficiently build PVSS from lattice based assumptions [13].
These works are not fit for the YOSO model because they require the parties
to know the identities (or rather the public keys) of the parties receiving the
shares when checking share validity, precluding (re)sharing towards anonymous
parties. A key part of this work is that we explore the fact that the share validity
check of SCRAPE can be modified to work regardless of the public keys used to
encrypt the shares.

1.2 Our Contributions

In this work we address the issue of constructing simple ECW schemes amenable
to efficient publicly verifiable secret (re)sharing (PVSS) protocols. Our contri-
butions are summarized as follows:

Simple Encryption to Future (ECW): We construct a simple ECW scheme
based on a mixnet and an additively homomorphic public key encryption
scheme. Our scheme requires a setup phase where a mixnet is used but
this setup can be either done once and reused for multiple times (using our
reusable AFP) or preprocessed so that future encryptions can be done non-
interactively. Our ECW ciphertexts have size linear only in the number of
parties who open them.

Reusable Private Authentication from the Past (AFP): We show how to
reuse our ECW setup even when a party performs multiple rounds of AFP,
i.e. proving that it was selected to decrypt a given ECW ciphertext. This
scheme guarantees that the adversary cannot predict which parties can de-
crypt future ECW ciphertexts while keeping the setup constant size.

Fast and Simple Encryption and Secret Sharing in the YOSO Model 5

Generic Efficient PVSS: We construct a generic PVSS protocol with efficient
proofs of encrypted shares validity from any IND-CPA additively homomor-
phic encryption scheme with an efficient proof of decryption correctness with-
out any generic zero knowledge proofs, which we call HEPVSS. This general
result sheds new light on the construction on efficient PVSS schemes.

New PVSS with Minimal Overhead: Moreover, we introduce a new PVSS
construction named DHPVSS with constant-size proof of sharing correctness
which, as far as we know, is the first PVSS to achieve this. More precisely, the
PVSS communicates only the n encrypted shares (which are one group ele-
ment each) and two field elements for the proof. This may be of independent
interest for other applications, such as randomness beacons.

Efficient PVSS for Anonymous Committees based on ECW: We instan-
tiate our PVSS constructions based on our ECW and AFP schemes along
with a protocol for resharing a secret towards a future random anonymous
committee. This allows for parties to keep a secret alive, which is a core
component of YOSO MPC.

1.3 Our Techniques

In this section we highlight the main technical components of our contributions.
We remark that our main goal is providing simple constructions that yield effi-
cient instantiations of PVSS towards anonymous committees along with efficient
AfP schemes allowing parties to prove they received shares sent to a given role.

Encryption to the Future We introduce a simple ECW protocol where each
party chooses a key pair in the system and then a mixnet is used to anonymize
them. We can then define a simple lottery predicate that selects one of these keys.
The winner of the lottery can trivially know that they have won this lottery. By
combining this with an IND-CPA encryption scheme that encrypts a message
under that key, we can obtain IND-CPA ECW. Using a homomorphic encryption
scheme we can also encrypt to multiple lottery winners and prove that the same
message is received by all of them.

Authentication from the Past

The Easy Way: An easy way of obtaining reusable ECW setup is to repeat the
lottery setup and obtain multiple anonymized keys for each party. Then, any
party can use a new anonymized public key for each AFP tag. This ensures
that the AFP scheme can be executed a bounded number times before lottery
winners can be linked to specific public keys in the setup and ciphertexts starts
betraying their receivers.

The Reusable Way: In the full version of this paper [8], we show that a party can
prove membership in a given committee without needing to reveal its role in this
committee. This is done by signing a message with a ring signature [19] where the

6 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

secret key corresponds to a public key in the committee. These signatures hide
the identity of the party. Moreover, we require the signature to be linkable [18], so
that no two parties can claim the same secret key. Using this and an anonymous
channel, we can construct an AfP that can be used multiple times without linking
a party Pi to its setup public key. More interestingly, we also present a protocol
that leverages the presence of a dealer (which could be a party that encrypted the
message to that committee) to reduce the size of these proofs of membership to
constant (for the parties making the claims). This uses Camenisch-Lysyanskaya
signatures[4], where the dealer signs the public keys of the committee, and the
parties can then “complete” one of these signatures without revealing which one.
We introduce a simple linkable version of these signatures.

PVSS We introduce two constructions for PVSS. The first, HEPVSS, is based
on a generic encryption scheme which enjoys certain linearity properties with
respect to encryption and decryption, and has the advantage that the security
of the PVSS can be based on IND-CPA security of the scheme. The homomor-
phic properties of the scheme allow for simple proofs of sharing correctness and
reconstruction. While we are only aware of El Gamal scheme satisfying the no-
tion of the homomorphic properties we need, we hope that a relaxed version of
this abstraction allows to capture other encryption schemes with homomorphic
properties such as latticed-based assumptions or Paillier in future work. In our
second scheme DHPVSS, we introduce the idea of providing the dealer with an
additional key pair for share distribution. This idea is powerful in combination
with a technique used in SCRAPE to prove that encrypted shares lie on a poly-
nomial of the right degree. The novelty is that, while in SCRAPE this needed
an additional discrete logarithm equality (DLEQ) proof for each share, our new
scheme requires a single DLEQ proof. This reduces the sharing correctness proof
to only two Zp-elements while each encrypted shares is still one group element.

We also introduce PVSS resharing protocols for both constructions, where
a committee, among which a secret is PVSSed, can create shares of the same
secret for the next committee, in a publicly verifiable way.

PVSS Towards Anonymous Committees Finally, we show that we can
replace standard encryption and authentication in our PVSS protocols by ECW
and AFP and thereby obtain PVSS toward anonymous committees.

2 Preliminaries

2.1 Sigma-protocols

At several points of this paper we will require non-interactive zero knowledge
arguments of knowledge, where most of our statements are instances of a general
structure where we want to prove knowledge of preimage of some element via

Fast and Simple Encryption and Secret Sharing in the YOSO Model 7

a vector-space homomorphism f : that is, let F be a finite field, W and X be
F-vector spaces, and f :W → X be a vector space homomorphism. Let

RPre = {(w, x) ∈ W ×X : x = f(w)}.
The standard (Schnorr-like) Σ-protocol ΠPre for RPre is in Figure 1. It is easy

to see it is a zero knowledge proof of knowledge with soundness error 1/|F|.

Generic Σ-protocol ΠPre(w;x, f)

Proof of knowledge of witness w for x with respect to the relation RPre = {(w, x) ∈
W ×X : x = f(w)}.
Public parameters: Finite field F, vector spaces W,X over F, vector space ho-
momorphism f :W → X , x ∈ X .
Protocol:
1. The prover samples r←$W, sends a = f(r) to the verifier.
2. The verifier samples e←$F, sends it to the sender.
3. The prover sends z ← r + e · w to the verifier.
4. The verifier accepts if z ∈ W and f(z) = a+ e · x.

Fig. 1. Generic Σ-protocol for knowledge of homomorphism-preimage

A non-interactive zero-knowledge (NIZK) proof of knowledge in the random
oracle model is obtained by applying the Fiat-Shamir transform (Figure 2).

Generic non-interactive argument of knowledge ΠNI−Pre(w;x, f)

Non-interactive argument of knowledge of witness for x for the relation RPre =
{(w, x) ∈ W ×X : x = f(w)} in the random oracle model.
Public parameters: Finite field F, vector spaces W,X over F, vector space
homomorphism f : W → X , x ∈ X , random oracle H : {0, 1}∗ → F. Let
pp = (F,W,X ,H).
ΠNI−Pre.Prove(w; pp, x, f):

r←$W, a← f(r), e← H(x, a), z ← r + e · w, return π ← (e, z)

ΠNI−Pre.Verify(pp, x, f, π):

Parse π = (e, z) and return accept if and only if z ∈ W and e = H(x, f(z)−e·x).

Fig. 2. Generic non-interactive argument of knowledge of homomorphism-preimage

Cyclic Group Homomorphism Preimage, DL Knowledge and DLEQ
Knowledge Proofs. Some useful examples of homomorphism-preimage rela-
tionsRPre are given by discrete logarithm and discrete logarithm equality. Indeed,

8 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

a cyclic group G of prime order p has a vector space structure over the field Zp,
and a group homomorphism f : G → G′ between groups of order p is also a
Zp-vector homomorphism.4 Let G be a generator of G. Given X ∈ G, a discrete
logarithm DL proof of knowledge DL(w;G,X) asserts knowledge of w ∈ Zp with
X = w · G (we denote this as w = DLG(X)). In the language above this is
provided by ΠNI−Pre(w; (X), fG) with fG(w) = w ·G. This is the non-interactive
version of the well known Schnorr proof.

Similarly, let G, H be elements in G. Given X,Y ∈ G the discrete loga-
rithm equality proof DLEQ(w;G,X,H, Y) is a non-interactive proof of knowl-
edge of w ∈ Zp with w = DLG(X) = DLH(Y), which can be obtained by using
ΠNI−Pre(w; (X,Y), f(G,H)), where fG,H(w) := (w ·G,w ·H).

2.2 Zp-linear Homomorphic Encryption

The results in this paper require encryption schemes with certain homomorphic
properties, that allow for simple proofs of plaintext knowledge. These properties
are attained by El Gamal encryption scheme.

Definition 1 (Zp-linearly homomorphic encryption scheme). Let E =
(E .Gen, E .Enc, E .Dec) be a public key encryption scheme, and let p be a prime
number. We say E is Zp-linearly homomorphic (Zp-LHE) if the plaintext space
(P,�P), randomness space (R,�R), ciphertext space (C,�C) each have a Zp-
vector space structure and for all public keys pk output by E .Gen, E .Encpk : P×
R→ C is a Zp-vector space homomorphism, i.e. for all m1,m2 ∈ C, ρ1, ρ2 ∈ R,

E .Encpk(m1; ρ1) �C E .Encpk(m2; ρ2) = E .Encpk(m1 �P m2; ρ1 �R ρ2).

Remark 1. Zp-linear homomorphic encryption schemes have simple NIZK of
plaintext (and randomness) knowledge, implied by Figure 2 by taking W =
P ×R, X = C and the proof ΠNI−Pre((m, ρ); c, E .Encpk) for the relation REnc =
{((m, ρ), c) ∈ W ×X : c = E .Encpk(m; ρ)}.

Proofs of Decryption Correctness We also need proofs of decryption cor-
rectness which keep the secret key hidden, i.e. NIZK proofs for the relation

RE,Dec = {(sk; (pk,m, c)) : (pk, sk) is a valid key-pair for E and m = E .Decsk(c)}.

If the prover knows the randomness under which the message was encrypted,
the proving algorithm E .ProveDec(sk; (pk,m, c)) can simply output that random-
ness π ∈ R; the verification E .VerifyDec(pk,m, c, π) accepts if Encpk(m;π) = c.

Unfortunately El Gamal encryption scheme does not allow a decryptor to
retrieve the randomness under which a message has been encrypted. Instead,
a proof of correctness of decryption for El Gamal can be constructed from the
following property of this scheme, which we call Zp-linear decryption.

4This extends to direct products of groups of order p, i.e. W = G1 × · · · × Gm,
X = G′1 × · · · × G′n and f = (f1, . . . , fm) : W → X where fi : Gi → X are all group
homomorphisms.

Fast and Simple Encryption and Secret Sharing in the YOSO Model 9

Definition 2. Let E = (Gen,Enc,Dec) be a Zp-linearly homomorphic encryption
scheme and denote PK and SK the sets of public and secret keys respectively. E
has Zp-linear decryption if:

– PK and SK are Zp-vector spaces.
– There exists a Zp-linear homomorphism F : SK → PK such that pk = F (sk)

for all (pk, sk) outputted by Gen.
– For all c ∈ C, the function Dc(sk) := Decsk(c) is Zp-linear in sk, i.e. for all

sk1, sk2 ∈ SK, it holds that Dc(sk1 �SK sk2) = Dc(sk1) �P Dc(sk2).

In this case we have the algorithms (E .ProveDec, E .VerifyDec) that constitute
a NIZK proof for RE,Dec :

Algorithm 1 E .ProveDec(sk, (pk,m, c))
W ← SK,X ← PK ×P× C,
pp← (Zp,W,X ,H)
w ← sk, x← (pk,m), f(·)← (F (·), Dc(·))
return π ← ΠNI−Pre.Prove(w; pp, x, f)

Algorithm 2 E .VerifyDec(pk,m, c, π)

W ← SK,X ← PK ×P× C
pp← (Zp,W,X ,H)
x← (pk,m), f(·)← (F (·), Dc(·))
return ΠNI−Pre.Verify(pp, x, f)

The El Gamal decryption function as usually described is not linear but
affine, but we can easily fix this by e.g. defining sk∗ = (sk∗1, sk

∗
2) = (1, sk) ∈ Z2

p

and letting Decsk∗(C1, C2) := C2 · sk∗1 − C1 · sk∗2. Then DC(sk∗) is clearly a
Zp-linear function.

2.3 Shamir Secret Sharing on Groups of Order p

The well known degree-t Shamir scheme allows to split a secret s ∈ Zp in n
shares (where 0 ≤ t < n < p) in such a way that any set of t+ 1 shares give full
information about the secret s while any set of t give no information on s.

Here we will consider situations where the secret is an element S = sG of
a group G of order p with generator G, but the dealer does not know s (and
hence cannot apply the usual Shamir sharing using s as secret). On the other
hand, it is enough that the shares allow to reconstruct S and not s. We define
Shamir secret sharing in a group of order p as shown in Figure 3. (Shamir secret
sharing scheme over Zp is retrieved by setting G = (Zp,+), G = 1). We denote
by Zp[X]≤t the set of polynomials in Zp[X] of degree at most t.

2.4 The SCRAPE Test

In SCRAPE [6], a technique for checking correctness of Shamir sharing in pub-
licly verifiable secret sharing was introduced. Letting aside the details on how
the technique works there, we are interested in the following fact, which in turn
comes from well known results in coding theory 5.

5Specifically from the fact that the dual of a Reed-Solomon code is a generalized
Reed-Solomon code of a certain form.

10 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

Shamir secret sharing on a group G of order p

Public parameters: Let pp = (G, G, p, t, n, {αi : i ∈ [0, n]}), where G is a group of
prime order p with generator G, 0 ≤ t < n < p are integers, and α0, α1, . . . , αn ∈ Zp
are pairwise distinct.
GShamir.Share(pp, S), where pp as above, and S ∈ G:

m(X)←$ {m(X) ∈ Zp[X]≤t : m(α0) = 0}
for i ∈ [n], Ai ← S +m(αi) ·G
return (A1, . . . , An)

GShamir.Rec(pp, I, (Ai)i∈I), where I ⊆ [n], |I| = t+ 1 and (Ai)i∈I ∈ Gt+1:

return S′ ←
∑
i∈I λi,IAi, where, for i ∈ I, λi,I :=

∏
j∈I,j 6=i

α0−αj

αi−αj

Fig. 3. Shamir sharing on a group of order p

Theorem 1 (SCRAPE dual-code test). Let 1 ≤ t < n be integers. Let p be
a prime number with p ≥ n. Let α1, . . . , αn be pairwise different points in Zp.
Define the coefficients vi =

∏
j∈[n]\{i}(αi − αj)−1. Let

C = {(m(α1), . . . ,m(αn)) : m(X) ∈ Zp[X]≤t}.

Then for every vector (σ1, . . . , σn) in Znp ,

(σ1, . . . , σn) ∈ C ⇔
n∑
i=1

vi ·m∗(αi) · σi = 0, ∀m∗ ∈ Zp[X]≤n−t−2.

2.5 Mix Networks (Mixnets)

In this paper we use a mixnet to anonymize a set of public encryption keys,
each generated (with their corresponding secret keys) by a party in the system.
Let P be the set of all parties generating these keys. In the coming sections we
will assume such a mixnet and that the output is subsequently be written to
a blockchain. The output is a set of shuffled keys pkAnon,j : j ∈ [n], for which
each party knows the index that corresponds to their public key, but nothing
else about the permutation. Denote this permutation ψ : P → [n], i.e. party IDi

knows j = ψ(i) and the corresponding key-pair.
We will use the fact that a party can encrypt a message under the public key
pkAnon,j . It is clear that party IDψ−1(j) can decrypt the message, while the rest of
the parties (even the sender) remain oblivious about the identity of the receiver.
Notice that this setup can be instantiated via a verifiable mixnet (e.g. [3]).

2.6 Encryption to the Future

We use the model for Encryption to the Future (EtF) from [5], which defines
this primitive with respect to a blockchain ledger that has an built-in lottery

Fast and Simple Encryption and Secret Sharing in the YOSO Model 11

mechanism. Before presenting the definition of EtF and related concepts, we
recall the model for blockchain ledgers from [15], which is used to state the
definitions of [5] and that captures properties of natural Proof-of-Stake (PoS)
based protocols such as [10]. We present a summary of the framework in the full
version of the paper [8] and discuss below the main properties we will use in the
EtF definitions.

Blockchain Structure A genesis block
B0 = (Sig.pk1, aux1, stake1), . . . , (Sig.pkn, auxn, staken), aux associates each party
Pi to a signature scheme public key Sig.pki, an amount of stake stakei and
auxiliary information auxi (i.e. any other relevant information required by the
blockchain protocol). As in [10], we assume that the genesis block is generated
by an initialization functionality FINIT that registers all parties’ Sig.pki, auxi
when the execution starts and assigns stakei for Pi. Within the execution model
of [15], FINIT is executed by the environment (as defined in the full version of the
paper [8]). A blockchain B relative to a genesis block B0 is a sequence of blocks
B1, . . . , Bn associated with a strictly increasing sequence of slots sl1, . . . , slm
such that Bi = (slj , H(Bi−1), d, aux), where slj indicates the time slot that Bi
occupies, H(Bi−1) is a collision resistant hash of the previous block, d is data and
aux is auxiliary information required by the blockchain protocol (e.g. a proof that
the block is valid for slot slj). We denote by Bd` the chain (sequence of blocks)
B where the last ` blocks have been removed and if ` ≥ |B| then Bd` = ε. Also,
if B1 is a prefix of B2 we write B1 � B2. For the sake of simplicity, we identify
each party Pi participating in the protocol by its public key Sig.pki.

Evolving Blockchains In an EtF scheme, the future is defined with respect
to a future state of the underlying blockchain. In particular, we want to make
sure that the initial chain B has “correctly” evolved into the final chain B̃.
Otherwise, the adversary can easily simulate a blockchain where it wins a fu-
ture lottery and finds itself with the ability to decrypt. Fortunately, the Dis-
tinguishable Forking property from [15] allows us to distinguish a sufficiently
long chain in an honest execution from a fork generated by the adversary by
looking at the combined amount of stake proven in such a sequence of blocks.
This property is used to construct a predicate called evolved(·, ·). First, let
ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol with va-
lidity predicate V and where the (α, β, `1, `2)-distinguishable forking property
holds. And let B← GetRecords(1λ, st) and B̃← GetRecords(1λ, s̃t).

Definition 3 (Evolved Predicate). An evolved predicate is a polynomial time
function evolved that takes as input blockchains B and B̃

evolved(B, B̃) ∈ {0, 1}.
It outputs 1 if and only if B = B̃ or the following holds (i) V (B) = V (B̃) =

1; (ii) B and B̃ are consistent i.e. Bdκ � B̃ where κ is the common pre-
fix parameter; (iii) Let `′ = |B̃| − |B| then it holds that `′ ≥ `1 + `2 and
u-stakefrac(B̃, `′ − `1) > β.

12 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

Blockchain Lotteries The vast majority of PoS-based blockchain protocols
has an inbuilt lottery scheme for selecting parties to generate blocks. In this
lottery any party can win the right to generate a block for a certain slot with a
probability proportional to its relative stake in the system. In the model from [5],
a party can decrypt an EtF ciphertext if it wins this lottery. It can be useful to
conduct multiple independent lotteries for the same slot sl, which is associated to
a set of roles P1, . . . ,Pn. Depending on the lottery mechanism, each pair (sl,Pi)
may yield zero, one or multiple winners. A party with access to the blockchain
can locally determine whether it is the lottery winner for a given role by executing
a procedure using its lottery witness skL,i related to (Sig.pki, auxi, stakei), which
may also give the party a proof of winning for others to verify. The definition
below from [5] details what it means for a party to win a lottery.

Definition 4 (Lottery Predicate). A lottery predicate is a polynomial time
function lottery that takes as input a blockchain B, a slot sl, a role P and a
lottery witness skL,i and outputs 1 if and only if the party owning skL,i won the
lottery for the role P in slot sl with respect to the blockchain B.
Formally, we write lottery(B, sl,P, skL,i) ∈ {0, 1}.
It is natural to establish the set of lottery winning keys WB,sl,P for parameters
(B, sl,P). This is the set of eligible keys satisfying the lottery predicate.

Modelling EtF. We are now ready to present the model of [5] for encryption to
the future winner of a lottery (i.e. EtF). The blocks of an underlying blockchain
ledger and their relative positions in the chain are used to specify points in time.
Intuitively, this notion allows for creating ciphertexts that can only be decrypted
by a party that is selected to perform a certain role R at a future slot sl according
to a lottery scheme associated with a blockchain protocol (i.e. a party that has
a lottery secret key skL,i such that lottery(B̃, sl,P, skL,i) = 1).

Definition 5 (Encryption to the Future). A pair of PPT algorithms E =
(Enc,Dec) in the the context of a blockchain ΓV is an EtF-scheme with evolved
predicate evolved and a lottery predicate lottery. The algorithms work as follows

Encryption. ct← Enc(B, sl,P,m) takes as input an initial blockchain B, a slot
sl, a role P and a message m. It outputs a ciphertext ct - an encryption to
the future.

Decryption. m/⊥ ← Dec(B̃, ct, sk) takes as input a blockchain state B̃, a ci-
phertext ct and a secret key sk and outputs the original message m or ⊥.

Correctness. An EtF-scheme is said to be correct if for honest parties i and j,
there exists a negligible function µ such that∣∣∣∣∣∣∣∣∣∣∣∣

Pr



view← EXECΓ (A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
ct← Enc(B, sl,P,m)

evolved(B, B̃) = 1

lottery(B̃, sl,P, sk) = 1

: Dec(B̃, ct, sk) = m

− 1

∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ).

Fast and Simple Encryption and Secret Sharing in the YOSO Model 13

Security. Security is defined with a game GameIND-CPA
Γ,A,Z,E described in Algorithm

3, where a challenger C and an adversary A execute an underlying blockchain
protocol with an environment Z as described in the full version of the paper [8].
In this game, A chooses a blockchain B, a role P for the slot sl and two messages
m0 and m1 and sends it all to C, who chooses a random bit b and encrypts the
message mb with the parameters it received and sends ct to A. A continues to
execute the blockchain until an evolved blockchain B̃ is obtained and outputs
a bit b′. If the adversary is a lottery winner for the challenge role P in slot sl,
the game outputs a random bit. If the adversary is not a lottery winner for the
challenge role P in slot sl, the game outputs b ⊕ b′. The reason for outputting
a random guess in the game when the challenge role is corrupted is as follows.
Normally the output of the IND-CPA game is b ⊕ b′ and we require it to be 1
with probability 1/2. This models that the guess b′ is independent of b. This, of
course, cannot be the case when the challenge role is corrupted. We therefore
output a random guess in these cases. After this, any bias of the output away
from 1/2 still comes from b′ being dependent on b.

Algorithm 3 GameIND-CPA
Γ,A,Z,E

viewr ← EXECΓr (A,Z, 1λ) . A executes Γ with Z until round r
(B, sl,P,m0,m1)← A(viewrA) . A outputs challenge parameters
b←$ {0, 1}
ct← Enc(B, sl,P,mb)
st← A(viewrA, ct) . A receives challenge ct
viewr̃ ← EXECΓ(viewr,r̃)(A,Z, 1λ) . Execute from viewr until round r̃

(B̃, b′)← A(viewr̃A, st)
if evolved(B, B̃) = 1 then . B̃ is a valid evolution of B

if skAL,j /∈ WB̃,sl,P then . A does not win role P
return b⊕ b′

end if
end if
return b̂←$ {0, 1}

Definition 6 (IND-CPA Secure EtF). An EtF-scheme E = (Enc,Dec) in the
context of a blockchain protocol Γ executed by PPT machines A and Z is said
to be IND-CPA secure if, for any A and Z, there exists a negligible function µ
such that for λ ∈ N: ∣∣∣2 · Pr

[
GameIND-CPA

Γ,A,Z,E = 1
]
− 1
∣∣∣ ≤ µ(λ).

ECW as a Special Case of EtF. In this work, we focus on a special class of
EtF called ECW where the underlying lottery is always conducted with respect
to the current blockchain state. This has the following consequences

1. B = B̃ means that evolved(B, B̃) = 1 is trivially true.

14 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

2. The winner of role P in slot sl is already defined in B.

Notice that in ECW there is no need for checking if the blockchain has ’cor-
rectly’ evolved and all lottery parameters (e.g. stake distribution and randomness
extracted from the blockchain) are static. Hence, when constructing an ECW
scheme, the lottery winner is already decided at encryption time. While an ECW
is simpler to realize than a more general EtF, it is shown in [5] that ECW can
be used to instantiate YOSO MPC and then be transformed into EtF given an
identity based encryption scheme.

Authentication from the Past (AfP) When the winner of a role S sends a
message m to a future role R then it is typically also needed that R can be sure
that the message m came from a party P which, indeed, won the role S. This
concept is formalized as an AfP scheme as follows.

Definition 7 (Authentication from the Past). A pair of PPT algorithms
U = (Sign,Ver) is a scheme for authenticating messages as a winner of a lottery
in the past in the context of blockchain Γ with lottery predicate lottery such that:

Authenticate. σ ← AfP.Sign(B, sl,S, sk,m) takes as input a blockchain B, a
slot sl, a role S and a message m. It outputs a signature σ that authenticates
the message m.

Verify. {0, 1} ← AfP.Ver(B̃, sl,S, σ,m) uses the blockchain B̃ to ensure that σ
is a signature on m produced by the secret key winning the lottery for slot sl
and role S.

Furthermore, an AfP-scheme has the following properties:

Correctness.∣∣∣∣∣∣∣∣∣∣∣∣
Pr


view← EXECΓ (A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
σ ← AfP.Sign(B, sl,S, sk,m)

lottery(B, sl,S, sk) = 1

lottery(B̃, sl,S, sk) = 1

: AfP.Ver(B̃, sl,S, σ,m) = 1

− 1

∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

In other words, an AfP on a message from an honest party with a view of
the blockchain B can attest to the fact that the sender won the role S in slot
sl. If another party, with blockchain B̃ agrees, then the verification algorithm
will output 1.

Security. The EUF-CMA game detailed in 4 is used to define the security of
an AfP scheme. In this game, the adversary has access to a signing oracle
OAfP which it can query with a slot sl, a role S and a message mi, obtain-
ing AfP signatures σi = AfP.Sign(B, sl,S, skj ,mi) where skj ∈ WB,sl,S i.e.
lottery(B, sl,S, skj) = 1. The oracle maintains the list of queries QAfP. For-
mally, an AfP-scheme U is said to be EUF-CMA secure in the context of a

Fast and Simple Encryption and Secret Sharing in the YOSO Model 15

blockchain protocol Γ executed by PPT machines A and Z if there exists a
negligible function µ such that for λ ∈ N:

Pr
[
GameEUF-CMA

Γ,A,Z,U = 1
]
≤ µ(λ)

Algorithm 4 GameEUF-CMA
Γ,A,Z,U

view← EXECΓ (A,Z, 1λ) . A executes Γ with Z
(B, sl,S,m′, σ′)← AOAfP(viewA)
if (m′ ∈ QAfP) ∨ (skAL,j ∈ WB,sl,S) then . AOAfP won or queried illegal m′

return 0
end if
viewr̃ ← EXECΓ(viewr,r̃)(A,Z, 1λ) . Execute from viewr until round r̃

B̃← GetRecords(viewr̃i)
if evolved(B, B̃) = 1 then

if Ver(B, sl, S, σ′,m′) = 1 then . A successfully forged an AfP
return 1

end if
end if
return 0

AfP Privacy The specific privacy property we seek is that an adversary, ob-
serving AfP tags from honest parties, cannot use this information to enhance its
chances in predicting the winners of lotteries for roles for which an AfP tag has
not been published.

Definition 8 (AfP Privacy.). An AfP scheme U with corresponding lottery
predicate lottery is private if a PPT adversary is unable to distinguish between the
scenarios defined in 5 and 6 with more than negligible probablity in the security
parameter.

Scenario 0 (b = 0) In this scenario (5) the adversary is first running the blockchain
Γ together with the environment Z. At round r the adversary is allowed to
interact with the oracle OAfP as described in 7. The adversary then continues
the execution until round r̃ where it ouputs a bit b′.

Scenario 1 (b = 1) This scenario (6) is identical to scenario 0 but instead of
interacting with OAfP, the adversary interacts with a simulator S.

Algorithm 5 b = 0

viewr ← EXECΓr (A,Z, 1λ)
AOAfP(viewrA)
viewr̃ ← EXECΓ(viewr,r̃)(A,Z, 1λ)

return b′ ← AOAfP(viewr̃A)

Algorithm 6 b = 1

viewr ← EXECΓr (A,Z, 1λ)
AS(viewrA)
viewr̃ ← EXECΓ(viewr,r̃)(A,Z, 1λ)

return b′ ← AS(viewr̃A)

16 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

We let GameID-PRIV
Γ,A,Z,U,E denote the game where a coinflip decides whether the

adversary is executed in scenario 0 or scenario 1. We say that the adversary
wins the game (i.e. GameID-PRIV

Γ,A,Z,U,E = 1) iff b′ = b. Finally, an AfP scheme U is
called private in the context of the blockchain Γ and underlying lottery predicate
lottery if the following holds for a negligible function µ.

Pr
[
GameID-PRIV

Γ,A,Z,U,E = 1
]
≤ 1/2 + µ(λ)

3 ECW based on Zp-Linearly Homomorphic Encryption

This section presents an ECW protocol based on a Zp-linearly homomorphic
encryption scheme described in Section 2.2 and a mixnet (Section 2.5). Together
with the ECW, we introduce an AfP scheme - a mechanism that allows a com-
mittee member to authenticate messages. The two schemes will be the backbone
of the anonymous PVSS presented in Section 6. Before presenting the actual
ECW and AfP protocols, we introduce the underlying lottery predicate that will
be the cornerstone in our two schemes.

3.1 Lottery Predicate

We assume a running blockchain (we give a precise description in the full version)
and a function param that has access to the blockchain state. During the setup,
each party samples an encryption key pair (skE,i, pkE,i) and inputs pkE,i to the
mixnet (Section 2.5). The output of the mixnet is a tuple {(j, pkAnon,j) : j ∈ [n]}
which is written on the blockchain and accessible to every party through param
function. The function param takes as input the blockchain B and the slot sl
and outputs a tuple ({(j, pkAnon,j)}j∈[n], η)← param(B, sl). Here, (j, pkAnon,j) is
equal to (ψ(i), pkE,i) for the permutation ψ defined by the mixnet. Finally, η is
the public randomness from the blockchain corresponding to B and sl. Not, that
only the owner of skE,i knows j such that pkAnon,j = pkE,i. Let H : {0, 1}∗ → [n]
be a hash function that outputs a number that points to a specific index in the
list of public keys. The lottery predicate lottery is detailed below.

Algorithm 7 lottery(B, sl,P, skL,i)

({(j, pkAnon,j)}j∈[n], η)← param(B, sl)
(pkE,i, skE,i)← skL,i
k ← H(sl||P||η)
return 1 iff pkE,i = pkAnon,k

It is easy to see that the lottery described above associates a single party
(from the set of eligible parties) with the role P. Furthermore, the party can

Fast and Simple Encryption and Secret Sharing in the YOSO Model 17

locally check if it won the lottery by checking that the output of the hash function
points to its own public key in the permuted set. Crucially, the party winning
the lottery can stay covert since no other party can link the winning lottery key
to the owner of the corresponding secret key. These properties will be useful
when we want to encrypt shares towards an anonymous committee.

3.2 ECW Protocol

This section introduces a ECW protocol (Figure 4) based on the lottery predicate
presented in Section 3.1. We note that ECW is just a restricted version of EtF
where the lottery is conducted wrt. the current blockchain B and slot sl. Thus,
all definitions in Section 2.6 applies to ECW schemes too.

ECW Protocol

Public parameters: A prime p, a Zp-linearly homomorphic encryption scheme
E = (E .Gen, E .Enc, E .Dec) with notation as in Section 2.2 and a lottery as described
in Section 3.1.
Set-up:
1. Every party runs E .Gen() obtaining a key pair (skE,i, pkE,i).
2. Each party inputs pkE,i to the mixnet. The output of the mixnet is a tuple
{(j, pkAnon,j) : j ∈ [n]} which is written on the blockchain and accessible to
every party when using the param function.

Encryption protocol: Input (B, sl,P) and m ∈ P.
1. Run param(B, sl) and obtain ({(l, pkAnon,l)}l∈[n], η).
2. Obtain random index by k ← H(sl||P||η).
3. Choose ρ in R and set c = E .EncpkAnon,k (m, ρ).
4. Sender outputs c.

Decryption protocol: Input for party i is B, skL,i and c.
1. Checks that lottery(B, sl,P, skL,i) = 1.
2. Outputs m = E .DecskAnon,i(c).

Fig. 4. ECW Protocol

Theorem 2 (IND-CPA ECW). Let E be an IND-CPA secure Zp-linearly ho-
momorphic encryption scheme. The construction in Figure 4 with lottery predi-
cate as in Section 3.1 is an IND-CPA secure ECW (as in Definition 6).

(See proof sketch in full version [8])

3.3 AfP Protocol

In this section we present our AfP protocol. It is described in Figure 5 and
is based on a Signature of Knowledge (SoK) [9]. A SoK scheme is a pair of

18 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

algorithms (SoK.sign,SoK.verify) and is defined in context of a relation R. We
consider statements of the form x = (B, sl,P) and witnesses w = sk. We say that
R(x = (B, sl,P), w = sk) = 1 iff lottery(B, sl,P, sk) = 1. A signature is produced
by running σ ← SoK.sign(x,w,m). And it can be verified by checking that the
output of SoK.verify(x, σ,m) is 1. Our AfP uses the SoK to sign m under the
knowledge of skL,i such that lottery(B, sl,P, skL,i) = 1. This will exactly attest
that the message m was sent by the winner of the lottery for P. An instantiation
of this AfP protocol could use DL proofs (Section 2.1).

AfP Protocol

Public parameters and Set-up as described in Figure 4 plus additional setup for
the SoK scheme SoK = (SoK.sign, SoK.verify).
Authentication protocol: Input for party i is (B, sl,P) and m ∈ P.
1. Checks that lottery(B, sl,P, skL,i) = 1.
2. Constructs an SoK on the message m of knowledge of skL,i such that

lottery(B, sl,P, skL,i) = 1 resulting in σ ← SoK.sign((B, sl,P), skL,i).
3. Sender outputs σ ← σSoK.

Verification protocol: Input is (B, sl,P, σ,m)
1. Parses σ as the SoK signature σSoK.
2. Verifies that σSoK is a valid SoK on the message m proving knowledge of skL,i.

I.e. it runs b← SoK.verify((B, sl,P), σSoK,m).
3. Verifier outputs b.

Fig. 5. AfP Protocol

Theorem 3 (EUF-CMA AfP). Let E be an IND-CPA secure and Zp-linearly
homomorphic encryption scheme and let SoK be a simulatable and extractable
SoK scheme. The construction in Figure 5 with lottery predicate as in Section
3.1 is EUF-CMA AfP as defined in Definition 7.

(See proof sketch in full version [8])

AfP Privacy The privacy property of an AfP scheme says that no adversary
can distinguish between interacting with an AfP oracle OAfP and a simulator
S during a blockchain execution. Intuitively, this provides the guarantee that
observing other AfP tags does not enhance an adversary’s chance of guessing
future lottery winners.

Theorem 4 (AfP Privacy). Assume E, lottery and SoK scheme as in 3. The
construction in Figure 5 has AfP privacy as in Definition 8.

(See proof sketch in full version [8])

Fast and Simple Encryption and Secret Sharing in the YOSO Model 19

An AfP based on the setup presented in Figure 4 will not provide a good founda-
tion for YOSO-MPC or even just a proactive secret sharing scheme. The reason
is, that as soon as a party IDi publishes an AfP tag, any other party can verify
that IDi won the lottery and, thus, link the identity of IDi to the public key
pkAnon,ψ(i) from the output of the mixnet. This will ruin the setup for this party
when future lotteries are conducted. More importantly, a powerful adversary is
able to identify any subsequent ECW ciphertexts towards this party and can
design its corruption strategy accordingly. What we want is a new ephemeral
public key pkAnon,ψ(i) for each party and for each slot sl in the blockchain ex-
ecution where an AfP is produced. Note that a new lottery setup is necessary
for each slot sl even though different parties are producing AfP tags in different
slots. The reason is that observing any AfP tag, inadvertently, skews the prob-
ability distribution and helps the adversary in guessing future lottery winner.
A simple way to solve the above issue is to repeat the lottery setup and obtain
multiple vectors of the format {(j, pkAnon,j) : j ∈ [n]}. Then, any party can use
a new anonymized public key for each AfP tag. We describe this property as
bounded AfP privacy. Bounded AfP privacy ensures that the AfP scheme can be
executed a bounded number times before lottery winners can be linked to specific
public keys in the setup and ECW ciphertexts starts betraying their receivers.
Note that the idea of generating multiple lottery setups in batches (preprocess-
ing) can result in more efficient protocols. But it has the downside that, while
using the preprocessed public keys, the number of parties in the system is static.
In Section 6 we look at how to use the ECW and AfP in an anonymous PVSS
protocol where we want encrypt towards multiple parties. In such a setting we
can use linkable ring signatures (see full version [8]) to prove membership in a
committee without directly revealing our public key in the setup.

3.4 AfP with Reusable Setup

In the full version [8], we describe an efficient NIZK that allows for a party IDi to
prove knowledge of a lottery secret key skL,i such that lottery(B, sl,Pj , skL,i) = 1
for Pj ∈ {P1, . . . ,Pn} without revealing Pj . Using this NIZK and an anonymous
channel, we can construct an AfP that can be used multiple times without link-
ing a party Pi to its setup public key. In order to generate an AfP on message m
on behalf of role P in slot sl, Pi with skL,i such that lottery(B, sl,P, skL,i) = 1 first
generates a NIZK π proving knowledge of skL,i such that lottery(B, sl,Pj , skL,i) =
1 for Pj ∈ {P1, . . . ,Pn}. Now Pi generates an SoK σ on the message m of knowl-
edge of a valid proof π for the aforementioned statement. IDi publishes σ through
an anonymous channel, avoiding its identity to be linked to the set {P1, . . . ,Pn}.
The security and privacy guarantees for this AfP follow in a straightforward way
from our previous analysis. While using this construction has a clear extra cost
in relation to our simple AfP, we show in the full version [8] how to efficiently
perform such a reusable setup AfP on a set of ciphertexts, which is useful for
our resharing application.

20 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

4 Publicly Verifiable Secret Sharing

4.1 Model

We define a publicly verifiable secret sharing (PVSS) scheme with t privacy and
t+1-reconstruction, based on the models provided in [21,20,16,6]. The goal is for
a dealer to share a secret S ∈ G to a set of n parties P = {P1, · · · , Pn}, so that
t+ 1 shares will be needed to reconstruct the secret and no information will be
revealed from t shares. We require public verifiability for correctness of sharing
by the dealer, and for reconstruction of the secret by a set of t+ 1 parties. Due
to this requirement, the protocol is entirely carried out using a public ledger.

We provide the syntax below. A modification we introduce with respect to
the usual model is that we include asymmetric key pairs for dealers and an
additional initial round where the parties can broadcast an ephemeral public
key. This will allow for more efficient constructions as we will see in Section 4.3.

Setup

– Setup(1λ) outputs public parameters pp.
– DKeyGen(pp), performed by the dealer, outputs a key pair (pkD, skD).
– KeyGen(pp, idi), performed by i-th share receiver, outputs a key-pair (pki, ski).
– VerifyKey(pp, id, pk), performed by a public verifier, outputs 0/1 (as a verdict

on whether pk is valid).

Distribution

– Dist(pp, pkD, skD, {pki : i ∈ [n]}, S) performed by the dealer, and where
S ∈ G is a secret, outputs encrypted shares Ci : i ∈ [n] and a proof PfSh of
sharing correctness.

Verification

– Verify(pp, pkD, {(pki, Ci) : i ∈ [n]},PfSh) performed by the public verifier
outputs 0/1 (as a verdict on whether the sharing is valid).

Reconstruction

– DecShare(pp, pkD, pki, ski, Ci), performed by a share receiver, outputs a de-
crypted share Ai and a proof PfDeci of correct decryption.

– VerifyDec(pp, pkD, Ci, Ai,PfDeci) outputs 0/1 (as a verdict on whether Ai is
a valid decryption of Ci).

– Rec(pp, {Ai : i ∈ T }) for some T ⊆ [n] of size t + 1 outputs a secret S. We
will only apply this algorithm to inputs where T is of size t + 1 and such
that all Ai have passed the verification check.

We let PKD and PK contain all key pairs output by DKeyGen and KeyGen
respectively. For non–deterministic algorithms we sometimes explicitly reference
the randomness r input. For example, Dist(pp, pkD, skD, {pki : i ∈ [n]}, S; r).
One of our constructions will not require pkD, skD and consequently DKeyGen.
In that case we omit these arguments from the inputs to the other algorithms.

We require a PVSS to satisfy correctness, verifiability and IND1-secrecy. We
give these definitions in the full version of this paper.

Fast and Simple Encryption and Secret Sharing in the YOSO Model 21

4.2 HEPVSS: Generic PVSS from Zp-LHE Scheme

We present in Figure 6 our construction for a PVSS scheme HEPVSS based on
a Zp-LHE scheme with proof of correct decryption. This construction does not
require the dealer to hold a key pair or parties to prove honest generation of keys
and therefore we remove this from the syntax. Moreover, because the dealer does
not have a key pair, here we do not require the public keys pki to be ephemeral.

The construction is relatively straightforward: the dealer construct the (group)
Shamir sharing of the secret, and encrypts the shares using the Zp-LHE scheme,
resulting in cyphertexts Ci. The sharing correctness proof needs to assert, not
only that each Ci is individually a correct encryption, but also that the underly-
ing plaintext messages are evaluations of a polynomial of degree at most t. Here
we use the fact that the set of polynomials of degree at most t is a vector space,
and the map that sends a polynomial to its evaluation in some point is linear,
so we can capture the above statement in terms of knowledge of preimage of a
certain linear map. For the proofs of security (correctness, indistinguishability
of secrets and verifiability) we refer to the full version.

4.3 DHPVSS: A PVSS with Constant-Size Sharing Correctness
Proof

We now give an optimized construction of a PVSS with a proof of sharing cor-
rectness consisting of just two field elements. The PVSS scheme, which we call
DHPVSS, has IND1-secrecy under the DDH assumption.

We explain the idea of the construction next: Let Ai = ai ·G be (purportedly)
group Shamir shares for a secret S ∈ G. A SCRAPE check (Theorem 1) consists

on the verification
∑n
i=1 vi ·m∗(αi) · ai

?
= 0, or alternatively

n∑
i=1

vi ·m∗(αi) ·Ai
?
= O,

for O the identity element of G. Here vi are fixed coefficients dependent on the
αi and m∗(X) is sampled uniformly at random from Zp[X]≤n−t−2. If it is not
true that all ai are of the form m(αi) for some polynomial m(X) ∈ Zp[X]≤t,
then the check succeeds with probability at most 1/p.

In [6], the encrypted shares were Ci = ai · pki. Because these are in different
bases the check above cannot be directly applied on the Ci, and then the strategy
consisted on sending additional elements ai · H (for some group generator H),
proving that the underlying ai’s are the same, and carrying out the check on
these ai ·H. All this introduces overhead which is linear in n.

Instead, in DHPVSS, the dealer has a key-pair (skD, pkD), with pkD = skD ·G,
and encrypts Ai as Ci = Ai+ skD ·Ei, where Ei = ski ·G is an ephemeral public
key of the i-th party. Note that skD · Ei can be seen as a shared Diffie-Hellman
key between dealer and the i-th party or, alternatively, Ci can be seen as an
El-Gamal encryption of Ai under Ei with randomness skD.

22 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

Algorithms for Public Verifiable Secret Sharing Scheme HEPVSS

HEPVSS.Setup(1λ, t, n):

(G, G, p, E)←$G(1λ). Choose pairwise distinct α0, α1, · · ·αn ∈ Zp
return pp = (G, G, p, t, n, {αi : i ∈ [0, n]}, E)

HEPVSS.KeyGen(pp, id):

return (sk, pk)←$ E .Gen(1λ)

HEPVSS.Dist(pp, {pki : i ∈ [n]}, S):

Parse pp as (G, G, p, n, {αi : i ∈ [0, n]}, E) := (ppSh, E)
({Ai : i ∈ [n]},m(X))← GShamir(ppSh, S)
for i ∈ [n] do

ρi ←$R, Ci ← E .Encpki(Ai, ρi)
end for
W ← G× Zp[X]≤t ×Rn, X ← {0} × Cn, ppπ ← (Zp,W,X ,H)
w ← (S,m(X), ρ1, . . . , ρn), x← (0, C1, . . . , Cn)
Let f given by
f(w) := (m(α0), E .Encpk1(S +m(α1) ·G; ρ1), . . . , E .Encpkn(S +m(αn) ·G; ρn))

PfSh ← ΠNI−Pre.Prove(w; ppπ, x, f)
return ({Ci : i ∈ [n]},PfSh)

HEPVSS.Verify(pp, {(pki, Ci) : i ∈ [n]},PfSh):
return ΠNI−Pre.Verify(ppπ, x, f,PfSh), with W,X , ppπ, x, f as in HEPVSS.Dist

HEPVSS.DecShare(pp, pk, sk, C):

A← Decsk(C), PfDec ← E .ProveDec(A,C, pk)
return (A,PfDec)

HEPVSS.VerifyDec(pp, pki, Ai, Ci,PfDeci):

return E .VerifyDec(Ai, Ci, pki,PfDeci)

HEPVSS.Rec(pp, {Ai : i ∈ T }):
return GShamir.Rec(pp, {Ai : i ∈ T })

Fig. 6. Algorithms for HEPVSS

The advantage is that now
∑n
i=1 vi ·m∗(αi) ·Ai

?
= O is equivalent to

n∑
i=1

vi ·m∗(αi) · Ci
?
= skD ·

(
n∑
i=1

vi ·m∗(αi) · Ei

)
,

which is one single DLEQ proof DLEQ(skD;G, pkD, U, V) for publicly computable

U =

n∑
i=1

vi ·m∗(αi) · Ei, V =

n∑
i=1

vi ·m∗(αi) · Ci.

One detail is that, as opposed to the PVSS in [6] (where m∗(X) was locally
sampled by the verifier), the prover needs to know m∗(X) so this is sampled via
a random oracle. The algorithms can be found in Figure 7 and Figure 8.

Fast and Simple Encryption and Secret Sharing in the YOSO Model 23

Algorithms for PVSS scheme DHPVSS, Setup and Distribution

DHPVSS.Setup(1λ, t, n):

(G, G, p)←$G(1λ). Choose pairwise distinct α0, α1, · · ·αn ∈ Zp
∀i ∈ [n] vi ←

∏
j∈[n]\{i}(αi − αj)

−1

return pp = (G, G, p, t, n, α0, {(αi, vi) : i ∈ [n]})
DHPVSS.DKeyGen(pp):

skD ←$Z∗p, pkD ← skD ·G
return (pkD, skD)

DHPVSS.KeyGen(pp, id):

sk←$Z∗p, E ← sk ·G, Ω ← DL(sk;G,E, id), pk← (E,Ω)
return (pk, sk)

DHPVSS.VerifyKey(pp, id, pk):

parse pk as (E,Ω)
return accept iff Ω is valid w.r.t G,E, id

DHPVSS.Dist(pp, pkD, skD, {pki : i ∈ [n]}, S):

parse pki as (Ei, Ωi), pp as (G, G, p, t, n, α0, {(αi, vi) : i ∈ [n]})
ppSh ← (G, G, p, t, n, {αi : i ∈ [0, n]})
({Ai}i∈[n],m(X))← GShamir.Share(ppSh, S)
∀i ∈ [n], Ci ← skD · Ei +Ai
m∗ ← H(pkD, {(pki, Ci) : i ∈ [n]}) (for a RO H : {0, 1}∗ → Zp[X]≤n−t−2)
V ←

∑n
i=1 vi ·m

∗(αi) · Ci, U ←
∑n
i=1 vi ·m

∗(αi) · Ei
PfSh ← DLEQ(skD;G, pkD, U, V)
return ({Ci : i ∈ [n]},PfSh)

Fig. 7. Algorithms for PVSS scheme DHPVSS, Setup and Distribution

Security We prove that DHPVSS satisfies correctness, indistinguishability of
secrets and verifiability in the full version.

Communication Complexity Comparison. The communication complexity
of DHPVSS.Dist is (n+ 2) log p bits. In contrast, HEPVSS.Dist instantiated with
El Gamal is of (3n + 3) log p bits. Secret distribution in SCRAPE [6] requires
(3n+1) log p bits, which was reduced to (n+t+2) log p bits in ALBATROSS [7].
Therefore DHPVSS.Dist obtains an additive saving of t log p bits with respect to
the best previous alternative. The communication of both DHPVSS.DecShare
and HEPVSS.DecShare is 3 log p bits. The share decryption complexities in [6]
and [7] are similar to ours. More details can be found in the full version of this
paper.

5 PVSS Resharing

In this section we introduce protocols that allow a committee Cr of size nr, among
which a secret has been PVSSed with an underlying tr-threshold Shamir scheme,

24 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

Algorithms for PVSS scheme DHPVSS, Verification and Reconstruction

DHPVSS.Verify(pp, pkD, {(pki, Ci) : i ∈ [n]},PfSh):
parse pki as (Ei, Ωi), pp as (G, G, p, t, n, {(αi, vi) : i ∈ [n]})
m∗ ← H(pkD, {(pki, Ci) : i ∈ [n]})
V ←

∑n
i=1 vim

∗(αi) · Ci, U ←
∑n
i=1 vim

∗(αi) · Ei
return accept iff PfSh is valid w.r.t G, pkD, U, V

DHPVSS.DecShare(pp, pkD, pk, sk, C):

parse pk as (E,Ω)
A′ ← C − sk · pkD
PfDec ← DLEQ(sk;G,E, pkD, C −A′)
return (A′,PfDec)

DHPVSS.VerifyDec(pp, pkD, pki, Ci, Ai,PfDeci):

parse pki as (Ei, Ωi)
return accept iff PfDeci is valid w.r.t G,Ei, pkD, Ci −Ai

DHPVSS.Rec(pp, {Ai : i ∈ T }):
return GShamir.Rec(pp, {Ai : i ∈ T })

Fig. 8. Algorithms for PVSS scheme DHPVSS, Verification and Reconstruction

to create a PVSS of the same secret for the next committee Cr+1 of size nr+1 and
with threshold tr+1. By design, the protocols will keep the secret hidden from
any adversary corrupting at most tr parties from Cr and tr+1 from Cr+1, and will
be correct as long as there are tr + 1 honest parties in Cr. In particular, this can
be used by a party P to transmit a message to a committee in the future, by
keeping this secret being reshared among successive committees and setting the
last Shamir threshold to be 0.

Suppose for now that the secret sharing scheme were for secrets over Zp.
Each party in Cr would hold σ` = mr(α`) where mr is the sharing polynomial
for that round, of degree tr. A subcommittee Lr of tr + 1 parties in Cr can then
reshare the secret by PVSSing their shares among Cr+1 with Shamir scheme of
degree tr+1. The parties in Cr+1 then compute the sum of the received shares
weighted by coefficients λ`,Lr :=

∏
j∈Lr,j 6=`

α0−αj

α`−αj
. Indeed, if we denote [σ`] the

vector of shares sent by P` in Lr, then
∑
`∈Lr

λ`,Lr [σ`] =
∑
`∈Lr

λ`,Lr [m(α`)] =
[
∑
`∈Lr

λ`,Lrm(α`)] = [m(α0)].
In our situation, each party Pr,i in Cr has instead a group element as share,

and needs to PVSS it among Cr+1 using the algorithm Dist from previous sec-
tion. However, the proof in Dist only guarantees that the distributed shares are
consistent with some secret. Here we require in addition that this secret is the
shared that the party has received previously.

To be more precise, in round r, each party Pr,i in committee Cr has Ar,i as
share and in addition the encryption Cr,i = E .Encpkr,i(Ar,i) of Ar,i is public. Pr,i

now needs to create shares of Ar,i for the committee Cr+1. Let Ai→j be the share
that will be sent to Pr+1,j . This will be encrypted as Ci→j = E .Encpkr+1,j

(Ai→j)

Fast and Simple Encryption and Secret Sharing in the YOSO Model 25

and Pr,i must prove that Ci→j are encryptions of a correct sharing whose secret
is indeed the plaintext of Cr,i.

When a subset Lr of Cr of tr+1 parties have correctly reshared, each Pr+1,j sets
Ar+1,j =

∑
`∈Lr

λ`,LrA`→j as their share and the corresponding public ciphertext
Cr+1,j =

∑
`∈Lr

λ`,LrC`→j can be locally computed by everyone.

5.1 Resharing for HEPVSS

In the case of HEPVSS, the additional proof that the reshared value is the one
corresponding to the public ciphertext can be integrated easily in HEPVSS.Dist
if the encryption scheme has Zp-linear decryption. We give the construction and
more details in the full version [8].

5.2 Resharing for DHPVSS

In the case of DHPVSS, the situation is slightly more complicated due to the
fact that the encryption of shares involves a key from the dealer. Here there are
different dealers, i.e. the final share of each party in Cr+1 is a linear combination
of shares sent by the parties in Lr. Thanks to the fact that the encryption is
also a linear operation with respect to the public key of the sender, we can
define a public key for committee Lr. Indeed, if we call pkD`

the public key of
Pr,` when acting as sender, then pkD,Lr

:=
∑
`∈Lr

λ`,Lr · pkD`
. Then we want to

make sure that the output encryption for Pr+1,j is Cr+1,j = skr+1,j · pkD,Lr
+∑

`∈Lr
λ`,LrA`→j .

At the beginning of the resharing, each party Pr,i in committee Cr has as
share Ar,i = Cr,i− ski ·pkD,Lr−1

where ski is the secret key for decrypting shares,
and needs to create shares Ai→j of Ar,i and encrypt them using the public
keys pk[nr+1] = {pkj : j ∈ [nr+1]} of the parties of the next round and its own
secret key skDi

(i.e. this party will create C[nr+1] = {Ci→j : j ∈ [nr+1]} with
Ci→j = skDi

·pkj +Ai→j) and prove their validity. In conclusion we need a proof
for the following relation

RDHPVSS,Reshare ={(m(X), ski, skDi
); (pp, pki, pkDi

, pkD,Lr−1
, pk[nr+1], Cr,i, C[nr+1]) :

pki = ski ·G, pkDi
= skDi

·G, m(X) ∈ Zp[X]≤t, m(β0) = 0,

and ∀j ∈ [nr+1], Ci→j = skDi
· pkj +Ai→j ,

where Ai→j = (Cr,i − ski · pkD,Lr−1
) +m(βj) ·G}

However, we also want to use the SCRAPE technique to reduce the size of
the witness and hence of the proof. Note that if we set Uj = Ci→j − skDi

· pkj −
Cr,i + ski · pkD,Lr−1

for all j ∈ [nr+1] and U0 = O, we want to make sure that for
all j ∈ [0, nr+1], Uj = m(βj) · G for a polynomial of degree ≤ t (in addition to
the conditions pki = ski ·G and pkDi

= skDi ·G).

For j ∈ [0, n], let v′j =
∏
k∈[0,n]\{j}(βj − βk)−1. Observe these are not

exactly the same coefficients as in the description of DHPVSS in Section 4.3

26 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

because they include the evaluation point β0. By Theorem 1, we want to prove∑n
j=0 v

′
i ·m∗(βj) ·Uj = O, for a random polynomial m∗ of degree n− t− 1 (note

here we apply Theorem 1 to a code of length n+ 1, rather than n).

Observe
∑n
j=0 v

′
j ·m∗(βj)·Uj = U ′−skDi

·V ′+ski ·W ′ for publicly computable

U ′ :=

n∑
j=1

v′j ·m∗(βj) · (Ci→j − Cr,i), V ′ :=

n∑
j=1

v′j ·m∗(βj) · pkj , and

W ′ :=

n∑
j=1

v′j ·m∗(βj) · pkD,Lr−1
,

and therefore Pr,i needs a proof of knowledge for

R′DHPVSS,Reshare,m∗ ={(ski, skDi
); (pki, pkDi

, U ′, V ′,W ′) :

pki = ski ·G, pkDi
= skDi ·G, U ′ = skDi · V ′ − ski ·W ′}

where we remark that now the witness only contains two elements but on the
other hand relation depends on a polynomial m∗(X) that has been sampled
uniformly at random among polynomials of degree at most n− t− 1. This leads
to the protocol for PVSS resharing in Figure 9.

6 Anonymous PVSS via ECW and AfP

In this section, we show how to construct PVSS (and re-sharing) for anony-
mous committees by instantiating our previous PVSS constructions using our
ECW and AfP schemes. We start by showing how our previous protocols can be
adapted to work with ECW and AfP instead of standard encryption and authen-
tication. We then show how the optimizations in the DDH based constructions
via the SCRAPE trick carry over to our anonymous setting if we instantiate our
ECW and AfP schemes from similar assumptions. The protocols we construct
in this section work in the YOSO model supporting up to t < n/2 corrupted
parties and can be used as efficient building blocks for the protocols of [1,12].

In the previous sections, we have constructed both a PVSS scheme (Sec-
tion 4.2) and a PVSS re-sharing scheme (Section 5.1) based on Zp-linear encryp-
tion schemes (as defined in Section 2.2). Despite being efficient, these construc-
tions are not fit for the YOSO model because they require the dealer to know the
public keys of the parties who will receive shares, consequently revealing their
identities. In order to solve this issue, we show that these protocols can also be
instantiated with the ECW scheme of Section 3 even though they were designed
to be instantiated with a Zp-linear encryption scheme. The core idea is that our
ECW preserves all the properties of the underlying Zp-linear encryption scheme
while adding the ability to encrypt towards a role rather than towards a party
who owns a public key.

Fast and Simple Encryption and Secret Sharing in the YOSO Model 27

Protocol for DHPVSS resharing

Participants: Cr = {Pr,1, . . . , Pr,nr} and Cr+1 = {Pr+1,1, . . . , Pr+1,nr+1}.

Public information: A group G of prime order p, with generator G. “Sender”
key pairs (skDi , pkDi

= skDi · G) for every party Pr,i ∈ Cr, a “sender committee”
public key pkD,Lr−1

, and “receiver” key pairs (skr,i, pkr,i = skr,i ·G) for Pr,i, where

r = r, r + 1, and 1 ≤ i ≤ nr; thresholds tr, tr+1. Evaluation points (α0, α1, . . . , αnr),
(β0, β1, . . . , βnr+1). Random oracles H : {0, 1}∗ → Zp[X]≤n−t−1, H′ : {0, 1}∗ → Zp.
Let W ← Z2

p, X ← G3, and ppπ ← (Zp,W,X ,H′).

Input: Public ciphertexts Cr,i = skr,i · pkD,Lr−1
+ Ar,i such that Ar,i = hr(αi) · G

for some polynomial hr of degree ≤ tr.

Output: A public key pkD,Lr
for a subset Lr of Cr, of size tr + 1. Public output

ciphertexts (Cr+1,1, . . . , Cr+1,nr+1) and a proof π that, for all j = 1, . . . , nr+1,
Cr+1,j = skr+1,jpkD,Lr

+Ar+1,j such that Ar+1,j = hr+1(βj) ·G for some polynomial
hr+1 of degree ≤ tr+1 and hr+1(β0) = hr(α0).

Protocol:
1. Let ppSh,r+1 = (G, G, p, tr+1, nr+1, {βj : j ∈ [0, nr+1]}).
2. Resharing: For i = 1, ..., nr, Pr,i does the following:

(a) Ar,i ← Cr,i − skr,i · pkD,Lr−1
.

(b) ({Ai→j : j ∈ [nr+1]},mi(X))← GShamir.Share(ppSh,r+1, Ar,i).
(c) For j ∈ [nr+1], Ci→j ← skDi · pkr+1,j +Ai→j .
(d) m∗i (X)← H({Cr,i : i ∈ [nr]}, pkD,Lr−1

).

(e) U ′i ←
∑n
j=1 v

′
j ·m∗i (βj) · (Ci→j − Cr,i), V ′i ←

∑n
j=1 v

′
j ·m∗i (βj) · pkr+1,j ,

W ′i ← (
∑n
j=1 v

′
j ·m∗i (βj)) · pkD,Lr−1

.

(f) πr,i ← ΠNI−Pre.Prove((skr,i, skDi); ppπ, (pkr,i, pkDi
, U ′i), fi),

where fi(skr,i, skDi) := (skr,i ·G, skDi ·G, skDi · V ′i − skr,i ·W ′i).
(g) Output {Ci→j : j ∈ [nr+1]}, πr,i.

3. Reconstruction of next share encryptions: each party in P locally constructs
the encryptions of the shares for the following round as follows:
(a) For each i ∈ Cr:

i. Compute U ′i and fi as above (from public information and Pr,i’s output
{Ci→j : j ∈ [nr+1]}).

ii. Compute ΠNI−Pre.Verify(ppπ, (pkr,i, pkDi
, U ′i), fi, πr,i).

(b) Define Lr the set of t+ 1 first indices for which the above proofs accept.
(c) For j ∈ [nr+1], Cr+1,j ←

∑
`∈Lr

λ`,L · C`→j .
(d) pkD,Lr

←
∑
`∈Lr

λ`,Lr · pkD`
.

(e) Output ({Cr+1,j : j ∈ [nr+1]}, (πr,`)`∈Lr , pkD,Lr
).

Fig. 9. Protocol for DHPVSS resharing

28 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

6.1 Constructing HEPVSS with ECW

We modify HEPVSS to use our ECW scheme E = (Enc,Dec) for lottery predicate
lottery(B, sl,P, skL,i) from Section 3 instead of a Zp-linear encryption scheme. We
make the following modifications to the HEPVSS algorithms in Figure 6, :

– Communication: All messages are posted to the underlying blockchain
ledger used by the ECW scheme E .

– HEPVSS.Setup(1λ, t, n): Besides the original setup parameters, we assume
that n distinct role identifiers P1, . . . ,Pn are available and that an underlying
blockchain protocol Γ is executed.

– HEPVSS.KeyGen(pp, id): Instead of publishing pki, each party Pi provides
pki as input to the mixnet assumed as setup for lottery(B, sl,P, skL,i) and
associated ECW scheme E . The mixnet output {(j, pkAnon,j)}j∈[n] is assumed
to be available on the underlying blockchain and accessible as

({(j, pkAnon,j)}j∈[n], η)← param(B, sl).

Party Pi sets skL,i ← (pkE,i, skE,i).
– HEPVSS.Dist(pp, {pki : i ∈ [n]}, S): Instead of computing Ci ←
E .Encpki(Ai, ρi), the dealer computes Ci ← Enc(B, sl,Pi, Ai) using random-
ness ρi . Notice that this is equivalent to computing Ci ← E .EncpkAnon,j (Ai, ρi)
for a j such that lottery(B, sl,Pi, skL,j) = 1. Hence, PfSh can still be com-
puted via the same procedure. The dealer publishes

({Ci : i ∈ [n]}, {pkAnon,j : i ∈ [n]},PfSh).

Notice that the public key pkAnon,j used to generate each Ci is publicly known
due to the structure of the lottery scheme.

– HEPVSS.Verify(pp, {(pki, Ci) : i ∈ [n]},PfSh): No modification is needed,
since ({Ci : i ∈ [n]}, {pkAnon,j : i ∈ [n]},PfSh) has the same structure as in
the original protocol.

– HEPVSS.DecShare(pp, pkj , skL,j , Ci): Party Pj checks that its lottery wit-
ness skL,j is such that lottery(B, sl,Pi, skL,j) = 1 and, if yes, computes

Ai ← Dec(B̃, Ci, skL,j). Proof PfDec is generated as in the original pro-
tocol. Notice that this procedure is also equivalent to generating an AfP
PfDec ← AfP.Sign(B̃, sl,Pi, skL,j , Ai).

– HEPVSS.VerifyDec(pp, pki, Ai, Ci,PfDeci): Proof PfDec is checked as in the
original protocol. Notice that this procedure is also equivalent to generating
an AfP {0, 1} ← AfP.Ver(B̃, sl,Pi,PfDec, Ai).

– HEPVSS.Rec(pp, {Ai : i ∈ T }: No modification is needed.

Due to the properties of the ECW scheme and the underlying lottery scheme,
shares are encrypted towards parties randomly chosen to perform each role Pi
whose identity remains unknown during the share distribution and verification
phases. In case a reconstruction happens, parties executing each role reveal them-
selves by proving correctness of decrypted shares, which constitutes an AfP since
it involved proving knowledge of skL,j such that lottery(B, sl,Pi, skL,j) = 1.

Fast and Simple Encryption and Secret Sharing in the YOSO Model 29

6.2 Constructing Resharing for HEPVSS with ECW

In the context of resharing, the parties selected to execute roles P1, . . . ,Pn in
slot slr wish to publicly verifiable reshare the secret whose shares they received
towards roles P′1, . . . ,P

′
n′ in a future slot slr+1. In practice, this means that the

resharing information will be received by a new randomly selected set of anony-
mous parties performing these roles in the future. Once again we explore the
fact that our ECW inherits the properties of the underlying Zp-linear encryp-
tion scheme to modify the resharing protocol for HEPVSS (Section 5.1) to work
with ECW. We show how to obtain an ECW based (and thus anonymous) re-
sharing protocol in the full version of the paper [8].

6.3 Efficient DDH-based Instantiation via DHPVSS

The most efficient instantiations of our techniques are obtained when using a
variant of the El Gamal encryption scheme together with the SCRAPE share
validity check. In order to enjoy the efficiency improvement, we show our ECW
is also compatible with these optimizations in the full version of the paper [8].

References

1. Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain
keep a secret? In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I,
volume 12550 of LNCS, pages 260–290. Springer, Heidelberg, November 2020.

2. Fabrice Boudot and Jacques Traoré. Efficient publicly verifiable secret sharing
schemes with fast or delayed recovery. In Vijay Varadharajan and Yi Mu, editors,
ICICS 99, volume 1726 of LNCS, pages 87–102. Springer, Heidelberg, November
1999.

3. Elette Boyle, Saleet Klein, Alon Rosen, and Gil Segev. Securing abe’s mix-net
against malicious verifiers via witness indistinguishability. In Dario Catalano
and Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages 274–291.
Springer, Heidelberg, September 2018.

4. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 56–72. Springer, Heidelberg, August 2004.

5. Matteo Campanelli, Bernardo David, Hamidreza Khoshakhlagh, Anders Konring,
and Jesper Buus Nielsen. Encryption to the future: A paradigm for sending secret
messages to future (anonymous) committees. Cryptology ePrint Archive, Report
2021/1423, 2021. https://eprint.iacr.org/2021/1423.

6. Ignacio Cascudo and Bernardo David. SCRAPE: Scalable randomness attested by
public entities. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors,
ACNS 17, volume 10355 of LNCS, pages 537–556. Springer, Heidelberg, July 2017.

7. Ignacio Cascudo and Bernardo David. ALBATROSS: Publicly AttestabLe
BATched Randomness based On Secret Sharing. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 311–
341. Springer, Heidelberg, December 2020.

https://eprint.iacr.org/2021/1423

30 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring

8. Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring. YOLO
YOSO: Fast and simple encryption and secret sharing in the YOSO model. Cryp-
tology ePrint, Report 2022/242, 2022. https://eprint.iacr.org/2022/242.

9. Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia
Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 78–96. Springer, Hei-
delberg, August 2006.

10. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, vol-
ume 10821 of LNCS, pages 66–98. Springer, Heidelberg, April / May 2018.

11. Eiichiro Fujisaki and Tatsuaki Okamoto. A practical and provably secure scheme
for publicly verifiable secret sharing and its applications. In Kaisa Nyberg, edi-
tor, EUROCRYPT’98, volume 1403 of LNCS, pages 32–46. Springer, Heidelberg,
May / June 1998.

12. Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen,
Tal Rabin, and Sophia Yakoubov. YOSO: You only speak once - secure MPC with
stateless ephemeral roles. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 64–93, Virtual Event, August 2021. Springer,
Heidelberg.

13. Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-interactive
publicly verifiable secret sharing with thousands of parties. Cryptology ePrint
Archive, Report 2021/1397, 2021. https://eprint.iacr.org/2021/1397.

14. Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and Sophia Yak-
oubov. Random-index PIR and applications. In Kobbi Nissim and Brent Waters,
editors, TCC 2021, Part III, volume 13044 of LNCS, pages 32–61. Springer, Hei-
delberg, November 2021.

15. Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility results
using blockchains. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 529–561. Springer, Heidelberg, November 2017.

16. Somayeh Heidarvand and Jorge L. Villar. Public verifiability from pairings in secret
sharing schemes. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica,
editors, SAC 2008, volume 5381 of LNCS, pages 294–308. Springer, Heidelberg,
August 2009.

17. Sebastian Kolby, Divya Ravi, and Sophia Yakoubov. Towards efficient YOSO
MPC without setup. Cryptology ePrint Archive, Report 2022/187, 2022. https:

//eprint.iacr.org/2022/187.
18. Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous anony-

mous group signature for ad hoc groups (extended abstract). In Huaxiong Wang,
Josef Pieprzyk, and Vijay Varadharajan, editors, ACISP 04, volume 3108 of LNCS,
pages 325–335. Springer, Heidelberg, July 2004.

19. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin
Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer,
Heidelberg, December 2001.

20. A. Ruiz and J. L. Villar. Publicly verifiable secret sharing from Paillier’s cryp-
tosystem. In Western European Workshop on Research in Cryptology 2005, 2005.

21. Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its
application to electronic. In Michael J. Wiener, editor, CRYPTO’99, volume 1666
of LNCS, pages 148–164. Springer, Heidelberg, August 1999.

22. Markus Stadler. Publicly verifiable secret sharing. In Ueli M. Maurer, editor,
EUROCRYPT’96, volume 1070 of LNCS, pages 190–199. Springer, Heidelberg,
May 1996.

https://eprint.iacr.org/2022/242
https://eprint.iacr.org/2021/1397
https://eprint.iacr.org/2022/187
https://eprint.iacr.org/2022/187

	YOLO YOSO: Fast and Simple Encryption and Secret Sharing in the YOSO Model

