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Abstract. Vector commitments (VC) are a cryptographic primitive that
allows one to commit to a vector and then “open” some of its positions
efficiently. Vector commitments are increasingly recognized as a central
tool to scale highly decentralized networks of large size and whose content
is dynamic. In this work, we examine the demands on the properties that
a vector commitment should satisfy in the light of the emerging plethora
of practical applications and propose new constructions that improve
the state-of-the-art in several dimensions and offer new tradeoffs. We
also propose a unifying framework that captures several constructions
and we show how to generically achieve some properties from more basic
ones. On the practical side, we focus on building efficient schemes that
do not require a new trusted setup (we can reuse existing ceremonies for
other pairing-based schemes, such as “powers of tau” run by real-world
systems such as Zcash or Filecoin).

1 Introduction

Vector commitment schemes [18, 7] (or VC) allow a party to commit to a vec-
tor v through a short digest and then open some of its elements guaranteeing
position binding3 (one should not be able to open a commitment at position i
to two different values vi 6= v′i). For this primitive to be interesting the proof
of opening—or just “opening”—should be of size sublinear in m, the size of the
committed vector. A vector commitment with subvector opening also supports
a short opening for arbitrary subsets of positions I (rather than individual ones
only). More specifically this opening should be of size independent, not only of m,
but of |I|. We denote commitment schemes with such property as SVC [16](also
called VC with batch opening in [3]).

Functional Vector Commitments, first introduced by Libert, Ramanna and
Yung in [17], capture the ability to compute commitments to vectors and later

? Arantxa Zapico has been funded by a Protocol Labs PhD Fellowship PL-RGP1-2021-
062. Alexandros Zacharakis has been partially funded by Protocol Labs Research
Grant PL-RGP1-2021-048

3 For the applications considered in this work, hiding properties are not necessary. In
particular, our commitments are deterministic.
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perform openings of linear functions (inner-products) f : Fm → Fn of these
vectors, for some field F.

Both vector commitments with subvector openings and functional commit-
ments for inner-products can be captured as vector commitments with openings
for a more general class of function families, linear maps. Lai and Malavolta
[16] were the first to introduce Linear Map Commitments (LMC). In such a
scheme, the prover is able to open the commitment to some vector v to the out-
put of multiple linear functions or, equivalently, to the output of one linear-map
f : Fm → Fn, by producing a single short proof. In this work, we revisit Lai and
Malavolta [16] LMC notion and augment it to a full-featured vector commitment
generic definition that recovers all previously-defined schemes and more. We call
our primitive Linear Map Vector Commitment and use LVC for short4.

1.1 Motivation for Better Vector Commitments

Vector commitments are very useful to scale highly decentralized networks of
large size and whose content is dynamic [8, 3, 5, 13](such dynamic content can
be the state of a blockchain, amount stored on a wallet, the value of a file in a
decentralized storage network, etc.). Beyond the basic requirement that openings
should be efficient, in this work we also discuss how to achieve some additional
properties of LVC. We discuss some of the most prominent applications of LVC
to motivate and justify the importance of these properties in practice.

Verifiable Databases. One of the applications that can be significantly improved
by Vector Commitments is Verifiable Databases (VDB). In this setting, a client
outsources the storage of a database to a server while keeping the ability to access
and change some of its records, i.e. query functions of the data and update some
of the data and ensure the server does not tamper with the data. Solutions
using (binding) commitment schemes provide security but not efficiency in such
a setting. A popular instantiation that achieves both of them is a Merkle tree [19],
but this is not expressive enough to allow for functional openings.

For a VC scheme to be the ideal solution for VDB application, we require it to
additionally support efficient updates and expressive openings. For example, an
LVC scheme that allows the client to update records of the database in sublinear
time and to verify linear-map queries at almost the same cost as simple position
openings is a great improvement over current solutions.

Stateless Cryptocurrency. A recent application that motivated more efficient
constructions of VC schemes is stateless cryptocurrency, i.e. a payment system
based on a distributed ledger where neither validators of transactions nor system
users need to store the full ledger state. The ideal vector commitment scheme
that provides the best trade-off between storage, bandwidth, and computation
in this setting should have all of the following properties: it must have a small

4 We prefer LVC rather than LMC to emphasize the Vector Commitment aspect of
our notion.
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commitment size, short proofs, efficient computation for openings and it should
allow for proof updates and for aggregation to minimise communication in the
transactions and maintainability for the proofs, that allows updating all pre-
stored proofs in sublinear time.

Proof of Space. Proof of Space (PoS) is a protocol that allows miners (storage
providers) to convince the network that they are dedicating physical storage over
time in an efficient way. In a nutshell, a miner commits to a file (data) that uses
a specified amount of disk space and then the miner proves that it continues
to store the data by answering to recurring audits that consist of random spot-
checks. A PoS construction based on vector commitments, as described in [11],
requires short opening proofs for subvectors to be stored in a blockchain, cross-
commitments aggregation techniques and the possibility to implement space-
time tradeoffs to reduce the proving time for the miner (ideally sublinear in the
size of the vector).

“Caching” Optimizations. In some applications, e.g. when performing HTTP
queries, clients use the so-called prefetching5 and receive from a server not only
the values of interest but other related values that could potentially be queried in
the near future (e.g., values in a neighboring range of the queried values). Vector
commitments with efficient proofs for special (“caching”) subset openings allow
to add verifiability to such queries in a way that does not affect the speed of the
server since the proving procedure for a bigger subset is close or the same as for
individual positions.

1.2 Desired Properties and Limitations

At the very least a basic LVC should be efficient (small proof size and low
opening/verifying computational needs). Obviously, the same design goals as
with other cryptographic protocols apply, i.e. ideally one would like to prove
security under as standard assumptions as possible.

Reusable setup refers to the common reference string that many pairing-based
schemes use as public parameters. Ideally, one would like to have a transparent
setup (consisting of uniformly distributed elements) that does not rely on any
trusted parameter generation. It is common to sacrifice this goal for efficiency
and settle for a trusted setup (producing a SRS, or structured reference string)
that can be generated in a ceremony. But such ceremonies are complicated to
implement6, so it is interesting to design LVC that do not have special SRS
distributions and can reuse existing setups for other primitives.

Expressivity refers to the opening possibilities. One would like VC to be as
expressive as possible, meaning that it should be possible to open to functions

5 https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ
6 This remains true even if many setups are updatable [14] and they can be generated

and updated non-interactively in a secure way as long as one party is honest. There
might be issues if not enough parties participate in generating the SRS or updates
are not properly validated.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ
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of the vector as general as possible (subvector openings, linear or arbitrary func-
tions).

Proof Aggregation captures the ability to “pack” two or more proofs together
obtaining a new proof for their combined claims (e.g. f(v) = y and f ′(v) = y′).
This should be done without knowledge of the opening of the vector and aggre-
gation cost should be sublinear in the vector length. Importantly, the resulting
proof should not significantly grow each time we perform an aggregation. One-
hop aggregation allows only to aggregate fresh proofs. Ideally, one would also
want to aggregate already aggregated proofs.

Updatability allows to efficiently update opening proofs: if C is a commitment
to v and a position needs to be updated resulting in a new commitment C′, an
updatable VC must provide a method to update an opening πf for a function
f that is valid for C into a new opening for the same function that is valid for
the new commitment C′. The new opening should be computed by only knowing
the portion of the vector that is supposed to change and in time faster than
recomputing the opening from scratch.

Maintainability aims at amortizing the proving costs in systems where com-
mitted values have a long life span and evolve over time. This is achieved by
means of dedicated memory to reduce the computation time needed to open
proofs. Concretely, the property requires that (1) one can efficiently store some
values to reduce the cost of computing any individual openings (2) after updat-
ing a single position of the committed vector, it should be possible to update all
proofs in time sublinear in the size of the vector (less than computing a single
proof from scratch in some cases).

Homomorphic properties apply to commitments as well as to proofs. An
LVC has homomorphic commitments if it is possible to meaningfully combine
commitments without knowing their openings: that is, from commitments C1 and
C2 to v1 and v2, any party must be able to compute a commitment to αv1+βv2

for any α, β ∈ F. The scheme has homomorphic openings if it is possible to derive
a proof that f(v1 + v2) = y1 + y2 from proofs for the claims f(v1) = y1 and
f(v2) = y2. Finally, a vector commitment scheme has homomorphic proofs when
it is possible to combine proofs of statements for different functions but same
vector. As we will see, this property is interesting for its implications.

1.3 Our Contributions

Theoretical Advances. On the theoretical frontier, we unify previous definitions
and augment them with additional properties. The basic notion we use is Lin-
ear Map Vector Commitments (LVC) and is inspired by the work of Lai and
Malavolta [16]. We then define additional properties on top of this definition
and explore their relations. Specifically, we augment this notion with updatabil-
ity and aggregation properties, including a novel notion -unbounded aggregation-
capturing the ability to aggregate already aggregated proofs but relaxing incre-
mental aggregation [5] in the sense that the verifier is allowed to do work linear in
the number of aggregation hops (i.e. aggregation is “history” dependent), also,
disaggregation is not possible. We show that having additional homomorphic
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properties is highly desirable, by arguing that any LVC that satisfies them: (1)
can be augmented with unbounded aggregation as well as updatability; (2) can
support general linear map openings (i.e. for any f : Fm → Fn) as long as it
supports inner product openings (i.e. for f ′ : Fm → F). This allows us to focus
on efficient constructions for inner products with homomorphic properties.

VC Constructions. First, we present two pairing-based LVC constructions for
inner products based on the properties of monomial and Lagrange polynomial
basis and prove that they satisfy all the relevant homomorphic properties to
obtain unbounded aggregation and support general linear maps. In terms of
expressivity, these constructions generalize previous work [22, 23] by supporting
linear functions instead of only position or subvector openings. VC for this class
of functions are core components of important primitives such as arguments of
knowledge for Inner Product (IP) relations or aggregation arguments [9].

Second, we present two novel maintainable constructions by exploiting the
tensor structure of multivariate and univariate polynomials. These constructions
allow a stronger, more flexible form of maintainability: they support an arbitrary
memory/time trade-off for openings, meaning that one can decide how much
memory it wants to use to reduce the opening time.

The multivariate case is a generalization of Hyperproofs [22] in several dimen-
sions. Roughly speaking maintanability is achieved in Hyperproofs by construct-
ing a binary tree of proofs where at the leaves there are the values of individual
positions. We present a single construction that can be instantiated in several
ways (recovering Hyperproofs as a special case) with these features: (i) the tree
can be of any arity, so proofs are shorter7; (ii) the leaves can be commitments for
any LVC and not only individual openings, to achieve a fully flexible trade-off.
As a result of (ii), the scheme is more expressive (as it can support openings
to linear functions/subvector openins at leaf level if the underlying commitment
supports it).

The univariate construction presents a similar generalization of previous work
by [24] but it has the additional feature that the setup is independent of the
trade-off, and can be decided by the prover on the fly.

Practical Improvements. As in some applications like Proof of Space, the subset
of opened positions is not very meaningful and its distribution is expected to
be known in advance, we study how to improve verification efficiency for cer-
tain special subsets I openings in our inner-product constructions. For some
structured sets I, we achieve a verifier that performs half of the work it does
for arbitrary sets J of the same size in the Lagrange construction, and only a
constant number of group operations in the one that uses the monomial basis.

Second, we mitigate the challenges of deploying these constructions due to
their need of a trusted setup. With the exception of the multivariate variant

7 If one uses the Inner Pairing Product argument of Bünz et al. [4] on top of PST com-
mitments as suggested in Hyperproofs the difference in proof size is not so relevant,
but IPP will be much cheaper to run.
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VC Scheme Setup Aggregation Updates Assumption Functional Special Sets
Opening Opening (size n)

PoS aggSVC [5] Trusted Incremental Same-Com hint RSA SVC O(n)
Pointproofs [13] Trusted One-hop Cross-Com key pairings × O(n)

Stateless aggSVC [23] Trusted One-hop Same-Com key pairings SVC O(1)

Our Lagrange LVC Reusable UnboundedCross-Com key AGM LVC O(1)
Our Monomial LVC Reusable UnboundedCross-Com keyless AGM LVC O(1)

Table 1: Comparison of our LVCs with other aggregatable VC schemes (aggSVC) de-
signed for Stateless Cryptocurrencies and Proof of Space applications. All schemes have
O(1)-sized proofs that verify in O(1) time and can update commitments in O(1) time.

VC Scheme Setup Homomorphic Aggregation |π| Prove OpenAll UpdateAll

Merkle Trees Transparent × SNARK logm O(k) O(m) O(k + logm′)
Hyperproofs [22] Trusted X IPP logm O(k) O(m logm′) O(logm′)

Our Multivariate LVC Trusted X IPP log`m
′ O(k) O(m logm′) O(logm′)

Our Univariate LVC Reusable X IPP logm′ O(k) O(m logm′) O(logm′)

Table 2: Comparison of our schemes with other maintainable VC. We consider vectors
of dimension m = k · m′ where m′ is the amount of memory dedicated for storing
proofs. All schemes are aggregatable using generic techniques, SNARKs or Inner Pairing
Products [4]. All times/sizes omit the dependence on the security parameter λ. We omit
constant additive terms from proof sizes. In the multivariate construction, ` refers to
a constant parameter.

of the maintainable construction, all our constructions can reuse trusted setups
such as “powers of tau” that were run for pairing-based SNARK schemes used
in real-world applications.8, as opposed to for example [13], in which a certain
middle power of τ needs to be missing in the SRS.

In the full version of this work we demonstrate the practical benefits of our
special subset construction by providing an implementation and comparisons
with current solutions.

1.4 Related Work

Vector commitments were fully formalized in [7] and two first constructions were
proposed under standard, constant-size, assumptions: CDH in bilinear groups
and RSA respectively. Many follow-up works built on these constructions to ob-
tain better efficiency and more properties such as subvector openings, functional
openings, aggregation, updates and variants of these. A number of constructions
[5, 3] use the properties of hidden order groups to achieve constructions with
attractive features such as constant size parameters or incremental aggregation
but are concretely less efficient than pairing-based constructions.

Merkle trees are quite efficient and only need a transparent setup. They also
offer natural time-memory tradeoffs due to their tree structure. Nevertheless,
VC schemes based on bilinear groups are more expressive in terms of openings,
have homomorphic properties, allow for efficient updates for the proofs and ag-
gregation mechanisms, so they are becoming an interesting alternative.

8 E.g., the one used by ZCash. https://z.cash or and Filecoin [10]

https://z.cash
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Expressivity. VC were generalized by Libert et al. [17], who formalize the no-
tion of functional commitments (FC). They construct vector commitments with
openings to linear-forms of the vector based on the Diffie-Hellman exponent as-
sumption over pairing groups. Later, Lai and Malavolta [16] introduce subvector
openings and show applications to building succinct-arguments of knowledge
(similar applications were shown by [3]) in the bilinear group setting. They also
generalize the notion of SVCs to allow the prover to reveal arbitrary linear maps
computed over the committed vector. Previously, only Functional VC for single-
output linear functions were proposed which did not account for provers that
want to reveal multiple locations or function outputs of the committed vector in
a concise way.

Updatability. Vector commitments that allow for updates are useful in applica-
tions such as stateless cryptocurrencies. A weak variant of updatability requires
the algorithms that update the commitment and the opening to take as input an
opening for the position in which the vector update occurs called hints. Recent
RSA-based constructions are hint-updatable [3, 5]. Compared to hint updates,
key-updates only need fixed update keys corresponding to the updated posi-
tions. Schemes based on bilinear groups require such fixed keys, and no extra
information about the change made in the vector in order to update.

Aggregation. Vector Commitments with an additional aggregation property are
very appealing for blockchain applications for their even shorter proofs of open-
ing. Campanelli et al. [5] showed two constructions of incrementally aggregat-
able SVCs, that have constant-size parameters and work over groups of unknown
order. Unfortunately, the practical efficiency of these constructions is still not
suffiecient for their deployment in real-world systems.

Gorbunov et al. [13] show how to extend the VC scheme of [18] to allow for
cross-commitment aggregation. Like our constructions, they assume the Alge-
braic Group Model (AGM) [12] in bilinear groups and a random oracle. Their
final SVC requires public parameters whose size is linear in the size of the com-
mitted vector, while cross-commitment aggregation allow for splitting up a long
vector into shorter ones and simply aggregate the proofs. However, this ap-
proach allows only for one-hop aggregation, meaning that already aggregated
proofs cannot be reused in further aggregations by external nodes.

Tomescu et al.[23] showed how to realize an updatable SVC with one-hop ag-
gregation from bilinear groups. Their scheme has linear-sized public parameters,
and it supports commitment updates, proof updates from a static linear-sized
update key tied only to the updated position, in contrast with the dynamic
update hints required by related works.

Maintainability. Apart from Merkle tree based Vector Commitments which are
known to be maintainable, Srinivasan et. al. [22] show that the multilinear PST
polynomial commitment [20] can be turned to a maintainable VC construction.
Pre-computing all (single-position) opening proofs is done in quasilinear time
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(contrary to the trivial quadratic time) and updating all proofs after a (sin-
gle position) vector update needs only logarithmic time. Contrary to Merkle
tree based approaches, the scheme has homomorphic properties. Furthermore,
due to its algebraic structure, it supports one-hop aggregation through generic
means, namely, Inner Pairing Product Arguments [4], albeit with a concretely
expensive proving computation. Tomescu et al. [24] add the same attribute to
KZG polynomial commitment schemes, resulting in an univariate construction
with the same properties.

2 Preliminaries

Bilinear Groups. A bilinear group is given by a description gk = (p,G1,G2,GT , e)
with additive notation such that p is prime, so F = Fp is a field. G1,G2 are cyclic
(additive) groups of prime order p. We use the notation [a]1, [b]2, [c]t for elements
in G1,G2 and GT respectively. e : G1 ×G2 → GT is a bilinear asymmetric map
(pairing), which means that ∀a, b ∈ Zp, e([a]1, [b]2) := [ab]t. We implicitly have
that [1]t := e([1]1, [1]2) generates GT . We use [a]1,2 to refer to 2 group elements
[a]1 ∈ G1, [a]2 ∈ G2. In our constructions, we denote by G(p) the algorithm that,
given as input the prime value p, outputs a description gk = (p,G1,G2,GT , e).

Algebraic Group Model (AGM). The algebraic group model [12] lies between
the standard model and the stronger generic group model. In AGM, we consider
only so-called algebraic adversaries. Such adversaries have direct access to group
elements and, in particular, can use their bit representation, like in the standard
model. However, these adversaries are assumed to output new group elements
only by applying the group operation to received group elements (like in the
generic group model). This requirement is formalized as follows: Suppose an
adversary A is given some group elements [x1]1 . . . [xm]1 ∈ G1. Then, for every
new group element [z]1 ∈ G1 that the adversary outputs, it must also output
z1 . . . zm ∈ F such that [z]1 =

∑m
i=1[zixi]1.

3 Definitions: Linear-map Vector Commitments

In the following, we define what we call Linear-map Vector Commitments (LVC)
schemes. Notably, this definition has been introduced by Lai and Malavolta
in [16] (except that there the name is Linear Map Commitments) to capture
further functionalities of vector commitments, whose definition before only ac-
count for proofs of position openings (Vector Commitments) or more generally
subvector openings (Sub-vector commitments). We introduce the definition and
security properties of LVC. Importantly, we do not consider the hiding property
as for our applications all vectors are public.

Linear-map Vector Commitment A linear-map vector commitment scheme
for function families F ⊂ {f : Mm → Mn} is a tuple of PPT algorithms(
LVC.KeyGen, LVC.Commit, LVC.Open, LVC,Vf

)
that work as follows:
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LVC.KeyGen(1λ,F)→ (prk, vrk): The setup algorithm takes the security param-
eter λ, a family of functions F implicitly defining the message space M,
and the maximum vector length m = poly(λ), and outputs a pair of keys
(prk, vrk).

LVC.Commit(prk,v)→ (C, aux): On input the proving key prk, and a vector v =
(v1, v2 . . . , vm) ∈ Mm, returns a commitment C and auxiliary information
aux. This algorithm is deterministic.

LVC.Open(prk, aux, f,y)→ πf : Takes as input prk, the auxiliary information
aux, a function f ∈ F , and a claimed result y ∈ Mn. It outputs a proof
πf that f(v) = y.

LVC.Vf(vrk,C, f,y, πf )→ 0/1 : Takes as input the verification key vrk, C, func-
tion f , y ∈Mn, and proof πf . It accepts or rejects.

A LVC scheme must satisfy the following properties:

Definition 1 (LVC correctness). An LVC scheme is perfectly correct if for
all λ ∈ N, for any family of functions F ⊂ {f :Mm →Mn} and any v ∈Mm,

Pr

LVC.Vf(vrk,C, f,y, πf ) = 1
(prk, vrk)← LVC.KeyGen(1λ,F)
(C, aux)← LVC.Commit(prk,v)
πf ← LVC.Open(prk, aux, f,y)

 = 1.

Definition 2 (LVC (strong) function binding.). A linear map commitment
LVC satisfies strong function binding if, for any PPT adversary A, for all λ ∈ N,
for all integers K ∈ poly(λ), and for any family of functions F , the following
probability is negligible in λ:

Pr


∀k ∈ [K] :

LVC.Vf(vrk,C, fk,yk, πfk) = 1
∧ 6 ∃ v ∈Mm s. t.
∀k ∈ [K] : fk(v) = yk

(prk, vrk)← LVC.KeyGen(1λ,F)(
C, {fk,yk, πfk}k∈[K]

)
← A(prk, vrk)


The definition above can be relaxed to hold only for honestly-generated com-

mitments C, raising to the weak function binding notion. In the weak definition,
the adversary A returns a vector v while the commitment C is computed via
LVC.Commit. In this work, constructions are proven strong function binding.

3.1 Homomorphic Properties for LVC

Homomorphic Commitments. Linear-map vector commitment schemes that sat-
isfy homomorphic commitments allow to combine commitments of two vectors
into a single one of their sum (or any linear combination). Namely, for all λ,
and (vrk, prk) ← LVC.KeyGen(1λ,F), if (C1, aux1) ← LVC.Commit(prk,v1) and
(C2, aux2)← LVC.Commit(prk,v2), then C̃ = (αC1 +βC2) is a valid commitment
to ṽ = (αv1 + βv2) for any α, β ∈M.

In this work, we are particularly interested in LVC that also have homomor-
phic proofs for different functions applied to a committed vector and homomor-
phic openings for the same function applied to different initial vectors.
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Homomorphic Proofs. An LVC scheme has homomorphic proofs if it allows
recombine two proofs π1, π2 corresponding to linear maps f1, f2 into a new
proof π̃ that opens to a linear combination of f1 and f2 applied to the same
committed vector. Namely, for all λ, F ⊂ {f : Mm → Mn} and all vectors
v ∈ Mm, and (vrk, prk) ← LVC.KeyGen(1λ,F), (C, aux) ← LVC.Commit(prk,v),
if π1 ← LVC.Open(prk, aux, f1,y1) and π2 ← LVC.Open(prk, aux, f2,y2), then for
all α, β ∈M:
π̃ = (απ1+βπ2) verifies LVC.Vf(vrk,C, f̃ = (αf1+βf2), ỹ = (αy1+βy2), π̃

)
= 1.

Homomorphic Openings. An LVC scheme has homomorphic openings if we can
combine opening proofs for the same linear-map f applied to two different vectors
v1 and v2 to obtain a new proof of opening π̃ that verifies with respect to the
linear combination C̃ of the two initial commitments C1,C2 and show the result
of f applied to the linear combination of the vectors v1 and v2.

More formally, for all λ, F ⊂ {f : Mm → Mn}, vectors v1,v2 ∈ Mm,
and (vrk, prk) ← LVC.KeyGen(1λ,F), if π1 ← LVC.Open(prk, aux1, f,y1) and
π2 ← LVC.Open(prk, aux2, f,y2), where (C1, aux2) ← LVC.Commit(prk,v1) and
(C2, aux2)← LVC.Commit(prk,v2), then for all α, β ∈M:

π̃ = (απ1+βπ2) verifies LVC.Vf(vrk, C̃ = (αC1+βC2), f, ỹ = (αy1+βy2), π̃
)

= 1.

4 Generic Constructions from Homomorphic Proofs

Many natural schemes (such as [23, 13], PST commitments or our construc-
tions in Section 5) have homomorphic proofs or openings. This motivates us to
consider generic constructions that enhance any LVC scheme with homomor-
phic properties. We start by defining the notions of unbounded aggregation for
same and cross-commitments and then we show how to add such properties to
LVC schemes that have homomorphic proofs for the former and, additionally,
homomorphic commitments for the latter.

4.1 New Notion: Unbounded Aggregation

The intuition for our definition is that, given t proofs, commitments or openings,
we can aggregate them by performing a linear combination with random coeffi-
cients. Importantly, these coefficients have to be chosen after the claims are fixed
and for that we rely on the RO model, as it is often the case for aggregation in
the literature.

In our work, we go a step further and show how this procedure can be done
over already aggregated proofs. Actually, aggregating already aggregated proofs
consists off just sampling new coefficients and using them for fresh linear combi-
nations. Importantly, the verifier needs to have access to the aggregation history:
it has to recompute the coefficient corresponding to each initial proof π, which
is the product of all the coefficients used in the aggregations it was involved in.
Note that this also adds a small overhead to the verifier: it makes a linear (in
the number of aggregation “hops”) number of hash computations.
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Example for same-commitment aggregation: Consider vector v committed in C,
functions f1, f2 and f3; let π1, π2 and π3 be proofs that f1(v) = y1, f2(v) = y2

and f3(v) = y3. An aggregated proof for f2(v) = y2, f3(v) = y3, would be π∗1 =
π2 + γ1π3, for γ1 = H(C, {(f2,y2), (f3,y3)}). In a second step, we can aggregate
a proof that f1(v) = y1, by performing π∗2 = π1 + γ2π

∗
1 , for γ2 = H(C, (f1,y1),

γ1). At the verification step, the verifier would reconstruct the coefficients of each
initial proof in π∗2 . For instance, δ1 = 1, δ2 = γ1γ2, δ3 = γ2. Then, the verifier can
run the LVC.Vf algorithm to check whether π∗2 = π1 +γ2π

∗
1 = π1 +γ1γ2π2 +γ2π3

is a valid proof that function f = f1 + γ1γ2f2 + γ2f3 evaluated at the vector
committed in C opens to y = y1 + γ1γ2y2 + γ2y3. For this last step to work
we need the homomorphic proof property and the verifier to have access to the
aggregation “history”.

To describe our history of claims we move to trees of statements {fj ,yj}tj=1.
In these trees, leaves are pairs of function–output (f,y). As in the usual case
internal nodes are defined as an ordered list of subtrees. An empty history/tree
is referred to as null. We denote trees using the syntax Tf,y and the operation
that “merges” two subtrees in order adding a new root as “∴”. The following
definition formalizes the above and will be useful in our construction. We remark
that we include the commitment in each of the leaves of the trees Tf,y. This
does not increase the input size for cross-commitment aggregation where this
information is necessary (for same-commitment aggregation the commitment
is not necessary). This also allows to model more closely the “claims” for the
cross-commitment case where each proof is for a statement (C, f,y).

Definition 3. Given a tree T we associate to each of its internal nodes a hash
label h defined so that h(L ∴ R) := H(C,L,R). We then associate to each of the
leaves in the tree a label

δ(leaf) :=
∏

i=1,...,t

h(xi)
r(xi,leaf)

where the xi-s are the internal nodes along the path from leaf to the root (root
included and starting from the bottom), the predicate r(x, leaf) is 1 if leaf is a
right child of x and 0 otherwise.

Remark 1 (Unbounded vs One-hop vs Incremental). Previous works have de-
fined other types of aggregation. In one-hop aggregation (or batching) [3] aggre-
gated proofs cannot be aggregated further. Incremental aggregation [5] does not
have this limitation. The difference between the latter and our notion is that
incremental aggregation does not require to keep track of the order in which
the aggregation has been applied (for verification or further aggregation). On
the other hand, we do require to track order, but we argue that this is not an
overhead in many settings. In particular, even incremental aggregators and ver-
ifiers need to know the claims related to the proofs being aggregated, albeit in
no order. Adding a structure to the claims roughly adds a number of bits linear
in the length of the opening for additional separators (see also examples on tree
histories above).
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When we consider unbounded-aggregatable LVC, we assume KeyGen outputs
additional parameters for aggregations in pp. The aggregation algorithm will
follow this syntax9:

LVC.Agg(pp, Tf,y, π, Tf ′,y′ , π
′)→ π∗

We subsequently modify the syntax for the verification algorithm in an (un-
bounded) aggregatable LVC as follows:

LVC.Vf(vrk,C, Tf,y ∴ T ′f,y, π
∗)→ b ∈ {0, 1}

with Tf,y replacing f,y.
We require the following correctness property and that function binding still

holds.

Definition 4 (Unbounded Aggregation Correctness). For any Tf,y, Tf ′,y′

and any π, π′:

Pr

 (LVC.Vf(vrk,C, Tf,y, π) = 1 ∧
LVC.Vf(vrk,C, T ′f,y, π

′) = 1
)
⇒

LVC.Vf(vrk,C, Tf,y ∴ T ′f,y, π
∗)=1

(prk, vrk, pp)← LVC.KeyGen(1λ,F)
(C, aux)← LVC.Commit(prk,v)

π∗ ← LVC.Agg(pp, Tf,y, π, Tf ′,y′ , π
′)

 = 1

Definition 5 (Unbounded Aggregation Function Binding). For any Tf,y,
Tf ′,y′ the following probability is negligible in λ:

Pr

[
LVC.Vf(vrk,C, Tf,y ∴ T ′f,y, π

∗)=1

∧ @a s.t. f(a) = y ∧ f ′(a) = y′
(prk, vrk, pp)← LVC.KeyGen(1λ,F)
(C, π∗, Tf,y, T

′
f,y)← A(pp, prk, vrk)

]

Definition: Cross-Commitment Aggregation. Unbounded aggregation can
be performed across different commitments as well. This property is called Cross-
commitment Aggregation and makes sense when we have a set of commitments
C′1, . . . ,C

′
t that we want to open at one or more maps f , as it allows to compute

a succinct proof of opening for linear-maps from different vectors committed
separately. Below we show our syntax which directly expands on our same-
commitment aggregation described above. Function binding and correctness are
also straightforward to expand. We let Tf,y include our commitments in the
leaves (see also next section).
Cross-commitment aggregation: LVC.CrossAgg(pp, Tf,y, π, Tf ′,y′ , π

′)→ π∗

Cross-commitment verification: LVC.CrossVfy(vrk,
(
C′j
)
j
, Tf,y, π

∗)→ 0/1

4.2 Unbounded Aggregation for LVC

We now describe unbounded aggregation algorithms for any LVC scheme that
satisfies the homomorphic properties of Section 3.1.

9 The algorithms can be generalized for more proofs. Proof size remains the same, also
for cross-commitment aggregation.
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LVC.KeyGen(1λ,F)→ (prk, vrk, pp, {upkj}mj=1): Additionally generate the de-
scription of a hash function H(·) and set it as pp.

LVC.Agg(pp, Tf,y, π, Tf ′,y′ , π
′)→ π∗ :

Compute γ = H(C, Tf,y, Tf ′,y′) and output π∗ = π + γπ′.
LVC.Vf(vrk,C, Tf,y ∴ Tf ′,y′ , π

∗)→ b
Return b← LVC.Vf

(
vrk,C, f∗, y∗, π∗

)
where:

– let {leafi = (C, fi,yi)}`i=1 be all the leaves in Tf,y ∴ Tf ′,y′ .
– For each i let δi := δ(leafi) be the value defined as in Definition 3.

f∗ :=
∑
i

δifi y∗ :=
∑
i

δiyi

Theorem 1. When applied to a function binding LVC scheme with homomor-
phic proofs,

(
LVC.Agg, LVC.Vf

)
satisfies Unbounded Aggregation Correctness (as

in Def. 4) and Function Binding (Def. 5) in the ROM.

Proof. Correctness follows by inspection, using the fact that the LVC satisfies
homomorphic proof, so we omit it.

For function binding, let
(
C, π∗, Tf,y, Tf ′,y′

)
be an output of A such that

LVC.Vf(vrk,C, Tf,y ∴ Tf ′,y′ , π
∗)=1. By construction this implies IP.Vf

(
vrk,C,∑

i δifi,
∑
i δiyi, π

∗) = 1. Because IP is function binding, except with negligible
probability, there exists a vector a such that f(a) = y, for y =

∑
i δiyi, f(X) =∑

i δifi(X) then there exists a such that
t∑
i=1

δifi(a) =
t∑
i=1

δiyi.

Since H is a random oracle, the coefficients δi do not depend on yi, fi. And
by the Schwartz-Zippel lemma, except with probability r/F, fi(a) = yi for all i,
which concludes the proof. ut

Cross-Commitment Aggregation for LVC. For the case of cross-commitment
aggregation, we proceed similarly but we also need to homomorphically operate
on the commitments (recall that hashing on trees implicitly hashes the commit-
ments too since we include them there).

LVC.CrossAgg(pp, Tf,y, π, Tf ′,y′ , π
′)→ π∗ :

Compute γ = H(Tf,y, Tf ′,y′)
Output π∗ = π + γπ′

LVC.CrossVfy(vrk,
(
C,C′, Tf,y ∴ Tf ′,y′ , π

∗)→ b
– let leaf1, . . . , leaf` be all the leaves in Tf,y ∴ Tf ′,y′ . We add to each leaf

leafi and additional subindex j that refers to which commitment the
proof in leafij corresponds to. Note that we still consider ` leaves.

– each leafij is of the form (Cj , fi,yi)
– For each i let δij := δ(leafij) be the value defined as in Definition 3.
– Compute

f∗j :=
∑
i

δijfi y∗j :=
∑
i

δijyi

– Return 1 iff bj = 1 for all bj ← LVC.Vf
(
vrk,Cj , f

∗
j , y
∗
j , π
∗).
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Efficiency. For our constructions, the verification equations for computing bi =
IP.Vf

(
vrk,C∗, f∗, y∗, π∗

)
are two pairing equations where the elements in the

right side can be aggregated, and thus the verifier performs only `+ 1 pairings.

Security. The security of this augmented construction follows analogously to
that for same-commitment aggregation, with the additional requirement for the
LVC scheme to have homomorphic commitments and openings.

4.3 From Inner-Products to Arbitrary Linear-Maps

In this section we show we can obtain LVC schemes for any family of functions
F ⊂ {f : Fm → Fn} starting from simpler constructions that have homomorphic
proofs and openings.

Our starting point are LVC schemes for FIP = {f : Fm → F}, or inner-
product VC schemes, that we will denote as IP = (IP.KeyGen, IP.Commit, IP.Open,
IP.Vf). All this algorithms work as the ones for LVC, except that instead of
f ∈ FIPm,p , they use the vector f ∈ Fm so that f(v) = f · v.

We can write the linear-map f : Fm → Fn as f = (f1, f2, . . . fn), where each
fi is an inner product function. If the IP scheme has homomorphic proofs, and
we set πi to be the proof that fi(v) = fi · v = yi, an aggregation of {πi}ni=1 is
a proof of the statement f(v) = y. Later, in the following section, we show two
possible constructions of IP vector commitments schemes that can be used to
instantiate the framework in this section.

An IP aggregation algorithm for one-hop aggregation10 of proofs works as
follows:

IP.Agg(pp, {fi, yi}ni=1, π = (πi)
n
i=1)→ π′ :

Parse pp = H, where H is a hash function, compute γ = H(C, {fi, yi}ni=1)
Output π′ =

∑n
i=1 γ

i−1πi
IP.VfAgg(vrk,C, {fi, yi}ni=1, π

′)→ b :
Compute γ = H(C, {fi, yi}ni=1), f ′ =

∑n
i=1 γ

i−1fi, y′ =
∑n
i=1 γ

i−1yi
Output b← IP.Vf(vrk,C, f ′, y′, π′).

Using IP.Agg, we present an alternative way of computing concise proofs of LVC
for more general functions f : Fm → Fn, based on aggregation.

LVC.KeyGen(1λ,F)→ (prk, vrk, pp):
– Run (prk, vrk) ← IP.KeyGen(1λ,FIP) and generate aggregation parame-

ters pp = H (a hash function). Output (prk, vrk, pp).
LVC.Commit(prk,v)→ (C, aux) :

– Run (C, aux)← IP.Commit(prk,v) and output (C, aux).
LVC.Open(prk, pp, aux, f,y)→ π :

– Parse f = (f1, f2, . . . fn) and y = (y1, . . . yn). Consider fi as the vector
representing inner-product function fi. Run πi ← IP.Open(prk, aux, fi, yi)
for i ∈ [n] and output π ← IP.Agg(pp, {fi, yi}ni=1, (πi)

n
i=1).

LVC.VfAgg(vrk, pp,C, f,y, π)→ b :

10 Naturally, this can be seen as a particular case of unbounded aggregation.
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– Parse f = (f1, f2, . . . fn) and y = (y1, . . . yn). Consider fi as the vector
representing function fi. Output b← IP.VfAgg(vrk,C, {fi, yi}ni=1, π)

4.4 Updability for LVC

We consider updatability as an extra property of the LVC scheme. The KeyGen
algorithm additionally computes the update keys, while two extra algorithms
are defined as follows:
LVC.UpdCom(upk,C, j, δ)→ C′: takes as input C, a position j ∈ [m], update key

upk, and a constant δ ∈M. It outputs C′ as a commitment for v′ = v+δej
11.

LVC.UpdOpen(upk, j, δ, f,y, π)→ π′ : Takes as input upk, j, δ, a function f , a
valid opening pair (y, π) for f and outputs a proof π′ for the new opening
y′ = f(v + δej).

Update correctness. Let
(
prk, vrk, upk

)
← LVC.KeyGen(1λ,F), and let (C, j, f,y, π)

be a tuple such that LVC.Vf(vrk,C, f,y, π) = 1. Then LVC satisfies update cor-
rectness if for any δ ∈M,

Pr

[
LVC.Vf(vrk,C′, f,y′, π′)=1
∧ y′ = y + δf(ej)

C′ ← LVC.UpdCom(upkj ,C, j, δ)
π′ ← LVC.UpdOpen(upkj , j, δ, f,y, π)

]
= 1.

Updates for IP. We present a generic construction of the updatability algo-
rithms for inner-product schemes. We state that even though algorithms can be
generalized to LVC for arbitrary functions, for ease of exposition we only present
it for inner-product openings, rather than generic linear-maps.

It is easy to see that commitments can be updated when one value of the
vector changes by simply applying the linear-homomorphic property of the un-
derlying IP scheme. Given C such that (C, aux) ← LVC.Commit(prk,v), when
position t of the vector changes, i.e. v′ = v + δet we can compute a commitment
to the new vector v′ as C′ = (C + Ĉ) where (Ĉ, ˆaux) ← LVC.Commit(prk, et) is
given as an update key.

Moreover, it is possible to update existing proofs using the homomorphic
openings property of the IP scheme: when position t of the vector changes as
above, to update a prior proof we simply add to π a proof π̂ corresponding to
the opening of f(δet). The resulting π′ = π+π̂ corresponds to the opening of the

sum f(v′) = f(v)+ δf(et) with respect to the updated commitment C′ = C+ Ĉ.
We extend IP arguments to satisfy updatability by asking the IP.KeyGen

algorithm to additionally generate updatable keys and introduce IP.UpdCom
and IP.UpdOpen that work the following way;
IP.KeyGen(1λ,FIP)→ (prk, vrk, {upkj}mj=1):

– Additionally generate public update keys upk: Set πuij ← IP.Open(prk,
auxj , ei, uij = ei · ej), ∀i, j ∈ [m] , Define upkj = {πuij}mi=1 for all
j ∈ [m], and output (prk, vrk, {upki}mi=1).

IP.UpdCom(prk,C, t, δ)→ C′ :

11 This notion can be generalized to more than one position.
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– Set Ĉ← IP.Commit(prk, et), and output C′ = C + δĈ.
IP.UpdOpen(upkt, t, δ,C, f , y, π)→ π′ :

– Parse upkt = {πuit}mi=1 and compute π̂ =
∑m
i=1 fiπuit .

– Set π′ = π + δπ̂ as proof for y′ = y + f · δet and output π′.

Theorem 2. If IP satisfies function binding and has homomorphic commit-
ments and openings, the extension above satisfies update correctness.

Proof. The proof follows directly by the definition of homomorphic proof and
IP.UpdCom, IP.UpdOpen.

5 Constructions for Inner-Pairing VC

In this section, we present two constructions of LVC for inner products, that
is, for functions f ⊂ FIP = {f : Fm → F}. We denote as IP = (IP.KeyGen,
IP.Commit, IP.Open, IP.Vf) a vector commitment scheme with inner product open-
ings. All the algorithms work as the ones for LVC, except that they take as inputs
the vector of coefficients of the linear function f ∈ FIP, f(v) = f · v, i.e. use the
vector f ∈ Fmp .

The first one is in the monomial basis and the other based on the univari-
ate sumcheck of [1, 21] that considers vectors encoded as polynomials in the
Lagrange basis. We prove they are indeed linear vector commitment arguments
with homomorphic proofs and openings. Therefore, they can be used as a start-
ing point to obtain further aggregation properties as shown in Section 4.1 and,
in particular, lead to two different more generic linear-map vector commitment
schemes.

5.1 Monomial Basis

For the first scheme, we consider vectors a ∈ Fm encoded as a polynomial in the
monomial basis, that is as a(X) =

∑m
i=1 aiX

i−1.

IP.KeyGen(1λ,FIP)→ (prk, vrk):
Generate group description gk = (p,G1,G2,GT , e)← G(p)
Sample τ ← F
Output prk =

(
{[τ i]1,2}m−1i=0

)
, vrk =

(
[τm−1]1,

{
[τ i]2

}m
i=0

)
.

IP.Commit(prk,a)→ (Ca, aux): Compute Ca =
∑m
i=1 ai[τ

i−1]1 and output (Ca,a).
IP.Open(prk, aux,b, y)→ π :

Find R(X), H(X) such that deg(R) < m− 1 and(
m∑
i=1

aiX
i−1

)(
m∑
i=1

biX
m−i

)
− yXm−1 = R(X) +XmH(X).

Define R̂(X) = XR(X)
Output π = ([R(τ)]1, [H(τ)]1, [R̂(τ)]1).
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IP.Vf(vrk,Ca,b, y, π)→ 0/1 : Compute Cb =
∑m
i=1 bi[τ

m−i]1, parse π = ([R]1,

[H]1, [R̂]1) and output 1 if and only if

e
(
Ca,Cb

)
− e
(
y[τm−1]1, [1]2

)
= e
(
[R]1, [1]2

)
+ e
(
[H]1, [τ

m]2
)

and

e([R]1, [τ ]2) = e([R̂]1, [1]2).

Remark 2. The second verification equation is meant to ensure that [R]1 is the
evaluation at τ of a polynomial of degree at most m−2. Note that it is important
for security that only m − 1 powers of τ are available to the adversary in G1,
otherwise the second equation does not guarantee that the degree is at most
m − 2. Importantly, even though we present our construction using a srs with
powers of τ up to m−1 in G1 and m in G2, it can easily be adapted for a bigger
srs and, in particular, existing trusted setups where the same powers of τ are
available in both groups are enough. For the second check, if m+ k powers of τ
are given in G1, R̂(X) should be defined as Xk+2R(X).

We implement this construction for single positions and compare it with
individual position openings in Merkle tree-based vector commitments in the
full version of the paper. Below, we state the theorems for security guarantees,
and refer the reader to the full version for the formal proofs.

Theorem 3. The construction above satisfies Completeness, Homomorphic Proofs
and Homomorphic Openings.

Theorem 4. The construction above satisfies Strong Function Binding in the
AGM under the (m− 1,m)-BSDH Assumption([2]).

Intuition. Without loss of generalization, we consider an adversary that
provides two proofs π1, π2 with IP.Vf(vrk,Ca,bk, yk, πbk) = 1 for k = 1, 2 and
there is no a ∈ Fm s. t. a · bk = yk.

For commitment Ca and proofs πk = ([Rk]1, [Hk]1, [R̂k]1) under the AGM
we can extract polynomials a(X), Hk(X), Rk(X), R̂k(X) of degree up to m− 1
such that the proof elements are their evaluations in G1 at secret point τ . On
the other hand, the second verification equation in our IP scheme assures that
Rk(X)X = R̂k(X). Because deg(R̂k) ≤ m− 1 deg(R1),deg(R2) ≤ m− 2.

Consider a ∈ Fm the vector of the coefficients of a(X) =
∑m
i=1 aiX

i−1.
Then, from the first verification equation in both of the proofs we have that
p1(X), p2(X) have a common root in τ , where for k = 1, 2:

Pk(X) =
( m∑
i=1

aiX
i−1)( m∑

i=1

bkiX
m−i)− ykXm−1 −Rk(X) +XmHk(X).

If for some k, pk(X) is not the zero polynoial, since τ is one of its roots, we
can solve the discrete logarithm problem and extract τ from [Pk(τ)]1. Thus, it
must be the case that pk(X) ≡ 0 for k = 1, 2. Because deg(Rb),deg(Rc) < m−1
and deg(XmHb(X)),deg(XmHc(X)) > m − 1, we have that the coefficient for
Xm−1 in polynomial Pk(X) is

∑m
i=1 aibki− yk = 0. Indeed, there exists a vector

a such that a · bk = yk, contradicting the initial assumption that the adversary
A breaks the strong functional binding.
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Updates Without Keys. We remark that we do not need any additional
update keys added to the setup. Indeed, the update key is made by proofs
of inner products between cannonic vectors ei · ei = 1 or ei · ej = 0. In our
construction for encodings in the monomial basis, a proof that ei ·ei = 1 consists
on R(X) = H(X) = 0. On the other hand, to prove that ei · ej = 0 for i 6= j
the proof is (the evaluation in the group of) either R(X) = Xm+i−j if j > i, or
H(X) = Xi−j if i > j. As such powers of τ are already included in prk, upk = ∅.

5.2 Lagrange Basis

In this second scheme, for a Lagrange basis {λi(X)}mi=1 over a multiplicative
group H = {h1, . . . , hm} of size m in F we encode a vector a ∈ Fm as a polynomial
a(X) =

∑m
i=1 aiλi(X). Recall that when H is a multiplicative subgroup, λi(0) =

m−1 for all i ∈ [m]. Moreover, if we set t(X) =
∏m
i=1(X − hi) we have that

λi(X)λj(X) ≡ 0 mod t(X), and λi(X)2 ≡ λi(X) mod t(X). The construction
below, presented in [21], exploits these properties in the proof of openings for
inner-products:
IP.KeyGen(1λ,FIPm)→ (prk, vrk):

Generate group description gk = (p,G1,G2,GT , e) ← G(p), define multi-
plicative group H = {h1, . . . , hm} in F , and compute Lagrange polynomials
{λj(X)}mj=1 over H.

Sample τ ← F and output prk =
(
{[τ i]1,2}mi=1, {[λi(τ)]1}i=1m−1, [τm]2

)
and

vrk =
(
[1]1,2,

{
[τ i]2, [λi(τ)]2

}m
i=1

)
.

IP.Commit(prk,a)→ (Ca, aux): Compute Ca =
∑m
i=1 ai[λi(τ)]1 and output (Ca,a).

IP.Open(prk, aux,b, y)→ π :
Find R(X), H(X) such that deg(R) < m− 1 and(

m∑
i=1

aiλi(X)

)(
m∑
i=1

biλi(X)

)
−m−1y = XR(X) + t(X)H(X)

Define R̂(X) = XR(X) and output π = ([R(τ)]1, [H(τ)]1, [R̂(τ)]1).
IP.Vf(vrk,Ca,b, y, π)→ 0/1 : Calculate Cb =

∑m
i=1 bi[λi(τ)]2

Parse π = ([R]1, [H]1, [R̂]1) and output 1 if and only if

e
(
Ca,Cb

)
− e
(
m−1y[1]1, [1]2

)
= e
(
[R]1, [1]2

)
+ e
(
[H]1, [t(τ)]2

)
, and

e
(
[R]1, [τ ]2

)
= e
(
[R̂]1, [1]2

)
.

The proof of completeness can be found in [21]. Below, we state the theorems
for Strong Function Binding and homomorphic proofs and openings, and refer
the reader to [6] for the formal proofs.

Theorem 5. The construction above has Homomorphic Proofs and Openings.

Theorem 6. The construction above satisfies Strong Function Binding in the
AGM under the (m− 1,m)-BSDH Assumption ([2])
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Intuition. The proof goes as the one for Theorem 4 except that

pk(X) =
( m∑
i=1

aiλi(X)
)( m∑

i=1

bkiλi(X)
)
−m−1yk −XRk(X) + t(X)Hk(X).

Once more, if one of the polynomials pk(X) is not the zero polynomial, since
τ is one of its roots, we can solve the discrete logarithm problem and extract τ
from [Pk(τ)]1.

Then, Pk(X) ≡ 0, for both k = 1, 2. Because deg(Rk) < m− 1 and

( m∑
i=1

aiλi(X)
)( m∑

i=1

bkiλi(X)
)
≡

m∑
i=1

aibkiλi(X) mod t(X),

∑m
i=1 aibkiλi(X)−m−1yk = XRk(X), which implies

∑m
i=1 aibkiλi(0)−m−1yk =

0. As H is a multiplicative subgroup, λi(0) = m−1 for all i ∈ [m] and thus∑m
i=1 aibki = yk. Then, there exists a such that a · bk = yk for k = 1, 2, contra-

dicting the initial claim that adversary A is successful.

Updatability with Short Keys In this construction, a proof that ei · ei = 1
is the encoding in a group of the polynomial Ri(τ), for Ri(X) = (λi(X)− 1)/X.
On the other hand, the proof that ei · ej = 0 for i 6= j is [H(τ)]1, for H(X) =
((λi(X)λj(X))/t(X). Including the evaluation of all these polynomials in upk
would require a srs of quadratic size. Still, as noted in [23], these keys can be
computed in constant time from a linear-size update key.

6 Subvector Openings

In this section, we present schemes for VC with Subvector Openings (SVC),
starting from the constructions of Section 5. We will consider SVC as a special
case of LVC. The class of functions that open a set of positions I = {i1, . . . , in}
of a committed vector v ∈ Fm is given by the linear-map fI with

fI : Fm → Fn, fI(v) = (ei1 · v, . . . ein · v)

where for each k ∈ [n], eik is the ikth vector of the canonical basis Fm.
Naturally, for a vector v ∈ Fm, we can construct proofs of openings of sub-

vectors vI = (vi)i∈I by aggregating different inner product proofs for vectors eik
for ik ∈ I using the techniques in Section 4.1. We refer to these aggregated proofs
as non-native subvector openings, given that they require a random oracle and
in particular, are no longer algebraic and homomorphic. As opposed to them,
we call native subvector opening, a scheme that is algebraic and homomorphic.

In what follows, we improve on Subvector Openings in some special sce-
narios, achieving native aggregation for new schemes and reducing the verifier
complexity in existing ones.
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6.1 Native SV Openings for the Monomial Basis

For the construction of Section 5.1, we introduce native subvector openings for
subsets with consecutive position I = {i, i + 1, . . . , i + k}. That is, for c̃ =
(ci)i∈I such that there exist u1,u2 with c = (u1, c̃,u2). To prove an opening

of c̃, we only need commitments to R(X) =
∑i−1
s=1 ciX

m−i+s−1 and H(X) =∑m
i=i+k+1 cm−i+s+1X

s−1, which are shifted-encodings of u1, u2. The verifier

checks that deg(R) < m − 1, computes C̃(X) =
∑i+k
s=i c̃sX

s−i and C̃ = [C̃(τ)]1
and checks whether e(C− C̃, [τm−i]1) = e([R]1, [1]2) + e([H]1, [τ

m+k]2).

Note that, given individual proofs of openings as in Section 5.1, that is,
[Rs(τ)]1, [Hs(τ)]1 such that C(X)Xm−s − csXm−1 = Rs(X) + XmHs(X) and
deg(Rs) < m − 1, for the commitments defined above we have [R]1 = [Ri(τ)]1
and [H]1 = [Hi+k(τ)]1, that is, proofs can be aggregated at no cost for the
prover.

6.2 Non-native SV Openings for the Monomial Basis

For the LVC scheme of Section 5.1, the techniques of Section 4.1 allow us to
redefine the Open and Vf algorithms to work for an arbitrary subset of positions
I ⊂ [m]. More specifically, the prover will simply run IP.Open(prk, aux, eik ,v)
for k = 1, . . . , n to obtain (vik , πik) and πik a proof of correct computation of
vik . Then, use the random oracle to sample a randomness γ ∈ F and output
πI =

∑n
k=1 γ

k−1πik .

The verifier will receive πI = ([R]1, [H]1, [R̂]1), compute y =
∑n
k=1 γ

k−1vik ,

and check as before e([R]1, [τ ]2) = e([R̂]1, [1]2) and

e

(
C,

n∑
k=1

γk−1[τm−ik ]2

)
− e

(
y[τm−1]1, [1]2

)
= e ([R]1, [1]2) + e ([H]1, [τ

m]2) .

Note that verifier’s work is dominated by the computation of
∑n
k=1 γ

k−1[τm−ik ]2,
so we analyze for which sets I ⊂ [m] this computation can be cheaper than |I|G2-
exponentiations. Without loss of generality, we can re-assign γk−1 → γm−ik , and
thus our verifier now needs to compute

∑n
k=1[(γX)m−ik ]2 =

∑
i∈I [(γX)m−i]2.

Now, note that if Ik,s,n ⊂ [m] is an arithmetic progression, i.e. it is such
that for a given ratio s, a starting power k and a number n of desired elements,
Ik,s,n = {k, s+ k, . . . , (n− 1)s+ k}, then

∑
i∈Ik,s,n

(γX)m−i = (γX)k
1− (γX)n

1− (γX)s
.

This reduces the work of the verifier to compute
∑
i∈Ik,s,n(γX)m−i to con-

stant. Note that the verifier cannot compute (1 − (γX)s)−1, so we multiply
all the terms of the equation by 1 − (γX)s. I.e, the verifier computes y =



Linear-map Vector Commitments and their Practical Applications 21∑
i∈Ik,s,n γ

m−iyi and checks whether

e
(
[C]1, γ

k[τk]2 − γk+n[τk+n]2
)
− e
(
[τm−1]1y − [τn+s−1]1γ

sy, [1]2
)

= e
(
[R]1, 1− γs[τs]2

)
) + e

(
[H]1, [τ

n]2 − γs[τn+s]2
)
.

6.3 Lagrange Basis

Native. In the Lagrange Basis, one can use the native subset openings of [23].
There, the verifier needs to compute computation the vanishing polynomial
tI(X) =

∏
i∈I(X−hi). To reduce verifer’s work we focus on those subsets I ⊂ [m]

such that tI(X) can be calculated in less than |I| computations. One answer to
this question comes from cosets. That is, given H = {1, ω, ω2, . . . , ωm−1} group
of roots of unity where m = 2n, let Hk be the subgroup of order 2k of H, where
k goes from 0 to n. Then, for each 0 ≤ s < 2n/k we can construct the coset

I = ωsHk, whose vanishing polynomial is tI(X) = X2k− (ωs)2
k

. Verifier accepts

if and only if e
(
C− C̃, [1]2

)
= e
(
[H]1, [x

2k ]2 − ωs2
k)

.

Non-native. Given that the native subvector opening procedure above works
for arbitrary subsets I ⊂ [m], we don’t consider aggregation of individual posi-
tions. The latter makes sense only when applying a linear function to the new
subset. That is, when the verifier is given Cf,I , claimed to be a commitment to
f · cI , for some linear function f applied to the vector cI = (ci)i∈I .

7 Maintainable Vector Commitment Schemes

7.1 Multivariate Case

One of the key points of vector commitment schemes that allow to speedup
subvector openings is the ability to pre-compute and store individual openings
and later aggregate them to create subvector openings without incurring linear
amount of computations each time. This is the case for the construction in [23],
presented in Section ??, and also for the maintainable scheme of [24].

In constructions such as the ones presented in Section 5, the proof of opening
of one position involves all other elements in the vector. That is, the polynomials
committed to create the proof have coefficients that involve all the values of
the committed vector v ∈ Fm. As a consequence, prover work is linear in the
size of v (as it has to evaluate polynomials of degree m). To alleviate this,
Shrinivasan et. al. [22] utilize a tree-like structure for computing/communicating
proofs which allows pre-computation in quasi-linear (instead of quadratic) time
and efficient updates at the cost of a proof of size logm.

In this section, we extend the techniques of [22] to achieve trade-offs and
efficiency improvements. Roughly speaking, we present a way to “compose” the
tree-based commitments of [22] with constant size ones. We achieve this by con-
sidering trees that themselves have commitments for leaves instead of openings.
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The intuition is the following: we divide the vector v in small chunks {vj} ∈ Fk.
We then arrange these chunks in a tree as follows: each chunk corresponds to a
leaf of the tree and each node is a succinct representation of its children. The
root of the tree is the commitment to the vector. An opening proof only involves
the elements in the path of the root to the leaf containing the position to be
opened. That is, if we want to open value a in position i of v ∈ Fk·m′ , we prove
that (1) cj is the leaf that contains the commitment to the j chunk containing
i and (2) cj opens to a in the position corresponding to i. The former part can
be pre-computed and efficiently maintained while the latter is computed on the
fly.

This results in a construction with the following memory/time trade-off: for
any k,m′ ∈ N with m = k · m′, any opening can be computed in time inde-
pendent of m′ after pre-computing and storing Oλ(m′) values (independent of
k). Furthermore, a relaxed maintainability notion is satisfied: all stored values
can be pre-computed efficiently in Oλ(m · logm′) time and updated in O(logm′)
time.

Additionally, we show how to use a higher arity tree (any constant ` contrary
to the binary ones used in [22]) to further reduce the proof size by a constant
factor, namely Oλ(log`m

′) (assuming a constant size commitment for the leaf
part), at the expense of a slightly worse prover time. We note that –apart from
the evident advantage of shorter proofs– this results in smaller aggregation time
for the prover and verifier when using inner pairing products.

Our starting point is the PST polynomial commitment [20]. The PST poly-
nomial commitment is a natural generalization of the KGZ polynomial commit-
ment [15] for multivariate polynomials, that is, it allows to commit to ν-variate
polynomials of individual degrees less than `. The core idea of the construction
lies in the fact that for every p(X) ∈ F[Xν , . . . , X1] and x = (xν , . . . , x1) ∈ Fν ,
p(x) = y if and only if there exist polynomials Hν(X), . . . ,H1(X) such that

p(X)− y =

ν∑
j=1

Hj(X) · (Xj − xj)

where the proof polynomials Hj(X) are efficiently computable.

Using standard techniques to encode monomials in a cryptographically se-
cure bilinear group (encode setting X = τ and publishing all the monomials
[τdνν · · · τ

d1
1 ]1 and [τ ]2) results in a polynomial commitment with proof of size

roughly ν group elements.

Tree structure. To achieve the flexible memory/time trade-off, instead of hav-
ing the vector values in the leaves of the tree, we replace them with elements
[r]1 · vj where [r] ∈ Gk1 is the commitment key of an arbitrary algebraic vector
commitment scheme LVC. To open a position of v, we use the PST approach to
reach corresponding leaf j, and then the opening algorithm of LVC on vj .

One subtlety of replacing leaves with commitments is that a standalone PST
proof is no longer binding, that is, the prover can undetectably claim arbitrary
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values that supposedly correspond to a leaf. We overcome this by using a low
degree test to ensure that the claimed value for the leaf is uniquely defined.

Note that the root of the tree depends on the elements τ , r. Viewing both
τ = (τν , . . . , τ1) and r = (rk, . . . , r1) as formal variables X,R, we can treat the
root node (the commitment) as an evaluation of a polynomial. Now, note that
this polynomial corresponds to the interpolation of the elements of the leaves in
Σν . Thus, the aforementioned polynomial is

p(X,R) = λ(X) · (R · v1, . . . ,R · v`ν ) = (λ(X)⊗R) · v

The prover can still evaluate one by one the variables Xν , . . . , X1 at σν , . . . , σ1
-as it would do in the simple PST case- and end up with a polynomial q(R) =
p(σ,R) = R · vj . To ensure that q does not contain any Xj variable, we also
include a low degree test in the proof. The evaluation of the latter polynomial
at [r]1 corresponds to the leaf commitment at position σ and can be opened by
employing the Open algorithm of the leaf commitment scheme with key [r]1.

Construction. First, we introduce some notation. Let Σ ⊆ F denote an interpo-
lating set of size `. Given σ = (σν , . . . , σ1) ∈ Σν , we denote σ|i = (σν , . . . , σi) ∈
Σν−i+1. For v = (vσ)σ∈Σν with vσ ∈ Fk and σ1 ∈ Σi we denote with vk,σ1

the vector (vσ1,σ2)σ2∈Σν−i , that is, the concatenation of vectors vj whose `-ary
representation of the index j is prefixed with σ1. Finally, we denote with τν,` the
ν-variate monomial basis of individual degree less than ` evaluated at τν , . . . , τ1.
In all cases, we omit the subscript when it is clear from the context.

We present the construction next. While our aim is individual position open-
ings, the construction supports a bigger family of functions: linear forms12 ap-
plied to one of the k-sized chunks of the vector. Concretely, let Fp,k ⊆

{
f : Fk → F

}
be the family of linear forms supported by the leaf commitment scheme. We de-
fine the `, ν-extended family as

Ext`,ν-Fp,k = {f : Fk·`
ν

→ F | ∃f ′ ∈ Fp,k, i ∈ {1, . . . , `ν} s.t.

∀v1, . . . ,v`ν ∈ Fk : f(v1, . . . ,v`ν ) = f ′(vi)}

Our construction is a linear vector commitment MVTree for the family Ext`ν -Fp,k,
that uses as a black box an algebraic linear vector commitment scheme LVC′ for
the family Fp,k.
MVTree.KeyGen(1λ,Ext`ν -Fp,k)→ (prk, vrk):

– (prk′ = [r]1, vrk
′)← LVC′.KeyGen(1λ,Fp,k)

– Let λ(X) be the vector of Lagrange polynomials associated to Σ.
– Sample τν , . . . , τ1 ← F and output prk = (prk′, [λ]1 = [λ(τν) ⊗ · · · ⊗

λ(τ1) ⊗ r]1, [τ ⊗ r]1), vrk = (vrk′, [τν ]2, . . . , [τ1]2, [τ
`−1
ν · · · τ `−11 ]2),

upk = ({[λ(τj)⊗ · · · ⊗ λ(τ1)⊗ r]1}1j=ν−1),
MVTree.Commit(prk,v)→ (C, aux):

– For all σ ∈ Σν : compute (Cσ, auxσ)← LVC′.Commit(prk′,vσ). Compute
C = [p(τ , r)]1 = [λ]1 · v and output C, aux =

(
{auxσ}σ∈Σν ,v

)
12 We use linear forms for simplicity, one could also consider general linear functions.
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MVTree.Open(prk, aux, f,y)→ π:
– Let f(v1, . . . ,v`ν ) = f ′(vi) for f ′ ∈ Fp,k and i = (σ)` in `-ary.
– Consider τ , r as formal variables X = (Xν , . . . , X1),R = (Rk, . . . , R1).
– Denote pν+1(X,R) = p(X,R) = (λ(X)⊗R) · v
– For all ν ≥ j ≥ 1:

Compute pj(Xj−1, . . . , X1,R) = λ(Xj−1, . . . , X1,R) · vσ|j

Compute Hj(Xj , . . . , X1,R) as

Hj(Xj , . . . , X1,R) =
pj+1(Xj , . . . , X1,R)− pj(Xj−1, . . . , X1,R)

(Xj − σj)

and group element [Hj ]1 = [Hj(τj , . . . , τ1, r)]1
– Compute Ĉσ = [τ `−1ν · · · τ `−11 · r]1 ·vσ, π′ ← LVC′.Open(prk′, auxσ, f

′,y)

and output π = ([Hν ]1, . . . , [H1]1,Cσ, Ĉσ, π
′).

MVTree.Vf(vrk,C, f,y, π)→ 0/1:
– Let f(v1, . . . ,v`ν ) = f ′(vi) for f ′ ∈ Fp,k and i = (σ)` in `-ary.
– bPath ← e(C− Cσ, [1]2) =

∑ν
j=1 e([Hj ]1, [τj − σj ]2)

– bLD-Test ← e(Cσ, [τ
`−1
ν · · · τ `−11 ]2) = e(Ĉσ, [1]2)

– bLeaf ← LVC′.Vf(vrk′,Cσ, f
′,y, π′)

– Output bPath ∧ bLD-Test ∧ bLeaf
We omit explicitly describing the update algorithm. Instead, we demonstrate in
Thm. 8 how to efficiently update all proofs after modifying a position in the
committed vector.

We summarize the properties of the construction in the following theorems.
Due to space limitations, we omit their proofs and refer the interested reader to
the full version of this paper.

Theorem 7. Let LVC′ be an algebraic vector commitment scheme that satis-
fies completeness, homomorphic openings and weak function binding for a func-
tion family Fp,k. Then, MVTree satisfies (1) completeness, (2) Homomorphic
Openings and (3) strong function binding for Ext`ν -Fp,k in the AGM under the
(`− 1) · ν-BSDH assumption([2])

Theorem 8. Consider construction MVTree and let πσ = ([Hσ
ν ]1, . . . , [H

σ
1 ]1,

Cσ, Ĉσ, π
′
σ) be some proof of opening for a leaf commitment in position σ written

in `-ary.

Then, computing all partial proofs
{

([Hσ
ν ]2, . . . , [H

σ
1 ]1,Cσ, Ĉσ)

}
σ∈Σν

can be done

in Oλ(k · ν · `ν) = Oλ(ν ·m) time and storing them needs Oλ(`ν) = Oλ(m/k)
space. Furthermore, if we update C by adding δ in some position i∗, we can
update all partial proofs in time Oλ(ν).

Efficiency of the Multivariate Construction. We only consider the case
where ` = O(1). First, let’s focus on the time needed to compute [Hj ]1. One
can simply write the polynomial pj − pj−1 as a polynomial in 1, Xj , . . . , X

`−1
j

with polynomial coefficients in the other variables. Then, we can use standard
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(univariate) polynomial division to divide each term with Xj − σj in constant
time. To encode it in the group, it is enough to note that the total degree of
each term is k · `j−1, so we need to perform ` multi-exponentiations of this size
totaling in O(k · `j) operations.

That said, we demonstrate the efficiency of the construction. The commit-
ment key consists of linear in m group elements. Opening needs O(k · `j) opera-
tions for each iteration, totaling in O(k · `ν) time. By inspection of the construc-
tion, proofs size is log`(m/k) + 2 + |π′|, where π′ is the size of an opening of
the leaf commitment. Finally, verification consists of (1) a log`(m/k)-size pairing
product equation, (2) a low degree test involving constant operations and (3) a
verification of an opening of a leaf commitment.

Remark 3 (On aggregation). The first two verification tests are pairing product
equations. Assuming the leaf commitment verification is also a pairing product
equation, one can use inner pairing products [4] to aggregate many such equa-
tions as done in [22] and, thus, achieve one-hop cross commitment aggregation.
While the aggregated proof size decreases exponentially, this comes at the cost
of a significant overhead for the prover due to the need to work in the target
group. Reducing the proof size from log2m to roughly log`(m/k) (assuming
constant size/verification for leaf commitment opening) can make aggregation
significantly cheaper for the prover.

7.2 Univariate Maintainable Vector Commitments

In this section, we give an optimized construction that achieves the same memory-
time tradeoffs for the prover that the scheme in Section 7.1, but for univariate
polynomials. For that, we rely on the q-BSDH assumption for q = m − 1 ([2]),
while we only needed q = logm plus the assumption that the leaf commitment
is sound in the multivariate case.

Our work generalizes a previous univariate construction of [24] in a similar
way as it generalizes hyperproofs. Namely, our construction truncates the tree
at some level so that leaves are commitments and not individual positions.

For vectors of size m, we offer the following trade-off: for any ν, κ, such
that m = 2ν+κ+1, one can derive openings of size ν + 5 group elements. The
prover can pre-compute and store 2ν − 1 proofs, and then compute proofs by
performing O(κ2κ) group operations. We show also how to compute all proofs
with O(νm) group operations (plus O(m(ν + κ)) field operations). The proofs
are maintainable, as an update in a position requires recomputing O(ν) proofs.
One interesting feature is that the trusted setup depends only on m (the powers
of τ) and not on ν, κ, so the right tradeoff can be decided on the fly.

Overview. Our construction builds a tree of commitments to a vector v ∈ Fm
build as follows. The root of the tree is a commitment C = [λ]1v, where
λ = ([λ1(τ)]1, . . . , [λm(τ)]1), for {λj(X)} the Lagrange interpolation polyno-
mials for H. The two children will be C0 = [λ0]1v0 and C1 = [λ1]1v1, which are
commitments to v0 and v1 with keys λ0 and λ1 of half the size to be specified
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next. The two children of C0 will be C00 = [λ10]1v10,C10 = [λ10]1v10 and so on.
The leaves are commitments Cb, b = (bν , . . . , b0) ∈ {0, 1}ν+1 to vectors of size
2κ. For any leaf index b = (bν , . . . , b0), we denote b|j = (bj . . . b0) the suffix13 of
size j. Note that Cb|j for j = 0, . . . , ν − 1 denotes all the commitments from the
root to the leaf Cb.

The division into vectors of half the size is done in bit reverse order according
to the least significant bit of the binary representation of the index, b0. At the
first level, there will be two vectors v0,v1 of size m/2 containing all positions of
v with suffix b0. At the next level, there will be four vectors v00,v01,v10,v11 of
size m/4, and vb1b0 indicates all the positions of v (in the natural order) that
have as suffix b1b0 and so on.

The division into commitment keys of half the size will follow a similar pat-
tern. At level 1, the group of roots of unity H will be split into H0 and H1, accord-
ing to the least significant bit of the binary representation of the index of the root,
i.e. H0 consists of all even and H1 all odd powers of ω. In particular, H0 are the
roots of unity of size m/2, and H1 = ωH0 is a coset. At level 2, the commitment
keys will be associated to H00, H01, H10,H11 and by the same reasoning, H00 are
the roots of unity of sizem/4, H10 = ω2H00,H01 = ωH00 and H11 = ω3H00. More
generally, we note that for any 0 ≤ j ≤ ν and any string (bj , . . . , b0) ∈ {0, 1}j+1,

Hb|j = ωsHr, for s =
∑j
i=0 bi2

i and r = m
2j+1 . The vanishing polynomial associ-

ated to Hb|j will be denoted tb|j (X) = Xr − (ωs)r = X
m

2j+1 − ω
m

∑j
i=0

bi2
i

2j+1 . The

Lagrange polynomials associated to the interpolation set Hb|j with the natural

order will be written as λb|j (X) = (λ
b|j
1 (X), . . . , λ

b|j
r (X)) and the commitment

key for node b|j is λb|j = [λb|j (τ)]1.

As in the multivariate case, the idea to open the commitment to some func-
tion f that is a linear function of some chunk vi is to (1) open the root commit-
ment to the leaf and (2) open the commitment to the leaf using the IP argument
for the Lagrange basis of Section 5 or the construction of Tomescu et al. [23].
For (2), since at the leaf level the commitment is w.r.t to the key λb for some
b = (bν , . . . , b0), we prove the following lemma, that shows that the construction
for inner products of Section 5 works for any coset of roots of unity.

Theorem 9. Let H ⊂ F be a subset of roots of unity of size m = 2ν+κ+1,
for some κ, ν ≥ 0. Given some b ∈ {0, 1}ν+1, define s =

∑ν
i=0 bi2

i, r = 2κ,
Hr ⊂ H the subgroup of roots of unity of size r, and Hb = ωsHr. Let tb(X)
be the vanishing polynomial at Hb and λb(X) the associated Lagrange basis
polynomials. Then, if A(X) = λb(X) · a and B(X) = λb(X) · b, it holds that
a ·b = y if and only if there exist polynomials H(X), R(X) with deg(R) < r− 2
such that

A(X)B(X)− r−1y = XR(X) + tb(X)H(X).

13 Note that this notation is different than the one we used in the multivariate case. In
the latter case, this notation denoted prefixes while here it denotes suffixes. We do
this because in each case the corresponding notation makes presentation easier.
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Therefore, at any leaf b we can open the commitment to any linear relation
and verify with the same equation. To open C to a certain leaf commitment Ci,
the idea is to implicitly show from root to leaf that Cb|j , Cb|j+1

agree in Hb|j+1 .
This is proven by showing that their difference is divisible by t(1−bj+1)b|j (X).
More specifically, we prove the following lemma, that shows how the parent and
the children nodes ate each level relate through a simple equation:

Lemma 1. Consider two cosets H0b|j and H1b|j . Let Cb|j (X) be an encoding

of vector vb|j , and C0b|j (X), C1b|j (X) those of vectors v0b|j and v1b|j . For all
j = 0, . . . , ν it is true that

Cb|j (X) = t1b|j (X)
C0b|j (X)− C1b|j (X)

2ωsj
+ C1b|j (X)

Cb|j (X) = t0b|j (X)
C0b|j (X)− C1b|j (X)

−2ωsj
+ C0b|j (X)

Scheme Description. Formally, we present an LVC commitment scheme that
works for the function family:

Extν-Fp,2κ = {f : Fm → F,m = 2κ+ν+1 | ∃f ∈ F2κ , i ∈ 2ν s.t.

∀v1, . . . ,v2ν ∈ F2κ : f(v1, . . . ,v2ν ) = vi · f}
.

Algorithms LVC.KeyGen and LVC.Commit are the same as the Lagrange basis
construction of Section 5 and are omitted. The commitment to v is C = [λ>]1v
together with the auxiliary input information aux. Note that step 4. of the open
algorithm is IP.Open from Section 5.2.
UVTree.Open(pk,b, aux, f,y)→ π: 1. Let f(v0...0, . . . ,v1...1) = vb · f for f ∈

F2κ and some b = (bν , . . . , b0).
2. For any 0 ≤ j ≤ ν, compute Cb|j = [λb|j ]1vb|j .
3. Compute [H]1 = (C0 − C1)/2, and for any 0 ≤ j ≤ ν − 1, compute
Kb|j = (−1)j(2ωsj )−1. Then define [Hb|j ]1 = Kb|j (C0bj ...b0 − C1bj ...b0).

4. Find R(X), Hb(X) such that if

(
λb(X) vb

)( 2κ∑
i=1

fiλ
b
i (X)

)
− y2−κ = XR(X) +Hb(X)tb(X).

Define R̂(X) = Xm+1−2κR(X).14 Define Ĉb = τm−2
κ

Cb.

5. Output π = ([Hb0 ]1, . . . , [Hb|ν−1
]1, [Hb(τ)]1, [R(τ)]1, [R̂(τ)]1,Cb, Ĉb).

UVTree.Vf(vk,C, f,y, π)→ 0/1:

1. Use the vector representation f of f and compute Cf =
∑2κ

i=1 fi[λ
b
i (τ)]2.

2. Check that

e(C− Cb, 1) = e([H]1, [tb0(τ)]2) +

ν−1∑
j=0

e([Hb|j ]1, [tb|j+1
(τ)]2) (1)

14 We assume as in Section 5 that at most m− 1 powers of τ are in the SRS in group
G1. The degree check is meant to ensure that R(X) is of degree at most 2κ − 2.
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e
(
Cb,Cf

)
− e
(
m−1y[1]1, [1]2

)
= e
(
[R]1, [1]2

)
+ e
(
[Hb]1, [tb(τ)]2

)
(2)

e
(
[R]1, [τ

m+1−2κ ]2
)

= e
(
[R̂]1, [1]2

)
(3)

e
(
Cb, [τ

m−2κ ]2
)

= e
(
Ĉb, [1]2

)
(4)

Maintainability. The cost of computing all proofs is O(νm). For each piece vi
with O(κ2κ) operations one can compute the coefficients in the monomial basis.
Following Lemma 1, the parent node can be computed in cost dominated by
2κ = m

2ν+1 exponentiations from the expression of children nodes, and since
there are 2ν parent nodes the cost is dominated by m

2 exponentiations. Going
one level up, the vector size doubles but the number of nodes is halved. We
conclude that to compute all proofs one needs O(κ2κ + νm2 ). The number of
proofs to store (including leaf commitments) is 2ν+1 − 1.

Theorem 10. When instantiated with a function binding argument for inner
product relations IP, the scheme above is a function binding LVC argument under
the AGM if the (m− 1,m)-DLOG assumption holds.

Proof. Let A be an adversary against the function binding game as in Defini-
tion 3. We will see, through game reductions, that the advantage of A in strong
function binding is negligible even for k = 2, that is, for two non-compatible
functions f1, f2. Note that for two functions to be non compatible they must be
defined on the same block b.
A plays Game0, the strong function binding game as in Definition 3, and out-

puts (C, {fk, yk,πk}k=1,2), where π1 = ({[Hb|j]1, }ν−1j=0 , [Hb]1, [R]1, [R̂]1,Cb, Ĉb),

π2 = ({[H ′b|j]1}
ν−1
j=0 , [H

′
b]1, [R

′]1, [R̂
′]1,C

′
b, Ĉ

′
b), s.t. LVC.Verify(vk,C, f1, y1,π1) =

1, LVC.Verify(vk,C, f2, y2,π2) = 1, and wins if there exists no v ∈ Fm such that
f1(v) = y1 and f2(v) = y2.

Recall A is algebraic and thus we assume one can extract polynomials Cb(X),
C ′b(X), Ĉb(X), Ĉ ′b(X) which are, algebraic representations of Cb,C

′
b andHb(X),

H ′b(X), {Hb|j (X), H ′b|j (X)}ν−1j=0 the ones for [Hb]1, [H
′
b]1, {[Hb|j ]1, [H

′
b|j

]1}ν−1j=0 ,

respectively.
Let Game1 be exactly as Game0 but the game aborts if Cb(X) or C ′b(X) are

polynomials of degree more than 2κ − 1. If this is not the case, it is easy to find
τ by observing that in this case either Cb(X)Xm−2κ− Ĉ(X) or C ′b(X)Xm−2κ−
Ĉ ′(X) is a non-zero polynomial with a root in τ so the difference between both
games is bounded by the advantage of any adversary against the (m − 1,m)-
DLOG problem.

Let Game2 be exactly as Game1 but upon receiving π1,π2, it checks if Cb

and C′b are equal and aborts otherwise. We next bound the probability of abort.
Define the polynomial p(X) = Cb(X)− C ′b(X)− (H(X)−H ′(X))tb0(X) +

+
∑ν−1
j=0 (Hb|j (X) − Hb|j+1

(X))tb|j (X), which is the difference of verification
equation (1) for each commitment. If p(X) 6= 0, the output of the adversary can
be used to construct an adversary against the (m − 1,m)-DLOG assumption,
since τ is a root of p(X). On the other hand, if p(X) = 0, Cb(X)− C ′b(X) can
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be written as a sum of terms that are multiples of tb|j (X) for j = 0, . . . , ν. But

all of these vanishing polynomials evaluate to 0 in h ∈ Hb, since tb(X)|tb|j (X)
for j = 0, . . . , ν. Therefore, Cb(X) − C ′b(X) is also 0 when evaluated at the
coset. But since this polynomial is of degree at most 2k, Cb(X) = C ′b(X) which
implies that necessarily Cb = C′b.

Therefore, in Game2, except with negligible probability the leaf commitment
is the same and the probability that the adversary wins is the same as in the
strong function binding game of the inner product commitment. ut
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