
FINAL: Faster FHE instantiated with NTRU
and LWE

Charlotte Bonte1 ID ?, Ilia Iliashenko2 ID , Jeongeun Park2 ID , Hilder V. L.

Pereira2 ID , and Nigel P. Smart2,3 ID

1 Intel Corporation, Emerging Security Lab
2 imec-COSIC, KU Leuven, Leuven, Belgium

3 Zama Inc.
charlotte.bonte@intel.com, ilia@esat.kuleuven.be,

Jeongeun.Park@esat.kuleuven.be,

HilderVitor.LimaPereira@esat.kuleuven.be, nigel.smart@kuleuven.be

Abstract. The NTRU problem is a promising candidate to build ef-
ficient Fully Homomorphic Encryption (FHE). However, all the exist-
ing proposals (e.g. LTV, YASHE) need so-called ‘overstretched’ param-
eters of NTRU to enable homomorphic operations. It was shown by
Albrecht et al. (CRYPTO 2016) that these parameters are vulnerable
against subfield lattice attacks.
Based on a recent, more detailed analysis of the overstretched NTRU as-
sumption by Ducas and van Woerden (ASIACRYPT 2021), we construct
two FHE schemes whose NTRU parameters lie outside the overstretched
range. The first scheme is based solely on NTRU and demonstrates com-
petitive performance against the state-of-the-art FHE schemes including
TFHE. Our second scheme, which is based on both the NTRU and LWE
assumptions, outperforms TFHE with a 28% faster bootstrapping and
45% smaller bootstrapping and key-switching keys.

Keywords: NTRU, FHE, LWE, bootstrapping

1 Introduction

In the last ten years fully homomorphic encryption based on lattice problems has
been a vibrant field of research, with schemes being proposed, sometimes broken
and sometimes improved. The initial work of Gentry [18] was truly ground-
breaking in that it established not only (what we now call) a compact somewhat
homomorphic encryption (SHE) scheme based on lattices, but it also presented a
method to bootstrap the compact SHE scheme into a fully homomorphic encryp-
tion (FHE) scheme. Gentry’s original scheme was based on properties of lattices
of ideals of algebraic number fields, which are now considered insecure, but in the
intervening years numerous authors have presented FHE schemes based on LWE
[6], Ring-LWE [7], NTRU [27] and the approximate integer GCD problem [31].

? Work done while at imec-COSIC, KU Leuven.

https://orcid.org/0000-0002-4365-1845
https://orcid.org/0000-0002-9549-1003
https://orcid.org/0000-0002-0557-3540
https://orcid.org/0000-0003-1303-3760
https://orcid.org/0000-0003-3567-3304

2 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

NTRU-based schemes seem the most efficient as their ciphertexts can be
represented by a single polynomial in comparison to a pair of polynomials in
RLWE-based schemes. Hence, these schemes have the potential of halving both
the memory requirements and the running time.

In particular, an early FHE scheme based on the NTRU problem, called
YASHE [4], was very efficient when compared to similar schemes. However, it
was subsequently shown to be insecure due to the parameters being chosen in the
so-called ‘overstretched’ NTRU regime [1]. More specifically, YASHE required
the integer modulus q to be exponentially large in n, the degree of the polynomial
used as the modulus of the polynomial ring. Howerver, it was discovered [1] that
as we “stretch” the parameters by increasing q for a fixed n, the NTRU problem
becomes easier, because it becomes possible to exploit a dense sublattice of the
NTRU lattice to mount an attack. Therefore, constructing FHE schemes based
on the NTRU problem is challenging.

In the initial version of the attack, the subfields of the NTRU field were
exploited in order to reduce the dimension of the lattice in which one searches
for the secret key. Latter analysis [24] showed that the attack is enabled simply
by the existence of a dense sublattice within the NTRU lattice. Thus, this attack
stems from the structure of the NTRU lattice and, therefore, cannot be addressed
by switching to another polynomial ring. However, it was still difficult to estimate
the impact of these sublattice attacks on the security of NTRU and, therefore,
it was hard to obtain correct estimates of the security level of NTRU-based
schemes. For example, the recent leveled homomorphic encryption scheme for
automata [16], which is based in the matrix NTRU problem, used q polynomial
in n. Nevertheless, it was quickly shown [26] that this scheme is vulnerable to
sublattice attacks.

However, we now have a much better understanding about how the security
of the NTRU problem degrades as we increase q. In particular, the recent work of
Ducas and van Woerden [13] allows us to estimate the concrete cost of breaking
the NTRU problem for any given q. Thus, we now have much more solid ground
to try to construct NTRU-based FHE schemes.

Ducas and van Woerden showed that to avoid the aforementioned sublattice
attacks one should set q ∈ O(n2.484). This already seems to rule out NTRU-
based schemes which follow the blueprint BGV [5] or FV [14]. Therefore, as a
starting point, we take the bootstrapping of [3], which is the basis of the FHEW
scheme [12] and its extension, TFHE [10].

These schemes have a base homomorphic encryption scheme, in both cases
based on LWE, and an accumulator, which is a variant of the GSW scheme [19],
instantiate with the RLWE problem. We use the base scheme to evaluate binary
gates and the accumulator to refresh the LWE ciphertexts of the base scheme.

The advantage of GSW-like schemes is that noise growth is quasi additive
when evaluating long chains of multiplications, thus, the final noise in the re-
freshed ciphertext can be as small as Õ(n), which fits the above bound of Ducas
and van Woerden.

FINAL: Faster FHE instantiated with NTRU and LWE 3

In this paper, we investigate the construction of FHE schemes based on the
NTRU. We show that it is possible to adapt the framework of FHEW [12] to the
NTRU setting, by using a matrix version of the NTRU problem to construct the
base scheme and the standard NTRU problem to construct a GSW-like scheme.
The resulting scheme has a fast bootstrapping algorithm with running times
similar to those of the most efficient scheme of this type – TFHE [10]. As the
encryption parameters of our scheme can be selected outside of the overstretched
regime of NTRU, this allows us to construct competitive FHE based solely on
the NTRU assumption. In other words, our result is a positive answer to the
open problem of whether it is possible to construct FHE based on NTRU.

In addition, we show that by combining an LWE-based scheme and our
NTRU-based GSW-like scheme, called NGS in this paper, we obtain a bootstrap-
ping algorithm that is faster than TFHE’s and requires much less key material,
which improves the state-of-the-art in FHE constructions.

Concurrently to our own work Kluczniak [25] presented a version of NTRU
called NTRU-ν-um which also claims to provide a secure fully homomorphic
version of NTRU with small modulus. The scheme is presented to be instantiated
over a ring defined by XN + 1 and XN − 1. In [22] Joye shows that the variant
defined over XN − 1 is not secure.

1.1 Our techniques and results

Homomorphic scheme based on the matrix NTRU problem. The boot-
strapping framework of [12] assumes that the input encryption of the bootstrap-
ping is an LWE ciphertext which means the main step of the decryption is a
simple inner product between the ciphertext and the secret key. However, if
we want to replace the underlying LWE-based base scheme with one based on
NTRU then complications arise. The NTRU decryption involves a polynomial
multiplication, which is much more complicated than the inner product.

One way of simplifying the decryption function is by assuming that each
NTRU ciphertext encrypts an integer m0 instead of a polynomial of degree N−1.
Let Rq be a polynomial ring. We can encrypt m0 as c = g/f+∆ ·m0 ∈ Rq where
g is a random element of Rq, f is the secret key and ∆ ' q/4. Note that we don’t
add any additional noise other than g in a ciphertext unlike other NTRU based
schemes [27,4] in order to keep noise growth small as discussed in Section 3. To
decrypt, we compute the inner product of the coefficient vector of c, denoted
by φ(c), and the first column of the anti-circulant matrix of f which we will
denote as Φ(f). Given that the secret key of the NTRU scheme will be defined
as f = 1 + 4 · f ′, one can notice that in Rq c · f = g+ 4 · f ′ · ε+∆ ·m0, for some
small ε, which implies that

φ(c) ·Φ(f) = φ(g) + 4 · ε · φ(f ′) +∆ · (m0, 0, . . . , 0).

Hence, φ(c) · col0(Φ(f)) = g0 + 4 · ε · f ′0 +∆ ·m0, which is enough to recover m0.
Similarly to [12], one can use NTRU defined over power-of-two cyclotomic

rings. However, these rings provide little flexibility in terms of choosing param-
eters to achieve a certain security level. For example, even if the ring dimension

4 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

N = 600 already satisfies the desired security level, one has to choose N = 210

as this is the smallest power of 2 larger than 600. This problem can be solved by
using cyclotomic rings of other orders instead of power-of-two, but in this case,
the matrix Φ(f) loses its anti-circulant property, which, as we will see in Sec-
tion 5, helps to significantly speed up the bootstrapping and reduce encryption
parameters.

Driven by the above limitations, we resort to the matrix NTRU problem
(MNTRU) instead of its ring-based version. Our MNTRU base scheme is de-
scribed as follows. We replace the polynomial ratio g/f by the matrix product
G · F−1, where both G and F are unstructured random matrices. Hence, a ci-
phertext of some plaintext matrix M has the form C = G ·F−1 +∆ ·M ∈ Zn×nq

or C = (G + ∆ ·M) · F−1 ∈ Zn×nq . A single integer m ∈ {0, 1} is encrypted by
a ciphertext of the form

c := (g +∆ ·m) · F−1 ∈ Znq

where g is a random vector from Znq and m := (m, 0, . . . , 0) ∈ Zn. This guar-
antees that the decryption can be done by the inner product of c and the first
column of the secret matrix F. Therefore, it is simple enough for the boot-
strapping algorithm to handle it efficiently. Furthermore, it is easy to adapt the
homomorphic NAND gate from [12] to our scheme.

Notice that we are dividing both the noise term (g) and the message (∆·m) by
F, because this reduces the impact of the noise growth due to the multiplication
by F during the decryption, as explained in Section 3.

GSW-like scheme based on the NTRU problem. The bootstrapping
framework of FHEW [12] uses a GSW-like scheme based on the RLWE prob-
lem to evaluate the decryption function of the base scheme efficiently and with
low noise growth. Thus, to follow this blueprint, we propose an NTRU-based
GSW-like scheme, which we call NGS. As the GSW-like scheme of [30], NGS
can encrypt a polynomial m ∈ R := Z[X]/〈XN + 1〉 in two ciphertext formats:

– Scalar : it is a standard NTRU ciphertext encrypting m as g/f +∆m ∈ RQ.
– Vector : we encrypt m as c = g/f + g ·m ∈ R`Q, where g is a gadget vector

and ` ≈ log(Q).

As in TFHE [10], we define an external product between these two ciphertexts
types, which outputs another scalar ciphertext. Notice that we need only ` ring
elements per vector ciphertext. Thus, our external product is computed with `
products in RQ, while the ciphertexts of the GSW scheme used in TFHE are
composed by 4 · `′ ring elements. Therefore, they need 4 · `′ multiplications per
external product. Thus, NGS external product can achieve better running times
and memory usage for similar parameters.

Here, we focus on using the NGS scheme as an accumulator to homomor-
phically evaluate the decrytpion function of a base scheme and compare the
performance with TFHE bootstrapping. But it is worth to notice that several
other applications that use the GSW scheme could take advantage of the faster

FINAL: Faster FHE instantiated with NTRU and LWE 5

homomorphic operations of NGS. For example, by simply replacing GSW by
NGS, one could speed up the transciphering for TFHE [20], or the homomor-
phic evaluation of maximum and minimum functions from [11], or the tree-based
private information retrieval from [29].

Fast bootstrapping with non-overstretched parameters. Given our NGS-
based external product, we show that MNTRU ciphertexts can be homomorphi-
cally decrypted, or bootstrapped, using the NGS scheme with a similar running
time as in TFHE. Hence we are able to construct FHE based solely on the NTRU
assumption, with similar performance as TFHE.

Given a ciphertext c ∈ Znq of the base scheme, we use the NGS based external
product to multiply it with the vector f0 := col0(F) ∈ Zn, i.e., the first column
of the MNTRU secret key. This generates a scalar ciphertext which is then
transformed back to an MNTRU ciphertext.

In TFHE’s bootstrapping, the LWE secret s is binary, since this allows one
to compute an encryption of Xaisi using the fact that Xai·si = 1 + (Xai − 1) · si
when si ∈ {0, 1}. This operation is called a CMux gate. Since NTRU has ternary
secret keys, adapting the CMux would require two consecutive external products,
as it was noticed in [28]. Thus, we propose a ternary CMux gate, which can be
executed with a single external product. We notice that this ternary CMux is of
independent interest, as it can also be applied to other bootstrapping procedures,
e.g., if one instantiates TFHE with ternary secrets. Bootstrapping TFHE with
ternary keys was also considered in the paper [23].

We also prove that the final noise accumulated by the bootstrapping is Õ(n),
which allows us to choose q as a very low degree polynomial in n, e.g., q = Õ(n),
thus, below the ‘fatigue’ point that characterizes the overstretched regime of
NTRU. Namely, it was shown [24,13] that the dense sublattice attacks against
NTRU start to be more efficient than the classic key-recovering attacks when
q = n2.484+o(1).

Faster bootstrapping by combining LWE and NTRU. Comparing the
external product of TFHE with ours, we see that we need less multiplications in
RQ, thus, less fast Fourier transforms (FFT), which is the most expensive build-
ing block in the entire bootstrapping. Hence, we would expect our bootstrapping
to be faster than theirs by a constant factor. However, the total number of ex-
ternal products is n, the dimension of the base scheme, which is defined by the
hardness of the MNTRU problem. Thus, we have to choose n larger than in
TFHE and we end up with a bootstrapping that requires essentially the same
number of FFTs as in TFHE.

To obtain a smaller value of n, we propose to replace our MNTRU-based
scheme by an LWE-based and use the NGS scheme to bootstrap it. Thus, the
decryption function of an LWE-based scheme is evaluated by the NGS scheme,
which returns an NGS scalar ciphertext. We show that it is possible to adapt
existing key-switching procedures to transform this NTRU ciphertext back to
an LWE ciphertext, thus completing the bootstrapping.

6 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

Therewith, we need essentially the same number of external products as in
TFHE, but each external product requires less FFTs, thus leading to a smaller
total number of FFTs in our bootstrapping. In addition, our scheme requires
much less key material.

Practical results and C++ implementation: We implemented our boot-
strapping algorithms and compared them with that of TFHE. As a result, the
bootstrapping of MNTRU ciphertexts is about 40% slower than TFHE’s boot-
strapping and it requires 9% more key material. However, when the LWE prob-
lem is used to construct the base scheme, our running time is about 28% faster
than TFHE. As a concrete example, running on a single core of a 3.1 GHz pro-
cessor, TFHE takes 66 ms while ours takes 48 ms. Furthermore, our LWE/NGS
scheme almost halves the total size of bootstrapping and key-switching keys: from
71 MB in TFHE to 39.3 MB. It is important to notice that one bootstrapping
allows us to evaluate any binary gate homomorphically, thus, the homomorphic
evaluation of any circuit consists of essentially running one bootstrapping for
each gate, therefore, the speedup we obtained in the bootstrapping procedure
translates directly as the same speedup for any binary circuit.

Our code is publicly available. More details can be found in Section 7.

2 Preliminaries

2.1 Vectors, polynomials, and norms

We use lower-case bold letters for vectors and upper-case bold letters for matri-
ces. A zero vector is denoted by 0. We denote the i+ 1-th column (resp. row) of
a matrix A by coli(A) (resp. rowi(A)). The inner product of two vectors a and
b is denoted by a · b. For any vector u, ‖u‖ denotes the infinity norm. Let [B]
denote a set {1, . . . , B} for an integer B.

Throughout the paper, N is always a power of two and R := Z[X]/〈XN + 1〉
is the (2N)-th cyclotomic ring. Any element f of R can be always seen as the
unique polynomial of degree smaller than N belonging to the coset f+〈XN +1〉.
Hence, writing f =

∑N−1
i=0 fi · Xi is unambiguous and we can then define the

coefficient vector of f as φ(f) := (f0, . . . , fN−1) ∈ ZN . Therefore, we can define
the infinity norm of f as ‖f‖ := ‖φ(f)‖. We also define the anti-circulant matrix
of f as Φ(f) ∈ ZN×N such that rowi(Φ(f)) = φ(f ·Xi) for 0 ≤ i ≤ N−1. Notice
that ∀(k, f, g) ∈ Z × R × R, φ(k · f · g) = k · φ(f) · Φ(g). For any Q ∈ Z, let
RQ := R/QR = ZQ[X]/〈XN + 1〉.

Finally, we define M := {±b ·Xk : b ∈ {0, 1} and k ∈ N}, which will be used
as the plaintext space of the vector ciphertexts defined in Section 4.

2.2 Distributions

Discrete Gaussian distribution. We first describe the discrete Gaussian dis-
tribution where our secret elements are sampled from. Typically, a discrete Gaus-
sian distribution is defined as a distribution over Z, where every element in Z

FINAL: Faster FHE instantiated with NTRU and LWE 7

is sampled with probability proportional to its probability mass function value
under a Gaussian distribution over R. We first define the Gaussian function as
ρσ,c(x) = exp(− |x−c|

2

2·σ2) for σ, c ∈ R > 0. Hence, ρσ,c(Z) =
∑∞
i=−∞ ρσ,c(i). The

discrete Gaussian distribution with standard deviation σ and mean c is a distri-
bution on Z with the probability of x ∈ Z given by ρσ,c(x)/ρσ,c(Z). If c = 0, we
denote this distribution by χσ.

Subgaussian distribution. For the analysis of encryption parameters, we need
subgaussian random variables over R.

Definition 1. A random variable V over R is α-subgaussian if its moment gen-
erating function satisfies

E[exp(t · V)] ≤ 1

2
exp(α2 · t2)

for all t ∈ R.

From the definition, we can prove that the variance of V , denoted by Var(V) is
bounded by α2, i.e. Var(V) ≤ α2. Informally, the tails of V are dominated by a
Gaussian function with standard deviation α. The following lemma is adapted
from [17] to our definition.

Lemma 1. If x is a discrete random vector over Rn such that each component
xi of x is αi-subgaussian, then the vector x is a β-subgaussian vector where
β = maxi∈[n] αi.

Subgaussian random variables have an important property called Pythagorean
additivity. Given two random variables, α-subgaussian X and β-subgaussian Y ,
and a, b ∈ Z, the random variable a ·X + b · Y is

√
a2 · α2 + b2 · β2-subgaussian.

It implies that

Var(a ·X) + Var(b · Y) ≤ a2 · Var(X) + b2 · Var(Y) ≤ a2 · α2 + b2 · β2.

For a ∈ R (resp. x ∈ Zn), we denote by Var(a) (resp. Var(x)) the maximum
variance of each coefficient (resp. component) of a (resp. x). The variance of the
product of two polynomials a, b ∈ R is Var(a · b) = n · Var(a) · Var(b). Similarly,
we denote by Var(X) the maximum variance of each column of a matrix X.

2.3 Decompositions

For fixed integers q andB, we set ` := dlogB qe and define gq,B := (B0, . . . , B`−1).
When q and B are clear from the context, we write g. Then, for any k ∈ Zq,
we represent k by an integer in [−q/2, q/2) and define its signed decomposi-
tion in base B as g−1(k) = (k0, . . . , k`−1) for each integer |ki| ≤ B/2 for
i ∈ [`]. It is easy to see that g−1(k) · g = k. For any f ∈ RQ, we define

g−1(f) :=
∑N−1
i=0 g−1(fi)X

i. It is clear that

g−1(f) · g =

N−1∑
i=0

g−1(fi) · g ·Xi =

N−1∑
i=0

fi ·Xi = f.

The digit decomposition g−1 can be deterministic or randomized [17,21].

8 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

2.4 NTRU problems

It is usual to instantiate the NTRU problem with ternary secrets. In our con-
structions, we generate the secrets from a distribution on {−1, 0, 1} such that
zero occurs with probability 1/2, and 1 and −1 occur with probability 1/4. This
approximates a discrete Gaussian with standard deviation σ = 1/

√
2.

Following [13], we can define the anti-circulant and the matrix versions of
the NTRU problem. Each version has a computational and a decisional variant.

Definition 2 (NTRU). Let N > 0, Q > 1 be integers and R := Z[X]/〈XN + 1〉.
Let σ > 0 be a real number, g, f ← χNσ and f be invertible in RQ.

The (computational) (N,Q, σ)-NTRU problem is to recover f and g given
h := g · f−1 mod Q. The (N,Q, σ)-decisional-NTRU problem is to distinguish
between h and a uniformly random polynomial sampled from RQ.

Definition 3 (Matrix NTRU). Let n > 0, q > 1 be integers and σ > 0 is
a real number. Let G,F← χn×nσ and F be invertible modulo q.

The (computational) (n, q, σ)-matrix-NTRU problem is to recover F and G
given H := G · F−1 mod q. The (n, q, σ)-decisional-matrix-NTRU problem is to
distinguish between H and a uniformly random matrix from Zn×nq .

3 Matrix-NTRU base encryption scheme

Our base encryption scheme is based on the matrix NTRU (MNTRU) problem.
It encrypts a bit m ∈ {0, 1} as if it were an element of Z4; i.e. we multiply m by
∆ := bq/4e.

As such we can evaluate a NAND gate by adding two ciphertexts encrypting a
bit and considering the result modulo 4. The result is m = 2 if NAND(m0,m1) =
0 and m ∈ {0, 1} if NAND(m0,m1) = 1. We can transform this ciphertext with
the result modulo 4 back to an encryption of NAND(m0,m1) with a simple
affine transformation, as shown below. This ensures that after one homomorphic
NAND gate, we obtain a message defined in Z2, i.e. multiplied by bq/2e. Since
the message is only one bit, we can define its ciphertext as a vector in Znq as
shown in Introduction.

A standard MNTRU ciphertext would have the form g · F−1 + ∆ ·m, i.e.,
with only the noise term being divided by secret key F, however, this would
introduce a new noise term in the decrypting, when we multiply the ciphertext
by col0(F). In more detail, the key switching procedure presented in Section 4.5,
which transforms a ciphertext from NGS to MNTRU, would output a ciphertext
of the form c′ = g · F−1 + e + ∆ ·m, where ‖e‖ = Ω(n). Then, the decryption
would produce e · col0(F), whose norm would be Ω(n2). Thus, to avoid such
large noise, we define a MNTRU ciphertext with the form (g +∆ ·m) · F−1.

Hence, the MNTRU scheme is defined by the following four algorithms. Note
that the decryption procedure below is valid for the ciphertexts produced by a
NAND gate.

– MNTRU.ParamGen(1λ): Receives the security parameter and outputs (n, q, σ).

FINAL: Faster FHE instantiated with NTRU and LWE 9

– MNTRU.KeyGen: Sample F ← χn×nσ until F−1 exists in Zn×nq . Define sk :=
F. Create a public evaluation key as evk := (g + b5 · q/8e · (1,0)) ·F−1 ∈ Znq ,
where g← χnσ. Output (evk, sk).

– MNTRU.Enc(m, sk): Given m ∈ {0, 1}, sample g ← χnσ. Let ∆ := bq/4e and
output

c = (g +∆ · (m,0)) · F−1 ∈ Znq .

We call it a fresh MNTRU ciphertext.
– MNTRU.Dec(c, sk): Given the secret key sk = F and a ciphertext c ∈ Znq ,

which is of the form (g + bq/2e · (m,0)) ·F−1 ∈ Znq , this algorithm computes
r = c · col0(F) mod q and outputs⌊

2 · r
q

⌉
mod 2.

– MNTRU.Nand(c0, c1, evk) : Given the evaluation key evk and two ciphertexts
of the form (gi + bq/4e · (mi,0)) · F−1 ∈ Znq , where mi ∈ {0, 1} output

cNAND := evk− c0 − c1.

This homomorphic NAND gate is basically the same as the one presented in [12].

Thus, its output is cNAND =
(
g − g0 − g1 + (e± q/8) · (1,0) + q

2 · (m,0)
)
· F−1

where |e| ≤ 3
2 and m = NAND(m0,m1) = 1−m0 ·m1. One can see this through

the following computation.
Let f := col0(F), g0 be the first element of g, g0,0 be the first element of g0

and g1,0 be the first element of g1 then

cNAND · f − (1−m0 ·m1)
q

2
= (evk− c0 − c1) · f − (1−m0 ·m1)

q

2

= g0 − g0,0 − g1,0 +

⌊
5q

8

⌉
−
⌊q

4

⌉
m0 −

⌊q
4

⌉
m1

− q

2
+
q

2
m0 ·m1

= g0 − g0,0 − g1,0 +
q

8
+ ε− q

4
(m0 +m1 − 2m0 ·m1)

+ ε0 ·m0 + ε1 ·m1

= g0 − g0,0 − g1,0 +
q

8
+ ε− q

4
(m0 −m1)2

+ ε0 ·m0 + ε1 ·m1,

where ε, ε0, ε1 are round-off errors whose absolute value is less or equal to 1/2.
If we set e = ε+ ε0 ·m0 + ε1 ·m1, we have |e| ≤ 3

2 .
We now show that decrypting the output of a NAND gate gives the correct

answer, as long as the sum of three input noises g − g0 − g1 is not too large.
For simplicity, we consider the ternary noise for the following lemma since we
instantiate our scheme with ternary secrets as we mentioned above. Therefore,
the noise of evaluation key always satisfies that ‖g‖ = 1. The noise contained in
a fresh ciphertext or an evaluation key is called fresh.

10 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

Lemma 2 (Correctness of decryption). For 0 ≤ i ≤ 1, let ci := (gi +
bq/4e · (mi,0)) · F−1 ∈ Znq be an encryption of mi ∈ {0, 1}. Consider that
evk is generated with a ternary g and let c := MNTRU.Nand(c0, c1, evk). If
‖g0 + g1‖ < (q − 20)/8, then MNTRU.Dec(c, sk) outputs NAND(m0,m1).

Proof. From the above analysis, we know that

c =
(
g − g0 − g1 + e(1,0)± q/8 · (1,0) + (q/2) · (m,0)

)
· F−1 ∈ Znq

where m := NAND(m0,m1).
Let f := col0(F). To decrypt c, we compute r := c · f mod q. Notice that for

some u ∈ Z, we have

r = g − g0 − g1 + e± q/8 + (q/2) ·m− u · q,

where g, g0 and g1 are the first components of g,g0 and g1, respectively. Thus,
the second step of the decryption operation gives us⌊

2 · r
q

⌉
=

⌊
2 · (g − g0 − g1)

q
+

2 · e
q
± 1

4

⌉
+m− 2 · u

which is equal to m modulo 2 as long as |2 · (g − g0 − g1)/q + 3/q ± 1/4| < 1/2.
Thus, the inequality simply implies that

‖g − g0 − g1‖ <
(

1

2
− 1

4
− 3

q

)
· q

2
=
q − 12

8
.

Since the noise of evaluation key is always fresh and sampled from ternary ele-
ments, ‖g‖ = 1. It implies that if ‖g0 + g1‖ < (q− 12)/8− 1 = (q− 20)/8, then
the result holds.

ut

4 NGS: NTRU-based GSW-like scheme

In this section, we present a (ring-based) NTRU-based scheme that has two
encryption functions. The first one encrypts a plaintext m which is a ternary
polynomial as an element of RQ, whilst the second one encrypts it as a vector
over RQ using “gadget vectors”. To simplify the noise analysis, we assume that
all the messages encrypted by the vector ciphertexts belong to the following
set of monomials: M = {±b · Xk : b ∈ {0, 1} and k ∈ N}. We notice that this
assumption holds for our bootstrapping procedures.

Our scheme has quasi-additive noise-growth as the GSW scheme [19]. In fact,
it is inspired by the simplified variant of GSW proposed in [12]. We call this
scheme NGS, which stands for NTRU-GSW-like encryption Scheme. In Section
5, the NGS scheme is used as the accumulator to homomorphically evaluate
the decryption of another, much simpler scheme based on the matrix NTRU
problem. Following the idea of [10] to speed up the bootstrapping, we define an

FINAL: Faster FHE instantiated with NTRU and LWE 11

external product that multiplies scalar NTRU ciphertexts, i.e. elements of RQ,
and vector NTRU ciphertexts, i.e. vectors over RQ. This is the framework used
to obtain a fast bootstrapping in FHEW [12] and TFHE [10].

Usually NTRU schemes are defined as asymmetric ciphers by publishing a
public key h := g/f mod Q. Since such public keys are not involved in bootstrap-
ping, we present a symmetric version of this scheme. Notice that any encryption
of zero could be used as a public key. Moreover, since the NGS ciphertexts are
never decrypted in the bootstrapping pipeline, we omit the decryption proce-
dure.

4.1 Basic procedures

The NTRU-based encryption scheme is defined as follows.

– NGS.ParamGen(1λ): Receives the security parameter and outputs the tuple
(N,Q, ς, B, `), where B is a base used to decompose the ciphertexts and
` := dlogB(Q)e.

– NGS.KeyGen: Sample f ′ ← χNς and set f := 1 + 4 · f ′ until f−1 exists in RQ.
Output sk := f .

– NGS.EncS(sk,m): Given a ternary polynomial m , sample g ← χNς , define
∆ := bQ/4e, and output c = g/f+∆ ·m ∈ RQ. We call c a scalar encryption
of m.

– NGS.EncVec(sk,m): Given m ∈M, sample gi ← χNς for 0 ≤ i ≤ `− 1. Define
g := (g0, . . . , g`−1) and g = (B0, B1, . . . , B`−1). Output c = g/f + g ·m ∈
R`Q. We call c a vector encryption of m.

4.2 External product

Having defined two types of encryptions, scalar and vector ciphertexts, we can
define the “external product” between them as proposed in TFHE [10]. The
external product is cheaper than the NGS homomorphic multiplication (i.e. the
convolution of two vector ciphertexts).

Suppose we have a scalar encryption c := g/f +∆ · u ∈ RQ of a ternary poly-
nomial u and a vector encryption c := g/f + g · v ∈ R`Q of a message v ∈ M.
Then, the external product of c and c is defined as follows

c� c := g−1(c) · c ∈ RQ.

Since g−1(c) · g = c, it is clear that cmult = c� c is equal to

cmult := (g−1(c) · g)/f + (g−1(c) · g · v) = (g−1(c) · g + g · v)︸ ︷︷ ︸
gmult

/f +∆ · u · v.

Hence, cmult is a valid scalar encryption of the product u · v as long as the noise
term gmult is small enough. We formalize this notion in the next section. Notice
that it is important that ‖u · v‖ < 4, otherwise, multiplying it by ∆ introduces
a round-off error and produces an ill-formed ciphertext. Since we are assuming
that v ∈M, we have ‖u · v‖ ≤ ‖u‖ < 2.

12 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

4.3 Noise analysis

Instead of performing a worst-case analysis of the noise growth, which boils
down to bounding every element by its infinity norm, we provide a more realistic
average-case noise analysis. To do so, we can instantiate g−1 with a randomized
gadget decomposition algorithm [17,21], or we can use a deterministic decompo-
sition and heuristically assume that all the coefficients of the errors of MNTRU
and NGS samples are independent and concentrated; thus, they are subgaussian
random variables. The first approach is used in FHEW [12], while the latter is
present in TFHE [10,8]. Both methods return a subgaussian random variable.
Therefore, our analysis assumes that for all a ∈ RQ, g−1q,Bksk

(a) is a γ-subgaussian
for some γ = O(B).

Definition 4 (Noise of a scalar ciphertext). Let c = g/f + ∆ · m ∈ RQ.
We define the noise of c as err(c) := c · f − ∆ ·m ∈ RQ and interpret it as a
polynomial over Z[X] with coefficients in [−Q/2, Q/2].

We also define the noise of a vector ciphertext below for our noise analysis.

Definition 5 (Noise of a vector ciphertext). Let c = g/f + g ·m ∈ R`Q.
We define the noise of c as err(c) := c · f − g ·m · f ∈ RQ and interpret it as a
vector of polynomials over Z[X] with coefficients in [−Q/2, Q/2].

We first bound the noise of ciphertexts of a special form, namely fresh ones
that encrypt monomials. This includes the important special case of m ∈ {0, 1}.

Lemma 3 (Bound on the noise of a (fresh) scalar ciphertext). Let c =
g/f +∆ ·m ∈ RQ be a ciphertext of m. If m is a monomial of the form ±b ·Xk

for some b ∈ {0, 1}, then

Var(err(c)) ≤ Var(g) + 4 · ς2.

If m is a ternary polynomial with degree at most N − 1, then

Var(err(c)) ≤ Var(g) + 4 ·N · ς2.

Moreover, if c is a fresh ciphertext, then Var(err(c)) ≤ 5 · ς2 for a monomial m
and the variance is bounded by (4 ·N + 1) · ς2 for a ternary polynomial m.

Proof. Let ∆ = Q/4 + ε for some ε ∈ R such that |ε| ≤ 1/2. Since in RQ it holds
that

c · f = g + (1 + 4 · f ′) · (Q/4 + ε) ·m = g + 4 · f ′ · ε ·m+∆ ·m,

we have err(c) := c · f − ∆ · m = g + 4 · f ′ · ε · m. Notice that, if m ∈
{0,±1,±X, . . . ,±XN−1}, we have Var(f ′ ·m) ≤ Var(f ′), thus

Var(err(c)) ≤ Var(g) + (4 · ε)2 · Var(f ′) ≤ Var(g) + 4 · ς2.

If m is a ternary polynomial of degree at most N − 1,

Var(err(c)) ≤ Var(g) + (4 · ε)2 · ‖m‖22 · Var(f ′) ≤ Var(g) + 4 ·N · ς2.

If c is a fresh ciphertext, then Var(g) = ς2 and the rest of the lemma follows. ut

FINAL: Faster FHE instantiated with NTRU and LWE 13

We now analyze how the external product increases the noise.

Lemma 4 (Noise growth of external product). Let c := g/f +∆ · u ∈ RQ
and c := g/f + g · v ∈ R`Q. Define cmult := c� c as above. Then

Var(err(cmult)) ≤ N · ` · γ2 · Var(g) + ‖v‖22 · Var(g) + 4 · ς2.

If v ∈M := {±b ·Xk : b ∈ {0, 1} and k ∈ N}, then

Var(err(cmult)) ≤ N · ` · γ2 · Var(err(c)) + Var(err(c))

Proof. From the analysis in Section 4.2, we know that cmult = gmult/f +∆ ·m,
where gmult := g−1(c) · g + g · v and m := v · u. Thus, by Lemma 3, we have
Var(err(cmult)) ≤ Var(gmult) + 4 · ς2. Since

Var(gmult) ≤ Var(〈g−1(c),g〉) + Var(g · v) ≤ N · ` · γ2 · Var(g) + ‖v‖22 · Var(g),

the result follows. If v ∈ M, then ‖v‖22 ≤ 1, and the value Var(gmult) + 4 · ς2 is
bounded byN ·`·γ2·Var(g)+Var(g)+4·ς2, which isN ·`·γ2·Var(err(c))+Var(err(c))
by Definition 5 and Lemma 3. ut

Our goal now is to analyze the noise growth caused by a sequence of k such
external products, i.e., c′ = c �k

i=1 ci = (. . . ((c � c1) � c2) . . . � ck). Since in
our bootstrapping the messages encrypted by vector ciphertexts are of the form
±b ·Xm for some bit b, we simplify the analysis by supposing that the messages
encrypted by c1, . . . , ck belong to M. This allows us to ignore the term ‖v‖22 in
Lemma 4 as it is bounded by 1.

Lemma 5 (Noise of a sequence of external products). For 1 ≤ i ≤ k, let
ci := gi/f + g ·mi ∈ R`Q with mi ∈ M. Let c0 = g0/f + ∆ ·m0 ∈ RQ with a

ternary polynomial m0. If c′ := c�k
i=1 ci, then

Var(err(c′)) ≤ N · ` · γ2 ·
k∑
i=1

Var(gi) + Var(g0) + 4 · ς2.

Proof. Let ci := ci−1 � ci = gi/f +∆ ·m′i for 1 ≤ i ≤ k. It is clear that c′ = ck.
Using the fact that v1, . . . , vk ∈M, we apply Lemma 4 k times and obtain

Var(err(ck)) ≤ N · ` · γ2 · Var(err(ck)) + Var(err(ck−1))

≤ N · ` · γ2 · Var(err(ck)) +N · ` · γ2 · Var(err(ck−1)) + Var(err(ck−2))

...

≤ N · ` · γ2 ·
k∑
i=1

Var(err(ci)) + Var(err(c0))

= N · ` · γ2 ·
k∑
i=1

Var(gi) + Var(g0) + 4 · ς2.

ut

14 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

Corollary 1. Using the notation of Lemma 5, if all the ciphertexts are fresh,
then

Var(err(c′)) ≤ (4 + (k + 1) ·N · ` · γ2) · ς2.

4.4 Modulus-switching

In this section, we show that the modulus-switching technique for (R)LWE-
based schemes can be adapted to NTRU-based schemes. Given a ciphertext
c = g/f + ∆ · µ ∈ RQ for some message µ which is a ternary polynomial,
we can multiply c by q/Q and round it to obtain a ciphertext defined modulo
q. Since bye = y + ε, the modulus switching essentially scales the ciphertext
and adds a small rounding error, which is then multiplied by the secret key f
during decryption. As in the analysis of [12], we define the following randomized
rounding function.

Definition 6. Let Q, q ∈ Z and 1 < q < Q. The randomized rounding function
[·]Q:q : ZQ → Zq is defined as [z]Q:q := bq · z/Qc + B where B ∈ {0, 1} is a
Bernoulli random variable with Pr[B = 1] = (q · z/Q)− bq · z/Qc ∈ [0, 1].

Notice that the the rounding error ε := [z]Q:q − (q · z/Q) is 1-subgaussian.
We extend the definition to polynomials, vectors, and matrices by applying the
rounding entry-wise. Thus, the modulus switching is defined as

ModSwitch(c) =

N−1∑
i=0

[ci]Q:q ·Xi ∈ Rq.

Lemma 6. Let c = g/f + bQ/4e · µ ∈ RQ. Then, ModSwitch(c) is a scalar
encryption of µ in Rq. Moreover,

Var(err(ModSwitch(c))) ≤ (q/Q)2 · Var(err(c)) + 1 + 16 ·N · ς2.

Proof. Just notice that ModSwitch(c) = (q · g/Q)/f + ε + ∆ · µ ∈ Rq, where
∆ = bq/4c and ε is a polynomial with infinite norm bounded by 1, therefore,
err(ModSwitch(c)) = q · err(c)/Q + ε · f = q · err(c)/Q + ε · (1 + 4f ′). Then the
variance of the noise is as follows:

Var(err(ModSwitch(c))) = Var(q · err(c)/Q+ ε+ 4 · ε · f ′)
= Var(q · err(c)/Q) + Var(ε) + 16 · Var(ε · f ′)
≤ (q/Q)2 · Var(err(c)) + Var(ε) + 16 ·N · Var(ε) · Var(f ′)
≤ (q/Q)2 · Var(err(c)) + 1 + 16 ·N · Var(f ′).

The last inequality holds since ε is 1-subgaussian.

FINAL: Faster FHE instantiated with NTRU and LWE 15

4.5 Key-switching from NGS to the base scheme

As we will see in Section 5, our bootstrapping procedure starts with a ciphertext
(g + ∆ · (m,0)) · F−1 ∈ Znq of the base scheme. After modulus-switching, it
produces an NTRU encryption c = g/f+ ε+∆ ·µ ∈ Rq, where µ is a polynomial
whose constant term is equal to m ∈ {0, 1} and ∆ := bq/4e. To finish the
bootstrapping, we want to obtain again a base scheme ciphertext of the form
c′ = (g′ + ∆ · (m,0)) · F−1 ∈ Znq . To achieve this, we define the following key-
switching operation.

– Key-switching key generation: The input of this procedure is composed by
the secret keys f ∈ R and F ∈ Zn×n, and the parameters σksk, q, and Bksk.
Let L =

⌈
logBksk

(q)
⌉
. Define P ∈ Z(N ·L)×N as the gadget matrix IN⊗gq,Bksk

,

i.e. each “diagonal element” of P is equal to gq,Bksk
∈ ZL. Also, let E ∈ ZN×n

be the matrix whose entries are zeros except for E0,0 = 1.

Then, sample G← χ
(N ·L)×n
σksk and output

ksk := (G + P ·Φ(f) ·E) · F−1 ∈ Z(N ·L)×n
q ,

where Φ(f) is the anti-circulant matrix of f .
– Key-Switching algorithm: Given an output of modulus-switching, c = g/f +
ε+∆ · µ ∈ Rq, and a key-switching key ksk, let

KeySwitch(c, ksk) := y · ksk ∈ Znq
where y := (g−1q,Bksk

(c0), . . . ,g−1q,Bksk
(cN−1)) ∈ ZN ·L.

Lemma 7 (Correctness of key-switching). Let c = g/f + ε+∆ · µ ∈ Rq be
a scalar encryption of a ternary polynomial µ, with ∆ = bq/4e, and ksk a key-
switching key from f = 1 + 4 · f ′ to F ∈ Zn×n. Then, KeySwitch(c, ksk) outputs
a base scheme ciphertext c′ = (g + ∆ · (µ0,0)) · F−1 ∈ Zn×nq , where µ0 is the
constant term of µ. Moreover, its time complexity is O(N · n · log q) operations
on Zq.
Proof. Let |ε′| ≤ 1/2 such that ∆ = q/4 + ε′. Since

y ·P = φ(c) = φ(g) ·Φ(f)−1 + φ(ε) +∆ · φ(µ),

it is clear that

y ·P ·Φ(f) = φ(g) + φ(ε) ·Φ(f) + ε′ · φ(µ) · 4 ·Φ(f ′) +∆ · φ(µ) ∈ ZNq .

Therefore, by defining g′ := φ(ε) ·Φ(f)+ε′ ·φ(µ) ·4 ·Φ(f ′), the following equality
holds modulo q:

c′ =
(
y ·G +

(
φ(g) + g′ +∆ · φ(µ)

)
·E
)
· F−1.

And because v ·E = (v0,0) ∈ Zn for any v ∈ ZN , we finally obtain

c′ = (y ·G + (g0,0) + (g′0,0) +∆ · (µ0,0)) · F−1 ∈ Znq .

If we set g = y · G + (g0,0) + (g′0,0), the result holds. Moreover, since the
procedure consists in multiplying y ∈ ZN ·L by each of the n columns of ksk, it
is clear that it costs O(N · n · log q) operations on Zq. ut

16 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

Noise analysis on the matrix key switching procedure. We first see that
the noise of c which is an output of modulus-switching equals to g + ε + 4 · ε ·
f ′ + 4 · f ′ · ε′ · µ by Definition 4. Then the variance of the noise is following by
Lemma 3:

Var(err(c)) ≤ Var(g) + Var(ε) + 16 ·N · Var(ε) · Var(f ′) + 4 · ‖µ‖22 · Var(f ′)
≤ Var(g) + 1 + 16 ·N · Var(f ′) + 4 ·N · Var(f ′)
= Var(g) + 1 + 20 ·N · ς2

The noise contained in c′ is y ·G + (g0,0) + (g′0,0). In fact, G is the noise of the
key switching key ksk, and g0 + g′0 is very close to the noise originally contained
in c, before key-switching. Notice that

Var(g′0) ≤ Var(φ(ε) ·Φ(f)) + (4ε′)2 · Var(φ(µ) ·Φ(f ′))

≤ Var(ε) + 16 ·N · Var(ε) · Var(Φ(f ′)) + 4 · ‖φ(µ)‖22 · Var(Φ(f ′))

≤ 1 + 16 ·N · Var(Φ(f ′)) + 4 ·N · Var(Φ(f ′))

≤ 1 + 20 ·N · ς2.

Thus, assuming the outputs of decomposition g−1(·) is γ-subgaussian, the vari-
ance of err(c′) is following:

Var(err(c′)) = Var(y ·G) + Var(g0,0)) + Var((g′0,0))

≤ N · L · Var(g−1(φ(c))) · Var(G) + Var(φ(g)) + 1 + 20 ·N · ς2

≤ N · L · γ2 · Var(err(ksk)) + Var(g) + 1 + 20 ·N · ς2

= N · L · γ2 · Var(err(ksk)) + Var(err(c)).

5 Bootstrapping

As explained in the introduction, to cope with the ternary secrets inherent in
NTRU we utilize a ternary CMux gate. Our ternary CMux gate is defined as follows:
For a given fi ∈ {−1, 0, 1}, we define two keys bski,0 and bski,1:

fi = −1 =⇒ bski,0 := NGS.EncVec(0) ∧ bski,1 := NGS.EncVec(1)

fi = 0 =⇒ bski,0 := NGS.EncVec(0) ∧ bski,1 := NGS.EncVec(0)

fi = 1 =⇒ bski,0 := NGS.EncVec(1) ∧ bski,1 := NGS.EncVec(0)

(1)

Then, our CMux gate is defined as

CMuxi(ci) := 1 + (Xci − 1) · bski,0 + (X−ci − 1) · bski,1,

where 1 is a trivial, noiseless, encryption of one, i.e. simply g. It is easy to see
that CMuxi(ci) = NGS.EncVec(Xci·fi). In particular, the message encrypted by
CMuxi(ci) belongs to M as required by our external product from Section 4.2.

FINAL: Faster FHE instantiated with NTRU and LWE 17

Algorithm 1: Bootstrapping key generation.

Input: F ∈ Zn×n
q – the secret key of the base scheme.

Output: bsk – the bootstrapping key.
1 (f0, . . . fn−1)← col0(F)
2 for i← 0 to n− 1 do
3 Compute bski,0 and bski,1 accordingly to Equation 1.

4 Return bsk := {(bski,0, bski,1) : 0 ≤ i ≤ n− 1}.

Algorithm 2: Bootstrapping algorithm.

Input:
ct ∈ Zn

q – a base scheme ciphertext encrypting m ∈ {0, 1}
{bski,j}0≤i≤n−1,0≤j≤1 – bootstrapping keys, where each bski,j ∈ R`

Q,N

ksk – a key-switching key from the NGS secret key f ∈ R to the base scheme
secret key F ∈ Zn×n.
Output: ct′ ∈ Zn

q – a base-scheme ciphertext encrypting the same m.

1 (c0, . . . , cn−1)←
⌊

2·N·ct
q

⌉
2 ACC←

⌊
Q
8

⌉
·XN/2 ·

∑N−1
i=0 Xi

3 for i← 0 to n− 1 do
4 cMux ← CMuxi(ci)
5 ACC← ACC � cMux

6 ACC← ACC +
⌊
Q
8

⌉
·
∑N−1

i=0 Xi

7 ACC← ModSwitch(ACC)
8 ct′ ← KeySwitch(ACC, ksk)
9 Return ct′.

Recall that our base-scheme ciphertext c = (g+∆ · (m,0)) ·F−1 ∈ Znq can be
decrypted by multiplying it by the first column of F, Thus, our bootstrapping
keys are generated using Equation 1 for each entry fi from the first column of
F, see Algorithm 1.

By using the CMux gate n times and multiplying all the resulting ciphertexts,
we obtain an encryption of Xc·col0(F) = Xg+(N/2)·m. We can then multiply this
by the (plaintext) “test vector” T (X) := XN/2 ·

∑N−1
i=0 Xi (mod XN + 1) to

produce a scalar encryption of m. Note, we actually put the test vector in the left
most position of the product so that each multiplication is an external product
instead of a regular “vector-vector” homomorphic multiplication, i.e. we compute
bQ/8e · T (X) · �n−1

i=0 CMuxi(ci), which produces NGS.EncS(2 · m − 1), but with
∆ = bQ/8e. Then we add NGS.EncS(1) to obtain NGS.EncS(2 ·m). The factor
two is multiplied by bQ/8e and so we obtain NGS.EncS(m) with ∆ = bQ/4e,
as desired. Finally, we use the key-switching procedure defined in Section 4 to
transform this NTRU ciphertext into a matrix NTRU ciphertext of the base
scheme. Our bootstrapping is shown in detail in Algorithm 2.

18 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

5.1 Bootstrapping noise

Firstly, we analyze the noise growth of our CMux gate. Let cMux := CMuxi(ci) for
any 0 ≤ i ≤ n− 1. Then, the following holds:

Var(err(cMux)) ≤ ‖Xci − 1‖22 · Var(err(bski,0)) + ‖X−ci − 1‖22 · Var(err(bski,1))

≤ 4 · Var(err(bsk)),

where bski,0 and bski,1 are the corresponding bootstrapping keys, which are
NGS ciphertexts with noise variance Var(err(bsk)).

Now we consider the whole bootstrapping algorithm. In the first line, we scale
down the input ciphertext to modulus 2 ·N . We denote the resulting vector by
ct2·N . Then we have∣∣∣ct · col0(F)− q

2 ·N
· ct2·N · col0(F)

∣∣∣ ≤ q

4 ·N
· |ct · col0(F)|, (2)

where col0(F) is the first column of the secret key of ct.
From the line 3 to 5 of Algorithm 2, the output ACC is obtained by utilizing n

external products with cMux whose noise variance is Var(err(cMux)). The variance
of the final err(ACC) based on Lemma 5 is the following:

Var(err(ACC)) ≤ n ·N · ` · γ2 · Var(err(cMux)) + 4 · ‖msg(ACC)‖22 · ς2,

where msg(ACC) is XN/2 ·
∑N−1
i=0 Xi. After line 6, the accumulator ACC contains

a message as a ternary polynomial (say M(X)) whose constant term is m. The
error term will be changed into

Var(err(ACC)) ≤ n ·N · ` · γ2 · Var(err(cMux)) + 4 · ‖M(X)‖22 · ς2

≤ n ·N · ` · γ2 · Var(err(cMux)) + 4 ·N · ς2

After this step, modulus switching is performed, which results in the noise, by
Lemma 6, being

Var(err(ACC)) ≤ (q/Q)2 ·n ·N ·` ·γ2 ·Var(err(cMux))+(q/Q)2 ·4 ·N · ς+1+16 ·N · ς

After the external product with a key switching key ksk in line 8, the noise in
the resulting ct′ has a variance

Var(err(ct′)) ≤ N · L · γ2 · Var(err(ksk)) + Var(err(ACC))

≤ N · L · γ2 · Var(err(ksk)) + (q/Q)2 · n ·N · ` · γ2 · Var(err(cMux))
+ (q/Q)2 · 4 ·N · ς2 + 1 + 16 ·N · ς2

where L is the dimension of the key switching key.
After the for loop from line 3 to 5, the message of the resulting ACC, msg(ACC),

is
⌊
Q
8

⌉
·Xct2·N ·col0(F) ·XN/2 ·

∑N−1
i=0 Xi. If we have |ct · col0(F)| < q/4, then the

ciphertext ct is encrypting the value zero. This follows from the fact that then

FINAL: Faster FHE instantiated with NTRU and LWE 19

−N/2 < |ct2·N · col0(F)| ≤ N/2 and thus the constant term of the msg(ACC)
is −bQ/8e, i.e. the constant term of msg(ACC) in line 6 is zero. If, however,
|ct · col0(F)| < 3 · q/4 then the ciphertext ct is encrypting the value one. In this
case N/2 < |ct2·N · col0(F)| ≤ 3N/2, hence the msg(ACC) is bQ/8e. Therefore,
the constant term of msg(ACC) in line 6 is bQ/4e.

We now have the following heuristic for the output noise in average case.

Heuristic. Given ct encrypting a bit m, Algorithm 2 outputs an MNTRU ci-
phertext ct′ encrypting the same bit. In addition, under the central limit heuris-
tic, the noise contained in the output behaves as a Gaussian distribution, hence,
with overwhelming probability, it satisfies the following bound

‖err(ct′)‖ ≤ 6 ·
(
N · L · γ2 · Eksk + 4 · (q/Q)2 · n ·N · ` · γ2 · Ebsk

+(q/Q)2 · 4 ·N · ς2 + 1 + 16 ·N · ς2
)1/2

(3)

where Eksk = O(Var(err(ksk))) and Ebsk = O(Var(err(bsk))).
The following theorem states that our scheme requires a modulus q that is

asymptotically less than the fatigue point as stated in [13].

Theorem 1. If the output of Algorithm 2 satisfies (3) except with negligible
probability and q = Õ(n), the output of Algorithm 2 can be correctly decrypted
except with negligible probability.

Proof. Since N ∈ Θ(n), q/Q, Ebsk, Eksk ∈ O(1), and `, L ∈ O(logQ) = O(logN)
and (3) is satisfied, the final noise after bootstrapping is Õ(n) except with neg-
ligible probability. For correctness, Lemma 2 imposes that the sum of two input
fresh/refreshed ciphertexts noises should be smaller than (q − 20)/8. Thus the
bound of each refreshed noise needs to be less than (q − 20)/16, which implies
we need ‖err(ct′)‖ < (q − 20)/16 = q/16 − 5/4 to recover the correct message.
Therefore, it is sufficient to choose q ∈ Õ(n).

We will discuss the concrete value q based on the above heuristic and theorem
in Section 6.

5.2 Bootstrapping an LWE-based scheme

As mentioned our external product costs only ` multiplications on RQ versus
4 · `′ in TFHE. In general, our base scheme constructed on top of the matrix
NTRU problem requires a larger dimension n than in an LWE-based scheme
to achieve the same security level. Since the bootstrapping procedure uses n
external products, we can obtain a faster FHE scheme by replacing our base
scheme by the LWE-based one used in FHEW and TFHE, and using NGS to
bootstrap it. This minimizes the number of external products and also makes
each one of them cheaper.

Hence, we propose to use our NGS scheme as the accumulator to refresh
LWE ciphertexts as opposed to MNTRU ciphertexts. The decryption function is

20 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

essentially the same, i.e. the inner product between the ciphertext and the secret
key. Since the LWE secret key can be binary, we can use binary homomorphic
CMux gates instead of the ternary ones. However, at the end of the main loop
of the refreshing procedure, we obtain an NTRU ciphertext of the form c =
g/f + ε + ∆ ·m ∈ RQ, where ε is the rounding error after modulus switching.
Then we need to transform it again into an LWE ciphertext. So, we adapt our
key-switching from Section 4 to also switch the underlying hard problem from
NTRU to LWE.

NTRU to LWE key-switching: The goal of the following algorithm is to
switch the form of a ciphertext from an NGS ciphertext to an LWE ciphertext
encrypting the same message. Let (A,b) be an LWE sample with a secret key
s. Let c = g/f + ε+∆ ·m be a scalar NGS ciphertext with a secret key f , where
ε is the rounding error after modulus swtiching. Define the key-switching key as
the following vector of LWE samples:

kskNTRU→LWE := (A,b := A · s + e + P · f0)

with A ∈ Z(N ·L)×n
q , e ← χN ·Lσe

, f0 := col0(Φ(f)) ∈ ZN , and P = IN ⊗ gq,Bksk
.

Then, given a ciphertext c = g/f+ε+∆ ·m ∈ Rq, the key-switching from NTRU
to LWE is defined as follows:

– KeySwitchNTRU→LWE(c, kskNTRU→LWE) :
1. Parse kskNTRU→LWE as (A,b)
2. a← KeySwitch(c,A)
3. b← KeySwitch(c,b)
4. Output c′ := (a, b)

That is, we decompose the coefficient vector of c and multiply by both compo-
nents of kskNTRU→LWE. Thus, we define y := g−1(φ(c)) ∈ ZN ·L and compute

c′ := (a, b) = (y ·A, y · b) ∈ Zn+1
q .

Then, we can see that

b = a·s+y·e+φ(c)·f0 = a·s+y·e+g0+ε·((1,0)+4·φ(f ′))+4·ε′·φ(m)·φ(f ′)+∆·m0

where ε ∈ (−1/2, 1/2] and m0 is the constant term of m. In other words, (a, b)
is a valid LWE ciphertext of m0.

Noise analysis. We see that the noise of the resulting LWE encryption equals
to y · e + g0 + ε + ε · 4 · φ(f ′) + 4 · ε′ · φ(m) · φ(f ′) as defined in [10], with the
variance of the noise satisfying:

Var(err(c′)) = Var(y · e) + Var(g0) + Var(ε0) + 16 · Var(ε · φ(f ′)) + 4 · Var(φ(m) · φ(f ′))

≤ N · L · Var(y) · Var(e) + Var(g) + 1 + 16 ·N · Var(ε) · Var(f ′) + 4 · ‖m‖22 · ς2

≤ N · L · Var(y) · Var(e) + Var(g) + 1 + 16 ·N · ς2 + 4 · ‖m‖22 · ς2

≤ N · L · Var(y) · Var(e) + Var(g) + 1 + 20 ·N · ς2

≤ N · L · γ2 · σ2
e + Var(err(c))

FINAL: Faster FHE instantiated with NTRU and LWE 21

6 Security analysis and parameter selection

The CPA-security of our NGS scheme follows directly from the decisional NTRU
problem via a standard hybrid argument. Firstly, notice that G/F + M is a se-
cure encryption as the MNTRU assumption states that G/F is uniform mod q,
then, using the circular security assumption, it is safe to encrypt M/F instead
of M, i.e., a message that depends on the secret key F, under the matrix NTRU
problem. From this, we obtain the format (G + M)/F used in our base scheme.
Finally, the security of the bootstrapping follows from the (weak) circular se-
curity assumption that the NGS scheme can be used to encrypt the key of the
base scheme, which in turn, encrypts the key of the NGS scheme. All these cir-
cular security assumptions are standard and are used extensively, e.g., [16,30].
In particular, it is not known how to construct FHE without the weak circular
security used here.

Concrete security: Research on the security of the NTRU problem revealed a
significant improvement of the performance of lattice reduction attacks on NTRU
lattices with large moduli q, which are now known as the overstretched NTRU
regime. Several works [1,9,24] showed the susceptibility of the overstretched
regimes to attacks. The work of Kirchner and Fouque shows however that the
attack is possible due to the choice of parameters and not due to the structure
of the fields underlying the NTRU problem. The observation that the choice
of parameters causes the attack, started a quest to determine the value of the
ciphertext modulus q for which the overstretched regime of NTRU begins and
hence the security issue occurs. This turning point is called the fatigue point.
Kirchner and Fouque make a first attempt to estimate the fatigue point and
their efforts result in an asymptotic upper bound, but it is only the recent work
of Ducas and van Woerden [13] that achieves at finding a concrete value for the
fatigue point for ternary NTRU.

To determine the fatigue point Ducas and van Woerden identified two events
that distinguish the standard regime from the overstretched regime:

– Secret Key Recovery (SKR): The event in which a vector as short as a secret
key vector is inserted in the basis of the lattice.

– Dense Sublattice Discovery (DSD): The event in which a vector of the dense
sublattice generated by the secret key is inserted in the basis of the lattice.
This vector is strictly longer than the secret key, but nevertheless this event
leads to a successful attack as either the SKR event follows quickly after
the DSD event, the DSD events cascade and generate the dense sublattice
from which the secret key can be recovered or the discovered dense sublattice
vector is in itself sufficient to decrypt fresh ciphertexts.

Based on an exploration of the occurrence of one of these events, Ducas
and van Woerden present an analysis that discovers the fatigue point, which is
determined by the value for q for which the DSD attack starts to be more efficient
than the SKR attack. To get then an idea of how secure the NTRU problem with

22 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

this q value still is, they also determine the precise cost of the attacks in the
overstretched regime. Their analysis uses the BKZ lattice reduction algorithm
and does not focus on a single position but predicts the most relevant positions in
which the vector of the SKR or DSD event can occur and takes all these positions
into account. This refined analysis leads to the following asymptotic result; the
fatigue point of NTRU with ternary secrets happens at q = n2.484+o(1). As well
as the determination of this asymptotic result, they perform an average case
analysis based on the volume of the relevant lattices and sublattices to arrive at
a concrete prediction of the fatigue point instead of a worst-case bound. This
concrete prediction puts the fatigue point at q ≈ 0.004 · n2.484+o(1) for n > 100.
This average case analysis differentiates the circulant version of NTRU from
its matrix version, as there are minor deviations in the volumes of the relevant
sublattices. Our work uses the anti-circulant and matrix versions of NTRU as
defined in Section 2.4. We argue that the change from the circulant to the anti-
circulant version of NTRU does not reduce the security of our NTRU instance,
since by using XN + 1 instead of XN − 1, we avoid any weaknesses caused by
evaluation at one, which the circulant variant could suffer from. In addition, it
does not invalidate the analysis made by Ducas and van Woerden, as that is
based on the expected volume of the dense sublattice, which remains the same
when XN − 1 is replaced by XN + 1.

Parameter selection: Using the analysis by Ducas and van Woerden [13]
and the scripts that they provided to estimate the concrete hardness of NTRU4,
given the dimension, the modulus q, the variance σ2, and taking into account the
distribution of the secret key, we are able to find the block size β needed by BKZ
to break the (matrix) NTRU problem. To convert β to the security level, we used
the same (classical) cost model used by TFHE, namely, the number of operations
of BKZ-β in dimension d was estimated as T (d, β) := 20.292·β+16.4+log2(8·d),
where d = 2 · n for the NTRU in dimension n. Thus, a security level of λ bits
means that T (d, β) ≥ 2λ.

Hence, to choose the parameters of the NGS scheme, we fixed N = 1024 and
ternary secrets, then found the maximum value of logQ that gives us λ = 128.
For the scheme based on the matrix NTRU problem, we fixed n = 800 and also
used ternary secrets. We chose the parameters for the LWE problem using the
LWE estimator [2]. The decomposition bases used in the external product and
in the key-switching were then chosen to guarantee correctness. We remark that
instead of using a single basis B for all external products, we used B1 for the
first n1 products and B2 for the last n2 (thus, n = n1 + n2), as this allowed
us to reduce the total number of polynomial products computed during the
bootstrapping.

The average-case noise bounds determined in the previous section then allows
us to compute concrete parameters for our scheme. All the parameters are shown
in Table 1.

4 https://github.com/WvanWoerden/NTRUFatigue

https://github.com/WvanWoerden/NTRUFatigue

FINAL: Faster FHE instantiated with NTRU and LWE 23

Table 1. The parameters used in both bootstrappings, depending on whether the
underlying problem of the base scheme is the matrix NTRU or the LWE. The columns
N and Q refer to the NGS scheme. For each basis Bi we have a different dimension
`i :=

⌈
logBi

(Q)
⌉

for ni bootstrapping keys.

Base scheme n q N Q (B1, n1) (B2, n2) Bksk `1 `2

MNTRU 800 131071 ≈ 217 210 912829 ≈ 219.8 (8, 750) (16, 50) 3 7 5

LWE 610 92683 ≈ 216.5 210 912829 ≈ 219.8 (8, 140) (16, 470) 3 7 5

7 Practical results

Among the three schemes that use the framework of fast bootstrapping with
a base scheme and an accumulator [12,11,30], the most efficient one is TFHE.
Therefore, we compare our practical results only with TFHE. Similar to the gate
bootstrapping in TFHE, we are able to compute a binary gate through a boot-
strapping. Therefore we use the bootstrapping as benchmark, as any speedup on
the bootstrapping translates directly to the same speedup on any binary circuit.
Like for TFHE, the encryption parameters of our schemes stay fixed for any
binary circuit. We implemented a proof-of-concept of our bootstrapping proce-
dures in C++. For a fair comparison, we chose the TFHE library as it is written
in C++ and is up-to-date. Our code is publicly available5.

We compiled TFHE with the same FFT library we used in our implementa-
tion, namely, FFTW [15]. Moreover, we also compiled our code with the same
optimization flags already used by the ‘optimal’ mode of TFHE. Both TFHE and
our implementation use a deterministic decomposition for the external product
and also a deterministic rounding for the modulus switching, relying thus on
the heuristic assumption that the noise terms obtained during the homomorphic
evaluations follow independent subgaussian distributions. All the experiments
were conducted on a single core of a machine with 8 GB of RAM and a 3.1 GHz
Dual-Core Intel Core i5.

As the fast Fourier transforms (FFT) and element-wise Hadamard vector
products dominate the running time of bootstrapping, we used the following
formulas to compute ACC�CMux(ci) in the bootstrapping algorithm (Algorithm 2)

((Xci − 1) · ACC) � (bski,0 − bski,1 ·X−ci) + ACC (MNTRU),

((Xci − 1) · ACC) � bski + ACC (LWE).

The LWE formula is actually used in the TFHE library. Notice that no polyno-
mial multiplication is needed to compute (Xci − 1) · ACC; it can be done by one
negacyclic shift of the coefficients of ACC and N subtractions in ZQ. Assuming
that the bootstrapping keys are FFT transformed in advance, the external prod-
uct requires `i+1 FFTs and `i Hadamard vector products where `j is the length
of bski, bski,0 or bski,1. In addition, MNTRU requires extra `j Hadamard vector
products to compute (bski,0 − bski,1 ·X−ci).
5 https://github.com/KULeuven-COSIC/FINAL

https://github.com/KULeuven-COSIC/FINAL

24 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

In TFHE, the bootstrapping key is composed of n′ := 630 GSW ciphertexts,
where n′ is the dimension of the LWE problem used in their base scheme. More-
over, for the GSW ciphertext, they used the ring Rq′ := Zq′ [X]/〈XN ′+1〉, where
q′ := 232 and N ′ = 1024, but they could set a larger decomposition base than
the ones we could use, and they can also ignore the least significant bits during
the decomposition, since in the RLWE problem, these bits are noisy, thus, they
obtain `′ := 3. However, each GSW ciphertext is composed of 4 · `′ elements of
Rq′ , on the other hand our NGS ciphertexts only have ` ring elements. Thus,
the size of the bootstrapping key in TFHE is 4 · n′ · `′ ·N ′ · log(q′) = 31 MB.

Since each external product costs 4 · `′ products in Rq′ for TFHE, their total
cost is 4 · n′ · `′ = 7560 ring multiplications. However, the slowest operations
of the bootstrapping are forward and backward FFTs. Since the FFTs of the
bootstrapping key are precomputed, the ‘for’ loop of the bootstrapping has to
decompose only the RLWE sample that is accumulating the result, obtaining
thus 2 · `′ ring elements. Then, it computes the FFT of these elements, performs
the external product to obtain a new RLWE sample in the FFT domain and
finally apply two inverse FFTs. Hence, TFHE needs 2 ·n′ · (`′+ 2) = 6300 FFTs
per bootstrapping.

In our case, the bootstrapping key is composed by 2·n NGS ciphertexts when
the base scheme is based on the MNTRU problem and n when the LWE is used.
Our ` is a little bigger than the `′ = 3 used in TFHE, but we do not have the
factor four in the dimension of the NGS ciphertexts.

The size of each ciphertext, the number of ring multiplications, and the
amount of FFTs we have to perform when the LWE problem is used in the
base scheme ends up being smaller than what is needed by TFHE. In particu-
lar, considering the parameters presented in Table 1, the number of FFTs per
bootstrapping is n1 · (`1 + 1) + n2 · (`2 + 1), where `i :=

⌈
logBi

(Q)
⌉
. A detailed

comparison is presented in Table 2. Since every integer in our implementation
is represented by the int type, we assume every coordinate or coefficient of our
keys occupies 32 bits of memory.

We ran our bootstrapping procedures one thousand times and estimated the
standard deviation of the noise of refreshed ciphertexts as σLWE = 29.46 and
σNTRU = 29.85, which gives us the following decryption failure probabilities:
pLWE = 1− erf(92683/(16 · σLWE ·

√
2)) < 2−52 and pNTRU = 1− erf(131071/(16 ·

σNTRU ·
√

2)) < 2−60.

The number of FFTs and multiplications shown in Table 2 are computed
using the parameters of each scheme as described in the abovementioned expla-
nation. For the running times, we measured the average time of the NAND gate
plus bootstrapping over 1000 runs.

As shown in Table 2, our bootstrapping algorithm for LWE ciphertexts is
28% faster than TFHE. Furthermore, our method nearly halves the total size
of key-switching and bootstrapping keys. Namely, TFHE needs 71 MB of key
material whereas our approach generates less than 39.3 MB.

Our bootstrapping algorithm for MNTRU ciphertexts is less efficient than
TFHE. The first reason is that MNTRU requires a bigger dimension n than LWE

FINAL: Faster FHE instantiated with NTRU and LWE 25

Table 2. Practical results of TFHE and of our bootstrapping procedures considering
the two base schemes. The last collum shows the average bootstrapping running time
over 1000 executions.

Key switching key Bootstrapping key Mult. on RQ FFTs Run. time

TFHE [11] 40 MB 31 MB 7560 6300 66 ms

MNTRU 34.4 MB 43 MB 11000 6300 92 ms
LWE 26.3 MB 13 MB 3330 3940 48 ms

to achieve the same security level given that the ciphertext modulus is fixed. In
our experiments (see Table 1), n = 800 for MNTRU whereas n′ = 630 in TFHE.
The second reason is that the secret key of the MNTRU scheme is ternary. To
handle ternary coefficients of the secret key, the CMux operation performs more
multiplications in the FFT domain, namely 2 · (`1 · n1 + `2 · n2).

However, the efficiency downgrade of our bootstrapping method for MNTRU
ciphertexts is not critical in practice. The bootstrapping takes less than 0.1 sec-
onds on an average commodity laptop with only 9% increase of the key material
size. Hence, if one needs an FHE scheme based solely on NTRU, our scheme is
a practical candidate for that.

8 Conclusion and future work

We showed that it is possible to construct an efficient FHE scheme based on the
NTRU assumption and to instantiate it by setting parameters that are below the
“fatigue point” where the sublattice attacks start to apply. This shows that with
the current knowledge on the security of NTRU, it seems possible to construct
competitive FHE based solely on the NTRU assumption, which motivates further
research on NTRU-based FHE schemes. Moreover, we showed that by combining
the LWE and the NTRU problems, we can construct an FHE scheme that runs
faster and requires less key material than TFHE, which currently has the fastest
bootstrapping procedure.

We notice that it would be possible to use better parameters for our scheme,
and thus, increase the difference between our running time and TFHE’s if we
sampled the NTRU secrets f and g with different variances. Namely, the final
noise introduced by the bootstrapping depends more on the norm of g than on
the norm of f , thus, we could increase the variance of f without having too much
impact on the final noise. Intuitively, the NTRU problem should only become
harder as the variance of one of its secret increases, thus, this would allow us to
increase q. Finally, having a larger value of q for (almost) the same final noise
means that we can choose larger decomposition bases, hence, reduce the number
of FFTs and Hadamard vector products per external product. However, since
there is no formal analysis of the concrete hardness of NTRU with different
variances of the secrets, we prefer to leave this as an interesting future work.

As another possible line of work, one could consider the circuit bootstrapping
from TFHE, which takes an LWE ciphertext c ∈ Zn′+1

q encrypting a message m

26 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

and outputs a GSW ciphertext C ∈ R2`′×`′
q encrypting m with noise indepen-

dent of the noise of c. In other words, the circuit bootstrapping refreshes c and
transforms it into a GSW ciphertext. This is done by executing `′ bootstrap-
pings and 2`′ key switchings, and requires two key-switching keys. However, in
our case we would produce an NGS ciphertext c ∈ R`q, so just ` key switchings
are needed instead of 2`′, and also only one key-switching key instead of two.
Thus, both the running time and the memory usage can be reduced if we are
able to use ` < 2`′ in our scheme.

Acknowledgements

We would like to thank Leo Ducas for helpful discussions about the security of
the NTRU problem.

This work has been supported in part by ERC Advanced Grant ERC-2015-
AdG-IMPaCT, by the Research Foundation – Flanders (FWO) under an Odysseus
project GOH9718N and a Junior Postdoctoral Fellowship, by CyberSecurity Re-
search Flanders with reference number VR20192203, and by the Defence Ad-
vanced Research Projects Agency (DARPA) under contract No. HR0011-21-C-
0034 DARPA DPRIVE BASALISC.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the
ERC, DARPA, the US Government, Cyber Security Research Flanders or the
FWO. The U.S. Government is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright annotation therein.

References

1. Albrecht, M.R., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions - cryptanalysis of some FHE and graded encoding schemes. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 153–178.
Springer, Heidelberg (Aug 2016)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015), https://doi.org/
10.1515/jmc-2015-0016

3. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–
314. Springer, Heidelberg (Aug 2014)

4. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) 14th IMA International
Conference on Cryptography and Coding. LNCS, vol. 8308, pp. 45–64. Springer,
Heidelberg (Dec 2013)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012. pp. 309–325.
ACM (Jan 2012)

6. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS. pp. 97–106. IEEE Computer
Society Press (Oct 2011)

https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016

FINAL: Faster FHE instantiated with NTRU and LWE 27

7. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (Aug 2011)

8. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption
with packed ciphertexts with application to oblivious neural network inference. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 395–412.
ACM Press (Nov 2019)

9. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for ntru problems and cryptanalysis
of the ggh multilinear map without a low-level encoding of zero. LMS Journal of
Computation and Mathematics 19(A), 255–266 (2016)

10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg
(Dec 2016)

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption over the torus. Journal of Cryptology 33(1), 34–91 (Jan 2020)

12. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I.
LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (Apr 2015)

13. Ducas, L., van Woerden, W.: Ntru fatigue: How stretched is overstretched? In:
Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2021. pp.
3–32. Springer International Publishing, Cham (2021)

14. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), https://eprint.iacr.org/2012/144

15. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceed-
ings of the IEEE 93(2), 216–231 (2005), special issue on “Program Generation,
Optimization, and Platform Adaptation”

16. Genise, N., Gentry, C., Halevi, S., Li, B., Micciancio, D.: Homomorphic encryp-
tion for finite automata. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019,
Part II. LNCS, vol. 11922, pp. 473–502. Springer, Heidelberg (Dec 2019)

17. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget
toolkit: Subgaussian sampling and more. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part II. LNCS, vol. 11477, pp. 655–684. Springer, Heidelberg (May
2019)

18. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009), crypto.stanford.edu/craig

19. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (Aug 2013)

20. Hoffmann, C., Méaux, P., Ricosset, T.: Transciphering, using FiLIP and TFHE
for an efficient delegation of computation. In: Bhargavan, K., Oswald, E., Prab-
hakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 39–61. Springer,
Heidelberg (Dec 2020)

21. Jeon, S., Lee, H.S., Park, J.: Efficient lattice gadget decomposition algorithm with
bounded uniform distribution. IEEE Access 9, 17429–17437 (2021)

22. Joye, M.: On NTRU-ν-um modulo XN − 1. Cryptology ePrint Archive, Pa-
per 2022/1092 (2022), https://eprint.iacr.org/2022/1092, https://eprint.iacr.org/
2022/1092

https://eprint.iacr.org/2012/144
crypto.stanford.edu/craig
https://eprint.iacr.org/2022/1092
https://eprint.iacr.org/2022/1092
https://eprint.iacr.org/2022/1092

28 C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, N. P. Smart

23. Joye, M., Paillier, P.: Blind rotation in fully homomorphic encryption with ex-
tended keys. In: Dolev, S., Katz, J., Meisels, A. (eds.) Cyber Security, Cryptology,
and Machine Learning - 6th International Symposium, CSCML 2022, Be’er Sheva,
Israel, June 30 - July 1, 2022, Proceedings. Lecture Notes in Computer Science, vol.
13301, pp. 1–18. Springer (2022), https://doi.org/10.1007/978-3-031-07689-3 1

24. Kirchner, P., Fouque, P.A.: Revisiting lattice attacks on overstretched NTRU pa-
rameters. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS,
vol. 10210, pp. 3–26. Springer, Heidelberg (Apr / May 2017)

25. Kluczniak, K.: Ntru-ν-um: Secure fully homomorphic encryption from ntru with
small modulus. Cryptology ePrint Archive, Paper 2022/089 (2022), https://eprint.
iacr.org/2022/089, https://eprint.iacr.org/2022/089

26. Lee, C., Wallet, A.: Lattice analysis on MiNTRU problem. Cryptology ePrint
Archive, Report 2020/230 (2020), https://eprint.iacr.org/2020/230

27. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi,
T. (eds.) 44th ACM STOC. pp. 1219–1234. ACM Press (May 2012)

28. Micciancio, D., Polyakov, Y.: Bootstrapping in fhew-like cryptosystems (2021),
https://doi.org/10.1145/3474366.3486924

29. Park, J., Tibouchi, M.: SHECS-PIR: Somewhat homomorphic encryption-based
compact and scalable private information retrieval. In: Chen, L., Li, N., Liang,
K., Schneider, S.A. (eds.) ESORICS 2020, Part II. LNCS, vol. 12309, pp. 86–106.
Springer, Heidelberg (Sep 2020)

30. Pereira, H.V.L.: Bootstrapping fully homomorphic encryption over the integers in
less than one second. In: Garay, J. (ed.) PKC 2021, Part I. LNCS, vol. 12710, pp.
331–359. Springer, Heidelberg (May 2021)

31. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 24–43. Springer, Heidelberg (May / Jun 2010)

https://doi.org/10.1007/978-3-031-07689-3_1
https://eprint.iacr.org/2022/089
https://eprint.iacr.org/2022/089
https://eprint.iacr.org/2022/089
https://eprint.iacr.org/2020/230
https://doi.org/10.1145/3474366.3486924

	FINAL: Faster FHE instantiated with NTRU and LWE
	Introduction
	Our techniques and results

	Preliminaries
	Vectors, polynomials, and norms
	Distributions
	Decompositions
	NTRU problems

	Matrix-NTRU base encryption scheme
	NGS: NTRU-based GSW-like scheme
	Basic procedures
	External product
	Noise analysis
	Modulus-switching
	Key-switching from NGS to the base scheme

	Bootstrapping
	Bootstrapping noise
	Bootstrapping an LWE-based scheme

	Security analysis and parameter selection
	Practical results
	Conclusion and future work

