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Abstract. A number of recent works have constructed cryptographic
protocols with flavors of adaptive security by having a randomly-chosen
anonymous committee run at each round. Since most of these protocols
are stateful, transferring secret states from past committees to future,
but still unknown, committees is a crucial challenge. Previous works
have tackled this problem with approaches tailor-made for their specific
setting, which mostly rely on using a blockchain to orchestrate auxil-
iary committees that aid in the state hand-over process. In this work,
we look at this challenge as an important problem on its own and ini-
tiate the study of Encryption to the Future (EtF) as a cryptographic
primitive. First, we define a notion of an EtF scheme where time is de-
termined with respect to an underlying blockchain and a lottery selects
parties to receive a secret message at some point in the future. While
this notion seems overly restrictive, we establish two important facts: 1. if
used to encrypt towards parties selected in the “far future”, EtF implies
witness encryption for NP over a blockchain; 2. if used to encrypt only
towards parties selected in the “near future”, EtF is not only sufficient
for transferring state among committees as required by previous works,
but also captures previous tailor-made solutions. To corroborate these
results, we provide a novel construction of EtF based on witness encryp-
tion over commitments (cWE), which we instantiate from a number of
standard assumptions via a construction based on generic cryptographic
primitives. Finally, we show how to use “near future” EtF to obtain “far
future” EtF with a protocol based on an auxiliary committee whose com-
munication complexity is independent of the length of plaintext messages
being sent to the future.

1 Introduction

Most cryptographic protocols assume that parties’ identities are publicly known.
This is a natural requirement, since standard secure channels are identified by a
sender and a receiver. However, this status quo also makes it easy for adaptive (or
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proactive) adversaries to readily identify which parties are executing a protocol
and decide on an optimal corruption strategy. In more practical terms, a party
with a known identity (e.g. IP address) is at risk of being attacked.

A recent line of work [3,15,16] has investigated means for avoiding adaptive
(or proactive) corruptions by having different randomly chosen committees of
anonymous parties execute each round of a protocol. The rationale is that parties
whose identities are unknown cannot be purposefully corrupted. Hence, having
each round of a protocol executed by a fresh anonymous committee makes the
protocol resilient to such powerful adversaries. However, this raises a new issue:

How can past committees efficiently transfer secret states to future
yet-to-be-assigned anonymous committees?

1.1 Motivation: Role Assignment

The task of sending secret messages to a committee member that will be elected
in the future can be abstracted as role assignment, a notion first introduced
in [3] and further developed in [15]. This task consists of sending a message to an
abstract role R at a given point in the future. A role is just a bit-string describing
an abstract role, such as R =“party number j in round sl of the protocol Γ”.
Behind the scenes, there is a mechanism that samples the identity of a random
party Pi and associates this machine to the role R. Such a mechanism allows
anyone to send a message m to R and have m arrive at Pi chosen at some point
in the future to act as R. A crucial point is: no one should know the identity of
Pi even though Pi learns that it is chosen to act as R.

The approaches proposed in [3,15,16] for realizing role assignment all use an
underlying Proof-of-Stake (PoS) blockchain (e.g. [9]). On a blockchain, a concrete
way to implement role assignment is to sample a fresh key pair (skR, pkR) for
a public key encryption scheme, post (R, pkR) on the blockchain and somehow
send skR to a random Pi without leaking the identity of this party to anyone.
Once (R, pkR) is known, every party has a target-anonymous channel to Pi and
is able to encrypt under pkR and post the ciphertext on the blockchain. Notice
that using time-lock puzzles (or similar notions) is not sufficient for achieving
this notion, since only the party or parties elected for a role should receive a
secret message encrypted for that role, while time-lock puzzles allow any party
to recover the message if they invest enough computing time.

A shortcoming of the approaches of [3,15,16] is that, besides an underlying
blockchain, they require an auxiliary committee to aid in generating (skR, pkR)
and selecting Pi. In the case of [3], the auxiliary committee performs cheap oper-
ations but can adversarially influence the probability distribution with which Pi

is chosen. In the case of [15,16], the auxiliary committee cannot bias this proba-
bility distribution but must perform very expensive operations (using Mix-Nets
or FHE; see also Section 1.3). Moreover, these approaches have another caveat:
they can only be used to select Pi to act as R according to a probability distribu-
tion already known at the time the auxiliary committee outputs (R, pkR). Hence,
they only allow sending messages to future committees that have been recently
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elected. Later we explicitly consider this weaker setting—where we want to com-
municate with a “near-future” committee (i.e., whose distribution is known)—
and dub it “Encryption to the Current Winner4” (ECW).

In this paper we further investigate solutions to the role-assignment prob-
lem5. Taking a step back from specific solutions to this problem, we strive to
obtain non-interactive solutions to encrypting to a future role with IND-CPA
security without the aid of an auxiliary committee. We improve on solutions re-
lying on interaction with an auxiliary committee and shed light on the hardness
of achieving a fully non-interactive solution. We also discuss how to extend our
approach to IND-CCA2 security and how to allow winners of a role to authen-
ticate themselves when sending a message, achieving both goals using standard
assumptions.

1.2 Our Contributions

We look at the issue of sending messages to future roles as a problem on its
own and introduce the Encryption to the Future (EtF) primitive as a central
tool to solve it. Apart from defining this primitive and showing constructions
based on previous works, we propose constructions based on new insights and
investigate limits of EtF in different scenarios. Our general constructions for EtF
work by lifting a weaker primitive, namely encryption for the aforementioned
“near-future” setting, or ECW. Before providing further details, we summarize
our contributions as follows:

– A definition for the notion of Encryption to the Future (EtF) in terms of an
underlying blockchain and an associated lottery scheme that selects parties
in the future to receive messages for a role. We study the strength of EtF
as a primitive and prove that a non-interactive EtF scheme allowing for
encryption towards parties selected at arbitrary points in the future implies
a flavor of witness encryption for NP over a blockchain (referred to as BWE).

4 The word “winner” here refers to the party who is selected to perform a role according
to the underlying lottery of the PoS blockchain (see remainder of introduction).

5 The family of protocols we consider actually has two role-related aspects to solve.
The first—and the focus of this paper—is the aforementioned role assignment (RA)
which deals with the sending of messages to parties selected to perform future roles
of a protocol while hiding the identities of such parties. The other aspect is role
execution (RX) which focuses on the execution of the specific protocol that runs
on top of the RA mechanism, i.e., what messages are sent to which roles and what
specification the protocol implements. In [15] the so-called You Only Speak Once
(YOSO) model is introduced for studying RX. In the YOSO model the protocol
execution is between abstract roles which can each speak only once. Later these can
then be mapped to physical machines using an RA mechanism. The work of [15]
shows that given RA in a synchronous model, any well-formed ideal functionality
can be implemented in the YOSO model with security against malicious adaptive
corruption of a minority of machines. Concretely, [15] gives an ideal functionality
for RA and shows that a YOSO protocol for abstract roles can be compiled into the
RA-hybrid model to give a protocol secure against adaptive attacks.
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– A novel construction of Encryption to the Current Winner (ECW), i.e. EtF
where the receiver of a message is determined by the current state of the
blockchain, which can be instantiated without auxiliary committees from
standard assumptions via a construction based on generic primitives.

– A transformation from ECW to EtF through an auxiliary committee holding
a small state, i.e., with communication complexity independent of plaintext
size |m| (in contrast to [3,15,16] where a committee’s state grows with |m|).

– An application of ECW as a central primitive for realizing role assignment
in protocols that require it (e.g. [3,15,16]).

Our EtF notion arguably provides a useful abstraction for the problem of
transferring secret states to secret committees. Our ECW construction is the first
primitive to realize role assignment without the need for an auxiliary committee.
Moreover, building on new insights from our EtF notion and constructions, we
show the first protocol for obtaining role assignment with no constraints on when
parties are chosen to act as the role. While our protocol uses auxiliary commit-
tees, it improves on previous work by only requiring a communication complexity
independent of the plaintext length. We elaborate on our results, discussing the
intuition behind the notion of EtF, its constructions and its fundamental limits.
We also invite the reader to use Fig. 1 as reference for the discussion below.

Encryption to the Future (EtF)—Section 3. As in previous works [3,15,16], an
EtF scheme is defined with respect to an underlying PoS blockchain. We nat-
urally use core features of the PoS setting to define what “future” means. The
vast majority of PoS blockchains (e.g. [9]) associates a slot number to each block
and uses a lottery for selecting parties to generate blocks according to a stake
distribution (i.e. the probability a party is selected is proportional to the stake
the party controls). Thus, in EtF, we let a message be encrypted towards a party
that is selected by the underlying blockchain’s lottery scheme at a given future
slot. We can generalize this and let the lottery select parties for multiple roles
associated to each slot (so that committees consisting of multiple parties can be
elected at a single point in time). We note that the goal of defining EtF with
respect to an underlying blockchain is to construct it without having to assume
very strong primitives such as (extractable) witness encryption for NP6. More-
over, it is necessary to provide a non-interactive EtF scheme with a means to
publicly verify whether a given party has won the lottery to perform a certain
role. Since this lottery predicate’s output must hold for all parties, we need a
consensus mechanism that allows for all parties to agree on lottery parameter-
s/outputs while allowing for third parties to verify this result. An important
point of our EtF definition is that it does not impose any constraints on the
underlying blockchain’s lottery scheme (e.g. it is not required to be anonymous)
or on the slot when a party is supposed to be chosen to receive a message sent
to a given role (i.e. party selection for a given role may happen w.r.t. a future
stake distribution).

6 While one might define EtF in more general settings, namely without a blockchain, it
is unclear how to obtain interesting instantiations, that is from standard primitives.
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Relation to “Blockchain Witness Encryption” (BWE)—Section 8. In order to
study how hard it is to realize EtF, we show that EtF implies a version of wit-
ness encryption [14] over a blockchain (similar to that of [18] but without relying
on committees). The crux of the proof: if we can encrypt a message towards a
role assigned to a party only at an arbitrary point in the future, then we can eas-
ily construct a witness encryption scheme exploiting EtF and a smart contract
on the EtF’s underlying blockchain. We also prove the opposite direction (BWE
implies EtF), showing that the notions are similar from a feasibility standpoint.
This shows another crucial point: to implement non-interactive EtF, we would
plausibly need strong assumptions (e.g., full-blown WE). This follows by observ-
ing that existing constructions of WE over blockchains (e.g., [18]) are interactive
in the sense that they rely on a committee that holds all encrypted messages
in secret shared form and periodically re-share them. On the other hand, in the
interactive setting, we show a construction of EtF with improved communica-
tion complexity that is independent from the size (or amount) of EtF encrypted
messages: the committee only needs to hold an IBE master secret key (secret
shared) and compute secret keys for specific identities. We note that the goal of
constructing BWE from EtF is not to provide a concrete instantiation based on
existing blockchains but rather to provide evidence that EtF is hard to construct
from standard assumptions. The underlying blockchain protocol and lottery we
use are standard Proof-of-Stake based blockchains with a VRF-based lottery and
smart contracts. The only non-realistic assumption we make is that the stake is
distributed in arbitrarily (i.e. it is all locked inside one smart contract) which
is an assumption on how the blockchain is operated rather than on how it is
constructed or why it is secure.

Encryption to the Current Winner (ECW)—Section 3. By the previous result
we know that, unless we turn to strong assumptions, we may not construct a fully
non-interactive EtF (i.e., without auxiliary committees); therefore, we look for
efficient ways to construct EtF under standard assumptions while minimizing
interaction. As a first step towards such a construction, we define the notion
of Encryption to a Current Winner (ECW), which is a restricted version of
EtF where messages can only be encrypted towards parties selected for a role
whose lottery parameters are available for the current slot, the one in which we
encrypt (this is as in previous constructions [3,15,16]). Unrestricted EtF, on the
other hand, allows for encrypting a message toward lottery winners that will be
determined at any arbitrary point in the future, including parties who only join
the protocol execution far in the future (after the ciphertext has been generated).

Constructing ECW (non-interactively)—Section 5. We show that it is possible
to construct a fully non-interactive ECW scheme from standard assumptions.
Our construction relies on a milder flavor of witness encryption, which we call
Witness Encryption over Commitments (cWE) and define it in Section 4. This
primitive is significantly more restricted than full-fledged WE (see also discussion
in Remark 2), but still powerful enough: we show in Section 5.1 that ECW can be
constructed in a black-box manner from cWE, which in turn can be constructed
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from oblivious transfer and garbled circuits [7]. This construction improves over
the previous results [3,15,16] since it does not rely on auxiliary committees.

Instantiating YOSO MPC using ECW—Section 6. The notion of ECW is more
restricted than EtF, but it can still be useful in applications. We show how
to use it as a building block for the YOSO MPC protocol of [15]. Here, each
of the rounds in an MPC protocol is executed by a different committee. This
same committee will simultaneously transfer its secret state to the next (near-
future) committee, which in turn remains anonymous until it transfers its own
secret state to the next committee, and so on. This setting clearly matches
what ECW offers as a primitive, but it also introduces a few more requirements:
1. ECW ciphertexts must be non-malleable, i.e. we need an IND-CCA secure
ECW scheme; 2. Only one party is selected for each role; 3. A party is selected
for a role at random with probability proportional to its relative stake on the
underlying PoS blockchain; 4. Parties selected for roles remain anonymous until
they choose to reveal themselves; 5. A party selected for a role must be able
to authenticate messages on behalf of the role, i.e. publicly proving that it was
selected for a certain role and that it is the author of a message. We show
that all of these properties can be obtained departing from an IND-CPA secure
ECW scheme instantiated over a natural PoS blockchain (e.g. [9]). First, we
observe that VRF-based lottery schemes implemented in many PoS blockchains
are sufficient to achieve properties 1, 2 and 3. We then observe that natural block
authentication mechanisms used in such PoS blockchains can be used to obtain
property 4. Finally, we show that standard techniques can be used to obtain an
IND-CCA secure ECW scheme from an IND-CPA secure ECW scheme.

Constructing EtF from ECW (interactively)—Section 7. Since we argued the
implausibility of constructing EtF non-interactively from standard assumptions,
we study how to transform an ECW scheme into an unrestricted EtF scheme
when given access to an auxiliary committee but with “low communication” (and
still from standard assumptions). We explain what we mean by “low communi-
cation” by an example of its opposite: in previous works ([3,15,16]) successive
committees were required to store and reshare secret shares of every message to
be sent to a party selected in the future. That is, their communication complex-
ity grows both with the number and the amount and length of the encrypted
messages. In contrast, our solution has communication complexity independent
of the plaintext length. How our transformation from ECW to EtF works: we
associate each role in the future to a unique identity of an Identity Based Encryp-
tion scheme (IBE); to encrypt a message towards a role we apply the encryption
of the IBE scheme. When, at any point in the future, a party for that role is
selected, a committee generates and delivers the corresponding secret key for
that role/identity. To realize the latter step, we apply YOSO MPC instantiated
from ECW as shown in Section 6. In contrast to previous schemes, our auxiliary
committee only needs to hold shares of the IBE’s master secret key and so it
performs communication/computation dependent on the security parameter but
not on the length/amount of messages encrypted to the future.
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EtF + ECW

tIBE

cWE

BWE msNISC GC OT

+

Fig. 1. Dependency diagram for primitives in this work. Legend: primitives wrapped
in circles are introduced in this work; A→ B: “We can construct B from A”; A 99K B:
“A is a special case of B”.

1.3 Previous Works

We compare previous works related to our notions of EtF and ECW (encryption
to future and current winner, respectively) in Fig. 2.

Type Scheme Communication Committee? Interaction?

ECW

CaBKaS [3] O(1) yes yes
RPIR [16] O(1) yes yes

cWE (MS-NISC) (Sec. 4.2) O(N) no no*
cWE (GC+OT) (Sec. 4.2) O(N) no no*

EtF
IBE (Sec. 7) O(1) yes yes
WEB [18] O(M) yes yes

Full-fledged WE O(1) no no

Fig. 2. The column “Committee?” indicates whether a committee is required. The
column “Communication” refers to the communication complexity in terms of the
number of all parties N , and the number of plaintexts (called deposited secrets in [18])
M of a given fixed length. We denote by an asterisk non-interactive solutions that
require sending a first reusable message during the initial step.

Encryption to the Current Winner (ECW). We recall that ECW is an easier
setting than EtF: both the stake distribution and the randomness extracted
from the blockchain are static and known at the time of encryption. This means
that all of the parameters except the secret key of the lottery winner are available
to the encryption algorithm. We now survey works that solved this problem and
compare them to our solutions:

– “Can a Blockchain Keep a Secret?” (CaBKaS) [3]. The work of [3] ad-
dresses the setting where a dynamically changing committee (over a public
blockchain) maintains a secret. The main challenge in order for the com-
mittee to securely reshare its secret can be summarized as: how to select a
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small committee from a large population of parties so that everyone can send
secure messages to the committee members without knowing who they are?
The solution of [3] is to select the “secret-holding” committee by having an-
other committee, a “nominating committee”, that nominates members of the
former (while the members of the nominating committee are self-nominated).

One can see the nominating committee as a tool providing the ECW func-
tionality. A major caveat in such a solution, however, is that to guarantee an
honest majority in the committees, [3] can only tolerate up to 1/4 as the frac-
tion of corrupted parties. This is because corrupted nominators can always
select corrupted parties, whereas honest nominators may select corrupted
parties by chance. We can improve this through our non-interactive ECW:
we can remove the nominating committee and just let the current committee
ECW-encrypt their secret shares to the roles of the next committee.

– “Random-Index PIR” (RPIR) [16]. The recent work of [16] defines a new
flavour of Private Information Retrieval (PIR) called Random-index PIR
(or RPIR) that allows each committee to perform the nomination task
by themselves. While RPIR improves on [3] (not requiring a nominating
committee and tolerating up to 1/2 of corrupted parties), its constructions
are inefficient, either based on Mix-Nets or Fully Homomorphic Encryption
(FHE). The construction based on Mix-Nets uses k shufflers, where k is the
security parameter, and has an impractical communication complexity of
O(nk2), where n is the number of public keys that each shuffler broadcasts.
The FHE-based construction gives a total communication complexity of
O(k3) where O(k) is the length of an FHE decryption share.

WE over commitments (cWE). Benhamouda and Lin [4] defined a type of wit-
ness encryption, called “Witness Encryption for NIZK of Commitments”. In
their setting, parties first commit to their private inputs once and for all. Later,
an encryptor can produce a ciphertext so that any party with a committed in-
put that satisfies the relation (specified at encryption time) can decrypt. More
accurately, who can decrypt is any party with a NIZK showing that the com-
mitted input satisfies the relation. The authors construct this primitive based on
standard assumptions in asymmetric bilinear groups.

In our work, we generalize the encryption notion in [4], formalize it as cWE
and finally use it to construct ECW. While the original construction of [4] fits
the definition of cWE, we observe it is an overkill for our application. Specifically
our setting does not require NIZKs to be involved in encryption/decryption. We
instead give more efficient instantiations based on two-party Multi-Sender Non-
Interactive Secure Computation (MS-NISC) protocols and Oblivious Transfer
plus Garbled Circuits.

Encryption to the Future (EtF). The general notion of EtF is significantly harder
to realize than ECW (as we show in Section 8). Below we discuss natural ideas to
obtain EtF. They can be seen as illustrating two extremes where our approach
(Section 7) lies in the middle.
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– Non-Interactive—Using Witness Encryption [14]: One trivial approach to
realize EtF is to use full-fledged general Witness Encryption [14] (WE) for
the arithmetic relation R being the lottery predicate such that the party
who holds a winning secret key sk can decrypt the ciphertext. However, con-
structing a general witness encryption scheme [14] which we can instantiate
reliably is still an open problem. Existing constructions rely on very strong
assumptions such as multilinear maps, indistinguishability obfuscation or
other complexity theoretical conjectures [2]. The challenges in applying this
straightforward solution are not surprising given our result showing that EtF
implies a flavor of WE.

– Interactive—Multiple Committees and Continuous Executions of ECW: A
simple way to achieve an interactive version of EtF is to first encrypt secret
shares of a message towards members of a committee that then re-share their
secrets towards members of a future anonymous committee via an invocation
of ECW (in our instantiations or those in [3] and [16]). This is essentially
the solution proposed in CaBKaS [3] where committees interact in order to
carry a secret (on the blockchain) into the future. Notice that, for a fixed
security parameter and corruption ratio, the communication complexity of
the protocol executed by the committee in this solution depends on the
plaintext message length. On the other hand, for a fixed security parameter
and corruption ratio, the communication complexity of our committee-based
transformation from ECW to EtF is constant.

Other works. Using blockchains in order to construct non-interactive primi-
tives with game-based security has been previously considered in [17]. Other ap-
proaches for transferring secret state to future committees have been proposed
in [18], although anonymity is not a concern in this setting. On the other hand,
using anonymity to overcome adaptive corruption has been proposed in [12],
although this work considers anonymous channels among a fixed set of parties.

2 Preliminaries

Notation. For any positive integer n, [n] denotes the set {1, . . . , n}. We use λ

to denote the security parameter. We write a
$←− S to denote that a is sampled

according to distribution S, or uniformly randomly if S is a set. We write A(x; r)
to denote the output of algorithm A given an input x and a random tape r.

2.1 Proof-of-Stake (PoS) Blockchains

In this work we rely on PoS-based blockchain protocols. In such a protocol, each
participant is associated with some stake in the system. A process called leader
election encapsulates a lottery mechanism that ensures (of all eligible parties)
each party succeeds in generating the next block with probability proportional
to its stake in the system. In order to formally argue about executions of such
protocols, we depart from the framework presented in [17] which, in turn, builds
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on the analysis done in [13] and [21]. We invite the reader to re-visit the abstrac-
tion used in [17]. We present a summary of the framework in the full version [7]
and discuss below the main properties we will use in the remainder of this pa-
per. Moreover, we note that in [17] it is proven that there exist PoS blockchain
protocols with the properties described below, e.g. Ouroboros Praos [9].

Blockchain Structure. A genesis block B0 = {(Sig.pk1, aux1, stake1), . . . ,
(Sig.pkn, auxn, staken), aux} associates each party Pi to a signature scheme pub-
lic key Sig.pki, an amount of stake stakei and auxiliary information auxi (i.e. any
other relevant information required by the blockchain protocol, such as verifiable
random function public keys). A blockchain B relative to a genesis block B0 is
a sequence of blocks B1, . . . , Bn associated with a strictly increasing sequence
of slots sl1, . . . , slm such that Bi = (slj , H(Bi−1), d, aux)). Here, slj indicates the
time slot that Bi occupies, H(Bi−1) is a collision resistant hash of the previ-
ous block, d is data and aux is auxiliary information required by the blockchain
protocol (e.g. a proof that the block is valid for slot slj). We denote by B⌈ℓ the
chain (sequence of blocks) B where the last ℓ blocks have been removed and if
ℓ ≥ |B| then B⌈ℓ = ϵ. Also, if B1 is a prefix of B2 we write B1 ⪯ B2. Each party
participating in the protocol has public identity Pi and most messages will be a
transaction of the following form: m = (Pi, Pj , q, aux) where Pi transfers q coins
to Pj along with some optional, auxiliary information aux.

Blockchain Setup and Key Knowledge. As in [9], we assume that the gen-
esis block is generated by an initialization functionality FINIT that registers all
parties’ keys. Moreover, we assume that primitives specified in separate func-
tionalities in [9] as incorporated into FINIT. FINIT is executed by the environment
Z as defined below and is parameterized by a stake distribution associating each
party Pi to an initial stake stakei. Upon being activated by Pi for the first time,
FINIT generates a signature key pair Sig.ski,Sig.pki, auxiliary information auxi
and a lottery witness skL,i, which will be defined as part of the lottery predicate
in Section 2.1, sending (Sig.ski,Sig.pki, auxi, skL,i, stakei) to Pi as response. After
all parties have activated FINIT, it responds to requests for a genesis block by
providing B0 = {(Sig.pk1, aux1, stake1), . . . , (Sig.pkn, auxn, staken), aux}, where
aux is generated according to the underlying blockchain consensus protocol.

Since FINIT generates keys for all parties, we capture the fact that even cor-
rupted parties have registered public keys and auxiliary information such that
they know the corresponding secret keys. Moreover, when our EtF construc-
tions are used as part of more complex protocols, a simulator executing the EtF
and its underlying blockchain with the adversary will be able to predict which
ciphertexts can be decrypted by the adversary by simulating FINIT and learning
these keys. This fact will be important when arguing the security of protocols
that use our notion of EtF.

Evolving Blockchains. In order to define an EtF scheme, some concept of
future needs to be established. In particular we want to make sure that the initial
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chain B has “correctly” evolved into the final chain B̃. Otherwise, the adversary
can easily simulate a blockchain where it wins a future lottery and finds itself
with the ability to decrypt. Fortunately, the Distinguishable Forking property
provides just that (see full version [7] and [17] for more details). A sufficiently long
chain in an honest execution can be distinguished from a fork generated by the
adversary by looking at the combined amount of stake proven in such a sequence
of blocks. We encapsulate this property in a predicate called evolved(·, ·). First,
let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol with
validity predicate V and where the (α, β, ℓ1, ℓ2)-distinguishable forking property
holds. And let B← GetRecords(1λ, st) and B̃← GetRecords(1λ, s̃t).

Definition 1 (Evolved Predicate). An evolved predicate is a polynomial time
function evolved that takes as input blockchains B and B̃

evolved(B, B̃) ∈ {0, 1}

It outputs 1 iff B = B̃ or the following holds (i) V (B) = V (B̃) = 1; (ii) B
and B̃ are consistent i.e. B⌈κ ⪯ B̃ where κ is the common prefix parameter; (iii)
Let ℓ′ = |B̃| − |B| then it holds that ℓ′ ≥ ℓ1 + ℓ2 and u-stakefrac(B̃, ℓ′ − ℓ1) > β.

Blockchain Lotteries. Earlier we mentioned the concept of leader election in
PoS-based blockchain protocols. In this kind of lottery any party can win the
right to become a slot leader with a probability proportional to its relative stake
in the system. Usually, the lottery winner wins the right to propose a new block
for the chain, introduce new randomness to the system or become a part of a
committee that carries out some computation. In our encryption scheme we take
advantage of this inherent lottery mechanism.

Independent Lotteries. In some applications it is useful to conduct multiple
independent lotteries for the same slot sl. Therefore we associate each slot with
a set of roles R1, . . . ,Rn. Depending on the lottery mechanism, each pair (sl,Ri)
may yield zero, one or multiple winners. Often, a party can locally compute if it,
in fact, is the lottery winner for a given role and the evaluation procedure may
equip the party with a proof for others to verify. The below definition details
what it means for a party to win a lottery.

Definition 2 (Lottery Predicate). A lottery predicate is a polynomial time
function lottery that takes as input a blockchain B, a slot sl, a role R and a
lottery witness skL,i and outputs 1 if and only if the party owning skL,i won the
lottery for the role R in slot sl with respect to the blockchain B.
Formally, we write

lottery(B, sl,R, skL,i) ∈ {0, 1}

It is natural to establish the set of lottery winning keys WB,sl,R for parameters
(B, sl,R). This is the set of eligible keys satisfying the lottery predicate.
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2.2 Commitment Schemes

We recall the syntax for a commitment scheme C = (Setup,Commit) below:

– Setup(1λ)→ ck outputs a commitment key. The commitment key ck defines
a message space Sm and a randomizer space Sr.

– Commit(ck, s; ρ) → cm outputs a commitment given as input a message s ∈
Sm and randomness ρ ∈ Sr.

We require a commitment scheme to satisfy the standard properties of binding
and hiding. It is binding if no efficient adversary can come up with two pairs
(s, ρ), (s′, ρ′) such that s ̸= s′ and Commit(ck, s; ρ) = Commit(ck, s′; ρ′) for ck ←
Setup(1λ). The scheme is hiding if for any two s, s′ ∈ Sm, no efficient adversary
can distinguish between a commitment of s and one of s′.

Extractability. In our construction of ECW from cWE (Section 5.1), we require
our commitments to satisfy an additional property which allows to extract mes-
sage and randomness of a commitment. In particular we assume that our setup
outputs both a commitment key and a trapdoor td and that there exists an algo-
rithm Ext such that Ext(td, cm) outputs (s, ρ) such that cm = Commit(ck, s; ρ).
We remark we can generically obtain this property by attaching to the commit-
ment a NIZK argument of knowledge that shows knowledge of opening, i.e., for
the relation Ropn(cmi; (s, ρ)) ⇐⇒ cmi = Commit(ck, s; ρ).

2.3 (Threshold) Identity Based Encryption

In an IBE scheme, users can encrypt simply with respect to an identity (rather
than a public key). Given a master secret key, an IBE can generate secret keys
that allows to open to specific identities. In our construction of EtF (Section 7.1)
we rely on a threshold variant of IBE (TIBE) where no single party in the sys-
tem holds the master secret key. Instead, parties in a committee hold a partial
master secret key mski. Like other threshold protocols, threshold IBE can be
generically obtained by “lifting” an IBE through a secret sharing with homo-
morphic properties (see for example [20]).

Threshold IBE. A TIBE system consists of the following algorithms.

ΠTIBE.Setup(1
λ, n, k)→ (sp, vk, m⃗sk) : It outputs some public system parame-

ters sp (including mpk), verification key vk, and vector of master secret key

shares m⃗sk = (msk1, . . . ,mskn) for n with threshold k. We assume that all
algorithms takes sp as input implicitly.

ΠTIBE.ShareKG(i,mski, ID)→ θ = (i, θ̂) : It outputs a private key share θ = (i, θ̂)
for ID given a share of the master secret key.

ΠTIBE.ShareVerify(vk, ID, θ)→ 0/1 : It takes as input the verification key vk, an
identity ID, and a share of master secret key θ, and outputs 0 or 1.

ΠTIBE.Combine(vk, ID, θ⃗)→ skID : It combines the shares θ⃗ = (θ1, . . . , θk) to pro-
duce a private key skID or ⊥.
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ΠTIBE.Enc(ID,m)→ ct : It encrypts message m for identity ID and outputs a
ciphertext ct.

ΠTIBE.Dec(ID, skID, ct)→ m : It decrypts the ciphertext ct given a private key
skID for identity ID.

Correctness. A TIBE scheme ΠTIBE should satisfy two correctness properties:
1. For any identity ID, if θ = ΠTIBE.ShareKG(i,mski, ID) for mski ∈ m⃗sk,

then ΠTIBE.ShareVerify(vk, ID, θ) = 1.

2. For any ID, if θ⃗ = {θ1, . . . , θk} where θi = ΠTIBE.ShareKG(i,mski, ID),

and skID = ΠTIBE.Combine(vk, ID, θ⃗), then for any m ∈ M and ct =
ΠTIBE.Enc(ID,m) we have ΠTIBE.Dec(ID, skID, ct) = m.

Structural Property: TIBE as IBE + Secret Sharing. We model threshold IBE in
a modular manner from IBE and assume it to have a certain structural property:
that it can be described as an IBE “lifted” through a homomorphic secret-
sharing [6,5,20]. TIBE constructions can often be described as such. We assume
this structural property to present our proofs for EtF modularly, but we remark
our results do not depend on it and they hold for an arbitrary TIBE. For lack
of space we refer the reader to the full version for details.

Assume a secure IBE (the non-threshold variant of TIBE). We can trans-
form it into a threshold IBE using homomorphic secret sharing algorithms
(Share,EvalShare,Combine). A homomorphic secret sharing scheme is a secret
sharing scheme with an extra property: given a shared secret, it allows to com-
pute a share of a function of the secret on it. The correctness of the homomorphic
scheme requires that running yi ← EvalShare(mski, f) on mski output of Share
and then running Combine on (a large enough set of) the yi-s produces the same
output as f(msk). We also require that Combine can reconstruct msk from a large
enough set of the mski-s. For security we assume we can simulate the shares not
available to the adversaries (if the adversary holds at most T = k shares). For
the resulting TIBE’s security we assume that, for an adversary holding at most T
shares, we can simulate: master secret key shares not held by the adversary (msk
shares simulation) and shares of the id-specific keys (key-generation simulation)
for the same shares. We finally assume we can verify that each of the id-specific
key shares are authenticated (robustness) and that shares of the master secret
key can be reshared (proactive resharing).

3 Modelling EtF

In this section, we present a model for encryption to the future winner of a
lottery. In order to argue about a notion of future, we use the blocks of an
underlying blockchain ledger and their relative positions in the chain to specify
points in time. Intuitively, our notion allows for creating ciphertexts that can
only be decrypted by a party that is selected to perform a certain role R at a
future slot sl according to a lottery scheme associated with a blockchain protocol.
The winner of the lottery at a point in the future with respect to a blockchain
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state B̃ is determined by the lottery predicate defined in Section 2.1, i.e. the
winner is the holder of a lottery secret key sk such that lottery(B̃, sl,R, sk) =
1. However, notice that the winner might only be determined by a blockchain
state produced in the future as a result of the blockchain protocol execution.
This makes it necessary for the ciphertext to encode an initial state B of the
blockchain that allows for verifying that a future state B̃ (presented at the time of
decryption) has indeed been produced as a result of correct protocol execution.
This requirement is captured by the evolving blockchain predicate defined in
Section 2.1, i.e. evolved(B, B̃) = 1 iff B̃ is obtained as a future state of executing
the blockchain protocol departing from B.

Definition 3 (Encryption to the Future). A pair of PPT algorithms E =
(Enc,Dec) in the context of a blockchain ΓV is an EtF-scheme with evolved
predicate evolved and a lottery predicate lottery. The algorithms work as follows.

Encryption. ct← Enc(B, sl,R,m) takes as input an initial blockchain B, a slot
sl, a role R and a message m. It outputs a ciphertext ct - an encryption to
the future.

Decryption. m/⊥ ← Dec(B̃, ct, sk) takes as input a blockchain state B̃, a ci-
phertext ct and a secret key sk and outputs the original message m or ⊥.

An EtF must satisfy the following properties:

Correctness. An EtF-scheme is said to be correct if for honest parties i and j,
there exists a negligible function µ such that for all sk, sl,R,m:∣∣∣∣∣∣∣∣∣∣

Pr


view← EXECΓ (A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
ct← Enc(B, sl,R,m)

evolved(B, B̃) = 1

:
lottery(B̃, sl,R, sk) = 0

∨ Dec(B̃, ct, sk) = m

− 1

∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

Security. We establish a game between a challenger C and an adversary A.
In Section 2.1 we describe how A and Z execute a blockchain protocol. In
addition, we now let the adversary interact with the challenger in a game
GameIND-CPAΓ,A,Z,E described in Algorithm 1. The game can be summarized as
follows:
1. A executes the blockchain protocol Γ together with Z and at some round

r chooses a blockchain B, a role R for the slot sl and two messages m0

and m1 and sends it all to C.
2. C chooses a random bit b and encrypts the message mb with the param-

eters it received and sends ct to A.
3. A continues to execute the blockchain until some round r̃ where the

blockchain B̃ is obtained and A outputs a bit b′.
If the adversary is a lottery winner for the challenge role R in slot sl, the
game outputs a random bit. If the adversary is not a lottery winner for the
challenge role R in slot sl, the game outputs b⊕b′. The reason for outputting
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a random guess in the game when the challenge role is corrupted is as follows.
Normally the output of the IND-CPA game is b⊕ b′ and we require it to be
1 with probability 1/2. This models that the guess b′ is independent of b.
This, of course, cannot be the case when the challenge role is corrupted. We
therefore output a random guess in these cases. After this, any bias of the
output away from 1/2 still comes from b′ being dependent on b.

Algorithm 1 GameIND-CPAΓ,A,Z,E

viewr ← EXECΓ
r (A,Z, 1λ) ▷ A executes Γ with Z until round r

(B, sl,R,m0,m1)← A(viewr
A) ▷ A outputs challenge parameters

b
$←− {0, 1}

ct← Enc(B, sl,R,mb)
st← A(viewr

A, ct) ▷ A receives challenge ct
viewr̃ ← EXECΓ

(viewr,r̃)(A,Z, 1λ) ▷ Execute from viewr until round r̃

(B̃, b′)← A(viewr̃
A, st)

if evolved(B, B̃) = 1 then ▷ B̃ is a valid evolution of B
if skA

L,j /∈ WB̃,sl,R then ▷ A does not win role R
return b⊕ b′

end if
end if
return b̂

$←− {0, 1}

Definition 4 (IND-CPA Secure EtF). An EtF-scheme E = (Enc,Dec) in the
context of a blockchain protocol Γ executed by PPT machines A and Z is said
to be IND-CPA secure if, for any A and Z, there exists a negligible function µ
such that for λ ∈ N: ∣∣∣2 · Pr [GameIND-CPAΓ,A,Z,E = 1

]
− 1

∣∣∣ ≤ µ(λ)

Remark 1 (On the requirement of Proof-of-Stake for EtF). The EtF notion re-
quires the guarantee that an honest chain should be verifiable without interaction
with the network (i.e. verified by the EtF ciphertext). While this is possible for
Proof-of-Stake (PoS) blockchains, in a Proof-of-Work (PoW) blockchain the ad-
versary can always simulate a chain where it generates all blocks. In general we
require a blockchain in order to model time (via block height) for EtF.

3.1 ECW as a Special Case of EtF

In this section we focus on a special class of EtF. We call schemes in this class
ECW schemes. ECW is particularly interesting since the underlying lottery is
always conducted with respect to the current blockchain state. This has the
following consequences
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1. B = B̃ means that evolved(B, B̃) = 1 is trivially true.
2. The winner of role R in slot sl is already defined in B.

It is easy to see that this kind of EtF scheme is simpler to realize since there
is no need for checking if the blockchain has “correctly” evolved. Furthermore,
all lottery parameters like stake distribution and randomness extracted from the
blockchain are static. Thus, an adversary has no way to move stake between
accounts in order to increase its chance of winning the lottery.
Note that, when using an ECW scheme, the lottery winner is already decided at
encryption time. In other words, there is no delay and the moment a ciphertext
is produced the receiver is chosen.

4 Witness Encryption over Commitments (cWE)

Here, we describe witness encryption over commitments that is a relaxed notion
of witness encryption. In witness encryption parties encrypt to a public input for
some NP statement. In cWE we have two phases: first parties provide a (honestly
generated) commitment cm of their private input s. Later, anybody can encrypt
to a public input for an NP statement which also guarantees correct opening
of the commitment. Importantly, in applications, the first message in our model
can be reused for many different invocations.

Remark 2 (Comparing cWE and WE). We observe that cWE is weaker than
standard WE because of its deterministic flavor. In standard WE we encrypt
without having any “pointer” to an alleged witness, but in cWE it requires the
witness to be implicitly known at encryption time through the commitment (to
which it is bound). That is why—as for the weak flavors of witness encryption
in [4]—we believe it would be misleading to just talk about WE. This is true in
particular since we show cWE can be constructed from standard assumptions
such as oblivious transfer and garbled circuits (see full version [7]), whereas
constructions of WE from standard assumptions are still an open problem or
require strong primitives like indistinguishability obfuscation. Finally we stress
a difference with the trivial “interactive” WE proposed in [14] (Section 1.3): cWE
is still non-interactive after producing a once-and-for-all reusable commitment.

4.1 Definition

The type of relations we consider are of the following form: a statement x =
(cm, C, y) and a witness w = (s, ρ) are in the relation (i.e., (x, w) ∈ R) iff “cm
commits to some secret value s using randomness ρ, and C(s) = y”. Here, C is
a circuit in some circuit class C and y is the expected output of the function.
Formally, we define witness encryption over commitments as follows:

Definition 5 (Witness encryption over commitments). Let
C = (Setup,Commit) be a non-interactive commitment scheme. A cWE-
scheme for witness encryption over commitments with circuit class C and
commitment scheme C consists of a pair of algorithms ΠcWE = (Enc,Dec):

16



Encryption phase. ct← Enc(ck, x,m) on input a commitment key ck, a state-
ment x = (cm, C, y) such that C ∈ C, and a message m ∈ {0, 1}∗, generates
a ciphertext ct.

Decryption phase. m/⊥ ← Dec(ck, ct, w) on input a commitment key ck, a
ciphertext ct, and a witness w, returns a message m or ⊥.

A cWE should satisfy correctness and semantic security as defined below.

(Perfect) Correctness. An honest prover with a statement x = (cm, C, y) and
witness w = (s, ρ) such that cm = Commit(ck, s; ρ) and C(s) = y can always
decrypt with overwhelming probability. More precisely, a cWE with circuit
class C and commitment scheme C has perfect correctness if for all λ ∈ N,
C ∈ C, ck ∈ Range(C.Setup), s ∈ Sm, randomness ρ ∈ Sr, commitment
cm← C.Commit(ck, s; ρ), and bit message m ∈ {0, 1}∗, it holds that

Pr
[
ct← Enc(ck, (cm, C, C(s)),m);m′ ← Dec(ck, ct, (s, ρ)) : m = m′] = 1

(Weak) Semantic Security. Intuitively, encrypting with respect to a false
statement (with honest commitment) produces indistinguishable ciphertexts.
Formally, there exists a negligible function µ such that for all λ ∈ N, all
auxiliary strings aux and all PPT adversaries A:∣∣∣∣∣∣∣∣∣∣∣∣∣
2 · Pr



ck← C.Setup(1λ)

(st, s, ρ, C, y,m0,m1)← A(ck, aux)

cm← C.Commit(ck, s; ρ); b
$←− {0, 1}

ct← Enc(ck, (cm, C, y),mb)

ct := ⊥ if C(s) = y, C ̸∈ C or |m0| ≠ |m1|

: A(st, ct) = b


− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

Later, to show the construction of ECW from cWE, we need a stronger notion
of semantic security where the adversary additionally gets to see ciphertexts of
the challenge message under true statements with unknown to A witnesses.
We formalize this property inthe full version [7] and show that weak semantic
security together with hiding of the commitment imply strong semantic security.

4.2 Constructions of cWE

From Multi-Sender 2P-NISC [1]. A cWE scheme can be constructed from pro-
tocols for Multi-Sender (reusable) Non-Interactive Secure Computation (MS-
NISC) [1]. In such protocols, there is a receiver R with input x who first broad-
casts an encoding of its input, and then later every sender Si with input yi
can send a single message to R that conveys only f(x, yi). This is done while
preserving privacy of inputs and correctness of output.

In the full version [7] we provide a detailed explanation of how to construct
cWE using MS-NISC as in [1]. We here state the main points of the construction.
Let f be the function that on input y = (x, k) and x = w outputs k if and only if
(x, w) ∈ R. This will be the underlying function for the MS-NISC protocol. We
then obtain a cWE scheme over the relation R in the following way:
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1. First, the receiver commits to its witness w by providing an encoding of it
as its first message in the MS-NISC protocol.

2. Secondly, to encrypt m under statement x, a sender samples a key k of size
|m| and provides an encoding of (x, k) as the second message in the MS-NISC
protocol and sends the ciphertext ct = m⊕ k to the receiver.

3. Finally, the receiver obtains the key as the output of f(x = w, y = (x, k)) = k
iff w is a valid witness for the statement x encoded in the second message.
And it decrypts the ciphertext m = ct⊕ k.

We observe that the above construction actually yields a stronger notion of cWE
where the statement x is private which is not a requirement in our setting. This
asymmetry between sender and receiver privacy was also observed by others [19]
and it opens the door for efficient constructions using oblivious transfer (OT)
and privacy-free garbled circuits as described in [23]. More details on the more
efficient construction of cWE using OT and garbled circuits are provided inthe
full version [7].

5 Construction of ECW

Here we show a novel construction of ECW from cWE. We then show alternative
constructions through instantiations from previous work.

5.1 ECW from cWE

In this section we realize the notion of ECW from cWE. We define our scheme
with respect to a set of parties P = {P1, . . . , Pn} executing a blockchain protocol
Γ as described in Section 2.1, i.e. each party Pi has access to the blockchain
ledger and is associated to a tuple (Sig.pki, auxi, sti) registered in the genesis
block for which it has corresponding secret keys (Sig.ski, skL,i). Our construction
uses as a main building block a witness encryption scheme over commitments
ΠcWE = (EnccWE,DeccWE); we assume the commitments to be extractable. The
class of circuits C of ΠcWE includes the lottery predicate lottery(B, sl,R, skL,i).
We let each party publish an initial commitment of its witness. This way we can
do without any interaction for encryption/decryption through a one-time setup
where parties publish the commitments over which all following encryptions are
done. We construct our ECW scheme ΠECW as follows:

System Parameters: We assume that a commitment key Setup(1λ) → ck is
contained in the genesis block B0 of the underlying blockchain.

Setup Phase: All parties Pi ∈ P proceed as follows:

1. Compute a commitment cmi ← Commit(ck, skL,i; ρi) to skL,i using ran-
domness ρi. We abuse the notation and define Pi’s secret key as skL,i||ρi.

2. Compute a signature σi ← SigSig.ski(cmi).

3. Publish (cmi, σi) on the blockchain by executing Broadcast(1λ, (cmi, σi)).
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Encryption Enc(B, sl,R,m): Construct a circuit C that encodes the predicate
lottery(B, sl,R, skL,i), where B, sl and R are hardcoded and skL,i is the witness.
Let PSetup be the set of parties with non-zero relative stake and a valid setup
message (cmi, σi) published in the common prefix B⌈κ (if Pi has published
more than one valid (cmi, σi), only the latest one is considered). For every
Pi ∈ PSetup, compute cti ← EnccWE(ck, xi = (cmi, C, 1),m). Output ct =(
B, sl,R, {cti}Pi∈PSetup

)
.

Decryption Dec(B, ct, sk): Given sk := skL,i||ρi such that cmi =
Commit(ck, skL,i; ρi) and lottery(B, sl,R, skL,i) = 1 for parameters B, sl,R from
ct, output m← DeccWE(ck, cti, (skL,i, ρi)). Otherwise, output ⊥.

Theorem 1. Let C = (Setup,Commit) be a non-interactive extractable commit-
ment scheme and ΠcWE = (EnccWE,DeccWE) be a strong semantically secure cWE
over C for a circuit class C encoding the lottery predicate lottery(B, sl,R, skL,i)
as defined in Section 4. Let Γ be a blockchain protocol as defined in Section 2.1.
ΠECW is an IND-CPA-secure ECW scheme as per Definition 4.

The proof is provided inthe full version [7].

5.2 Other Instantiations

ECW from target anonymous channels [16,3]. As mentioned before, another
approach to construct ECW can be based on a recent line of work that aims to
design secure-MPC protocols where parties should remain anonymous until they
speak [16,3,15]. The baseline of these results is to establish a communication
channel to random parties, while preserving their anonymity. It is quite clear
that such anonymous channels can be used to realize our definition of ECW for
the underlying lottery predicate that defines to whom the anonymous channel
is established. Namely, to encrypt m to a role R at a slot sl with respect to
a blockchain state B, create a target anonymous channel to (R, sl) over B by
using the above approaches and send m via this channel. Depending on the
lottery predicate that specifies which random party the channel is created for,
a recipient with the secret key who wins this lottery can retrieve m. To include
some concrete examples, the work of Benhamouda et al. [3] proposed the idea of
using a “nomination” process, where a nominating committee chooses a number
of random parties P, look up their public keys, and publish a re-randomization
of their key. This allows everyone to send messages to P while keeping their
anonymity. The work of [3] answered this question differently by delegating the
nomination task to the previous committees without requiring a nominating
committee. That is, the previous committee runs a secure-MPC protocol to
choose a random subset of public keys, and broadcasts the rerandomization of
the keys. To have a MPC protocol that scales well with the total number of
parties, they define a new flavour of private information retrieval (PIR) called
random-index PIR (or RPIR) and show how each committee—playing the role
of the RPIR client—can select the next committee with the complexity only
proportional to the size of the committee. There are two constructions of RPIR
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proposed in [16], one based on Mix-Nets and the other based on FHE. Since
the purpose of the constructions described is to establish a target-anonymous
channel to a random party, one can consider them as examples of a stronger
notion of ECW with anonymity and a specific lottery predicate that selects a
single random party from the entire population as the winner.

ECW from [10]. Derler and Slamanig [10] (DS) constructed a variant of WE
for a restricted class of algebraic languages. In particular, a user can conduct a
Groth-Sahai (GS) proof for the satisfiability of some pairing-product equations
(PPEs). Such a proof contains commitments to the witness using randomness
only known by this user. The proof can be used by anyone to encrypt a message
resulting in a ciphertext which can only be decrypted by knowing this random-
ness. More formally, they consider a type of WE associated with a proof system
Π = (Setup,Prove,Verify) consisting of two rounds. In the first round, a recipient
computes and broadcasts π ← Prove(crs, x, w). Later, a user can verify the proof
and encrypt a message m under (x, π) if Verify(crs, x, π) = 1. We note that the
proof π does not betray the user conducting the proof and therefore it can use
an anonymous broadcast channel to communicate the proof to the encrypting
party in order to obtain anonymous ECW. Moreover, although GS proofs may
look to support only a restricted class of statements based on PPEs, they are
expressive enough to cover all the statements arising in pairing-based cryptog-
raphy. This indicates the applicability of this construction for any VRF-based
lottery where the VRF is algebraic and encodable as a set of PPEs. Further
details are provided inthe full version [7]. This interactive ECW just described
yields an improvement in communication complexity at the cost of having an
extra round of interaction.

From Signatures of Knowledge. Besides the above instantiations, we point out
a (potentially more inefficient) abstract construction from zero-knowledge sig-
natures of knowledge (SoK) [8] (roughly, a non-malleable non-interactive zero-
knowledge proof). This is similar in spirit to the previous instantiation and can
be seen as a generalization. Assume each party has a (potentially ephemeral)
public key. At the time the lottery winner has been decided, the winners can
post a SoK showing knowledge of the secret key corresponding to their pk and
that their key is a winner of the lottery. To encrypt, one would first verify the
SoK and then encrypt with respect to the corresponding public key.

6 YOSO Multiparty Computation from ECW

In this section we show how ECW can be used as the crucial ingredient in setting
up a YOSO MPC. So far we have only focused on IND-CPA secure ECW, which
falls short of role assignment in the sense of [15]. In general role assignment
requires the following properties which are not provided by ECW (or EtF):

1. Multiple parties must be able to send messages to the same role (in most
applications this requires IND-CCA).
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2. Parties must authenticate messages on behalf of a role they executed in the
past (authentication from the past)

3. A party assigned to a given role must stay covert until the role is executed.

We will define a number of properties needed for EtF to realize applications such
as role assignment. We start by looking at CCA security for an EtF scheme. We
then introduce the notion of Authentication from the Past (AfP) and definition
of unforgeability and privacy guarantees. Finally, we introduce the notion of
YOSO-friendly blockchains that have inbuilt lotteries with properties that are
needed to conduct YOSO MPC and corresponding EtF and AfP schemes.

6.1 IND-CCA EtF

In this section we define what it means for an EtF to be IND-CCA secure.
This security property is useful in many applications where more encryptions
are done towards the same slot and role. As in the definition of IND-CPA, we
establish a game between a challenger C and an adversary A. We introduce a
decryption oracle, OEtF, which on input ct returns the decryption of ciphertext.
Furthermore, the OEtF maintains a list of ciphertext queries QEtF. Algorithm 2
shows the details of the game.

Algorithm 2 GameIND-CCA2
Γ,A,Z,E

viewr ← EXECΓ
r (AOEtF ,Z, 1λ) ▷ A executes Γ with Z until round r

(B, sl,R,m0,m1)← AOEtF(viewr
A) ▷ A outputs challenge parameters

b
$←− {0, 1}

ct← Enc(B, sl,R,mb)
st← AOEtF(viewr

A, ct) ▷ A receives challenge ct
viewr̃ ← EXECΓ

(viewr,r̃)(AOEtF ,Z, 1λ) ▷ Execute from viewr until round r̃

(B̃, b′)← AOEtF(viewr̃
A, st)

if evolved(B, B̃) = 1 then ▷ B̃ is a valid evolution of B
if skAL,j /∈ WB̃,R,sl ∧ ct /∈ QEtF then ▷ A does not win role R

return b⊕ b′

end if
end if
return g

$←− {0, 1}

Definition 6 (IND-CCA2 Secure EtF). Formally, an EtF-scheme E is said to
be IND-CCA2 secure in the context of a blockchain protocol Γ executed by PPT
machines A and Z if there exists a negligible function µ such that for λ ∈ N:∣∣∣2 · Pr [GameIND-CCA2

Γ,A,Z,E = 1
]
− 1

∣∣∣ ≤ µ(λ)

To add IND-CCA2 security to an IND-CPA secure EtF scheme (as defined
in Definition 4) we can use standard transformations such as [11,22]. In the
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transformation based on [22] we could add to the setup of the blockchain a
CRS for a simulation-sound extractable NIZK. When encrypting m to a role
R the sender will send along a proof of knowledge of the plaintext m. We get
the challenge ciphertext from the IND-CPA game and use the ZK property
to simulate the NIZK proof. We can use the extraction trapdoor of the proof
system to simulate the CCA decryption oracles by simulation soundness. When
the IND-CCA2 adversary makes a guess, we make the same guess. The details
of the construction and proof follow using standard techniques and are omitted.
On the other hand, the popular transformation of [11] allows for simulating CCA
decryption oracles by observing the adversary’s queries to a random oracle, which
should not be an issue since an EtF scheme is likely already running on top of a
blockchain which is secure in the random oracle model. We leave the construction
of concretely efficient IND-CCA2 EtF as future work.

6.2 Authentication from the Past (AfP)

When the winner of a role R1 sends a message m to a future role R2 then it
is typically also needed that R2 can be sure that the message m came from
a party P which, indeed, won the role R1. Most PoS blockchains deployed in
practice have a lottery where a certificate can be released proving that P won
the role R1. In order to formalize this concept, we introduce an AfP scheme with
a corresponding EUF-CMA game representing the authentication property.

Definition 7 (Authentication from the Past). A pair of PPT algorithms
U = (Sign,Verify) is a scheme for authenticating messages as a winner of a
lottery in the past in the context of blockchain Γ with lottery predicate lottery.

Authenticate. σ ← AfP.Sign(B, sl,R, sk,m) takes as input a blockchain B, a
slot sl, a role R, a secret key sk, and a message m. It outputs a signature σ
that authenticates the message m.

Verify. {0, 1} ← AfP.Verify(B̃, sl,R, σ,m) uses the blockchain B̃ to ensure that
σ is a signature on m produced by the secret key winning the lottery for slot
sl and role R.

Furthermore, an AfP-scheme has the following properties:

Correctness. An AfP-scheme is said to be correct if for honest parties i and
j, there exists a negligible function µ such that for all sk, sl,R,m:∣∣∣∣∣∣∣∣Pr


view← EXECΓ (A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
σ ← AfP.Sign(B, sl,R, sk,m)

:

lottery(B, sl,R, sk) = 0

∨ lottery(B̃, sl,R, sk) = 0

∨ AfP.Verify(B̃, sl,R, σ,m) = 1

− 1

∣∣∣∣∣∣∣∣ ≤ µ(λ)

In other words, an AfP on a message from an honest party with a view
of the blockchain B can attest to the fact that the sender won the role R
in slot sl. If another party, with blockchain B̃ agrees, then the verification
algorithm will output 1.
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Security. We here describe the game detailed in Algorithm 3 representing the
security of an AfP scheme. The algorithm represents a standard EUF-CMA
game where the adversary has access to a signing oracle OAfP which it can
query with a slot sl, a role R and a message mi and obtain AfP signatures
σi = AfP.Sign(B, sl,R, skj ,mi) where skj ∈ WB,sl,R i.e. lottery(B, sl,R, skj) =
1. The oracle maintains the list of queries QAfP.
Formally, an AfP-scheme U is said to be EUF-CMA secure in the context of
a blockchain protocol Γ executed by PPT machines A and Z if there exists
a negligible function µ such that for λ ∈ N:

Pr
[
GameEUF-CMA

Γ,A,Z,U = 1
]
≤ µ(λ)

Algorithm 3 GameEUF-CMA
Γ,A,Z,U

view← EXECΓ (A,Z, 1λ) ▷ A executes Γ with Z
(B, sl,R,m′, σ′)← AOAfP(viewA)
if (m′ ∈ QAfP) ∨ (skAL,j ∈ WB,sl,R) then ▷ AOAfP won or queried illegal m′

return 0
end if
viewr̃ ← EXECΓ

(viewr,r̃)(A,Z, 1λ) ▷ Execute from viewr until round r̃

B̃← GetRecords(viewr̃
i )

if evolved(B, B̃) = 1 then
if AfP.Verify(B, sl,R, σ′,m′) = 1 then ▷ A successfully forged an AfP

return 1
end if

end if
return 0

General AfP. In general we can add authentication to a message as follows.
Recall that Pi wins R if lottery(B, sl,R, skL,i) = 1. Here, R(x = (B, sl,R), w) =
lottery(x, w) is an NP relation where all parties know x but only the winner
knows a witness w such that R(x, w) = 1. We can therefore use a signature
of knowledge (SoK) [8] to sign m under the knowledge of skL,i such that
lottery(B, sl,R, skL,i) = 1. This will attest that the message m was sent by a
winner of the lottery for R. In [7], we show more efficient construction of AfP by
exploring the structure of PoS-based blockchains with VRF lotteries.

6.3 AfP Privacy

Just EUF-CMA security is not sufficient for an AfP mechanism to be YOSO
friendly. It must also preserve the privacy guarantees of the lottery predicate,
guaranteeing that the adversary does not gain any undue advantage in predicting
when a party is selected to perform a role after it uses AfP to authenticate a
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message. To appreciate this fact, we consider the case where instead of creating a
signature of knowledge of skL,i on message m we simply use a regular EUF-CMA
secure signature scheme to sign the message concatenated with skL,i, revealing
the signature public key, the resulting signature and skL,i itself as a means of
authentication. By definition, this will still constitute an existentially unforgeable
AfP but will also reveal whether the party who owns skL,i is the winner when
future lotteries are conducted. The specific privacy property we seek is that an
adversary, observing AfP tags from honest parties, cannot use this information
to enhance its chances in predicting the winners of lotteries for roles for which an
AfP tag has not been published. On the other hand, the identity of a party who
won the lottery for a given role is not kept private when it publishes an AfP tag
on behalf of this role, which is not an issue in a YOSO-setting since corruption
after-the-fact is futile. Specifically, we allow an AfP tag to be linked to the
identity of the party who generated it. Note, that this kind of privacy is different
from notions like k -anonymity since the success of the adversary in guessing
lottery winners with high accuracy depends on the stake distribution. The stake
distribution is public in most PoS-settings and, thus, a privacy definition must
take into account this inherent leakage.

Definition 8 (AfP Privacy.). An AfP scheme U with corresponding lottery
predicate lottery is private if a PPT adversary A is unable to distinguish between
the scenarios defined in Algorithm 4 and Algorithm 5 with more than negligible
probability in the security parameter.

Scenario 0 (b = 0). In this scenario (Algorithm 4), A is first running the
blockchain Γ together with the environment Z. At round r, A is allowed to
interact with the oracle OAfP (see Definition 7). The adversary then continues
the execution until round r̃ where it outputs a bit b′.

Scenario 1 (b = 1). This scenario (Algorithm 5) is identical to scenario 0 but
instead of interacting with OAfP, the adversary interacts with a simulator Sim.

Algorithm 4 b = 0

viewr ← EXECΓ
r (A,Z, 1λ)

AOAfP(viewr
A)

viewr̃ ← EXECΓ
(viewr,r̃)(A,Z, 1λ)

return b′ ← AOAfP(viewr̃
A)

Algorithm 5 b = 1

viewr ← EXECΓ
r (A,Z, 1λ)

ASim(viewr
A)

viewr̃ ← EXECΓ
(viewr,r̃)(A,Z, 1λ)

return b′ ← ASim(viewr̃
A)

We let GameAfP-PRIVΓ,A,Z,U denote the game where a coin-flip decides whether the
adversary is executed in scenario 0 or scenario 1. We say that the adversary wins
the game (i.e. GameAfP-PRIVΓ,A,Z,U = 1) iff b′ = b. Finally, an AfP scheme U is called
private in the context of the blockchain Γ executed together with environment Z
if the following holds for a negligible function µ.∣∣∣2 · Pr [GameAfP-PRIVΓ,A,Z,U = 1

]
− 1

∣∣∣ ≤ µ(λ)
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6.4 Round and Committee Based YOSO Protocols

Having IND-CCA2 ECW and an EUF-CMA secure and Private AfP, we can
establish a round-based YOSO model, where there is a number of rounds r =
1, 2, . . . and where for each round there are n roles Rr,i. We call the role Rr,i

“party i in round r”. We fix a round length L and associate role Rr,i to slot sl =
L · r. This L has to be long enough that in each round the parties executing the
roles can decrypt ciphertexts sent to them, execute the steps of the role, compute
encryptions to the roles in the next round and post these to the blockchain in
time for these to be available to the committee of round r+1 before slot (r+1)·L.
Picking such an L depends crucially on the underlying blockchain and network,
and we will here simply assume that it can be done for the blockchain at hand.

Using this setup, the roles Rr,i of round r can use ECW and AfP with the
aforementioned properties to send secret authenticated messages to the roles
Rr+1,i in round r + 1. They find their ciphertexts on the blockchain before slot
r ·L, decrypt using ECW, compute their outgoing messages, encrypt using ECW,
authenticate using AfP, and post the ciphertexts and AfP tags on the blockchain.

Honest Majority. In round based YOSO MPC it is critical that we can as-
sume some fraction of honesty in each committee Rr,1, . . . ,Rr,n. We discuss here
assumptions needed on the lottery for this to hold and how to guarantee it.
Assume an adversary that can corrupt parties identified by sk and a lottery as-
signing parties to roles Rr,i. We map the corruption status of parties to roles as
follows:

1. If a role Rr,i is won by a corrupted party or by several parties, call the role
Malicious. Even if Rr,i is won by two honest parties, they will both execute
the role and send outgoing messages, which might violate security.

2. If a role Rr,i is won by exactly one honest party, call it Honest.

3. If a role Rr,i is not won by any party, call it Crashed. These roles will not
be executed and are therefore equivalent to a crashed party.

Note that because we assume corrupted parties know their lottery witness
skL,i in our model, we can, in poly-time, extract those witnesses and compute the
corruption status of roles. This will be crucial in our reductions. Imagine that a
role could be won by an honest party but also by a corrupted party which stays
completely silent but decrypts messages sent to the role. If we are not aware
of the corrupted party winning the role, we might send a simulated ciphertext
to the apparently honest role. The corrupted party also having won the role
would be able to detect this. Since any role won by an honest party could also
be corrupted by a silent malicious party, simulation would become impossible.

In order to realize YOSO MPC, we will need committees where a majority
of the roles are honest according to the description above. We capture this re-
quirement in the definition below and argue how it can be achieved in the full
version [7].
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Definition 9 (Honest Committee Friendly). We call a blockchain Γ honest
committee friendly if there exist n and H and T such that H > T s.t. we can
define a sequence of roles Rr,i for r = 1, . . . , poly(λ) and i = 1, . . . , n for a slot slr
and that for all r it holds that except with negligible probability there are at least
H honest roles in Rr,1, . . . ,Rr,n and at most T malicious roles. Furthermore, if
an honest party executing Rr,1, . . . ,Rr,n sends a message at slr, it is guaranteed
to appear on the blockchain before slot slr+1.

We are now ready to capture the above discussion using a definition.

Definition 10 (YOSO Friendly Blockchain). Let Γ be a blockchain with
a lottery predicate lottery(B, slr,Rr,i, skL,i) and let E = (Enc,Dec) and U =
(Sign,Verify) be an EtF and AfP for lottery(B, slr,Rr,i, skL,i), respectively. We
call (Γ, E ,U) YOSO MPC friendly if the following holds:

1. E is an IND-CCA2 secure EtF (Definition 6).
2. U is a secure and private AfP (Definition 7 and Definition 8).
3. Γ is honest committee friendly (Definition 9).

We will later assume a YOSO friendly blockchain, and we argued above that
the existence of a YOSO friendly blockchain is a plausible assumption without
having given formal proofs of this. It is interesting future work to prove that
a concrete blockchain is a YOSO friendly blockchain in a given communication
model. We omit this as our focus is on constructing flavours of EtF.

7 Construction of EtF from ECW and Threshold-IBE

The key intuition about our construction is as follows: we use IBE to encrypt
messages to an arbitrary future (R, slfut) pair. When the winners of the role in slot
slfut are assigned, we let them obtain an ID-specific key for (R, slfut) from the
IBE key-generation algorithm using ECW as a channel. Notice that this key-
generation happens in the present while the encryption could have happened
at any earlier time. We generate the key for (R, slfut) in a threshold manner by
assuming that, throughout the blockchain execution, a set of committee members
each holds a share of the master secret key mski.

7.1 Construction

We now describe our construction. We assume an encryption to the current
winner ΠECW = (EncECW,DecECW) and a threshold IBE scheme ΠTIBE. In the
setup stage we assume a dealer acting honestly by which we can assign master
secret key shares of the TIBE.

Parameters: We assume that the genesis block B0 of the underlying blockchain
contains all the parameters for ΠECW.

Setup Phase: Parties run the setup stage for the ΠECW. The dealer produces
(mpk, m⃗sk = (msk1, . . . ,mskn)) from TIBE setup with threshold k. Then it
chooses n random parties and gives a distinct mski to each. All learn mpk.
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Blockchain Execution: The blockchain execution we assume is as in Sec-
tion 3. We additionally require that party i holding a master secret key
share mski broadcasts ctsk,i(sl,R) ← EncECW(B, sl,R, ski(sl,R)), whenever the win-

ner of role R in slot sl is defined in the blockchain B, where ski(sl,R) ←
ΠTIBE.IDKeygen(mski, (sl,R)).

Encryption Enc(B, sl,R,m): Each party generates cti ← ΠTIBE.Enc(mpk, ID =
(sl,R),m). Output ct = (B, sl,R, {cti}Pi

).
Decryption Dec(B, ct, sk): Party i outputs ⊥ if it does not have skL,i such
that lottery(B, sl,R, skL,i) = 1 for parameters B, sl,R from ct. Otherwise, it

retrieves enough (above threshold) valid ciphertexts ctsk,j(sl,R) from the current

state of the blockchain and decrypts each through ΠECW obtaining skj(sl,R).

It then computes sk(sl,R) ← ΠTIBE.Combine(mpk, (skj(sl,R))j). It finally outputs

m← ΠTIBE.Dec(sk(sl,R), ct).

Resharing. We can ensure that the master secret key is proactively reshared
by modifying each party so that mski-s are reshared and reconstructed in the
evolution of the blockchain.

Correctness. Correctness of the construction follows from the correctness of the
underlying IBE and the fact that a winning role will be able to decrypt the
id-specific key by the correctness of the ECW scheme.

In the following we assume some of the extensions discussed in Section 6.

Theorem 2 (informal). Let ΓV be a YOSO MPC friendly blockchain, ΠTIBE

be a robust secure threshold IBE as in Section 2.3 with threshold n/2, and ΠECW

a secure IND-CCA2 ECW. The construction in Section 7.1 is a secure EtF.

We refer the reader to the full version for a proof of security [7].

8 Blockchain WE versus EtF

In this section we show that an account-based PoS blockchain with sufficiently
expressive smart contracts and an EtF scheme for this blockchain implies a
notion of witness encryption on blockchains, and vice versa. The construction of
EtF from BWE is completely straightforward and natural: encrypt to the witness
which is the secret key winning the lottery. The construction of BWE from EtF
is also straightforward but slightly contrived: it requires that we can restrict the
lottery such that only some accounts can win a given role and that the decryptor
has access to a constant fraction of the stake on the blockchain and are willing
to bind them for the decryption operation. The reason why we still prove the
result is that it establishes a connection at the feasibility level. For sufficiently
expressive blockchains the techniques allowing to construct EtF and BWE are
the same. To get EtF from simpler techniques than those we need for BWE we
need to do it in the context of very simple blockchains. In addition, the techniques
allowing to get EtF without getting BWE should be such that they prevent the
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blockchain from having an expressive smart contract layer added. This seems like
a very small loophole, so we believe that the result shows that there is essentially
no assumptions or techniques which allow to construct EtF which do not also
allow to construct BWE. Since BWE superficially looks stronger than EtF the
equivalence helps better justify the strong assumptions for constructing EtF.

Definition 11 (Blockchain Witness Encryption). Consider PPT algo-
rithms (Gen,Enc,Dec) in the context of a blockchain ΓV is an BWE-scheme
with evolved predicate evolved and a lottery predicate lottery working as follows:

Setup. (pv, td)← Gen() generates a public value pv and an extraction trapdoor
td. Initially pv is put on B.

Encryption. ct ← Enc(B,W,m) takes as input a blockchain B, including the
public value, a PPT function W , the witness recogniser, and a message m.
It outputs a ciphertext ct, a blockchain witness encryption.

Decryption. m/⊥ ← Dec(B̃, ct, w) in input a blockchain state B̃, including the
a public value pv, a ciphertext ct a witness w, it outputs a message m or ⊥.

Correctness. An BWE-scheme is correct if for honest parties i and j, PPT
function W , and witness w such that W (w) = 1 the following holds with over-
whelming probability: if party i runs ct ← Enc(B,W,m) and party j starts
running Dec(B̃, ct, w) in B̃ evolved from B, then eventually Dec(B̃, ct, w)
outputs m.

Security. We establish a game between a challenger C and an adversary A. In
section 2.1 we described how A and Z execute a blockchain protocol. In
addition, we now let the adversary interact with the challenger in a game
GameIND-CPA

Γ,A,Z,E which can be summarized as follows.
1. (pv, td)← Gen() and put pv on the blockchain.
2. A executes the blockchain protocol Γ together with Z and at some round

r chooses a blockchain B, a function W and two messages m0 and m1

and sends it all to C.
3. C chooses a random bit b and encrypts the message mb with the param-

eters it received and sends ct to A.
4. A continues to execute the blockchain until some round r̃ where the

blockchain B̃ is obtained and the A outputs a bit b′.
The adversary wins the game if it succeeds in guessing b with probability
notably greater than one half without W (Extract(td, B̃, ct,W )) = 1.

EtF from BWE. We first show the trivial direction of getting EtF from BWE.
LetΠBWE = (GenBWE,EncBWE,DecBWE) be an BWE scheme. Recall that one wins
the lottery if lottery(B, sl,R, sk) = 1. We construct a EtF scheme. To encrypt,
let W be the function W (w) = lottery(B, sl,R, w) and output EncBWE(B,W,m).
If winning the lottery for (sl,R) then let w be the secret key winning the lottery
and output Dec(B̃, ct, w). The proof is straightforward.

BWE from EtF. We describe a proof of this direction in the full version [7].
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