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Abstract. We consider the feasibility of non-interactive secure two-
party computation (NISC) in the plain model satisfying the notion of
superpolynomial-time simulation (SPS). While stand-alone secure SPS-
NISC protocols are known from standard assumptions (Badrinarayanan
et al., Asiacrypt 2017), it has remained an open problem to construct a
concurrently composable SPS-NISC. Prior to our work, the best proto-
cols require 5 rounds (Garg et al., Eurocrypt 2017), or 3 simultaneous-
message rounds (Badrinarayanan et al., TCC 2017).
In this work, we demonstrate the first concurrently composable SPS-
NISC. Our construction assumes the existence of:
– a non-interactive (weakly) CCA-secure commitment,
– a stand-alone secure SPS-NISC with subexponential security,

and satisfies the notion of “angel-based” UC security (i.e., UC with a
superpolynomial-time helper) with perfect correctness.
We additionally demonstrate that both of the primitives we use (albeit
only with polynomial security) are necessary for such concurrently com-
posable SPS-NISC with perfect correctness. As such, our work identifies
essentially necessary and sufficient primitives for concurrently compos-
able SPS-NISC with perfect correctness in the plain model.

1 Introduction

Secure two-party computation is a primitive that allows two parties to compute
the result f(x, y) of a function f on their respective inputs x,y, while ensuring
that nothing else is leaked. In this paper, we focus on secure two-party compu-
tation in the setting of minimal communication, where both players send just
a single message. The first player, called the receiver, speaks first, and next
the second player, called the sender, responds; finally, only the receiver recovers
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the output f(x, y) of the function. Such 2-round protocols are referred to as
non-interactive secure computation protocols (NISC).3

Security of secure computation protocols is traditionally defined using the
simulation paradigm, first introduced in [30] and extended in several later works
[29,6,40,12]. Roughly speaking, security is defined by requiring that the “view”
of any polynomial-time attacker can be simulated by a polynomial-time attacker
that participates in an “idealized” version of the protocol where the parties
only interact with a trusted party computing f . While this notion of “basic”
simulation-based security is often adequate in cases where a protocol is run in
isolation, there are several important properties of real-world security that are
not considered by this definition. For instance, many protocols interact with
other protocols, either through using them as components or sub-protocols or
through existing in the same setting; intuitively, it is desirable that a definition of
security should provide a guarantee that such a composition of multiple provably
secure protocols is still secure. Some of the classical definitions of simulation-
based security (e.g., [40,12]) in fact did guarantee such a notion of composability.

Concurrently Composable Secure Computation. All of the early definitions of
simulation-based security, however, had a caveat; security was only considered
when the protocol was executed in a stand-alone setting where only a single in-
stance could be executed at a time. Realistically, protocols are often executed in
a concurrent setting (originally formalized in [20,17,19]) where many instances
of a protocol are executed, potentially simultaneously, between many different
parties. An adversary in this model may control a large subset of the players,
and furthermore is able to observe the results of ongoing interactions in order
to adaptively influence future interactions by either reordering communication
or changing the behavior of the corrupted parties. Ideally, we would want to be
able to show that a protocol is concurrently secure, or that a notion analogous to
simulation-based security holds even against a more powerful adversary in this
multi-instance setting. As with composability, though, concurrent security is not
implied by basic definitions of simulation-based security; while definitions such
as those of [40,12] guaranteed composable security in a non-concurrent setting,
the first definition to achieve both properties was that of universally composable
(UC) security, first proposed in [13]. At a high level, UC security expands further
on the simulation paradigm by considering an “external observer”, or environ-
ment, which runs and observes interactions between an adversary and potentially
many concurrent instances of a protocol Π. We say that Π UC-realizes some
functionality f if the environment cannot distinguish between the “real” inter-
action and an “ideal” interaction between a polynomial-time simulator and the
perfectly secure “idealized” version of the functionality f . Furthermore, if a pro-
tocol π UC-realizes some functionality g and Π uses π as a sub-protocol, the
composability of UC guarantees that, since the environment cannot distinguish

3 As is well-known, in this non-interactive setting, it is inherent that only one of the
players can receive the output.
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interactions with π from simulated interactions with the idealized g, we can
effectively replace π with the idealized g when proving Π secure.

While UC security provides extremely strong guarantees, it also has corre-
spondingly restrictive limitations on what can be proven secure. Even in the case
of two-party computation, impossibility results exist showing that very few func-
tionalities f(x, y) can be computed UC-securely [15]—or, disregarding compos-
ability, even concurrently securely [38]—without introducing additional trusted
setup assumptions.

The notion of superpolynomial-time simulation (SPS) [43], a relaxation of
UC security which allows the simulator to run in superpolynomial time, has
allowed for the construction of several protocols, both for two-party computa-
tion [43,47,3,41] and the more general case of multi-party computation [5,37,23],
which are able to securely realize virtually all functionalities. While some defini-
tions of SPS security provide the same concurrency guarantees as UC security,
SPS security fails to uphold many of the desirable composability properties: the
problem is that SPS security only requires that any polynomial time attacker
can be simulated (in superpolynomial time), but to perform composition, we also
need to simulate “simulated attackers”, which run in superpolynomial time. The
notion of “angel-based” UC security [45] and its generalization of “UC-security
with a superpolynomial-time helper” [16] remedy this issue and provide for a
composable notion of concurrent SPS-security: in these models, the simulation
is polynomial-time but both the adversary and the simulator have access to a
“helper” oracle (an “angel”) which implements some specific superpolynomial-
time functionality. Angel-based security is a strictly stronger notion than SPS
security, and it retains all of the composability properties of standard UC se-
curity, with the important caveat that composability only holds with protocols
that are secure with respect to the same oracle. Furthermore, secure computa-
tion protocols are feasible in the angel-based security model [45,39,16,32,33,31];
the most recent constructions have been based on the notion of “CCA-secure”
commitments [16], which are commitment schemes that satisfy hiding in the
presence of an adversaries that is given access to a “decommitment oracle”.

On the Existence of Concurrently-Composable NISC. In this work, we con-
sider the feasibility of concurently composable non-interactive (i.e., 2-round)
secure computation protocols, NISCs. As is well known, even if we do not care
about concurrency or composability, NISC protocols are not possible in the plain
model (i.e., without any trusted set-up assumptions) using the standard notion
of polynomial-time simulation [28]. On the other hand, if we consider the relaxed
notion of SPS security, NISC protocols have been shown to be feasible based on
standard assumptions in recent works [43,3,41]. (Indeed, enabling secure 2-round
protocols was one of the original motivations behind the notion of SPS security
[43].) These works, however, only consider stand-alone SPS security.

In fact, even if we require just concurrent SPS security (let alone both con-
current and composable), the question of what we can achieved remains open.
The state of the art can be summarized as follows:
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– [23] proposed the first concurrently secure constant-round protocol based on
standard assumptions, and this bound was later reduced to 5 [24].

– [4] presented a three-round concurrently SPS-secure multi-party computa-
tion protocol for general functionalities, which can be reduced to two rounds
for specific subclasses of functionalities; however, their protocol relies on the
simultaneous-message model, and so it still requires five (or, for restricted
functionalities, three) messages for two-party computation in the standard
(synchronous) model.

– Other general two-round concurrently secure multi-party computation pro-
tocols (e.g., [7,25,8]) exist which require a common reference string (CRS)
as “trusted setup”.

– Two recent works (concurrent with and independent from this result) con-
structed two-round concurrently SPS-secure protocols without trusted setup
in the simultaneous-message model (where all participants send a message
at the same time in each round). [1] presented a two-round protocol for two-
sided two-party computation (where both parties receive the output) satis-
fying concurrent SPS security, and [21] presented a two-round MPC protocol
satisfying both concurrent and self-composable SPS security. In contrast to
these works, we consider a synchronous model where only one participant
may send a single message per round (i.e., non-interactive protocols), but
we only consider one-sided functionalities.

– For the special case of zero-knowledge arguments of knowledge, [43] pre-
sented a 2-round protocol that satisfies concurrent SPS-security; but con-
current security only holds in the setting of “fixed”, as opposed to “inter-
changeable”, roles—that is, the attacker can corrupt either all provers, or all
verifiers. (On a technical level, this notion of concurrency with “fixed roles”
does not deal with non-malleability [17].)

Hence, prior work leaves open the question of whether, in the plain model, we can
achieve a concurrently secure protocol even for specific two-party functionalities,
such as zero-knowledge arguments of knowledge, in two synchronous (rather than
simultaneous-message) rounds.

Meanwhile, for composable “angel-based” security in the plain model, the
situation is even worse; the protocol proposed by [16] requires nϵ rounds, while
[32] reduced this to logarithmic round complexity and [33] further reduced this to
a constant. Thus, the literature leaves open the following fundamental problem:

Is concurrently composable NISC possible in the plain model, and if so,
under what assumptions?

In fact, we are not aware of NISC protocols even for specific functionalities (e.g.,
zero-knowledge arguments of knowledge) that satisfy any “meaningful notion” of
concurrent security with “interchangeable roles” (i.e., the adversary can corrupt
the sender in some sessions and the receiver in others) even with respect to just
2 concurrent sessions!4

4 In particular, as far as we are aware, even getting a 2-round non-malleble SPS-zero-
knowledge argument of knowledge was open.
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1.1 Our Results

We solve both of the above questions by demonstrating the existence of a NISC
protocol for general functionalities satisfying not only concurrent SPS security
but also UC security with a superpolynomial-time helper. Our construction relies
on the following building blocks:

– A non-interactive CCA-secure commitment scheme [42,16,35,9].
– A stand-alone secure SPS-NISC with subexponential security [3].

In fact, as we show, a relaxed version of CCA-secure commitments—which
we refer to as weakly CCA-secure commitments—suffices; this notion differs from
the standard notion of CCA security only in that the CCA oracle, given a com-
mitment c, rather than returning both the value v committed to and the ran-
domness r used in the commitment, instead returns just the value v (analogous
to the definition of CCA security for encryption schemes [46]). Our main result,
then, is as follows:

Theorem 1 (Informal). Assume there exist a non-interactive weakly CCA-
secure commitment scheme and a stand-alone subexponentially SPS-secure NISC
protocol for general functionalities. Then there exists a NISC protocol for gen-
eral functionalities (with perfect correctness) which achieves UC security with a
superpolynomial-time helper (i.e., achieves angel-based security).

We emphasize that before our result, it was not known how to even construct
non-malleable 2-round protocols in the plain model (i.e., protocols secure under
just two different executions where the adversary may play different roles) for
any non-trivial functionality. Furthermore, we demonstrate that the two building
blocks we rely on are also necessary for concurrently composable SPS-NISC with
perfect correctness5:

Theorem 2 (Informal). Assume the existence of a non-interactive NISC for
general functionalities (with perfect correctness) satisfying UC security with a
superpolynomial-time helper. Then, there exist both a non-interactive weakly
CCA secure commitment scheme and a stand-alone secure SPS-NISC for general
functionalities.

Note that the only gap between the assumptions is that our feasibility result
(Theorem 1) relies on the existence of a subexponentially-secure SPS-NISC,
whereas Theorem 2 only shows that a polynomially-secure SPS-NISC is needed.
But except for this (minor) gap, our work provides a full characterization of the
necessary and sufficient primitives for NISC (with perfect correctness) satisfying
UC security with a superpolynomial-time helper.

Thus, our work should be interpreted as showing that to upgrade a stand-
alone secure NISC to become concurrently composable, the existence of weakly

5 As usual, perfect correctness means that if both parties act honestly, then the pro-
tocol will output the correct result of the computation with probability 1.
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CCA-secure commitments is both necessary and sufficient. Our work thus further
motivates the importance of studying non-interactive CCA-secure commitments;
furthermore, it highlights that perhaps the weaker notion of “weak” CCA se-
curity, introduced here, may be more natural than the stronger version used in
earlier works.

On the Realizability of the Building Blocks. As just mentioned, our main results
demonstrate that the two building blocks—non-interactive weakly CCA-secure
commitments and stand-alone SPS-NISC—are both necessary and sufficient for
constructing concurrently composable SPS-NISC. SPS-NISC with subexponen-
tial security can be constructed based on a variety of standard assumptions, such
as subexponential hardness of the Decisional Diffie-Hellman, Quadratic Resid-
uosity, or N th Residuosity assumptions [3] or subexponential hardness of the
Learning With Errors assumption [10].

Non-interactive CCA secure commitments, however, require more complex
assumptions. They were first constructed in [42] based on adaptive one-way per-
mutations; later, [35] presented such a scheme, albeit with only unform security
(i.e., security against uniform attackers) based on keyless collision-resistant hash
functions, injective one-way functions, non-interactive witness-indistinguish-able
arguments (NIWIs), and subexponentially-secure time-lock puzzles. Even more
recently, [9] presented a scheme also satisfying non-uniform security by replac-
ing the keyless collision-resistant hash function with a multi-collision-resistant
keyless hash function; while their construction is only claimed to achieve “con-
current non-malleability” [44,36] (and not the stronger notion of CCA security),
it seems that a relatively minor modification of their analysis (similar to the
analysis in [35]) would show that their construction also achieves CCA security
when all the underlying primitives satisfy subexponential security.

Overview. We give a technical overview of our main result in Section 2, provide
definitions in Section 3, formally state Theorem 1 in Section 4. Due to space
limitations, we have deferred the formal proof to the the full version of our paper.
In addition, we formalize and prove Theorem 2 in Section 5 (again, missing proofs
for this section are provided in the full version.)

2 Technical Overview

In this section, we provide a high-level discussion of our security definition and
our protocol. At a high level, UC security expands on the simulation paradigm
by considering an “external observer”, or environment, which runs and observes
interactions between an adversary and potentially many concurrent instances of
a protocolΠ. We say thatΠ UC-realizes some functionality f if the environment
cannot distinguish between the “real” interaction and an “ideal” interaction be-
tween a polynomial-time simulator and the perfectly secure “idealized” version
of the functionality f . We will demonstrate a strong and composable notion of
concurrent security using the externalized UC model [12,14], where we assume
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the adversary, the environment, and the simulator are strictly polynomial-time
but have access to an “imaginary angel”, or a global “helper” entity H that im-
plements some superpolynomial-time functionality. (This notion was first con-
sidered in [45] for the case of non-interactive, stateless, angels) In our case (as
in [16]) H will implement the CCA decommitment oracle O for a CCA secure
commitment; while interacting with a party P , H will send a valid decommit-
ment in response to any commitments made using that party’s identity as the
tag. (Since the adversary controls corrupted parties, this effectively means that
H will decommit any commitments with a corrupted party’s identifier, but none
with an honest party’s identifier). CCA security guarantees, then, that an ad-
versary will never be able to break an honest party’s commitment; on the other
hand, the presence of the helper H makes it relatively easy for the simulator S
we construct for the definition of UC security to extract information necessary
for simulation from corrupted parties’ commitments.

Aside from the commitment scheme, our protocol consists of two major sub-
components. First, in order to evaluate the functionality f(x, y), we begin with
a NISC protocol that satisfies stand-alone security with superpolynomial-time
simulation. In order to build this into a protocol satisfying full UC security, how-
ever, we will need to leverage the CCA-secure commitment scheme in order to
allow the simulator to extract the malicious party’s input from their message;
since the simulator is restricted to polynomial time (with access to the CCA
helper H), this cannot be done by simply leveraging the superpolynomial-time
simulator of the underlying NISC. Instead, if both parties commit to their respec-
tive inputs and send the commitments alongside the messages of the underlying
NISC, the simulator can easily use the CCA helper to extract the inputs from
the commitments. This, however, presents another issue: namely, there must be
a way to verify that a potentially malicious party commits to the correct input
(i.e., the same one they provided to the NISC). For the case of a corrupted
sender, this will require the other major component of our protocol: a 2-round
zero-knowledge (ZK) interactive argument with SPS security; unsurprisingly, we
remark that an appropriate such SPS-ZK protocol can be obtained from an
SPS-NISC.

Towards intuitively describing our protocol, we now briefly describe how we
deal with extracting from a malicious receiver and sender before presenting the
complete protocol.

Dealing with a malicious receiver: using “interactive witness encryption”. As
suggested above, the first step towards extracting a malicious receiver’s input x
is to have the receiver commit to their input x and send the commitment cx with
their first-round message. This way, when the receiver is corrupted, the simulator
can extract x using the decommitment helper H. Of course, we require a way
to verify that the commitment sent by the receiver is indeed a commitment
to the correct value of x (i.e., the same as the receiver’s input to the NISC
which computes f(x, y)). We deal with this using a technique reminiscent of
the recent non-concurrent NISC protocol of [41], by using the underlying NISC
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to implement an “interactive witness encryption scheme”.6 The receiver will, in
addition to their input x for f , input the randomness rx used to generate the
commitment cx, as well as the corresponding decommitment dx, to the NISC;
the sender will input cx in addition to y, and the NISC will return f(x, y) if and
only if (cx, dx) is a valid commitment of x using randomness rx. Hence, if the
receiver sends an invalid commitment to x to the sender, they receive ⊥ from
the NISC instead of the correct output; otherwise, if it is valid, the simulator
can always extract the correct value of x from the commitment using H.

Simulation with a malicious receiver: using a “two-track” functionality. The
second key challenge in the corrupted-receiver case is to ensure that we can
simulate the sender message of the underlying NISC protocol, since the simulator
in this case does not know the sender’s input y. To deal with this, we use an SPS-
ZK argument to prove that the sender’s NISC message is correctly generated,
and we additionally add a two-track functionality for the underlying NISC and
ZK argument to preserve simulatability. First, we add a trapdoor t, chosen at
random and committed to by the receiver simultaneously with x. To ensure that
the corrupted-receiver simulator can properly simulate the output of the NISC,
we “fix” the output when the trapdoor is used; that is, we augment the NISC’s
functionality yet again to take inputs t′ and z∗ from the sender and output z∗ if
the sender provides t′ which matches the receiver’s trapdoor t. More explicitly,
the sender can program the output of the computation in case it can recover the
trapdoor t selected by the receiver.

The ZK argument will then prove that either (1) there exists a witness w1

demonstrating that the sender’s NISC message is correctly generated (with re-
spect to their input y) given the receiver’s first message, OR (2) there exists a
witness w2 which demonstrates that the sender’s NISC message was generated
using the trapdoor t and no input y (which, in particular, means that the NISC
will output ⊥ if the trapdoor is incorrect). The honest sender can provide a
witness for statement (1), while the simulator in the malicious receiver case can
decommit t using H to obtain the trapdoor and generate a witness for statement
(2).

Dealing with a malicious sender: using an “argument of knowledge”. The above,
however, is not quite sufficient to simulate for a corrupted sender as well; we
furthermore need an extractability, or “argument of knowledge”, property such
that the sender not only proves that there exists such a witness but also demon-
strates that it knows such a witness—in other words, such a witness should be
extractable from the prover’s message in superpolynomial time. This will be nec-
essary to show that a corrupted sender cannot provide a valid witness w2 to the

6 Recall that witness encryption [22] is a primitive where a messagem can be encrypted
with a statement x so that anyone with a witness w to x can decrypt m, but m
cannot be recovered if x is false. Here, we would like cx to be the “statement” that
the commitment is correctly generated, and the randomness rx and decommitment
dx the “witness”.
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trapdoor without having recovered the correct trapdoor t and thus broken the
security of the commitment scheme.

In our case, since the only extractor available to us is the decommitment or-
acle H, we implement extractability by using a technique from [43] which adds
a commitment to the witness to the statement of the proof. The sender provides
a witness (w1, w2) and two commitments c1 and c2, and the proof accepts either
if c1 is a valid commitment to w1 and w1 is a valid witness to statement (1)
above, or if the respective statement holds for c2, w2, and statement (2). This
way, a corrupted sender must with overwhelming probability use a witness for
statement (1) in its proof (implying that its NISC messages and commitment
to y are correctly generated), as, otherwise, a commitment of a correct wit-
ness for statement (2) would reveal the trapdoor t when decommitted and thus
clearly break CCA security of the commitment scheme. Finally, as w1 includes y,
the commitment c1 also provides the necessary extractability for the corrupted
sender’s input y via the decommitment helper H in the corrupted-sender case.

2.1 Protocol Summary

With the intuition and components described above, we can summarize our full
protocol Π for secure two-party computation of a functionality f(·, ·):

– The receiver, given input x, generates a random “trapdoor” t and does as
follows:

• Generates commitment cx for x||t (respectively), using randomness rx.
• Generates the first-round message zk1 of a two-round SPS-ZK argument.
• Generates the first-round message msg1 of the underlying NISC protocol

π, which will securely compute the functionality h described below, using
(x, rx, t) as its input.

It sends (msg1, zk1, cx) to the sender.
– The sender, given input y and the receiver’s first-round message (msg1, zk1,

cx), does as follows:

• Generates the second-round message msg2 of the underlying NISC π,
using (cx, y,⊥,⊥) as its input and rNISC for randomness.

• Using witness w1 = (rNISC, y) and letting c1 and c2 be commitments to
w1 and 0, respectively, generates the second-round message zk2 of the
ZK argument for statement (msg1,msg2, cx, c1, c2) proving that either:
(1) there exists a witness w1 = (rNISC, y) that demonstrates that msg2

was correctly and consistently generated with respect to the re-
ceiver’s first message, the sender’s input y, and the randomness rNISC,
and c1 is a valid commitment to w1, OR:

(2) there exists a witness w2 = (rNISC, t, z
∗) that demonstrates that msg2

was generated using input (cx,⊥, t, z∗) (i.e., using the trapdoor in-
stead of y), and c2 is a valid commitment to w2.

It sends (msg2, zk2, c1, c2) to the receiver.
– The receiver, given the sender’s message (msg2, zk2, c1, c2), does as follows:
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• Verifies that zk2 is an accepting proof with respect to the statement
(msg1,msg2, cx, c1, c2). Terminates with output ⊥ if not.

• Evaluates and returns the output z from the NISC π.

The functionality h for the inner NISC, on input (x, rx, t) from the receiver
and (cx, y, t

′, z∗) from the sender, does the following:

– Verifies that cx is correctly generated from x||t and the randomness rx.
Outputs ⊥ if not.

– If the trapdoor t′ given by the sender matches the receiver’s trapdoor t,
bypasses the computation of f and outputs the sender’s input z∗.

– Otherwise, returns f(x, y).

Correctness will follow from correctness of the underlying primitives and the
fact that an honest sender and receiver will always generate cx, msg2, and zk2
according to the protocol above; thus, if both parties are honest, the SPS-ZK
proof from the sender will always accept and the receiver will always obtain
f(x, y) from evaluating GC.

In order to prove that Π H-EUC-securely realizes the ideal two-party com-
putation functionality Tf , we need to prove that, for every polynomial-time en-
vironment Z and adversary A in the “real” execution of the protocol Π, there
exists a polynomial-time simulator S in the “ideal” execution of the protocol
Π(Tf ) (where, instead of following the protocol, the receiver and sender send
their respective inputs x and y to an instance of Tf and the receiver gets the
output f(x, y)) such that Z’s view is indistinguishable between the “real” exe-
cution using A and the “ideal” execution using S. This property needs to hold
even when the environment and adversary have access to a superpolynomial-
time “helper” H implementing the CCA decommitment oracle. (Recall from
above that the helper will provide a decommitment of any commitment whose
tag corresponds to a corrupted party). Below, we provide a high-level sketch of
the cases for simulating a corrupted sender and receiver.

2.2 Simulating for a Corrupted Receiver

When the receiver is corrupted, S first needs to extract the receiver’s input x
from their first message and send it to the ideal functionality; this is straight-
forward to do, since both x and the trapdoor t can be retrieved by running the
decommitment helper H on the receiver’s input cx (and the committed values
must be the same as the ones given to the NISC in order for the receiver to
receive an output). However, S also needs to simulate the NISC message msg2,
the SPS-ZK proof zk2, and the commitments c1 and c2 to send to the receiver
without knowing the corresponding input y.

While one might be tempted to simply use the respective simulators from the
definitions of security to simulate the messages for the SPS-ZK argument and
the internal NISC, we cannot in fact run either of these simulators inside S, since
S is restricted to (helper-aided) polynomial time whereas, these simulators run
in superpolynomial time. So, instead of using the simulators, these messages will
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be simulated by running the honest protocols using the trapdoor recovered from
cx. S can generate the NISC message msg2 using the input (cx,⊥, t, z), where
z is the output f(x, y) returned from the ideal functionality Tf . In addition, S
can use the second track of the ZK argument with witness w2 = (rNISC, t, z),
ensuring that it can generate both an accepting proof zk2 and a NISC message
that ensures the correct output (z = f(x, y), contingent on the malicious receiver
generating cx correctly) without knowing the sender’s input y.

In a sense, this alternative method of simulating the underlying NISC and
ZK argument has interesting parallels to techniques in the context of obfuscation,
where such two-track approaches are often used to go from indistinguishability-
based security to simulation-based security; see e.g. [2,34]. We also note that a
technique similar to ours (albeit implemented with garbled circuits rather than
a NISC) was used in a very recent work to construct oblivious transfer from new
assumptions [18].

Proving that these simulated messages are indistinguishable from the real
ones follows through a series of hybrids and relies on complexity leveraging along
with the simulation-based security of both primitives. First, in order to switch to
the second track of the ZK argument, we need to ensure that the commitment c2
commits to the trapdoor witness (rNISC, t, z) rather than to 0. By CCA security
of the commitment scheme, commitments of the two values are indistinguishable
even by a party (the environment) with access to a decommitment oracle (in this
case, the helperH). Notice that, since the sender is honest,H will not provide the
environment with decommitments to commitments generated with the sender’s
tag, which is precisely the property required of the oracle in the CCA security
definition.

Next, we deal with switching to the second track of the SPS-ZK and, respec-
tively, to inputting the trapdoor t to the NISC; we first switch the real proof zk2
using w1 to a simulated proof using the simulator for the ZK argument. Next,
leveraging the fact that the simulated proof is indistinguishable for any msg2
satisfying either condition of the ZK language (irrespective of which condition)
and the fact that the simulator S ′R for the underlying NISC depends only on the
adversary (and not on the specific inputs to the NISC), we can indistinguish-
ably switch from the real NISC message using input (cx, y,⊥,⊥) to a simulated
NISC message using S ′R, and then from there to a real NISC message using the
trapdoor input (cx,⊥, t, z). We then switch the simulated ZK proof back to a
real ZK proof, this time using the trapdoor witness w2; lastly, since the witness
w1 depends on y, we must switch the commitment c1 for the (now unused) first
track of the ZK to commit to 0, which will again follow from CCA security.

Complexity leveraging is required to prove indistinguishability between our
hybrids, since we require a NISC secure against adversaries able to run the
(superpolynomial-time) simulator of the ZK argument, and in turn a ZK argu-
ment secure against adversaries able to internally run the decommitment helper
H. Furthermore, while the intermediate hybrids clearly run in superpolynomial
time, we note that the final simulator S will still run in polynomial time (with
H) and is hence still sufficient to prove the notion of “angel-based” UC security.
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To summarize, the corrupted-receiver simulator SR proceeds as follows:

– Receives the receiver’s first-round message (msg1, zk1, cx).
– Uses the helper H to decommit cx, receiving x∗ and t.
– Sends x∗ to the ideal functionality Tf and receives the output z.
– Generates the second-round message msg2 of the underlying NISC π, using

(cx,⊥, t, z) as its input and rNISC for randomness.
– Using witness w2 = (rNISC, t, z) and letting c1 and c2 be commitments to 0

and w2, respectively, generates the second-round message zk2 of the ZK argu-
ment for the language described above and statement (msg1,msg2, cx, c1, c2).

– Sends (msg2, zk2, c1, c2) to the receiver.

2.3 Simulating for a Corrupted Sender

When the sender is corrupted, S first needs to simulate the receiver’s message
(msg1, zk1, cx) to send to the sender; then, on receiving the sender’s message
(msg2, zk2, c1, c2), S needs to either output ⊥ (if the sender’s message does not
verify) or extract the sender’s input y to send to the ideal functionality so that
the honest receiver gets the correct output f(x, y).

Simulating the first message without knowledge of x will require two changes:
making cx commit to 0||t rather than to x||t, and respectively changing the first
NISC message to use 0 in place of the input x (since, as before, we cannot use
a simulated NISC message due to simulation being superpolynomial-time).

We show indistinguishability through a series of hybrids similar to the cor-
rupted receiver case. First, we can use simulation-based security to switch the
real NISC message (with input x) to a simulated NISC message using the sim-
ulator S ′S for π. Next, the first message no longer depends on x, so we can
leverage CCA security to indistinguishably switch cx to commit to 0 instead.
A minor subtlety with this step is that the polynomial-time adversary for CCA
security cannot run the superpolynomial-time simulator S ′S , so instead we lever-
age non-uniformity and provide the simulated first message of the NISC to the
CCA security adversary as non-uniform advice. Finally, we can again leverage
simulation-based security (and the input-independence of the simulator S ′S) to
switch from the simulated message to another real message using the input 0.

It remains to consider the receiver’s output; the honest receiver will output
the result from the ideal functionality in the ideal experiment, but we need to
ensure that the receiver correctly outputs ⊥ when the malicious sender provides
invalid inputs in its second-round message. On receiving the sender’s message
(msg2, zk2, c1, c2), the simulator will extract the malicious party’s input by using
the helper H to decommit c1 (a commitment to the witness w1, which contains
y) and then verify the sender’s message. If verification is successful, S will send
the resulting value y∗ to the ideal functionality (which will return the result to
the honest receiver); if not, it will terminate with output ⊥.

By soundness of the ZK argument, if S does not output ⊥, then the sender
is overwhelmingly likely to have provided a proof in zk2 corresponding to a valid
witness; furthermore, we can assert that this witness is overwhelmingly likely
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to be a witness w1 = (rNISC, y) to part (1) of the ZK argument, since, if the
sender could figure out an accepting witness w2 = (rNISC, t, z

∗) for part (2) with
non-negligible probability, this would imply that an adversary could recover this
by running a decommitment oracle on the commitment c2 and subsequently use
it to break CCA security of the commitment cx (which contains t) sent by the
receiver in the first round.7

Given a valid witness to part (1), then, it must be the case that c1 is a valid
commitment to w1 and that msg2 is correctly generated with respect to the y
given in w1—so, on inputs corresponding to a valid commitment cx of x||t, the
internal NISC π will output f(x, y) for the same y the simulator receives by
decommitting c1. Hence, we can simulate the output by, if verification passes,
having the receiver return the output from the ideal functionality (exactly as
in the ideal interaction), which will always be f(x, y) given the y extracted
from c1; the above argument shows that this strategy will produce an output
identical to that of the internal NISC with overwhelming probability. Notably,
this simulated output is now independent of the value of x used to generate the
first-round message (and instead relies on the x sent to the ideal functionality
by the honest receiver).

This gives us the completed corrupted-sender simulator SS , which proceeds
as follows:

– Generates a random “trapdoor” t.
– Generates commitment cx for 0||t (respectively), using randomness rx.
– Generates the first-round message zk1 of a two-round ZK argument.
– Generates the first-round message msg1 of the underlying NISC protocol

π, which will securely compute the functionality h described below, using
(0, rx, t) as its input.

– Sends (msg1, zk1, cx) to the sender.

– Receives the sender’s message (msg2, zk2, c1, c2).
– Verifies that zk2 is an accepting proof with respect to the statement (msg1,

msg2, cx, c1, c2). Terminates with output ⊥ if not.
– Uses the helper H to recover w1 (including y∗) from the commitment c1.
– Verifies that w1 is a valid witness for the statement (msg1,msg2, cx, c1, c2).

If not, returns ⊥.
– Sends y∗ to the ideal functionality Tf , which will return the output f(x, y∗)

to the receiver.

3 Definitions

3.1 Non-Interactive Secure Computation

We start by defining non-interactive secure computation (NISC).

7 In particular, notice that the commitments c2 and cx are generated by different
parties and hence using different tags—hence, an adversary breaking CCA security
with respect to cx’s tag is allowed to decommit c2.
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Definition 1 ([41], based on [48,27,3]). A non-interactive two-party
computation protocol for computing some functionality f(·, ·) (where f is
computable by a polynomial-time Turing machine) is given by three PPT al-
gorithms (NISC1,NISC2,NISC3) defining an interaction between a sender S and
a receiver R, where only R will receive the final output. The protocol will have
common input 1n (the security parameter); the receiver R will have input x,
and the sender will have input y. The algorithms (NISC1,NISC2,NISC3) are such
that:

– (msg1, σ) ← NISC1(1
n, x) generates R’s message msg1 and persistent state

σ (which is not sent to S) given the security parameter n and R’s input x.
– msg2 ← NISC2(msg1, y) generates S’s message msg2 given S’s input y and

R’s message msg1.
– out ← NISC3(σ,msg2) generates R’s output out given the state σ and S’s

message msg2.

We restrict our attentions to protocols satisfying perfect correctness:

– Correctness. For any parameter n ∈ N and inputs x, y:

Pr [(msg1, σ)← NISC1(1
n, x) : NISC3(σ,NISC2(msg1, y)) = f(x, y)] = 1

Externalized Universally Composable Security. To define the notion of security
proven in our main theorem, we use the framework of universally composable
security [12,13], extended to include access to superpolynomial “helper func-
tionalities” [14,16]. Specifically, we prove UC security in the presence of an ex-
ternal helper which allows the adversary to break the commitments of corrupted
parties.

Model of execution. We recall the discussion of UC security with external helper
functionalities provided in [16]. Consider parties represented by polynomial-time
interactive Turing machines [30]; the model contains a number of parties running
instances of the protocol Π, as well as an adversary A and an environment Z.
The environment begins by invoking the adversary on an arbitrary input, and
afterwards can proceed by invoking parties which participate in single instances
of the protocol Π by providing them with their respective inputs, as well as a
session identifier (which is unique for each instance of the protocol Π) and a
party identifier (which is unique among the participants in each session). The
environment can furthermore read the output of any party involved in some
execution of Π, as well as any output provided by the adversary.

For the purposes of UC security, we will restrict our attention to environ-
ments which may only invoke a single session of the protocol Π—that is, any
instances invoked must have the same session identifier. Concurrent and com-
posable security (i.e., against more generalized environments) will follow from
this via a universal composition theorem, which we will state later in this section.

The adversary, on the other hand, is able to control all communication be-
tween the various parties involved in executions of Π, and to furthermore mod-
ify the outputs of certain corrupted parties (which we here assume are decided
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non-adaptively, i.e., every party is either invoked as permanently corrupted or
permanently uncorrupted). Uncorrupted parties will always act according to
the protocol Π, and we assume that the adversary only delivers messages from
uncorrupted parties that were actually intended to be sent (i.e., authenticated
communication); the adversary can, on the other hand, deliver any message on
behalf of a corrupted party. The adversary can also send messages to and receive
them from the environment at any point.

We will furthermore assume a notion of security using an “imaginary angel”
[45], which can be formalized in the externalized UC (EUC) setting [14]; both
the corrupted parties and environment will have access to an external helper
functionality H, also defined as an interactive Turing machine—unlike the par-
ticipants, adversary, or environment, however, H is not restricted to polynomial
running time. H is persistent throughout the execution and is invoked by the
environment immediately after the adversary is; furthermore, H must be im-
mediately informed of the identity of all corrupted parties when parties are
determined by the environment to be corrupted.

Finally, while honest players can only be invoked on a single session identifier,
we allow the adversary to invoke H on behalf of corrupt parties using potentially
arbitrary session identifiers; this is needed to prove the composition theorem.

The execution ends when the environment halts, and we assume the output
to be the output of the environment. We let ExecΠ,A,Z(1

n, z) denote the distri-
bution of the environment’s output, taken over the random tape given to A, Z,
and all participants, in the execution above (with a single session of Π), where
the environment originally gets as input security parameter 1n and auxiliary
input z. We say that Π securely emulates some other protocol Π ′ if, for any
adversary A, there exists a simulator S such that the environment Z is unable
to tell the difference between the execution of Π with A and the execution of
Π ′ with S—that is, intuitively, the environment gains the same information in
each of the two executions. Formally:

Definition 2 (based on [16]). For some (superpolynomial-time) interactive
Turing machine H, we say a protocol Π H-EUC-emulates some protocol Π ′

if, for any polynomial-time adversary A, there exists some simulated polynomial-
time adversary S such that, for any non-uniform polynomial-time environment
Z and polynomial-time distinguisher D, there exists negligible ν(·) such that, for
any n ∈ N and z ∈ {0, 1}∗:

|Pr [D(ExecΠ,A,Z(1
n, z)) = 1]− Pr [D(ExecΠ′,S,Z(1

n, z)) = 1] | ≤ ν(n)

To prove that a protocol Π securely realizes an ideal functionality T , we wish
to show that it securely emulates an “ideal” protocol Π(T ) in which all parties
send their respective inputs to an instance of T with the same session identifier
and receive the respective output; note that the adversary does not receive the
messages to or from each instance of T .

Definition 3 (based on [16]). For some (superpolynomial-time) interactive
Turing machine H, we say a protocol Π H-EUC-realizes some functionality
T if it H-EUC-emulates the protocol Π(T ) given above.
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In the case of two-party computation for functionality f , T will simply receive
inputs x from the receiver and y from the sender and return f(x, y) to the
receiver:

Definition 4. For some (superpolynomial-time) interactive Turing machine H,
we refer to a non-interactive two-party computation protocol Π for some func-
tionality f(·, ·) as H-EUC-secure if it H-EUC-realizes the functionality Tf ,
which, on input x from a receiver R and input y from a sender S, returns f(x, y)
to R.

Remarks. Notice that, since Z’s output is a (randomized) function of its view, it
suffices to show that Z’s view cannot be distinguished by any polynomial-time
distinguisher D between the respective experiments. We can also without loss of
generality assume that the environment Z in the real execution effectively runs
the adversary A internally and forwards all of A’s messages to and from other
parties by using a “dummy adversary” D which simply forwards communication
from Z to the respective party. This allows us to effectively view the environment
Z and adversary A as a single entity.

Furthermore, observe that we use a polynomial-time simulator S in our defi-
nition of security. [28] shows that two-round secure computation protocols can-
not be proven secure with standard polynomial-time simulation; hence, many
protocols are proven secure using superpolynomial-time simulators (a technique
originally proposed by [43,45]). Indeed, we note that, if H runs in time T (·), then
a protocol that H-EUC-realizes some functionality T with polynomial-time sim-
ulation will also UC-realize T with poly(T (·))-time simulation; hence, in a way,
the simulator S we propose in our security definition can still be considered to
do a superpolynomial-time amount of “work”.

Universal composition. The chief advantage of the UC security paradigm is the
notion of universal composition; intuitively, if a protocol ρ UC-realizes (or, re-
spectively, H-EUC-realizes) an ideal functionality T , then it is “composable”
in the sense that any protocol that uses the functionality T as a primitive de-
rives the same security guarantees from the protocol ρ as they would the ideal
functionality.

More formally, given an ideal functionality T , let us define a T -hybrid protocol
as one where the participating parties have access to an unbounded number of
copies of the functionality T and may communicate directly with these copies
as in an “ideal” execution (i.e., without communication being intercepted by the
adversary). Each copy of T will have a unique session identifier, and their inputs
and outputs are required to contain the respective identifier.

Then, if Π is a T -hybrid protocol, and ρ is a protocol which realizes T , then
we can define a composed protocol Πρ by modifying Π so that the first message
sent to T is instead an invocation of a new instance of ρ with the same session
identifier and the respective message as input, and so that further messages are
likewise relayed to the same instance of ρ instead, again with their contents as
the respective input. Any output from an instance of ρ is substituted for the
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respective output of the corresponding instance of T . The following powerful
theorem, then, states the notion of composability intuitively described above.

Theorem 3 (Relativized Universal Composition [12,16]). For some ideal
functionality T and helper functionality H, if Π is a T -hybrid protocol, and ρ is
a protocol that H-EUC-realizes T , then Πρ H-EUC-emulates Π.

Stand-alone Security. As one of the key building blocks of our UC-secure pro-
tocol, we use a non-interactive secure computation protocol which satisfies the
strictly weaker notion of stand-alone security with superpolynomial-time simula-
tion. We recall the definition (as given in [41]) below:

– Consider a real experiment defined by an interaction between a sender S
with input y and a receiver R with input x as follows:

• R computes (msg1, σ)← NISC1(1
n, x), stores σ, and sends msg1 to S.

• S, on receiving msg1, computes msg2 ← NISC2(msg1, y) and sends msg2
to R.

• R, on receiving msg2 computes out← NISC3(σ,msg2) and outputs out.

In this interaction, one party I ∈ {S,R} is defined as the corrupted party;
we additionally define an adversary, or a polynomial-time machine A, which
receives the security parameter 1n, an auxiliary input z, and the inputs of the
corrupted party I, and sends messages (which it may determine arbitrarily)
in place of I.
Letting Π denote the protocol to be proven secure, we shall denote by
OutΠ,A,I(1

n, x, y, z) the random variable, taken over all randomness used
by the honest party and the adversary, whose output is given by the outputs
of the honest receiver (if I = S) and the adversary (which may output an
arbitrary function of its view).

– Consider also an ideal experiment defined by an interaction between a sender
S, a receiver R, and a trusted party Tf , as follows:
• R sends x to Tf , and S sends y to Tf .
• Tf , on receiving x and y, computes out = f(x, y) and returns it to R.
• R, on receiving out, outputs it.

As with the real experiment, we say that one party I ∈ {S,R} is corrupted
in that, as before, their behavior is controlled by an adversary A. We shall

denote by Out
Tf

Πf ,A,I(1
n, x, y, z) the random variable, once again taken over

all randomness used by the honest party and the adversary, whose output
is again given by the outputs of the honest receiver (if I = S) and the
adversary.

Definition 5 ([41], based on [48,27,43,45,3]). Given a function T (·), a non-
interactive two-party protocol Π = (NISC1,NISC2,NISC3) between a sender S
and a receiver R, and functionality f(·, ·) computable by a polynomial-time Tur-
ing machine, we say that Π securely computes f with T (·)-time simulation,
or that Π is a non-interactive (stand-alone) secure computation protocol
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(with T (·)-time simulation) for computing f , if Π is a non-interactive two-
party computation protocol for computing f and, for any polynomial-time adver-
sary A corrupting party I ∈ {S,R}, there exists a T (n)·poly(n)-time simulator S
such that, for any T (n) ·poly(n)-time algorithm D : {0, 1}∗ → {0, 1}, there exists
negligible ϵ(·) such that for any n ∈ N and any inputs x, y ∈ {0, 1}n, z ∈ {0, 1}∗,
we have:∣∣∣Pr [D(OutΠ,A,I(1

n, x, y, z)) = 1]− Pr
[
D(Out

Tf

Πf ,S,I(1
n, x, y, z)) = 1

]∣∣∣ < ϵ(n)

where the experiments and distributions Out are as defined above.
Furthermore, if Π securely computes f with T (·)-time simulation for T (n) =

nlogc(n) for some constant c, we say that Π is stand-alone secure with quasi-
polynomial simulation.

Badrinarayanan et al. [3] demonstrates that stand-alone secure NISC proto-
cols with quasi-polynomial simulation exist assuming the existence of a notion of
“weak OT”, which in turn can be based on subexponential versions of standard
assumptions [3,10]:

Theorem 4 ([3,10]). Assuming subexponential hardness of any one of the De-
cisional Diffie-Hellman, Quadratic Residuosity, N th Residuosity, or Learning
With Errors assumptions, then for any constants c < c′ and any polynomial-time
Turing-computable functionality f(·, ·) there exists a (subexponentially) stand-
alone secure non-interactive two-party computation protocol with T (·)-time se-

curity and T ′(·)-time simulation for T (n) = nlogc(n) and T ′(n) = nlogc′ (n).

3.2 SPS-ZK Arguments

We proceed to recalling the definition of interactive arguments.

Definition 6 ([11,30,26]). We refer to an interactive protocol (P, V ) between
a probabilistic prover P and a verifier V as an interactive argument for some
language L ⊆ {0, 1}∗ if the following conditions hold:

1. Completeness. There exists a negligible function ν(·) such that, for any
x ∈ L:

Pr [⟨P, V ⟩(x) = Accept] ≥ 1− ν(|x|)

2. T (·)-time soundness. For any non-uniform probabilistic T (·)-time prover
P ∗ (not necessarily honest), there exists a negligible function ν(·) such that,
for any x ̸∈ L:

Pr [⟨P ∗, V ⟩(x) = Accept] ≤ ν(|x|)

Furthermore, if the above holds even if the statement x ̸∈ L can be adaptively
chosen by the cheating prover anytime prior to sending its last message, we
call such a protocol (T (·)-time) adaptively sound.
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We also require a notion of zero-knowledge [30] with superpolynomial simula-
tion (SPS-ZK) [43], which states that the prover’s witness w should be “hidden”
from the verifier in the sense that proofs of a particular statement x ∈ L should
be simulatable in a manner independent of w:

Definition 7 ([43]). We refer to an interactive argument for some NP lan-
guage L (with witness relation RL) as T

′(·)-time simulatable zero-knowledge
with T (·)-time security (or (T (·), T ′(·))-simulatable zero-knowledge) if, for
any T (·)-time cheating verifier V ∗ (which can output an arbitrary function of its
view), there exists a T ′(·)-time simulator Sim and negligible function ν(·) such
that, for any T (·)-time non-uniform distinguisher D, given any statement x ∈ L,
any witness w ∈ RL(x), and any auxiliary input z ∈ {0, 1}∗, it holds that:

|Pr [D(x, ⟨P (w), V ∗(z)⟩(x)) = 1]− Pr [D(x, Sim(x, z)) = 1] | ≤ ν(|x|)

Our construction will use a two-round adaptively sound zero-knowledge argu-
ment consisting of three polynomial-time algorithms, (ZK1,ZK2,ZK3), defining
the following interaction ⟨P, V ⟩:

– V runs (zk1, σ) ← ZK1(1
n), which takes as input the security parameter n

and generates a first message zk1 and persistent state σ.
– P runs zk2 ← ZK2(wi1, x, w), which takes as input the first message wi1, a

statement x, and a witness w, and returns a second message zk2.
– V runs {Accept,Reject} ← ZK3(zk2, x, σ), which takes as input a second

message zk2, a statement x, and the persistent state σ, and returns Accept
if zk2 contains an accepting proof that x ∈ L and Reject otherwise.

We observe that, in fact, this primitive is implied by the existence of a stand-
alone secure NISC (see Definition 5).

Theorem 5. For any constants c < c′, letting subexponential functions T (n) =

nlogc(n) and T ′(n) = nlogc′ (n), then, if there exists a subexponentially stand-
alone secure non-interactive two-party computation protocol for any polynomial-
time Turing-computable functionality f(·, ·) with T (·)-time security and T ′(·)-
time simulation, then there exists a two-round interactive argument with T (·)-
time adaptive soundness and (T (·), T ′(·))-simulatable zero-knowledge.

The construction and its proof of security is straightforward, but for complete-
ness we provide it in the full version.

3.3 Non-Interactive CCA-secure Commitments

Our construction will rely on non-interactive (single-message) tag-based com-
mitment schemes satisfying the notion of CCA security [42,16,35].

Definition 8 (based on [35]). A non-interactive tag-based commitment
scheme (with t(·)-bit tags) consists of a pair of polynomial-time algorithms
(Com,Open) such that:
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– c ← Com(1n, id, v; r) (alternately denoted Comid(1
n, v; r)) takes as input an

identifier (tag) id ∈ {0, 1}t(n), a value v, randomness r, and a security param-
eter n, and outputs a commitment c. We assume without loss of generality
that the commitment c includes the respective tag id.

– {Accept,Reject} ← Open(c, v, r) takes as input a commitment c, a value v,
and randomness r, and returns either Accept (if c is a valid commitment for
v under randomness r) or Reject (if not).

We consider commitment schemes having the following properties:

1. Correctness: For any security parameter n ∈ N, any v, r ∈ {0, 1}∗, and
any id ∈ {0, 1}t(n):

Pr[c← Com(1n, id, v; r) : Open(c, v, r) = Accept] = 1

2. Perfect binding (for sufficiently large inputs): There exists n ∈ N such
that, for any commitment string c, values v, v′ with |v| ≥ n or |v′| ≥ n, and
randomness r, r′, if it is true that Open(c, v, r) = Accept and Open(c, v′, r′) =
Accept, then v = v′.8

3. T (·)-time hiding: For any T (·)-time non-uniform distinguisher D and fixed
polynomial p(·), there exists a negligible function ν(·) such that, for any
n ∈ N, any id ∈ {0, 1}t(n) and any values v, v′ ∈ {0, 1}p(n):

|Pr[D(Com(1n, id, v)) = 1]− Pr[D(Com(1n, id, v′)) = 1]| ≤ ν(n)

For our construction, we require a strictly stronger property than just hiding:
hiding should hold even against an adversary with access to a “decommitment
oracle”. This property is known as CCA security due to its similarity to the
analogous notion for encryption schemes [46]. We introduce a weakening of CCA
security, to which we shall refer as “weak CCA security”, which is nonetheless
sufficient for our proof of security, and, as we shall prove in Section 5, is necessary
for our proof of security as well. We define this as follows:

Definition 9. Let O∗ be an oracle which, given a commitment c, returns a valid
committed value v—that is, such that there exists some randomness r for which
Open(c, v, r) = Accept.

A tag-based commitment scheme (Com,Open) is T (·)-time weakly CCA-
secure with respect to O∗ if, for any polynomial-time adversary A, letting Expb(
O∗,A, n, z) (for b ∈ {0, 1}) denote A’s output in the following interactive exper-
iment:

– A, on input (1n, z), is given oracle access to O∗, and adaptively chooses
values v0, v1 and tag id.

– A receives Com(1n, id, vb) and returns an arbitrary output; however, A’s out-
put is replaced with ⊥ if O∗ was ever queried on any commitment c with tag
id.

8 We remark that this property is stronger than statistical binding but weaker than
fully perfect binding.
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then, for any T (·)-time distinguisher D, there exists negligible ν(·) such that, for
any n ∈ N and any z ∈ {0, 1}∗, it holds that:

|Pr[D(Exp0(O∗,A, n, z)) = 1]− Pr[D(Exp1(O∗,A, n, z)) = 1]| ≤ ν(n)

We remark that the only difference from the “standard” notion of CCA security is
that the CCA oracle, given a commitment c, rather than returning both the value
v committed to and the randomness r used in the commitment, instead returns
just the value v. This is similar to the definition of CCA security commonly used
for encryption schemes [46].

4 Results

We state our main theorem and the respective protocol in this section.

Input: A commitment c, which without loss of generality contains identity id
and was sent by party P in session S.
Output: A value v or the special symbol ⊥.

Functionality:

1. Verify that id = (S, P ) and return ⊥ if not.
2. Otherwise, run the oracle O (from the definition of weak CCA security)

to find a valid decommitment v (i.e., such that, for some randomness r
Open(c, v, r) = Accept), and return it, or return ⊥ if there is no valid
decommitment (i.e., O returns ⊥).

Fig. 1: Decommitment helper H for a weakly CCA-secure commitment scheme
(Com,Open).)

Theorem 6. If there exist superpolynomial-time functions TCom(·) = nlogc0 (n),
TZK(·) = nlogc1 (n), TSim(·) = nlogc2 (n), and Tπ(·) = nlogc3 (n) for constants
0 < c0 < c1 < c2 < c3 so that there exist (1) a non-interactive weakly CCA-
secure commitment scheme with respect to a TCom(n)-time oracle O, (2) a non-
interactive computation protocol for general polynomial-time Turing-computable
functionalities satisfying TZK(·)-time stand-alone security and TSim(·)-time sim-
ulation, and (3) a non-interactive computation protocol for general polynomial-
time Turing-computable functionalities satisfying Tπ(·)-time stand-alone security
(and T ′(·)-time simulation for some T ′(·) ≫ Tπ(·)), then, for any polynomial-
time Turing-computable functionality f(·, ·), the protocol Π given in Figure 2
for computing f is an H-EUC-secure non-interactive secure computation proto-
col with respect to the helper H in Figure 1.
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Let TCom(·), TZK(·), TSim(·), Tπ(·) be as given in the theorem. Π will use the
following primitives:

– (Com,Open), a secure commitment scheme satisfying weak CCA security
with respect to some oracle O having running time TCom(n). This is primitive
(1) given in the theorem.

– (ZK1,ZK2,ZK3), a two-message interactive argument which satisfies TZK(n)-
time adaptive soundness and (TZK(·), TSim(·))-simulatable zero-knowledge
(with respective TSim(·)-time simulator SimZK). By Theorem 5, this can be
constructed from the primitive (2) given in the theorem.

– π = (NISC1,NISC2,NISC3), a stand-alone secure non-interactive two-party
computation protocol for the functionality h given in Figure 3 satisfying
Tπ(·)-time security and T ′(·)-time simulation for some T ′(n)≫ Tπ(n). This
is implied by primitive (3) in the theorem.

We provide the complete proof, which constructs the polynomial-time simu-
lator S (aided by H) required for the definition of H-EUC-security, in the full
version.

5 Minimality of Assumptions

In this section, we prove that the protocol we construct in Theorem 6 can be
constructed using nearly minimal assumptions—that is, that a NISC protocol
satisfying externalized UC security implies both a (polynomial-time) stand-alone
secure NISC protocol with superpolynomial-time simulation and weakly CCA-
secure commitments. Thus, these primitives are not only sufficient but also neces-
sary for the existence of an externalized UC-secure NISC. The only gap between
the sufficient and necessary conditions is that Theorem 6 requires a stand-alone
NISC having simulation-based security with respect to subexponential-time dis-
tinguishers, whereas one can only construct a polynomial-time secure stand-alone
NISC from our definition of UC security.

Theorem 7. Assume the existence of a protocol Π = (π1, π2, π3) for non-
interactive computation of any polynomial-time Turing-computable functional-
ity f(·, ·); further assume that Π satisfies the notion of UC security with re-
spect to some superpolynomial-time helper H. Then there exist both a stand-
alone secure non-interactive two-party computation protocol (for any polynomial-
time Turing-computable functionality h(·, ·)) with superpolynomial-time simula-
tion and a non-interactive weakly CCA-secure commitment scheme.

Proof. The first implication is immediate; since stand-alone SPS security is
strictly weaker than externalized UC security, any NISC protocol satisfying ex-
ternalized UC security is already stand-alone secure with SPS.

So, it suffices to prove that externalized UC-secure NISC implies weakly
CCA-secure commitments; formally, we prove the following:
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Input: The receiver R (with identity PR) and the sender S (with identity PS)
are given input x, y ∈ {0, 1}n, respectively, and both parties have common
input 1n and session ID id.
Output: R outputs f(x, y).

Round 1: R proceeds as follows:

1. Generate trapdoor t← {0, 1}n and randomness rx ← {0, 1}∗.
2. Compute cx = Com(1n, (id, PR), x||t; rx).
3. Compute (msg1, σNISC) ← NISC1(1

n, (x, rx, t)), where the protocol π =
(NISC1,NISC2,NISC3) computes the functionality h given in Figure 3.

4. Compute (zk1, σZK)← ZK1(1
n).

5. Send (msg1, zk1, cx) to S.

Round 2: S proceeds as follows:

1. Generate randomness r1, r2, rNISC ← {0, 1}∗.
2. Compute msg2 = NISC2(msg1, (cx, y,⊥,⊥); rNISC).
3. Let v = (msg1,msg2, cx), w1 = (rNISC, y), and w2 = (⊥,⊥,⊥). Compute

c1 = Com(1n, (id, PS), w1; r1) and c2 = Com(1n, (id, PS), 0; r2).
4. Compute zk2 ← ZK2(1

n, zk1, (v, c1, c2), (w1, r1, w2,⊥)) for the language L
consisting of tuples (v, c1, c2), where v = (msg1,msg2, cx), such that there
exists a witness (w1, r1, w2, r2) so that either:

(a) c1 = Com(1n, (id, PS), w1; r1), and w1 = (rNISC, y) satisfies msg2 =
NISC2(msg1, (cx, y,⊥,⊥); rNISC).
OR:

(b) c2 = Com(1n, (id, PS), w2; r2), and w2 = (rNISC, t, z
∗) satisfies msg2 =

NISC2(msg1, (cx,⊥, t, z∗); rNISC).
5. Send (msg2, zk2, c1, c2) to R.

Output phase: R proceeds as follows:

1. Let v = (msg1,msg2, cx). If ZK3(zk2, (v, c1, c2), σZK) ̸= Accept, terminate
with output ⊥.

2. Compute z = NISC3(msg2, σNISC). If z = ⊥, terminate with output ⊥;
otherwise return z.

Fig. 2: Protocol Π for non-interactive secure computation.
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Input: The receiver R has input (x, rx, t), and the sender S has input
(cx, y, t

′, z∗)
Output: Either f(x, y), z∗, or the special symbol ⊥.

Functionality:

1. If cx ̸= Com(1n, (id, PR), x||t; rx), return ⊥.
2. If t = t′, then return z∗.
3. Otherwise, return f(x, y) (or ⊥ if either x or y is ⊥).

Fig. 3: Functionality h used for the underlying 2PC protocol π.

Lemma 1. Assume a protocol Π = (π1, π2, π3) for non-interactive computation
of the functionality which, on inputs x and y, returns f(x, y) = 1 if x = y
and f(x, y) = 0 otherwise; further assume that Π satisfies the notion of UC
security with a superpolynomial-time helper. Then there exists a commitment
scheme (Com,Open) which satisfies correctness, perfect binding for sufficiently
large inputs, and weak CCA security.

Proof. We define the weakly CCA secure commitment scheme (Com,Open) as
follows:

– Com(1n, id, x) generates random padding p ← {0, 1}n and outputs c ←
π1(1

n, (id, 1), x||p) as well as the session identifier id.
That is, c is the first (receiver’s) message of a new instance of Π with receiver
input x, padded by the random p, and session identifier id.
Note: We shall assume throughout that the player identifiers in any instance
of Π are equal to 1 for the sender and 2 for the receiver.

– Open(c, x, (p, r)) outputs Reject if c ̸= π1(1
n, (id, 1), x||p; r), and otherwise

recovers the receiver’s state σ after π1 and outputs b← π3(π2(c, x), σ).
That is, Open first verifies that the commitment c is validly generated with
respect to the value x and the receiver’s randomness; if not, it returns Reject.
Otherwise, it returns the result (Accept if 1, Reject if 0) of running the sender
of Π given the initial message c and sender’s input x to produce a message
m, and finally running the receiver of Π given m as the sender’s message.

Correctness of (Com,Open) will follow directly from the correctness of Π.
For the other two properties, we prove the following claims:

Claim 1 For all sufficiently large input sizes |x|, (Com,Open) satisfies perfect
binding.

We defer some details to the full version, but provide a high-level summary
of the argument here.

Essentially, perfect binding will follow from the correctness and security ofΠ.
Fix the simulator S (and superpolynomial-time helper H) given by the definition
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ofH-EUC security forΠ as a secure implementation of the equality functionality,
and assume for the sake of contradiction that there exists an infinite sequence
of tuples (c, x, x′) such that, for each such pair, x ̸= x′ but there exist (p, r) and
(p′, r′) for which Open(c, x, (p, r)) = Accept and Open(c, x′, (p′, r′)) = Accept
both with non-zero probability.

Then consider an environment Z which, on input x∗, will do as follows:

– Start an instance of Π with a corrupted receiver, session identifier id (and
player identifiers 1 for the receiver and 2 for the sender), and input x||p for
the receiver and x∗ for the sender.

– Substitute c for the receiver’s first message to the honest sender, and receive
the sender’s response m.

– Run the standard final round π3 of the receiver’s protocol using m as the
sender’s message and r as the randomness to produce an output π3(m)|r.

If x∗ = x||p, the output must be 1 by perfect correctness of Π in the real
execution of this environment, so the same must hold with overwhelming proba-
bility in the ideal execution using Tf . This in turn indicates that the simulator S,
when given c as the receiver’s first message, extracts the output x||p to send to
the ideal functionality with overwhelming probability, as the ideal functionality
must return 1 when comparing that output to the sender’s input x||p.

However, if we consider a similar experiment to the above but using x′||p′ as
the receiver’s input rather than x||p (and r′ as the respective randomness), we
can use the same logic to arrive at the conclusion that the input extracted by the
simulator S from c and sent to the ideal functionality on behalf of the corrupted
receiver is x′||p′ with overwhelming probability. Clearly, for sufficiently large n ∈
N (i.e., sufficiently large inputs x, x′ in our infinite sequence of tuples (c, x, x′)),
this cannot be true simultaneously with the above fact; thus, by contradiction,
(Com,Open) must satisfy perfect binding.

Claim 2 (Com,Open) satisfies weak CCA security.

Proof. Fix the simulator S and superpolynomial-time helper H implied by the
definition of H-EUC security of the protocol Π. Assume for the sake of contra-
diction that there exists an adversary A which can contradict the definition of
weak CCA security (Definition 9). We first show that A, which is by definition
polynomial-time with oracle access to a weak CCA decommitment oracle O∗,
can also be effectively implemented in polynomial time with oracle access to the
helper functionality H.

Subclaim 1 Any polynomial-time adversary A against weak CCA security with
oracle access to the oracle O∗ defined in Definition 9 can also be implemented
in polynomial time using oracle access to the helper functionality H instead,
with error at most negligible in the security parameter n of Π9, and with the

9 We comment that, while the implementation of O∗ does not decommit successfully
with probability 1, decommitting with overwhelming probability is sufficient as it
creates at most a negligible error in the adversary’s output in the CCA security
game.
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additional property that H will never be queried using a session identifier sid
that is the same as the identifier used in A’s challenge commitment.

Proof. Consider replacing each of A’s queries to O∗ by the following process,
which runs in polynomial time given oracle access to H:

– Receive a commitment c to decommit, with tag id.
– Start a new instance of Π with a corrupted receiver and session identifier id

(and player identifiers 1 for the receiver and 2 for the sender).
– Run the simulator S (which uses the helper H) on the respective instance

of Π, substituting c for the corrupted receiver’s message. S will generate an
input x∗||p to send to the ideal functionality; return x∗ to A.

We claim that, if the above process does not generate correct responses to all
oracle queries with overwhelming probability (i.e., 1 − ν(n) for some negligible
ν(·)), then there exists an environment Z able to distinguish between the real
and simulated executions with non-negligible probability.

First, we consider a number of “hybrid” oracles O0,O1, . . ., where in Oi

the first i queries are answered by the true oracle O∗ and all other queries are
answered by the procedure above. Assume then for the sake of contradiction that
there exists some fixed randomness r for the CCA security adversary such that, in
the respective instance of the security game, the poly-time implementation of O∗

gives at least one incorrect decommitment with some non-negligible probability
1/p(n). Then there necessarily exists some i ∈ N such that the oracle’s outputs
in Oi and Oi−1 differ with non-negligible probability 1/q(n) (since the adversary
in the CCA security game is restricted to at most a polynomial number of oracle
queries).

We use this fact to construct our distinguishing environment Z. Specifically,
because of the above, there must exist j ≥ i for which the oracle’s responses to
the jth query differ between Oi and Oi−1 with some non-negligible probability
1/q′(n); let Z receive as non-uniform advice the first such j, the jth query c, and
the (padded) decommitment x||p (which can be ⊥ if c is an invalid commitment),
which are determined by fixed randomness r and the responses from the true
CCA oracle to the first j − 1 queries, and let it proceed as follows:

– Start a single instance of Π with a corrupted receiver, session identifier given
by the tag of c (and player identifiers 1 for the receiver and 2 for the sender),
and receiver and sender input both equal to x||p.

– Replace the receiver’s first message with c, and return the output of the
protocol.

By perfect correctness of Π, and the assumption that c is a valid first-round
message on input x||p, Z outputs 1 in the real interaction with probability 1;
however, by our assumption that the responses to the jth oracle query in Oi and
Oi−1 differ with non-negligible probability 1/q′(n), we know that in the ideal
interaction S must send some x′||p′ ̸= x||p to the ideal functionality on behalf
of the corrupted receiver with at least probability 1/q′(n). Therefore, since the
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honest sender’s input to the ideal functionality is always x||p, we observe that
Z outputs 0 in the ideal interaction with probability 1/q′(n), thus contradicting
security of Π by distinguishing the real and ideal interactions and completing
our argument.

Lastly, we note that, during the H-aided reimplementation of the adversary
A, H will never be queried using a session identifier sid that is the same as the
identifier used in the challenge commitment. This follows from the restriction
that the simulator S may never query H using an honest party’s identifiers
(sid, pid): the only corrupted parties are those with sid equal to the tags of the
queried commitments, which by the definition of weak CCA security may never
be identical to the tag of the challenge. ⊓⊔

In the full version, we also show the following, which together with the previous
claim will provide a contradiction:

Subclaim 2 (Com,Open) satisfies hiding against any polynomial-time adver-
sary A, even if the adversary is given oracle access to the helper functionality
H, as long as A never queries H using a session identifier sid that is the same
as the identifier used in the challenge commitment.

So, given an adversary A that contradicts weak CCA security using polynomial
time and oracle access to the CCA oracle O∗, Subclaim 1 implies that there
is a reimplemented adversary A′ that likewise contradicts weak CCA security
and uses polynomial time and oracle access to the superpolynomial-time helper
functionalityH without invoking the helper using a session identifier equal to the
tag of the challenge commitment. But this directly contradicts Subclaim 2, since
weak CCA security without access to the CCA oracle is equivalent to hiding, and
the subclaim shows that A′ cannot break the hiding property of (Com,Open)
without invoking H using the challenge commitment’s tag. Therefore, by this
contradiction, (Com,Open) satisfies weak CCA security, as desired.

⊓⊔
⊓⊔
⊓⊔

References

1. Abdolmaleki, B., Malavolta, G., Rahimi, A.: Two-Round Concurrently Secure
Two-Party Computation. Cryptology ePrint Archive, Paper 2021/1357 (2021),
https://eprint.iacr.org/2021/1357

2. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adap-
tive security in functional encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (Aug
2015). https://doi.org/10.1007/978-3-662-48000-7_32

3. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol.
10626, pp. 275–303. Springer, Heidelberg (Dec 2017). https://doi.org/10.1007/
978-3-319-70700-6_10

27

https://eprint.iacr.org/2021/1357
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70700-6_10


4. Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round optimal
concurrent MPC via strong simulation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017,
Part I. LNCS, vol. 10677, pp. 743–775. Springer, Heidelberg (Nov 2017). https:
//doi.org/10.1007/978-3-319-70500-2_25

5. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
composition via super-polynomial simulation. In: 46th FOCS. pp. 543–552. IEEE
Computer Society Press (Oct 2005). https://doi.org/10.1109/SFCS.2005.43

6. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO’91. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (Aug 1992).
https://doi.org/10.1007/3-540-46766-1_31

7. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivi-
ous transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Heidelberg
(Apr / May 2018). https://doi.org/10.1007/978-3-319-78375-8_17

8. Benhamouda, F., Lin, H., Polychroniadou, A., Venkitasubramaniam, M.: Two-
round adaptively secure multiparty computation from standard assumptions.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239,
pp. 175–205. Springer, Heidelberg (Nov 2018). https://doi.org/10.1007/

978-3-030-03807-6_7
9. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-

ments. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol.
11239, pp. 209–234. Springer, Heidelberg (Nov 2018). https://doi.org/10.1007/
978-3-030-03807-6_8
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