
Additive-Homomorphic Functional Commitments
and Applications to Homomorphic Signatures

Dario Catalano1[0000−0001−9677−944X], Dario Fiore2[0000−0001−7274−6600], and
Ida Tucker2[0000−0003−4895−5896]

1 University of Catania, Italy.
catalano@dmi.unict.it

2 IMDEA Software Institute, Madrid, Spain.
dario.fiore@imdea.org

Abstract. Functional Commitments (FC) allow one to reveal functions
of committed data in a succinct and verifiable way. In this paper we put
forward the notion of additive-homomorphic FC and show two efficient,
pairing-based, realizations of this primitive supporting multivariate poly-
nomials of constant degree and monotone span programs, respectively.
We also show applications of the new primitive in the contexts of ho-
momorphic signatures: we show that additive-homomorphic FCs can be
used to realize homomorphic signatures (supporting the same class of
functionalities as the underlying FC) in a simple and elegant way. Using
our new FCs as underlying building blocks, this leads to the (seemingly)
first expressive realizations of multi-input homomorphic signatures not
relying on lattices or multilinear maps.

1 Introduction

Functional commitments (FC), put forth by Libert, Ramanna and Yung [22],
allow a sender to commit to a vector x of length n and later to open the com-
mitment to functions of the committed vector, namely to prove that f(x) = y.
FCs are required to be evaluation binding, meaning that it is computationally
hard to open a commitment at two distinct outputs y 6= y′ for the same function
f . The distinguishing feature of FCs is that commitments and openings should
be succinct, i.e., of size independent of n.

Functional commitments generalize the well known notions of vector com-
mitments (VC) [5, 23, 4] and polynomial commitments (PC) [16]—two func-
tionalities that, albeit specific, have nowadays a large number of applications.
Besides VCs and PCs, state-of-the-art functional commitments capture linear
forms [22, 18] and semi-sparse polynomials [24].

An FC for an arbitrary computation f can be built via succinct commitments
and SNARKs for NP: simply, use the latter to generate a succinct argument that
“y = f(x) and x opens the commitment”. However, such an FC holds under non-
falsifiable assumptions that are required to build SNARKs [12].

In contrast, due to the falsifiability of the evaluation binding notion and as
confirmed by the existing constructions [22, 24], functional commitments are

2 Dario Catalano, Dario Fiore, and Ida Tucker

realizable from falsifiable assumptions. Thanks to these two properties – suc-
cinctness and security under falsifiable assumptions – FCs can be seen as a sim-
ple form of succinct non-interactive arguments.3 Whenever evaluation binding
is sufficient, FCs are an attractive building block: they provide communication-
efficiency through succinctness, without having to sacrifice assumptions (e.g., see
the applications of vector/polynomial commitments, and FCs for inner products
in [4, 16, 22]). For this reason we believe that advancing the understanding of
FCs could help us better understand the fundamental problem of constructing
succinct argument systems from minimal assumptions.

1.1 Our results

In this work we make progress, along different fronts, in the study of functional
commitments based on falsifiable assumptions.

We begin by exploring potential applications of FCs. While we know several
applications of FCs for linear functionalities (and all the functionalities implied
by them, such as vector and polynomial commitments), to the best of our knowl-
edge, less is known about FCs for, say, multivariate polynomials or circuits.

We address this problem by showing a new application of FCs to building ho-
momorphic signatures [1]. As it will be apparent later, this application becomes
particularly interesting if the FC is additively homomorphic, namely if given two
commitments to vectors x1 and x2, one can compute the commitment to the
vector x1 + x2. This is a basic and useful property of commitment schemes.
Yet we know of no FC that is additive-homomorphic and supports a rich class
of computations; the only known additive-homomorphic FCs are the ones for
linear forms of [22, 18].

We bridge this gap by proposing the first additive-homomorphic FCs sup-
porting the evaluation of functions beyond linear. Our techniques yield new
homomorphic signatures that advance the state of the art, and a SNARG for a
polynomial-time language from a falsifiable assumption.

Below we present our results in more detail, and in the next section we
provide an overview of our techniques.

Additive-homomorphic FC for polynomials. We propose an additive-
homomorphic FC scheme that allows one to commit to a vector x of length
n and to open the commitment to f(x) where f is a collection of m multi-
variate polynomials of bounded constant degree. Our scheme enjoys compact
openings, i.e., a single proof, of size constant in both n and m, for all the m
evaluations. We build this FC using bilinear groups and prove its security based
on the Diffie-Hellman exponent assumption [2].

Compared to the FC for semi-sparse polynomials of [24] and an FC for poly-
nomials obtained via linearization (cf. section 1.2), the main novelty of ours is
to be additively homomorphic. Also, ours is the first FC with compact openings

3 Their functionality resembles commit-and-prove SNARKs except that FCs are eval-
uation binding rather than (knowledge) sound.

1. INTRODUCTION 3

whose security is based on established assumptions: the scheme of [18] relies on
the generic group model, and that of [24] uses a newly proposed assumption.

Additive-homomorphic FC for monotone span programs. Our second
realization is an FC for a new polynomial time language, called semi-quadratic
arithmetic programs (sQAPs, for short). In a nutshell, an sQAP is defined by a
matrix F and accepts a pair of vectors (z,y) if there exists a solutionw such that
F · (z ◦w) = y, where ◦ denotes entry-wise multiplication of vectors.4 An FC for
sQAPs allows one to commit to (z,y) and then open to F, in the sense of proving
that F accepts the pair of committed vectors. Our scheme is based on pairings,
it is additively homomorphic and has constant size proofs consisting of three
group elements. We prove its security based on a variant of the Diffie-Hellman
exponent assumption that we justify in the generic group model.

We show that sQAPs are sufficiently expressive to capture the well known
class of monotone span programs (MSPs) [15] and show how to turn our FC for
sQAPs into one for MSPs. Also, via known transformations (see footnote 10) it
is possible to build a monotone span program that models the satisfiability of
an NC1 circuit, which therefore allows us to obtain the first FC for NC1 circuits.

Applications to homomorphic signatures, and more. To motivate additive-
homomorphic FCs we present a novel application of this primitive to build ho-
momorphic signatures (HS) [1] (see section 1.3 for an overview).

Notably, by plugging our new FCs in this transformation we obtain new HS
that advance the state of the art as follows:

– Our FC for polynomials yields the first multi-input HS for polynomials based
on pairings, and the first HS with “compact” signatures, where, again, by
compact we mean that, for functions of the form f : Fn → Fm, the resulting
signatures have size which is constant in both n and m. None of the previous
schemes, e.g., [1, 7, 13] has compact signatures, as they need one signature for
every output value.

– Through our FC for NC1 we obtain the first multi-input HS based on pair-
ings for NC1 circuits. The most expressive HS based on pairings is that of
Katsumata et al. [17] that also supports NC1 circuits, but in the single-input
model where the signer must sign the entire data vector at once. Prior multi-
input HS for functions beyond linear instead need lattices [1, 13] or multilinear
maps [7]. Our result essentially shows that these powerful algebraic structures
are not necessary to build such expressive HS.

In the full version we discuss further applications of additive-homomorphic FCs,
such as updatable FCs and verifiable databases with expressive queries.

A SNARG for linear systems from falsifiable assumptions. In [18], Lai
and Malavolta put forth a stronger security property for FC, that we call strong
evaluation binding, which considers as an attack not only two inconsistent open-
ings for the same function but also inconsistent openings for multiple functions.

4 sQAPs is in P as it can be decided via Gaussian elimination.

4 Dario Catalano, Dario Fiore, and Ida Tucker

Namely it must be computationally hard to produce a commitment and a col-
lection of valid openings for function-output pairs {fi, yi}Qi=1 for which there
exists no vector x such that fi(x) = yi for every i = 1 to Q. Lai and Malavolta
only show how to realize a strong evaluation binding FC for linear maps by
resorting to the generic group model. This is unsatisfactory as a generic group
model proof essentially uses non-black-box extractability techniques, which can-
not be considered falsifiable, and would defeat the main goal of this work which
is constructing FCs from falsifiable assumptions.

In our construction of FC for sQAPs we show a new proof technique that
allows us to reduce an adversary that produces a valid proof for an inconsistent
system of equations to an adversary against a falsifiable assumption. Interest-
ingly, we can apply the same technique to the linear map FC of [18] and prove its
strong evaluation binding based on a falsifiable assumption, the parallel bilinear
Diffie-Hellman exponent in [26].

This is to the best of our knowledge the first strong evaluation binding and
compact FC from a falsifiable assumption. This result is interesting since, as
one could observe, a strong evaluation binding FC with compact proofs for a
language L yields de facto a SNARG for L. Also, a strong evaluation binding
FC with compact proofs for quadratic polynomials would yield a SNARG for
NP, since a system of quadratic equations can model circuit satisfiability, e.g.,
through R1CS [10]. Therefore, due to the impossibility of Gentry and Wichs
[12], our SNARG for linear maps from falsifiable assumptions can be seen as
optimal, in the sense that it is unlikely to have an analogous result for quadratic
functions.

1.2 Related work

Libert et al. [22] introduce the notion of functional commitments and propose a
construction for linear forms based on the Diffie-Hellman exponent assumption
in bilinear groups. Lai and Malavolta [18] extend the scheme of [22] to support
linear maps with compact openings, namely of size independent of both the input
and the output lengths. Lipmaa and Pavlyk [24] propose an FC construction
that supports, with compact proofs, a class of arithmetic circuits which roughly
corresponds to semi-sparse polynomials. Their scheme is obtained by “scaling
down” SNARK-based techniques and is proven secure from a newly proposed
falsifiable assumption in bilinear groups. More generally, an FC for linear maps
is sufficient to realize an FC for any linearizable function, that is a function
f which can be implemented as f(x) = 〈p(x),φf 〉 where p(·) is a vector of
polynomial-time computable functions which do not depend on f and can be
precomputed. Simply, the sender commits to the vector p(x) and then, for any
f , opens the commitment to the linear form φf . Both the scheme of [24] and the
one based on linearization are not additively homomorphic5 and thus cannot be
used in the applications discussed in this paper.
5 Even if one starts from an additive-homomorphic FC for linear maps, one can no-
tice that the transformation to FCs for linearizable functions does not preserve the
additive-homomorphism.

1. INTRODUCTION 5

In a recent work, Peikert et al. [25] propose the first construction of a vector
commitment based on lattice assumptions and show an extension of it to a
functional commitment for circuits. Their FC, however, works in a weaker model
where a trusted authority uses secret information to generate an opening key for
each function for which the prover wishes to generate an opening.

1.3 Technical overview

FC for polynomials. To illustrate the main ideas of our construction let us
consider the simplified case where one opens the commitment to a single poly-
nomial (i.e., no compactness) that is homogeneous. Note that a homogeneous
polynomial of degree d, that we can write as f(x) =

∑
` f` · (x

d`,1
1 · · ·xd`,nn) with∑

j d`,j = d, can be linearized as an inner product between the vector of its
coefficients and the vector of all degree-d terms. More precisely, assuming d = 2δ

a power of 2, given a homogeneous polynomial f we can build a vector f̂ ∈ Fnd

such that for any x ∈ Fn it holds 〈f̂ ,x(δ)〉 = f(x), where x(δ) is the δ-fold
Kronecker product of x with itself, i.e., x(1) = x⊗ x, x(2) = x(1) ⊗ x(1), etc.

Following this observation, one could use an FC for linear forms to commit
to x(δ) and then open/verify the commitment using the appropriately computed
linear form f̂ . This idea however suffers the problem that the commitments
would not be additively homomorphic.

Our approach to solve this problem is to generate a commitment C to x such
that: (i) C is additively homomorphic, and (ii) the prover creates, at opening
time, a linear-map commitment Xδ to x(δ) and convinces the verifier that the
vector committed in Xδ is indeed the δ-fold Kronecker product of the vector
committed in C. Once (ii) is achieved we could use the linear-map functionality
to open Xδ to 〈f̂ ,x(δ)〉. The challenge of achieving (ii) is to make this proof
succinct without having to extract the committed vectors from the prover.

Our technique to solve this problem is algebraically involved. In what follows
highlight the main ideas, without focusing too much on security.

For the Xδ produced in the opening we use the linear-map commitment of
[22, 18] in which the vector x(δ) is encoded in a group element

Xδ = [p(δ)x (α)]1 =

nd∑
j=1

x
(δ)
j · [α

j]1

where the elements [αj]1 are part of the public parameters.6 For the commitment
to x, assume for now that it includes X0 = [p

(0)
x (α)]1 =

∑n
j=1 xj · [αj]1, and

consider for simplicity the case of δ = 1 (i.e., opening to a polynomial of degree

6 We use the bracket notation for bilinear groups of [9].

6 Dario Catalano, Dario Fiore, and Ida Tucker

d = 2). Then our first key observation is that

p(0)x (α) · (p(0)x (αn)/αn) =

(
n∑
i=1

xi · αi
) n∑

j=1

xj · αn(j−1)


=

n∑
i,j=1

xixj · αi+n(j−1) =

n2∑
k=1

x
(1)
k · α

k = p(1)x (α)

Thus, if we include in the commitment the element X̂0 = [p̂
(0)
x (α)]2 = [p

(0)
x (αn)/αn]2,

the verifier can test the correctness of X1 via a pairing e(X1, [1]2) = e(X0, X̂0).
Intuitively, this is secure because the pair (X0, X̂0) is part of the commitment
and can be somehow considered “trusted”; so the pairing allows transferring
this trust to X1. To handle openings of polynomials of degree > 2, this is
not sufficient though. Say that the prover includes in the opening the elements
X2, X1, X̂1, and the verifier tests the correctness of X2 via a “chain” of checks
e(X1, [1]2)

?
= e(X0, X̂0) and e(X2, [1]2)

?
= e(X1, X̂1). The issue is that in the

second check (X1, X̂1) is not “trusted”; in particular, while X1 can be considered
trusted due to the previous check, X̂1 is not, since it is generated by the prover
and not tested.

Our second key idea is based on showing that the polynomial p̂(1)x (α) in X̂1

can be expressed as the product of two polynomials φ(2)x (α), φ
(3)
x (α), each of

them a linear function of x. Precisely, it holds that (cf. Claim 2)

p(1)x (αn)/αn = φ(2)x (α) · φ(3)x (α) = (p(0)x (αn
2

)/αn
2

) · (p(0)x (αn
3

)/αn
3

)

So, if we include in the commitment group elements Φ2, Φ3 encoding φ
(2)
x (α)

and φ
(3)
x (α) respectively, the verifier will be able to use a pairing to test the

correctness of the element X̂1 included in the opening, and mark X1 as “trusted”,
as it can establish a correct link with the group elements in the commitment.

To summarize, in this example of a degree-4 homogeneous polynomial f ,
the commitment C of x includes (X0, X̂0, Φ2, Φ3), and the opening includes
(X1, X̂1, X2) and a linear-map opening proof generated using [18] to show that
X2 (seen as a commitment to x(2)) opens to 〈f̂ ,x(2)〉 = f(x).

Importantly, all the group elements in the commitment can be expressed as
a linear map of the vector x, thus making C additively homomorphic.

Going beyond degree 4 requires further extensions of our technique since a
polynomial p̂(k)x (α) factors into 2k polynomials, which for k > 1 cannot be tested
with a pairing. We bridge this gap by showing how to break each of these tests
into a system of k quadratic equations using a tree-based encoding. This is our
third key idea that allows us to generalize the techniques illustrated so far to
handle degree-2δ polynomials.

Eventually, we obtain an FC for arbitrary polynomials of constant degree d
in which commitment and openings consist of exactly d group elements (notably,
even if one opensm polynomials at the same time). Comparing to the techniques

1. INTRODUCTION 7

of prior FCs for linear maps [22, 18], while our FC uses them in the final step
of our opening algorithm, the remaining design ideas are novel and significantly
different.

FC for semi-quadratic arithmetic programs. We recall that in an FC for
sQAPs one commits to a pair of vectors x = (z,y) and then opens to F in the
sense of proving that ∃w : F · (z ◦w) = y. Similarly to the FC for polynomials,
we start from the idea of linearizing the computation in such a way that we can
eventually resort to a linear-map FC (LMC). Specifically, we use the LMC of
[18]. However, to do this linearization we cannot use the same technique of the
previous scheme to produce a commitment to, e.g., z ◦ w or z ⊗ w. Roughly
speaking, the issue is that in sQAPs w is not committed ahead of time together
with z; here w is a non-deterministic witness depending on each specific F.

So we proceed differently. We let the prover compute a succinct encoding of
the matrix Fz = F◦Z, where Z ∈ Fm×n is the matrix with z> in every row, and
we show how the verifier can check the validity of this encoding given F and a
committed z. This way, we are left with the problem of proving that (Fz | y) is
a satisfiable system of linear equations. To prove this, we let the prover generate
a commitmentW to the solution w and then generate an opening proof to argue
that y = Fz ·w for the committed w. The generation of W and its opening to
Fz rely on the LMC of [18].

Compared to [18], we introduce two technical novelties. The first one deals
with enabling the verifier to check the opening by having only an encoding of
Fz, which can be linked to the public F and the commitment to z. The second
and most important novelty concerns the security proof. The challenge is the
presence of this non-deterministic component w which requires the prover to
show the satisfiability of a system – a task that goes beyond what is captured
by the notion of evaluation binding since we need that an efficient adversary
cannot generate a valid opening if (Fz | y) is not satisfiable. This could be
solved by resorting to the strong evaluation binding of the [18] LMC, but they
only prove this property in the generic group model, essentially using a non-
black-box extraction technique. In our paper we show a new proof technique for
reducing an adversary producing a valid opening for an inconsistent system of
equations into an adversary against a falsifiable assumption.

From FCs to homomorphic signatures. We present a novel approach to
construct HS based on (additively homomorphic) FCs. The basic idea is that
the signer generates a commitment Cx to the dataset x and a (standard) digital
signature σCx on the commitment. Given (Cx, σCx), the server can compute a
function f by giving to the verifier this pair (Cx, σCx) (which is succinct) along
with an opening of Cx to f (which is succinct as well). The resulting HS con-
struction is clearly single-input since the signer must commit to the dataset all
at once. We achieve a multi-input HS by exploiting FCs that are additively ho-
momorphic. To sign the i-th element of the dataset, Alice commits to the sparse
vector xi · ei with xi in position i and 0 everywhere else; let Ci be the resulting
commitment. If the server is given these commitments one by one, eventually it
can reconstruct a commitment C to the currently available dataset by computing

8 Dario Catalano, Dario Fiore, and Ida Tucker

their sum homomorphically, and then proceed as in the single-input construction
by opening C to the desired function f . This construction however is not secure
as the verifier cannot be assured that C is validly obtained from commitments
provided by Alice. Therefore we let Alice sign Ci using an homomorphic sig-
nature that only needs to support one functionality, the homomorphic sum in
the commitment space. Interestingly, for pairing-based FCs, this HS can be im-
plemented via well known linearly-homomorphic structure-preserving signatures
[21]7. Finally, we notice that for the sake of this application the FC only needs to
satisfy a weaker notion of evaluation binding in which the adversary reveals the
vector x committed in C, yet it manages to produce an opening to a function f
and a result y 6= f(x) that is accepted by the verification algorithm.

2 Preliminaries

Notation. We use λ ∈ N to denote the security parameter. If a function ε(λ) =
O(λ−c) for every constant c > 0, then we say that ε is negligible, denoted ε(λ) =
negl(λ). A function p(λ) is polynomial if p(λ) = O(λc) for some constant c > 0.
We say that an algorithm is probabilistic polynomial time (PPT) if its running
time is bounded by some p(λ) = poly(λ). Given a finite set S, x←$S denotes
selecting x uniformly at random in S. For an algorithm A, we write y ← A(x)
for the output of A on input x. For a positive n ∈ N, [n] is the set {1, . . . , n}.
We denote vectors x and matrices M using bold fonts. For a ring R, given two
vectors x,y ∈ Rn, x ◦ y denotes their entry-wise product, i.e., the vector with
entries (xiyi)i, while z := (x⊗ y) ∈ Rn2

denotes their Kronecker product (that
is a vectorization of the outer product), i.e., ∀i, j ∈ [n] : zi+(j−1)n = xiyj .

Bilinear Groups. Our FC constructions build on bilinear groups. A bilinear
group generator BG(1λ) outputs bgp := (q,G1,G2,GT , e, g1, g2), where G1, G2,
GT are groups of prime order q, g1 ∈ G1 and g2 ∈ G2 are two fixed generators,
and e : G1 × G2 → GT is an efficiently computable, non-degenerate, bilinear
map. We present our results using Type-3 groups in which it is assumed that
there is no efficiently computable isomorphisms between G1 and G2.

For group elements, we use the bracket notation of [9] in which, for s ∈
{1, 2, T} and x ∈ Zq, [x]s denotes gxs ∈ Gs. We use additive notation for G1 and
G2 and multiplicative one for GT . For s = 1, 2, given an element [x]s ∈ Gs and
a scalar a, one can efficiently compute a · [x] = [ax] = gaxs ∈ Gs; given group
elements [a]1 ∈ G1 and [b]2 ∈ G2, one can efficiently compute [ab]T = e([a]1, [b]2).

3 Functional Commitments

We recall the notion of functional commitments (FC) [22]. A crucial feature that
makes this primitive interesting and nontrivial is that both commitment and

7 Strictly speaking the signature does not need to be structure preserving as long as
it allows to (homomorphically) sign group elements.

3. FUNCTIONAL COMMITMENTS 9

the openings are succinct, i.e., of size independent of the vector’s length. In our
work we also consider compact FCs, a notion introduced in [18], which requires
openings size to be also independent of the function’s output length.

Definition 1 (Functional Commitments). A functional commitment scheme
is a tuple of algorithms FC = (Setup,Com,Open,Ver) with the following syntax
and that satisfies correctness and succinctness (or compactness).

Setup(1λ, n,m)→ ck on input the security parameter λ and the vector length n,
outputs a commitment key ck, which defines the message space X and the class
of admissible functions F ⊆ {f : Xn → Xm} for some n,m = poly(λ).

Com(ck,x; r)→ (C, aux) on input a vector x ∈ Xn and (possibly) randomness
r, outputs a commitment C and related auxiliary information aux. We often
omit r from the inputs, in which case we assume it is randomly sampled in the
appropriate space.

Open(ck, aux, f)→ π on input an auxiliary information aux and a function f ∈
F , outputs an opening proof π.

Ver(ck, C, f,y, π)→ b ∈ {0, 1} on input a commitment C, an opening proof π, a
function f ∈ F and a value y ∈ Xm, accepts (b = 1) or rejects (b = 0).

Correctness. FC is correct if for any n,m ∈ N, all ck←$ Setup(1λ, n), any
f : Xn → Xm in the class F , and any vector x ∈ Xn, if (C, aux)← Com(ck,x),
then it holds Ver(ck, C, f, f(x),Open(ck, aux, f)) = 1 with probability 1.

Succinctness/Compactness. A functional commitment FC is succinct if
there exists a fixed polynomial p(λ) = poly(λ) such that that for any n,m =
poly(λ), any admissible function f ∈ F such that f : Xn → Xm, honestly
generated commitment key ck ← Setup(1λ, n,m), vector x ∈ Xn, commitment
(C, aux) ∈ Com(ck) and opening π ← Open(ck, aux, f), it holds that |C| ≤ p(λ)
and |π| ≤ p(λ) ·m. Furthermore, we say that FC is compact if |π| ≤ p(λ).

3.1 Binding notions of FCs

Intuitively, the security of FCs should model the hardness of computing openings
for false statements that are accepted by the verification algorithm. The first
definition in [22] is inspired by that of vector commitments [4]. It states that it
should be computationally hard to open a commitment to two distinct outputs
for the same function. Formally, it is defined as follows.

Definition 2 (Evaluation Binding). For any PPT adversary A,

AdvEvBind
A,FC (λ) = Pr

Ver(ck, C, f,y, π) = 1

∧ y 6= y′ ∧
Ver(ck, C, f,y′, π′) = 1

:
ck← Setup(1λ, n)

(C, f,y, π,y′, π′)← A(ck)

 = negl(λ)

We define a weaker notion of evaluation binding in which the adversary is
required to fully open the commitment (i.e., to show the vector x it contains) and

10 Dario Catalano, Dario Fiore, and Ida Tucker

to generate a valid opening for a false output, i.e., for some y 6= f(x).8 Intuitively,
this is sufficient in applications where the verifier has either computed once the
commitment or has received the commitment from a trusted party (e.g., the
commitment comes with a valid signature of this party). We show in Section 6
that this notion is sufficient to construct homomorphic signatures from FCs.

Definition 3 (Weak Evaluation Binding). For any PPT adversary A

AdvwEvBind
A,FC (λ) = Pr

(C, ·) = Com(ck,x; r)

∧ y 6= f(x) ∧
Ver(ck, C, f,y, π) = 1

:
ck← Setup(1λ, n)

(x, r, f,y, π)← A(ck)

 = negl(λ)

One may observe that if an FC satisfies evaluation binding, then it also sat-
isfies weak evaluation binding. For a formal proof, we refer to the full version.

Finally, we also mention a stronger version of evaluation binding, put forward
by Lai and Malavolta [18]. Here, the adversary outputs a commitment, and a
collection of openings to one or more functions. It is successful if all the claimed
outputs define an inconsistent system of equations. Namely, it outputs {fi,yi}
for which there exists no x such that for all i fi(x) = yi.

Definition 4 (Strong Evaluation Binding). For any PPT adversary A, the
advantage AdvsEvBind

A,FC (λ) defined below is negligible.

Pr

[
∀i ∈ [Q] : Ver(ck, C, fi,yi, π1) = 1

∧ @x ∈ Xn : ∀i ∈ [Q] : fi(x) = yi
:

ck← Setup(1λ, n)

(C, {fi,yi, πi}
Q
i=1)← A(ck)

]

3.2 Additional properties of FCs

In the full version we give the notions of hiding commitments and zero-knowledge
openings. Here we define some extra properties of functional commitments that
can be useful in applications and that are enjoyed by our constructions.

Additive-homomorphic FCs We consider additively homomorphic FCs in
which, given two commitments C1 and C2 to vectors x1 and x2 respectively,
one can compute a commitment to x1 + x2. Below, we formalize this property,
considering also how to obtain the corresponding random coins and auxiliary
information of the commitment.

Definition 5 (Additive-homomorphic FCs). Let FC be a functional com-
mitment scheme where X is a ring. Then FC is additive homomorphic if there ex-
ist deterministic algorithms FC.Add(ck, C1, . . . , Cn)→ C, FC.Addaux(ck, aux1, . . . ,
auxn) → aux and FC.Addr(ck, r1, . . . , rn) → r such that for any xi ∈ X and
(Ci, auxi)← Com(ck,xi; ri), if C ← FC.Add(ck, C1, . . . , Cn), aux← FC.Addaux(ck,
aux1, . . . , auxn), and r ← FC.Addr(ck, r1, . . . , rn), then (C, aux) = Com(ck,

∑n
i=1 xi; r).

8 This notion is similar in spirit to the basic security of accumulators [3].

4. ADDITIVE-HOMOMORPHIC FC FOR POLYNOMIALS 11

Efficient Verification In FCs the verification algorithm must read the func-
tion’s description, which can be as large as its running time for certain com-
putational models (e.g., linear forms, polynomials, circuits) and thus can make
verifying and output of f as expensive as running f . To address this problem,
we define a notion of amortized efficient verification for FCs. Similarly to homo-
morphic signatures [7] and preprocessing universal SNARKs [14], an FC has this
property if the verifier can precompute a short verification key vkf associated to
f , and later can verify any opening for f by using only vkf .

Definition 6 (Amortized efficient verification). A functional commitment
scheme FC has amortized efficient verification if there are two additional al-
gorithms vkf ← VerPrep(ck, f) and b ← EffVer(vkf , C,y, π) such that for any
honestly generated commitment key ck ← Setup(1λ, n,m), vector x ∈ Xn, com-
mitment (C, aux) ∈ Com(ck) and opening π ← Open(ck, aux, f) with f ∈ F ,
it holds: (a) EffVer(VerPrep(ck, f), C,y, π) = Ver(ck, C, f,y, π), and (b) EffVer
running time is a fixed polynomial p(λ, |y|).

Aggregation. Intuitively, we say that FC has aggregatable openings if given
several openings π1, . . . , π` such that each πi verifies for the same commitment
C and function-output pair (fi,yi), and given a function g : Xm1 ×· · ·×Xm` →
Xm one can compute an opening π that verifies for the composed function
g(f1, . . . , f`) and the output g(y1, . . . ,y`).

Definition 7. A functional commitment scheme FC satisfies aggregation if there
is an algorithm π ← Agg(ck, C, ((π1, f1,y1), . . . , (π`, f`,y`)), g) such that, for
honestly generated commitment key ck ← Setup(1λ, n,m), commitment C and
triples {(πi, fi,yi)}`i=1 such that for all i ∈ [`] it holds yi ∈ Xmi and Ver(ck, C,
πi, fi,yi) = 1, then for any admissible function g : Xm1 × · · · × Xm` → Xm,

Ver(ck, C,Agg(ck, C, ((π1, f1,y1), . . . , (π`, f`,y`)), g), f∗, g(y1, . . . ,y`)) = 1

where f∗ is the composed function f∗(X) = g(f1(X), . . . , f`(X)).

4 Additive-Homomorphic FC for Polynomials

In this section we propose our FC for polynomials, which supports the following
features: additive-homomorphic, opening to multiple (multivariate) polynomials
of the committed vector with a compact proof, efficient verification and linear
aggregation. We build our scheme in bilinear groups and prove that it satisfies
evaluation binding under the DHE assumption (Def. 8 [2]).

We build this FC in two steps. We begin by constructing an FC that only
supports homogeneous multivariate polynomials whose degree is a power of two
(see next section). Next, in Section 4.4 we show how an additive-homomorphic
FC for homogeneous polynomials can be turned into one for all multivariate
polynomials by letting one commit to vectors (1,x).

12 Dario Catalano, Dario Fiore, and Ida Tucker

4.1 Additive-homomorphic FC for Homogeneous Polynomials

Below we describe our FC for homogeneous polynomials. See section 1.3 for an
intuition. To keep the exposition simpler we present a deterministic version of
our FC which is not hiding, and refer to the full version for how to modify it in
order to satisfy com-hiding and zero-knowledge openings.

Setup(1λ, n,m, d) Let n,m, d ≥ 1 be three integers representing the length of the
vectors to be committed, the number of the polynomials to be computed at
opening time, and the degree of these polynomials, respectively. Define N :=
nd, generate a bilinear group description bgp := (q,G1,G2,GT , e, g1, g2) ←
BG(1λ), and let F := Zq. Next, sample random α←$Zq, β←$Fm and output

ck :=

(
{[αj]1, [αj]2}j∈[N], {[βi · αj]2}i∈[m],j∈[N]

{[αβi]1}i∈[m], {[αjβi]1}i∈[m],j∈[2N]\{N+1}

)
Com(ck,x) We encode the vector x with the polynomial px(Z) :=

∑n
j=1 xj ·Zj .

Also, for ` = 1, . . . , d− 1, we define the polynomials

φ(`)x (Z) := px(Zn
`

)/Zn
`

=

n∑
j=1

xj · Zn
`(j−1) of degree ≤ n`+1 − n`

Next, we compute

X0 :=

n∑
j=1

xj · [αj]1 = [px(α)]1, X̂0 :=

n∑
j=1

xj · [αn(j−1)]2 = [px(αn)/αn]2

∀` = 2, . . . , d− 1 : Φ` :=


∑n
j=1 xj · [αn

`(j−1)]1 =
[
φ
(`)
x (α)

]
1

if ` even∑n
j=1 xj · [αn

`(j−1)]2 =
[
φ
(`)
x (α)

]
2

if ` odd

Output C := (X0, X̂0, {Φ`}d−1`=2) and aux = x.
Open(ck, aux,f) Let f = (f1, . . . , fm) be a vector of m n-variate homogeneous
polynomials of degree d, where d = 2δ is a power of 2. We use a representation
of each polynomial fi via a linear form f̂ i : Fnd → F such that fi(x) = f̂

>
i ·x(δ),

where x(δ) = (x ⊗ · · · ⊗ x) is the result of taking the Kronecker product of x
with itself δ times.9 Next, set x(0) := x and proceed as follows.
– For k = 1, . . . , δ − 1, compute

x(k) := x(k−1)⊗x(k−1), Xk :=

n2k∑
j=1

x
(k)
j ·[α

j]1, X̂k :=

n2k∑
j=1

x
(k)
j ·[α

n2k (j−1)]2

9 Since x(δ) has several terms repeated multiple times (e.g., after one product, the
resulting vector contains both xixj and xjxi), we assume f̂ i to always use the first
of them, according to lexicographic order, and have 0 coefficients for the others.

4. ADDITIVE-HOMOMORPHIC FC FOR POLYNOMIALS 13

Let us define the polynomials

p(k)x (Z) :=

n2k∑
j=1

x
(k)
j · Z

j , p̂(k)x (Z) := p(k)x (Zn
2k

)/Zn
2k

=

n2k∑
j=1

x
(k)
j · Z

n2k (j−1)

and note that for every k the pair (Xk, X̂k) is ([p
(k)
x (α)]1, [p̂

(k)
x (α)]2).

(Xk, X̂k) can be seen as a commitment to the vector x(k) ∈ Fn2k

.
– Compute the last vector x(δ) := x(δ−1)⊗x(δ−1), and its commitment Xδ :=∑nd

j=1 x
(δ)
j · [αj]1 = [p

(δ)
x (α)]1.

For k = 1 to δ, one can verify the correctness of the element Xk based on the
correctness of the previous pair (Xk−1, X̂k−1) (which eventually reduces to
the correctness of the commitment pair (X0, X̂0)) by testing e (Xk, [1]2)

?
=

e
(
Xk−1, X̂k−1

)
. This equality holds based on the fact that, for every k,

p
(k)
x (Z) = p

(k−1)
x (Z) · p̂(k−1)x (Z) (see Claim 2).

The checks above can be seen as a way to progressively build trust in the
elements X1, . . . , Xδ. However for it to work we need that for a given k both
elements of the previous pair (Xk−1, X̂k−1) are deemed correct.

– In this step we show how to enable the verification of the correctness of X̂k.
This cannot be done via a quadratic equation, as we observed for Xk, but it
is possible by letting the prover provide additional hints to the verifier.
The main idea of this step is that, for k = 1 to δ − 1, we can factor p̂(k)x (Z)
as the product of 2k polynomials (implicitly) known to the verifier, namely

p̂(k)x (Z) =

2k+1−1∏
`=2k

φ(`)x (Z) (cf. Section 4.2, Claim 1)

To let the verifier check this factorization with a pairing computation, we
break the verification of this product into a set of ≈ 2k quadratic equations.
The idea is that, for every k, the prover builds a binary tree of height k in
which the 2k polynomials are the leaves and then are multiplied pair-wise in
a bottom-up tree fashion, i.e., each node of the tree is the multiplication of
its child nodes. More precisely, if we index the nodes of the k-th tree with
an integer 1 ≤ µ ≤ 2k+1 − 1, then an internal node µ ∈ {1, . . . , 2k − 1}
of the k-th tree is a group element Ψk,µ, which encodes the product of the
polynomials encoded in the two child nodes Ψk,2µ and Ψk,2µ+1. Instead, the
leaves are the elements {Φ` = [φ

(`)
x (α)]b}2

k+1−1
`=2k

(where b = (` mod 2) + 1)
that are included in the commitment. In detail, the computation of all the
internal nodes Ψk,µ proceed as follows.
For every k = 2, . . . , δ−1 and µ = 2k, . . . , 2k+1−1, initialize the polynomials
ψk,µ(Z) := φ

(µ)
x (Z). These are the leaves of the k-th tree. Next, for µ =

2k − 1, . . . , 2, compute

Ψk,µ :=

{
[ψk,2µ(α) · ψk,2µ+1(α)]1 if µ even
[ψk,2µ(α) · ψk,2µ+1(α)]2 if µ odd

14 Dario Catalano, Dario Fiore, and Ida Tucker

Note that we do not compute the root node Ψk,1 but only stop at its children
Ψk,2, Ψk,3. The root is indeed the element X̂k already computed in the first
step of this Open algorithm.

– Finally, we compute a linear-map evaluation proof for the commitment Xδ

as follows. For every i = 1 to m, take the linear form f̂ i : Fnd → F such that
fi(x) = f̂

>
i · x(δ), and define the matrix F ∈ Fm×N that has f̂

>
i in the i-th

row. We generate a proof π̂ ∈ G1 for y = F · x(δ) as

π̂ :=
∑
i∈[m]

j,k∈[N]:j 6=k

Fi,j · x(δ)k · [α
N+1−j+kβi]1

– Return π := ({Xk}δk=1, {X̂k, {Ψk,µ}2
k−1
µ=2 }

δ−1
k=1, π̂).

Ver(ck, C, π,f ,y) Parse the commitment as C := (X0, X̂0, {Φ`}d−1`=2), and the

proof π := ({Xk}δk=1, {X̂k, {Ψk,µ}2
k−1
µ=2 }

δ−1
k=1, π̂) as returned by Open.

Output 1 if all the following checks pass and 0 otherwise:
– For k = 1 to δ − 1 and µ ∈ [2k, 2k+1 − 1] set Ψk,µ := Φµ.
– For k = 2 to δ−1, check the validity of the k-th tree of elements {Ψk,µ}2

k−1
µ=2 .

First, check all the internal nodes, bottom-up:

for k = 2 . . . δ − 1, for µ = 2k − 1 . . . 2 :

e(Ψk,2µ, Ψk,2µ+1)
?
=

{
e(Ψk,µ, [1]2) if µ even
e([1]1, Ψk,µ) if µ odd

(1)

Second, check the roots of the trees:

for k = 1 . . . δ − 1 : e([1]1, X̂k)
?
= e(Ψk,2, Ψk,3) (2)

– Check the validity of the chain of commitments:

for k = 1 . . . δ : e(Xk, [1]2)
?
= e(Xk−1, X̂k−1) (3)

– Define the matrix F from f as in the Open algorithm, and check the proof
for the linear map:

e

Xδ,
∑
i∈[m]
j∈[N]

Fi,j · [αN+1−jβi]2

 ?
= e (π̂, [1]2) ·e

(
m∑
i=1

yi · [αβi]1, [αN]2

)
(4)

It is easy to see that our commitments are additively homomorphic and that
the scheme has efficient amortized verification as the verifier can precompute∑
i∈[m],j∈[N] Fi,j · [αN+1−jβi]2. We refer to the full version for further details

about these properties as well as for a proof that the openings are linearly ag-
gregatable in the sense of Def. 7.

4. ADDITIVE-HOMOMORPHIC FC FOR POLYNOMIALS 15

Compactness. In our scheme, an opening consists of 2δ +
∑δ−1
k=2(2k − 2) = d

group elements, and a commitment also comprises d elements. Since the degree
is assumed to be a constant, d = O(1), compactness follows.

Efficiency. It is easy to see that the complexity of Com is O(nd), while Ver takes
timeO(d+|y|+|f |) (and theO(|f |) part can be precomputed when using efficient
verification). The most complex and computationally heavy procedure of our
scheme is the Open algorithm, whose time complexity is O(mdnd log n), which
we justify as follows. Computing the commitments (X1, . . . , Xδ, X̂1, . . . , X̂δ−1)

in the first and second step takes time at most
∑δ
k=0O(n2

k

) which is O(δnd).
Computing all the group elements Ψk,µ in the third step can take time at most
O(d2nd log n). This estimation is obtained by observing that: every ψk,µ(Z) has
degree < nd (this is a non-tight worst case analysis, as many of them actually
have much lower degree); for each node of the tree the polynomial ψk,µ(Z) can
be computed via a multiplication of its children polynomials which, using FFT,
takes time O(dnd log n). So by summing over all the d elements {ψk,µ}k,µ, we
obtain the above estimation. Finally, the generation of π̂ in the last step takes
O(mN logN) = O(mdnd log n). This follows from an observation that, for every
row i = 1 to m, the coefficients of the polynomial in α of degree < 2N can be
computed using an FFT-based multiplication instead of going over all the N2

indices j, k.

4.2 Proof of Correctness

To prove correctness we proceed one by one on the equations of the verification
algorithm. We begin recalling the definition of the polynomials

p(k)x (Z) :=

n2k∑
j=1

x
(k)
j · Z

j , p̂(k)x (Z) := p(k)x (Zn
2k

)/Zn
2k

, φ(`)x (Z) := p(0)x (Zn
`

)/Zn
`

Verification equation (1). For 2 ≤ k ≤ δ − 1 and 2k ≤ µ ≤ 2k+1 − 1, the
first step of the verification algorithm sets Ψk,µ = Φµ, for 2 ≤ k ≤ δ − 1 and
2k ≤ µ ≤ 2k+1 − 1, where each Φµ is defined in Com as

Φµ =
[
φ(µ)x (α)

]
b

=
[
px(αn

µ

)/αn
µ
]
b

: b = 1 if µ even, b = 0 if µ odd

On the other hand, Open initializes the polynomials ψk,µ(Z) := φ
(µ)
x (Z) and

then, for 2 ≤ µ ≤ 2k−1, it constructs Ψk,µ = [ψk,2µ(α)·ψk,2µ+1(α)]b, with b = 1 if
µ is even and b = 2 if µ is odd. By the construction of Ψk,µ for 2 ≤ µ ≤ 2k−1, and
having observed that both algorithms start from the same leaves, it is therefore
clear that each check of equation (1) is satisfied.

Verification equation (2). The intuition is that the check e([1]1, X̂k)
?
=

e(Ψk,2, Ψk,3) is verifying whether the element X̂k =
[
p̂
(k)
x (α)

]
2
is the root of the

16 Dario Catalano, Dario Fiore, and Ida Tucker

k-th binary tree computed starting from the leaf nodes {φ(µ)x (α)}µ=2k,...,2k+1−1,
and where each node is the multiplication of its two children.

To show this, we observe that by the construction of the polynomials ψk,µ(Z)
in Open as a multiplication tree, we have that

ψk,2(Z) · ψk,3(Z) =

2k+1−1∏
`=2k

φ(`)x (Z)

The correctness of equation (2) then follows from the following Claim (whose
proof appears in the full version), which shows that the polynomial p̂(k)x (Z)

encoded in X̂k can be factored into the product
∏2k+1−1
`=2k φ

(`)
x (Z).

Claim 1 Fix any vector x(0) ∈ Fn and for any k ∈ [δ − 1], let x(k) = x(k−1) ⊗
x(k−1) and p̂(k)x (Z) =

∑n2k

j=1 x
(k)
j · Zn2k (j−1). For 2 ≤ ` ≤ d − 1, let φ(`)x (Z) =∑n

j=1 x
(0)
j · Zn

`(j−1). Then, it holds p̂(k)x (Z) =
∏2k+1−1
`=2k φ

(`)
x (Z).

Verification equation (3). By construction of Open, we have

∀k ∈ [δ] : Xk = [p(k)x (α)]1, ∀k ∈ [δ − 1] : X̂k = [p(k)x (αn
2k

)/αn
2k

]2

and by construction of Com, we have

X0 = [p(0)x (α)]1, X̂0 = [p(0)x (αn)/αn]2

Let us state the following claim (whose proof appears in the full version).

Claim 2 Fix any vector x(0) ∈ Fn and for any k ∈ [δ], let x(k) = x(k−1)⊗x(k−1)

and p̂(k)x (Z) =
∑n2k

j=1 x
(k)
j · Zn

2k (j−1). Then for every k ∈ [δ] it holds p(k)x (Z) =

p
(k−1)
x (Z) · p̂(k−1)x (Z).

Then for every 1 ≤ k ≤ δ it holds

e
(
Xk−1, X̂k−1

)
=

[
p(k−1)x (α) · p(k−1)x (αn

2k−1

)/αn
2k−1

]
T

=
[
p(k)x (α)

]
T

= e (Xk, [1]2)

Verification equation (4). By construction of Open we have

π̂ =
∑
i∈[m]

j,k∈[N]:j 6=k

Fi,j · x(δ)k · [α
N+1−j+kβi]1

4. ADDITIVE-HOMOMORPHIC FC FOR POLYNOMIALS 17

Thus, consider a correct output yi = fi(x) which, by the definition of F in Open

and Ver, is yi =
∑
j∈[N] Fi,j · x

(δ)
j . Then it holds

e

 ∑
i∈[m]

j,k∈[N]:j 6=k

Fi,j · x(δ)k · [α
N+1−j+kβi]1, [1]2

 · e
(

m∑
i=1

yi · [αβi]1, [αN]2

)

=

 ∑
i∈[m]

j,k∈[N]:j 6=k

Fi,j · x(δ)k · α
N+1−j+kβi +

∑
i∈[m],j∈[N]

Fi,j · x(δ)j · [α
N+1βi]1


T

=


 ∑
k∈[N]

x
(δ)
k · α

k


∑
i∈[m]
j∈[N]

Fi,j · αN+1−jβi



T

= e

Xδ,
∑

i∈[m],j∈[N]

Fi,j · [αN+1−jβi]2


4.3 Proof of Security

We prove the evaluation binding of our FC based on the N -Diffie-Hellman-
Exponent (N -DHE) assumption [2], which we recall below.

Definition 8 (N-DHE [2]). Let bgp = (q,G1,G2,GT , e, g1, g2) be a bilinear
group setting. The N -DHE holds if for every PPT A the following advantage is
negligible

AdvN-DHEA (λ) = Pr[A(bgp, {[αi]1, [αi]2}i∈[2N]\{N+1}) = [αN+1]1]

where the probability is over the random choice of α←$Zq and A’s random coins.

Theorem 1. If the nd-DHE assumption holds, then the scheme FC of Section
4.1 satisfies evaluation binding.

Proof. Consider an adversary A who returns a tuple (C,f ,y, π,y′, π′) that
breaks evaluation binding. Parse

π = ({Xk}δk=1, {X̂k, {Ψk,µ}2
k−1
µ=2 }

δ−1
k=1, π̂), π′ = ({X ′k}δk=1, {X̂ ′k, {Ψ ′k,µ}2

k−1
µ=2 }

δ−1
j=1, π̂

′)

and recall that by definition both proofs verify for the same commitment C =
(X0, X̂0, {Φ`}d−1`=2) and that y 6= y′. Let us call this event Win.

Let us define Coll as the event that A’s output is such that β> · (y−y′) = 0,
where β is the vector sampled in ck.

18 Dario Catalano, Dario Fiore, and Ida Tucker

We can partition adversaries in two classes: those that make Coll occur and
those that do not. Clearly it holds.

Pr[Win] ≤ Pr[Win ∧ Coll] + Pr[Win | Coll]

To prove the theorem we show that under the nd-DHE assumption both proba-
bilities are negligible.

For the first probability, Pr[Win∧Coll], it is easy to see that we can reduce it
to the discrete logarithm assumption (which is implied by nd-DHE). The idea of
the reduction is that, if β> · (y − y′) = 0 occurs then one can recover the value
of βi such that yi − y′i 6= 0. Hence a discrete logarithm adversary that receives
as input [η]1, [η]2 can choose a random index i∗←$ [m], implicitly set βi∗ = η
and perfectly simulate all the group elements of ck. If yi∗ 6= y′i∗ (which happens
with probability ≥ 1/m), then one can recover βi∗ = η. We don’t formalize this
reduction further as it is rather standard.

In the rest of the proof we focus on proving the remaining case, namely that
Pr[Win | Coll] is negligible. In particular, we show that for any PPT A there is
a PPT B such that

Pr[Win | Coll] ≤ Advn
d-DHE
B (λ)

B takes as input {[αi]1, [αi]2}i∈[2N]\{N+1}, samples β←$Fm and generates
ck, which is distributed identically to that generated by Setup.

Next, B runs (C,f ,y, π,y′, π′)← A(ck) and proceeds as follows.
It computes z := β> · y and z′ := β> · y′ (recall that conditioned on Coll,

z 6= z′) and then outputs
(z′ − z) · (π̂ − π̂′) .

Next, we claim that for a successful adversary A, B’s output is [αN+1]1.
Consider the executions of the Ver algorithm for π and π′.
First, for k = 1 to δ − 1 and µ ∈ [2k, 2k+1 − 1], let Ψk,µ and Ψ ′k,µ be the

internal variables set in the first step of the verification algorithm. We observe
that Ψk,µ = Ψ ′k,µ since in both cases (cf. the first step of Ver) they are built
from the same set of values {Φ`}d−1`=2 included in C, which is common to both
executions of Ver.

Second, we argue that by the validity of the verification equation (1) for both
proofs (and by the non-degeneracy of the pairing function) we obtain that Ψk,µ =
Ψ ′k,µ for every k = 2, . . . , δ− 1 and µ = 2j − 1, . . . , 2. We show this by induction.
Let us consider the case of µ even (µ odd is analogous). For µ = 2k−1, . . . , 2k−1,
we are checking the parents of the leaves, and it holds Ψk,2µ = Ψ ′k,2µ = Φ2µ,
Ψk,2µ+1 = Ψ ′k,2µ+1 = Φ2µ+1 since 2µ ∈ [2k, 2k+1−2] and 2µ+1 ∈ [2k+1, 2k+1−1].
Therefore, by the non-degeneracy of the pairing function we have

e(Φ2µ, Φ2µ+1) = e(Ψk,µ, [1]2)

e(Φ2µ, Φ2µ+1) = e(Ψ ′k,µ, [1]2)

}
⇒ Ψk,µ = Ψ ′k,µ

Next, using the fact Ψk,µ = Ψ ′k,µ for µ = 2k−1, . . . , 2k−1, we can apply the same
argument inductively to obtain that Ψk,µ′ = Ψ ′k,µ′ for µ

′ = 2k−1 − 1, . . . , 2k−2.
Eventually, we obtain that for all k, Ψk,µ = Ψ ′k,µ for µ = 2, 3.

5. ADDITIVE-HOMOMORPHIC FC FOR SEMI-QUADRATIC ARITHMETIC PROGRAMS 19

Third, notice that by the validity of verification equations (3) and (2) for k =
1 (and by the non-degeneracy of the pairing function) we obtain that X1 = X ′1
and X̂1 = X̂ ′1. Moving to k > 1, we can see that from the equalitiesXk−1 = X ′k−1
and X̂k−1 = X̂ ′k−1, we can derive in a similar way Xk = X ′k and X̂k = X̂ ′k. In
particular for the latter we use the conclusion of the second claim. Notice that
this argument leads to conclude that it must be the case that Xδ = X ′δ.

Finally, by the validity of the verification equation (4) for both proofs with
the same Xδ, we have

e(π̂, [1]2)e([α]1, [α
N]2)z = e(π̂′, [1]2)e([α]1, [α

N]2)z
′

⇒ π̂ − π̂′ = (z − z′) · [αN+1]1 ut

4.4 From Homogeneous to Generic Polynomials

We show how to go from an additive homomorphic FC scheme for homogenous
polynomials to an FC that supports generic multivariate polynomials of the
same degree. The basic idea is to extend vectors by prepending a 1 in the first
position and then, instead of evaluating f(x) one evaluates f̂(1,x) where f̂
is the homogeneous polynomial in n + 1 variables defined as f̂(x0, . . . , xn) :=

xd0 · f
(
x1

x0
, . . . , xnx0

)
, which is such that ∀x : f̂(1,x) = f(x).

In order to preserve the additive homomorphic property, we actually let one
commit to vectors (0,x). Then a commitment to (1,x) is obtained by adding
homomorphically (1,0) at verification time.

In terms of security, we show that the scheme from this transformation sat-
isfies evaluation binding (and thus weak evaluation binding) provided that so
does the FC we start from. See the full version for the transformation’s details.

5 Additive-Homomorphic FC for Semi-Quadratic
Arithmetic Programs

In this section we propose our second FC scheme that supports a new language
called semi-quadratic arithmetic programs (sQAP). As we show in Section 5.3,
an FC for sQAPs is sufficiently powerful to build an FC for monotone span
programs [15] and thus, using known transformations, an FC for NC1 circuits.10

In a nutshell, an sQAP checks the satisfiability of a class of quadratic equa-
tions (from which the name). More in detail, an sQAP defined by a matrix M
accepts a pair of vectors (z,y) if the linear system of equations (M | y) has a
solution w′ which is in multiplicative relation with the input z, i.e., w′ = w ◦ z
for some w. More formally:

10 It is known that a circuit in the class NC1 can be converted into a polynomial-size
boolean formula, and the latter can be turned into a monotone span program of
equivalent size, e.g. [20, Appendix G].

20 Dario Catalano, Dario Fiore, and Ida Tucker

Definition 9 (Semi-Quadratic Arithmetic Programs). A semi-quadratic
arithmetic program (sQAP) f : Fn × Fm → {true, false} over a finite field F is
defined by a matrix F ∈ Fm×n. On an input x = (z,y), f accepts (i.e., outputs
true) iff

∃w ∈ Fn : F · (w ◦ z) = y

We observe that sQAPs are a polynomial time language. Given (z,y), one can
decide as follows. Define F′ as the matrix of entries F ′i,j = Fi,j · zj and output
true if and only if ∃w ∈ Fn : F′ ·w = y (e.g., using Gaussian elimination).

5.1 Our FC for sQAPs

We present our additive-homomorphic FC for sQAPs (see sec. 1.3 for an overview).

Setup(1λ, n,m) Let m,n ≥ 1 be two integers representing the size of the sQAPs
supported by the scheme (i.e., matrices in Fm×n) and thus the length of the
input vectors (pairs in Fn × Fm). Generate a bilinear group description bgp :=
(q,G1,G2,GT , e, g1, g2) ← BG(1λ), and let F := Zq. Next, sample random
α, γ←$F,β←$Fm and output

ck :=

({[αj]1, [γj]1}j∈[n], [(αγ)n]2, {
[
αjβiγ

`
]
2
}i∈[m],j∈[n],`∈[2n],

{[αjβiγn+1]1}i∈[m],j∈[2n]\{n+1},
{[
αjβiγ

`
]
1

}
i∈[m],j,`∈[2n]: 6̀=n+1

)

Com(ck,x) Given an input x = (z,y), we compute

Cz :=
∑
j∈[n]

zj · [γj]1, Cy :=
∑
i∈[m]

yi · [αγβi]1

Note, we encode z with the polynomial pz(X) =
∑m
j=1 zj ·Xj , and thus Cz =

[pz(γ)]1. We output C := (Cz, Cy) and aux := (z,y).
Open(ck, aux,F) Let F ∈ Fm×n be a sQAP which accepts the input (z,y) in

aux. The opening algorithm performs the following steps:
– Compute a witness w ∈ Fn such that F · (w ◦ z) = y and compute a

commitment to it as W := [pw(α)]1 =
∑
j∈[n] wj · [αj]1.

– Next, we compute an encoding Φz of the matrix F ◦ Z where Z ∈ Fm×n is
the matrix with z> in every row:

Φz :=
∑
i∈[m]
j,`∈[n]

Fi,j · z` ·
[
αn+1−jβiγ

n+1+`−j]
2

Precisely, note that F◦Z is encoded in the terms including γn+1 of the above
polynomial, i.e., the (i, j)-th entry is in the term Fi,j · zj · [αn+1−jγn+1βi]2.

5. ADDITIVE-HOMOMORPHIC FC FOR SEMI-QUADRATIC ARITHMETIC PROGRAMS 21

– Finally, we compute an evaluation proof to show that the vectorw committed
in W is a solution to the linear system ((F ◦ Z) | y), i.e., (F ◦ Z) · w =
F · (w ◦ z) = y:

π̂ :=
∑
i∈[m]

j,k∈[n]:j 6=k

Fi,j · zj · wk · [αn+1−j+kβiγ
n+1]1

+
∑
i∈[m]

j,k,`∈[n]: 6̀=j

Fi,j · z` · wk ·
[
αn+1−j+kβiγ

n+1−j+`]
1

Output π := (W,Φz, π̂).
Ver(ck, C, π,F, true) First, compute Φ ←

∑
i∈[m],j∈[m] Fi,j · [(αγ)n+1−jβi]2 and

then output 1 if all the following checks are satisfied.

e (Cz, Φ)
?
= e ([1]1, Φz) (5)

e (W,Φz)
?
= e (π̂, [1]2) · e (Cy, [(αγ)n]2) (6)

We refer to the full version for the correctness proof. Here we observe that:
proofs are succinct (three group elements), and commitments are additively ho-
momorphic. Also, it is easy to see that the scheme enjoys efficient amortized
verification: VerPrep is the algorithm that on input F computes the element Φ,
and EffVer performs the two checks described in Ver.

5.2 Proof of Security

We prove the weak evaluation binding of our FC for sQAPs based on the fol-
lowing assumption that we call double parallel bilinear Diffie-Hellman exponent
(DP-BDHE) assumption, as it can be seen as a “double version” of the PBDHE
assumption introduced by Waters in [26]. In the full version we justify (n,m)-
DP-BDHE in the generic group model.

Definition 10 ((n,m)-DP-BDHE assumption). Let bgp = (q,G1,G2,GT , e,
g1, g2) be a bilinear group setting. The (n,m)-DP-BDHE holds if for every n,m =
poly(λ) and any PPT A, the following advantage is negligible

Adv
(n,m)-DP -BDHE
A (λ) = Pr[A(bgp, Ω) = [αn+1γn+1δ]T] where

Ω :=



{
[αj]1, [γ

j]1
}
j∈[n] ,

{
[αjβiγ

n+1]1
}
i∈[m],j∈[2n]
j 6=n+1

,
{[
αjβiγ

`
]
1

}
i∈[m],j,`∈[2n]

` 6=n+1

[(αγ)n]2,
{[
αjβiγ

`
]
2

}
i∈[m],j∈[n],`∈[2n] ,{[

δ
βk

]
2

}
k∈[m]

,
{[

αjβiγ
n+1δ

βk

]
2

}
j∈[n],i,k∈[m]

i 6=k
,
{[

αjβiγ
`δ

βk

]
2

}
i,k∈[m],j∈[n]
`∈[2n]\{n+1}


and the probability is over the random choices of α, γ, δ←$Zq, β←$Zmq and A’s
random coins.

22 Dario Catalano, Dario Fiore, and Ida Tucker

Theorem 2. If the (n,m)-DP-BDHE assumption holds then the FC scheme of
Section 5.1 satisfies weak evaluation binding.

Proof. Let A be a PPT adversary against the weak evaluation binding of the
FC scheme. We use A to build a PPT adversary B against the (n,m)-DP-BDHE
assumption. B runs on input the bilinear group description and the list of group
elements Ω.
B takes a subset of the elements in Ω, sets ck as below, and runs A(ck).

ck :=

({[αj]1, [γj]1}j∈[n], [(αγ)n]2, {
[
αjβiγ

`
]
2
}i∈[m],j∈[n],`∈[2n],

{[αjβiγn+1]1}i∈[m],j∈[2n]\{n+1},
{[
αjβiγ

`
]
1

}
i∈[m],j,`∈[2n]:` 6=n+1

)

Let A’s output be ((z,y),F, true, π). If A is successful we have that: (i) the
proof is valid for the commitment C = Com(ck, (z,y)), and (ii) the sQAP does
not accept (z,y). If we parse π := (W,Φz, π̂), condition (i) means

e ([pz(γ)]1, Φ) = e ([1]1, Φz) (7)

e (W,Φz) = e (π̂, [1]2) · e
(

[αγβ>y]1, [(αγ)n]2

)
(8)

while condition (ii) means that for F′ = (Fi,j · zj)i,j

@w ∈ Fn : F′ ·w = y (9)

As first step, for every k ∈ [m], B computes π′k := e
(
π̂,
[
δ
βk

]
2

)
. By the

construction of Φ in the Ver algorithm and by equation (7) we have:

Φz =

∑
`∈[n]

z` · γ`
 ·

 ∑
i∈[m],j∈[n]

Fi,j · (αγ)n+1−jβi


2

=
∑
i∈[m]
j∈[n]

Fi,j · zj · [αn+1−jβiγ
n+1]2 +

∑
i∈[m]

j,`∈[n]:` 6=j

Fi,j · z` ·
[
αn+1−jβiγ

n+1−j+`]
2

Hence, by applying equation (8), for every k ∈ [m], it holds

π′k = e

W, ∑
j∈[n]

Fk,j · zj ·
[
αn+1−jγn+1δ

]
2

 · [−yk · (αγ)n+1δ
]
T
·

e

W, ∑
i∈[m]\{k}
j∈[n]

Fi,j · zj ·
[
αn+1−jβiγ

n+1δ

βk

]
2

 ·

e

W, ∑
i∈[m]

j,`∈[n]: 6̀=j

Fi,j · z` ·
[
αn+1−jβiγ

n+1−j+`δ

βk

]
2

 ·
− ∑

i∈[m]\{k}

yi ·
(αγ)n+1βiδ

βk


T

5. ADDITIVE-HOMOMORPHIC FC FOR SEMI-QUADRATIC ARITHMETIC PROGRAMS 23

As the second step, for every k ∈ [m], B computes

π∗k := π′k · e

W, − ∑
i∈[m]\{k}
j∈[n]

Fi,j · zj ·
[
αn+1−jβiγ

n+1δ

βk

]
2

 ·

e

W,− ∑
i∈[m]

j,`∈[n]:` 6=j

Fi,j · z` ·
[
αn+1−jβiγ

n+1−j+`δ

βk

]
2

 ·

e

[(αγ)n]1 ,
∑

i∈[m]\{k}

yi ·
[
αγδβi
βk

]
2


= e

W, ∑
j∈[n]

Fk,j · zj ·
[
(αγ)n+1−jδ

]
2

 · [−yk · (αγ)n+1δ
]
T

Notice that the elements above can be efficiently computed by B, given the
group elements included in its input Ω. In particular, for every j, ` ∈ [n] such
that ` 6= j (and any i, k ∈ [m]), notice that

[
αn+1−jβiγ

n+1−j+`δ
βk

]
2
is part of{[

αj
′
βiγ

`′δ
βk

]
2

}
j′∈[n],`∈[2n]\{n+1}

.

If the sQAP is not satisfied, i.e., condition (9) holds, it means that (F′ | y)
is an inconsistent system of equations, thus there exists a vector c ∈ Fm such
that c> · F′ = 0> and c> · y = τ 6= 0. Let V := {v · c : v ∈ F}. Then any vector
v ∈ V is such that

v> · F′ = (0, . . . , 0) ∧ v> · y 6= 0

In particular, one of them, u = τ−1 · c, is such that u> · y = 1. So, B finds u
such that

u> · (F′ | y) = (0, · · · , 0, 1) (10)

(e.g., by Gaussian elimination), and then B computes and returns

∆∗ =
∏
k∈[m]

(π∗k)−uk

We show below that, conditioned on A being successful, ∆∗ = [(αγ)n+1δ]T ,
and thus B succeeds in breaking the (n,m)-DP-BDHE assumption.

Expanding each term π∗`,k we have

∆∗ = e

W, −∑
j∈[n]

[
(αγ)n+1−jδ

]
2

∑
k∈[m]

Fk,j · zj · uk

 ·
(αγ)n+1δ

∑
k∈[m]

ykuk


T

The equality ∆∗ = [(αγ)n+1δ]T follows from the fact that, by equation (10), we
have that for every j ∈ [n],

∑
k∈[m] uk · Fk,j · zj =

∑
k∈[m] uk · F ′k,j = 0 and that∑

k∈[m] uk · yk = 1. ut

24 Dario Catalano, Dario Fiore, and Ida Tucker

5.3 From FC for sQAPs to an FC for monotone span programs

Here we show how to construct an FC for monotone span programs from an
additive-homomorphic FC for sQAPs, which can be instantiated using the scheme
presented in section 5.1. We instantiate the same construction with vectors of
length n+ 1 so that the commitment to

We recall the notion of (monotone) span programs (MSP) of Karchmer and
Wigderson [15].

Definition 11 (Monotone Span Programs [15]). A (monotone) span pro-
gram for attribute universe [n] is a pair (M, ρ) where M ∈ F`×m and ρ : [`] →
[n]. Given an input x ∈ {0, 1}n, we say that

(M, ρ) accepts x iff (1, 0 . . . , 0) ∈ span〈Mx〉

where Mx denotes the matrix obtained from M by taking only the i-th rows Mi

for which xρ(j) = 1, and span is the linear span of row vectors over F.

So, (M, ρ) accepts x iff there exist w ∈ F` such that∑
i:xρ(i)=1

wi ·Mi = (1, 0, . . . , 0)

Notice that the MSP can be evaluated in polynomial time by using Gaussian
elimination to find w.

As in other cryptographic works, e.g., [19], we work with a restricted version
of MSPs in which each input xi is read only once. Hence, ` = n and ρ is a
permutation, which (up to a reordering of the rows of M) can be assumed to
be the identity function. Notice that the one-use restriction can be removed by
working with larger input vectors of length k ·n in which each entry xi is repeated
k times, if k is an upper bound on the input’s fan out.

Therefore, in what follows we assume a monotone span program defined by
a matrix M ∈ Fn×m and we say that

M accepts x iff ∃w ∈ Fn : (w ◦ x)> ·M = (1, 0 . . . , 0)

It is easy to see that MSPs are an instance of the sQAPs of Definition 9. Given
M, set F := M> and consider sQAP inputs (z,y) := (x, (1, 0 . . . , 0)>). Then it
is clear that the MSP M accepts x iff the sQAP M> accepts (x, (1, 0 . . . , 0)>).

We can use this relation to build an FC for monotone span programs from an
FC for sQAP. In particular, we can do it in such a way to preserve the additive-
homomorphic property, which allows us to use this scheme in the application to
homomorphic signatures of section 6.

FC for MSPs from FC for sQAPs. Let FC′ be a functional commitment
scheme for sQAPs. We build a scheme FC for monotone span programs as follows.

Setup(1λ, n,m) output ck← Setup′(1λ, n,m)

6. HOMOMORPHIC SIGNATURES FROMADDITIVE-HOMOMORPHIC FUNCTIONAL COMMITMENTS 25

Com(ck,x) Output (C, aux)← Com′(ck, (x,0))

Open(ck, aux,M) Assume aux is the auxiliary information of a commitment to
a pair of vectors (x,0). The opening proceeds as follows.
– Compute a commitment to the vector (0, (1,0)) without using random coins:

(C1, aux1)← Com(ck, (0, (1,0)); ∅).
– Use the additive homomorphism to compute the auxiliary information corre-

sponding to the commitment to (x, (1,0)): ˆaux← FC′.Addaux(ck, aux, aux1).
– Let F := M> and run π ← FC′.Open(ck, ˆaux,F).
Return π.

Ver(ck, C, π,M, true) Compute (C1, aux1) ← Com(ck, (0, (1,0)); ∅) and Ĉ ←
FC′.Add(ck, C, C1). Output FC′.Ver(ck, Ĉ, π,M>, true).

We state the following theorem. The proof easily follows from the characteriza-
tion of MSPs from sQAP mentioned earlier.

Theorem 3. If FC′ is a weak evaluation binding FC for sQAP, then FC is a
weak evaluation binding FC for MSPs.

Remark 1. We note that our FCs for sQAPs and MSPs allow the prover to
show that the program accepts, but not that it rejects. We believe that the
schemes could be changed to achieve this property and we leave it for future work.
However, we observe that proving only acceptance is sufficient when the MSP is
used to express that a circuit C outputs 1, due to the following observation. If
the claim is that C outputs 0, prover and verifier could switch to use C̄ (that is
C with a negated output), build an MSP for it, and show it accepts.

6 Homomorphic signatures from additive-homomorphic
functional commitments

Homomorphic Signatures. We recall the definition of homomorphic signa-
tures (HS) of [1], extended to work with labeled programs [11], as used in several
prior works, e.g., [7, 6].

In an HS scheme, the signer can sign a set of messages {xi} so that anyone
can later compute a function f on the signed messages and obtain a signature
that certifies the correctness of the result. Each set of messages is grouped into
a “dataset” which has an identifier ∆ (e.g., the filename); inside such dataset
each message xi is assigned a “label” τi (e.g., its position). So, more precisely,
in HS the signer signs a collection of messages (xi) with respect to a dataset
identifier ∆ and a label τ . Evaluation instead consists in executing a function f
on the messages associated to some labels τ1, . . . , τn of a dataset ∆. A property
that makes HS an interesting primitive is that the signatures resulted from the
evaluation are succinct, i.e., of size at most logatithmic in the input size. In this
paper we generalize HS to the case of functions with multiple outputs and define
the notion of compactness, which says that signatures are succinct with respect
to both input and output size. We provide below formal definitions.

26 Dario Catalano, Dario Fiore, and Ida Tucker

Labeled Programs [11]. Let L be the label space (e.g., L = {0, 1}∗ or L = [n]).
A labeled program P is a tuple (f, τ1, ..., τn) where f : Xn → Xm and every τi ∈ L
is the label of the i-th input of f . Given a function g : X ` → Xm, we can compose
t labeled programs P1, . . . ,Pt withm1, . . . ,mt outputs respectively, into P∗. The
latter, denoted as P∗ = g(P1, . . . ,Pt), is the program obtained by evaluating g
on the ` =

∑t
i=1mi outputs of P1, . . . ,Pt. The labeled inputs of P∗ are the

distinct labeled inputs of P1, . . . ,Pt (all inputs with the same label are merged
into a single input of P∗). If fid : X → X denotes the identity function and
τ ∈ L, Iτ = (fid, τ) is the identity program with label τ .

Definition 12 (Homomorphic Signature). A homomorphic signature scheme
HS is a tuple of PPT algorithms (KeyGen,Sign,Ver,Eval) that work as follows
and satisfy authentication correctness, evaluation correctness and succinctness.

KeyGen(1λ,L)→ (sk, pk) Given the security parameter λ and the label space L,
outputs a public key pk and a secret key sk. The public key pk defines the
message space X and the set F of admissible functions.

Sign(sk, ∆, τ, x)→ σ On input the secret key sk, a dataset identifier ∆ ∈ {0, 1}∗,
a label τ ∈ L, and a message x ∈ X , outputs a signature σ.

Eval(pk, f, σ1, . . . , σn)→ σ On input the public key pk, a function f : Xn → Xm
in the class F and a tuple of signatures (σi)

n
i=1, outputs a new signature σ.

Ver(pk,P, ∆,y, σ)→ {0, 1} On input the public key pk, a labeled program P =
(f, τ1, . . . , τn) with f : Xn → Xm, a dataset identifier ∆, a value y ∈ Xm, and
a signature σ, outputs either 0 (reject) or 1 (accept).

Authentication Correctness. Informally, authentication correctness means
that a “fresh” signature generated by Sign on message x and label τ verifies
correctly for x as output of the identity program Iτ . More formally, a scheme
HS satisfies authentication correctness if for a given label space L, all key pairs
(sk, pk) ← KeyGen(1λ,L), any label τ ∈ L, dataset identifier ∆ ∈ {0, 1}∗, and
any signature σ ← Sign(sk, ∆, τ, x), Ver(pk, Iτ , ∆, x, σ) = 1 holds with all but
negligible probability.

Evaluation Correctness. Informally, this property means that executing Eval
with a function g on signatures (σ1, . . . , σt), where σi verifies for xi as output of
Pi, produces a signature σ that verifies for g(x1, . . . , xt) as output of the composed
program g(P1, . . . ,Pt). More formally, fix a key pair (pk, sk) ← KeyGen(1λ,L),
a function g : X ` → Xm, and a set of program/message/signature triples
{(Pi,xi, σi)}ti=1 such that Ver(pk,Pi, ∆,xi, σi) = 1. If x∗ = g(x1, . . . ,xt), P∗ =
g(P1, . . . ,Pt), and σ∗ = Eval(pk, g, σ1, . . . , σt), then Ver(pk,P∗, ∆,x∗, σ∗) = 1
holds with all but negligible probability.

Succinctness/Compactness. An HS scheme HS is succinct (resp. compact)
if there exists a universal polynomial p(λ) such that for any keys (pk, sk) ←
KeyGen(1λ,L), integer n = poly(λ) and function f : Xn → X in F (resp. integers
n,m = poly(λ) and function f : Xn → Xm in F), messages (x1, . . . , xn) ∈ Xn,
labels (τ1, . . . , τn) ∈ Ln, and dataset ∆ ∈ {0, 1}∗, if σi ← Sign(sk, ∆, τi, xi) and
σ ← Eval(pk, f, σ1, . . . , σn), then |σ| ≤ p(λ) · log n (resp. |σ| ≤ p(λ) · log n · logm).

6. HOMOMORPHIC SIGNATURES FROMADDITIVE-HOMOMORPHIC FUNCTIONAL COMMITMENTS 27

Expstrong-Ad-UF
A,HS (λ)

T ← ∅; (pk, sk)←$KeyGen(1λ,L)
(P∗,∆∗, x∗, σ∗)← AOSign(·)(pk) // signing query phase

bVer ← Ver(pk,P∗,∆∗,m∗, σ∗) // the signature verifies

b1 ← ∃j : (∆∗, τ∗j , ·, ·) /∈ T // type-1: new dataset/label

b2 ← x∗ 6= f∗(x1, . . . , xn) // type-2: all inputs queried

where ∀i : (∆∗, τ∗i , xi, ·) ∈ T // but wrong result

return bVer ∧ (b1 ∨ b2)

Oracle OSign(∆, τ,m)

if (∆, τ, ·, ·) /∈ T then

σ ← Sign(sk,∆, τ, x)

T ← T ∪ {(∆, τ, x, σ)}
return σ

else return ⊥

Fig. 1: Strong adaptive security experiment for homomorphic signatures.

Remark 2 (Single-input vs. multi-input HS). The HS notion presented here al-
lows one to sign the messages of a dataset one by one. We call such a scheme
a multi-input HS. In contrast, single-input HS are HS schemes where Sign only
works on input all the messages of the dataset.

Security Informally, an HS is secure if an adversary, without knowledge of the
secret key, can only produce signatures that are either the ones obtained from the
signer, or they are signatures obtained through the Eval algorithm on signatures
obtained from the signer. The formalization of this intuition can have different
strengths according to how a forgery is defined. We refer to [6] for a discussion
on different notions of unforgeability. In this work we adopt the simplest and
strongest notion from [6], called strong-adaptive security.

Definition 13 (Strong Adaptive Security). Let Expstrong-Ad-UF
A,HS (λ) be the se-

curity experiment of Fig. 1, and let Advstrong-Ad-UF
A,HS (λ) = Pr[Expstrong-Ad-UF

A,HS (λ) =
1] be the advantage of A against the strong adaptive security of scheme HS. We
say that HS is strong adaptive secure if for every PPT adversary A there exists
a negligible function ε(λ) such that Advstrong-Ad-UF

A,HS (λ) ≤ ε(λ).

HS can also satisfy a privacy property, called context hiding [1], which infor-
mally says that signatures on outputs do not leak information about the inputs.
An HS can have efficient amortized verification [7]; in brief this means that given
f one can precompute a function-specific verification key which can be used later
to verify any signature for f ’s outputs in at most polylogarithmic time. We give
formal definitions of these properties in the full version.

6.1 From FCs to HS

Let FC be an additively homomorphic functional commitment scheme for a class
of functions F , such that the commitments are in C and FC.Add : Cn → C is its
homomorphic addition algorithm. Let LHS be an HS with message space C and
that supports the evaluation of FC.Add. We use these two schemes to build an

28 Dario Catalano, Dario Fiore, and Ida Tucker

KeyGen(1λ, [n])

ck← FC.Setup(1λ, n,m)

(skLHS, pkLHS)← LHS.KeyGen(1λ, [n])

pk := (pkLHS, ck), sk := skLHS

return (sk, pk)

Eval(pk, f, σ1, . . . , σt)

C ← FC.Add(ck, C1, . . . , Ct)

aux← FC.Addaux(ck, aux1, . . . , auxt)

σ̂ ← LHS.Eval(pkLHS,FC.Add, σ̂1, . . . , σ̂t)

π ← FC.Open(ck, aux, f̂i)

return σf,y := (σ̂, C, πf)

Sign(sk, ∆, i, xi)

Let ei s.t. ei,i = 1, ei,j = 0 ∀i 6= j

(Ci, auxi)← FC.Com(ck, xi · ei)
σ̂i ← LHS.Sign(skLHS,∆, i, Ci)

return σi := (σ̂i, Ci, auxi, i)

Ver(pk, (f, i), ∆,y, σ)

bLHS ← LHS.Ver(pkLHS, (FC.Add, i),∆,C, σ̂)

if σ = (σ̂, C, aux, i)

π ← FC.Open(ck, aux, f̂id,i)

bFC ← FC.Ver(ck, C, f̂i,y, π)

return bFC ∧ bLHS

Fig. 2: HS from additive FC and LHS for FC.Add.

HS scheme HS for functions in F . The scheme is described in Fig. 2. We refer
to the introduction for an intuitive explanation of the construction.

Below, given a labeled program (f, i) with f : X t → Xm and i = (i1, . . . , it) ∈
[n]t, we define f̂i : Xn → Xm as the n-input function that, ignoring inputs at
positions j /∈ i, works identically as f .

The correctness of the scheme can be checked by inspection. In the following
theorem we prove its security. For lack of space, we defer to the full version for
the proof, further propertied of this construction, and a discussion on how to
instantiate the LHS scheme based on [8].

Theorem 4. If LHS is strongly-adaptive secure and FC is weak evaluation bind-
ing, then HS is strongly-adaptive secure.

Acknowledgements. We would like to thank Pierre Bourse for initial discus-
sions that inspired this work, and Ignacio Cascudo for a useful discussion.

This work has received funding in part from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation
program under project PICOCRYPT (grant agreement No. 101001283), by the
Spanish Government under projects SCUM (ref. RTI2018-102043-B-I00), and
RED2018-102321-T, by the Madrid Regional Government under project BLO-
QUES (ref. S2018/TCS-4339), by a research grant from Nomadic Labs and the
Tezos Foundation, and by the Programma ricerca di ateneo UNICT 35 2020-22
linea 2 and by research gifts from Protocol Labs.

References

1. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,

6. HOMOMORPHIC SIGNATURES FROMADDITIVE-HOMOMORPHIC FUNCTIONAL COMMITMENTS 29

Heidelberg (May 2011). https://doi.org/10.1007/978-3-642-20465-4_10
2. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with

short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (Aug 2005). https://doi.org/10.
1007/11535218_16

3. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (Aug 2002). https://doi.org/10.1007/
3-540-45708-9_5

4. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(Feb / Mar 2013). https://doi.org/10.1007/978-3-642-36362-7_5

5. Catalano, D., Fiore, D., Messina, M.: Zero-knowledge sets with short proofs. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 433–450. Springer,
Heidelberg (Apr 2008). https://doi.org/10.1007/978-3-540-78967-3_25

6. Catalano, D., Fiore, D., Nizzardo, L.: On the security notions for homomor-
phic signatures. In: Preneel, B., Vercauteren, F. (eds.) ACNS 18. LNCS, vol.
10892, pp. 183–201. Springer, Heidelberg (Jul 2018). https://doi.org/10.1007/
978-3-319-93387-0_10

7. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with effi-
cient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (Aug
2014). https://doi.org/10.1007/978-3-662-44371-2_21

8. Catalano, D., Marcedone, A., Puglisi, O.: Authenticating computation on groups:
New homomorphic primitives and applications. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 193–212. Springer, Heidelberg
(Dec 2014). https://doi.org/10.1007/978-3-662-45608-8_11

9. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (Aug 2013). https:
//doi.org/10.1007/978-3-642-40084-1_8

10. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (May 2013).
https://doi.org/10.1007/978-3-642-38348-9_37

11. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 301–320. Springer, Heidelberg (Dec 2013). https://doi.org/10.1007/
978-3-642-42045-0_16

12. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp.
99–108. ACM Press (Jun 2011). https://doi.org/10.1145/1993636.1993651

13. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM
STOC. pp. 469–477. ACM Press (Jun 2015). https://doi.org/10.1145/2746539.
2746576

14. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable
and universal common reference strings with applications to zk-SNARKs. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol.
10993, pp. 698–728. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96878-0_24

https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-540-78967-3_25
https://doi.org/10.1007/978-3-540-78967-3_25
https://doi.org/10.1007/978-3-319-93387-0_10
https://doi.org/10.1007/978-3-319-93387-0_10
https://doi.org/10.1007/978-3-319-93387-0_10
https://doi.org/10.1007/978-3-319-93387-0_10
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-45608-8_11
https://doi.org/10.1007/978-3-662-45608-8_11
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24

30 Dario Catalano, Dario Fiore, and Ida Tucker

15. Karchmer, M., Wigderson, A.: On span programs. In: [1993] Proceedings of the
Eigth Annual Structure in Complexity Theory Conference. pp. 102–111 (1993)

16. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to poly-
nomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 177–194. Springer, Heidelberg (Dec 2010). https://doi.org/10.
1007/978-3-642-17373-8_11

17. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated ver-
ifier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477,
pp. 622–651. Springer, Heidelberg (May 2019). https://doi.org/10.1007/
978-3-030-17656-3_22

18. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS,
vol. 11692, pp. 530–560. Springer, Heidelberg (Aug 2019). https://doi.org/10.
1007/978-3-030-26948-7_19

19. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully se-
cure functional encryption: Attribute-based encryption and (hierarchical) inner
product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 62–91. Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/
978-3-642-13190-5_4

20. Lewko, A.B., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (May 2011). https://doi.org/10.1007/978-3-642-20465-4_30

21. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (Aug
2013). https://doi.org/10.1007/978-3-642-40084-1_17

22. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assump-
tions. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.)
ICALP 2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (Jul 2016). https:
//doi.org/10.4230/LIPIcs.ICALP.2016.30

23. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (Feb 2010). https://doi.org/10.
1007/978-3-642-11799-2_30

24. Lipmaa, H., Pavlyk, K.: Succinct functional commitment for a large class of arith-
metic circuits. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS,
vol. 12493, pp. 686–716. Springer, Heidelberg (Dec 2020). https://doi.org/10.
1007/978-3-030-64840-4_23

25. Peikert, C., Pepin, Z., Sharp, C.: Vector and functional commitments from
lattices. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol.
13044, pp. 480–511. Springer, Heidelberg (Nov 2021). https://doi.org/10.1007/
978-3-030-90456-2_16

26. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (Mar 2011).
https://doi.org/10.1007/978-3-642-19379-8_4

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-40084-1_17
https://doi.org/10.1007/978-3-642-40084-1_17
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-030-64840-4_23
https://doi.org/10.1007/978-3-030-64840-4_23
https://doi.org/10.1007/978-3-030-64840-4_23
https://doi.org/10.1007/978-3-030-64840-4_23
https://doi.org/10.1007/978-3-030-90456-2_16
https://doi.org/10.1007/978-3-030-90456-2_16
https://doi.org/10.1007/978-3-030-90456-2_16
https://doi.org/10.1007/978-3-030-90456-2_16
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-19379-8_4

	Additive-Homomorphic Functional Commitments and Applications to Homomorphic Signatures
	Introduction
	Our results
	Related work
	Technical overview

	Preliminaries
	Functional Commitments
	Binding notions of FCs
	Additional properties of FCs

	Additive-Homomorphic FC for Polynomials
	Additive-homomorphic FC for Homogeneous Polynomials
	Proof of Correctness
	Proof of Security
	From Homogeneous to Generic Polynomials

	Additive-Homomorphic FC for Semi-Quadratic Arithmetic Programs
	Our FC for sQAPs
	Proof of Security
	From FC for sQAPs to an FC for monotone span programs

	Homomorphic signatures from additive-homomorphic functional commitments
	From FCs to HS

