
Towards Practical Topology-Hiding
Computation

Shuaishuai Li1,2(B)[0000−0002−3982−4264]

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing
100049, China

lishuaishuai@iie.ac.cn

Abstract. Topology-hiding computation (THC) enables n parties to
perform a secure multiparty computation (MPC) protocol in an incom-
plete communication graph while keeping the communication graph hid-
den. The work of Akavia et al. (CRYPTO 2017 and JoC 2020) shown that
THC is feasible for any graph. In this work, we focus on the efficiency
of THC and give improvements for various tasks including broadcast,
sum and general computation. We mainly consider THC on undirected
cycles, but we also give two results for THC on general graphs. All of
our results are derived in the presence of a passive adversary statically
corrupting any number of parties.
In the undirected cycles, the state-of-the-art topology-hiding broadcast
(THB) protocol is the Akavia-Moran (AM) protocol of Akavia et al.
(EUROCRYPT 2017). We give an optimization for the AM protocol
such that the communication cost of broadcasting O(κ) bits is reduced
from O(n2κ2) bits to O(n2κ) bits. We also consider the sum and gen-
eral computation functionalities. Previous to our work, the only THC
protocols realizing the sum and general computation functionalities are
constructed by using THB to simulate point-to-point channels in an MPC
protocol realizing the sum and general computation functionalities, re-
spectively. By allowing the parties to know the exact value of the number
of the parties (the AM protocol and our optimization only assume the
parties know an upper bound of the number of the parties), we can de-
rive more efficient THC protocols realizing these two functionalities. As
a result, comparing with previous works, we reduce the communication
cost by a factor of O(nκ) for both the sum and general computation
functionalities.
As we have mentioned, we also get two results for THC on general graphs.
The state-of-the-art THB protocol for general graphs is the Akavia-
LaVigne-Moran (ALM) protocol of Akavia et al. (CRYPTO 2017 and
JoC 2020). Our result is that our optimization for the AM protocol also
applies to the ALM protocol and can reduce its communication cost by a
factor of O(κ). Moreover, we optimize the fully-homomorphic encryption
(FHE) based GTHC protocol of LaVigne et al. (TCC 2018) and reduce
its communication cost from O(n8κ2) FHE ciphertexts and O(n5κ) FHE
public keys to O(n6κ) FHE ciphertexts and O(n5κ) FHE public keys.

1 Introduction

The theory of secure multiparty computation (MPC) has drawn a great deal of
attention since introduced by Yao [28] in 1982. In MPC, n parties P1, . . . , Pn

seek to compute some public function on their private inputs while keeping
their inputs secret. There have been a great body of works to make MPC more
and more general and efficient. However, most of these works assume that the
communication graph is complete, meaning that every two parties can communi-
cate directly, which is not always the case in real-world situations. For example,
two parties may can not directly communicate with each other due to their long
physical distance or other confidentiality reasons. For this reason, a line of works
[19,8,17,18,9] considered designing MPC protocols over incomplete communica-
tion graph.

Moran et al. [25] considered a more complicated situation, where the com-
munication graph is not only incomplete but also sensitive. They formalized
the concept of topology-hiding computation (THC), which aims to design MPC
protocols while keeping the graph topology hidden. There are many scenes, such
as social networks, ISP networks, vehicle-to-vehicle communications, and other
Internet of Things networks, where keeping the graph topology hidden is of great
importance.

Motivated by building more efficient THC protocols, we consider the setting
where the adversary may statically, passively corrupt up to at most n−1 parties
(only computational security is possible in such a setting). A series of works
have resolved the feasibility question of THC in this setting. More concretely,
the works of [25,21] built THC for graphs with logarithmic diameter1. Later,
based on a special public-key encryption (PKE) scheme (aka PKCR encryp-
tion), the work of [3] built THC for several special graph classes that may have
super-logarithmic diameter such as cycles, trees, and graphs with logarithmic
circumference2. The feasibility of THC on any graph is established in the work
of [1], which presented a construction of THC for all graphs by combining PKCR
encryption and another novel technique called correlated random walks.

In this work, we focus on the efficiency of THC. In the undirected cycles, we
follow the work of [3] and derive more efficient THC protocols for various tasks
such as broadcast, sum and general computation (computing any circuit consists
of addition and multiplication gates). We also extend some of our results and give
several improvements for existing THC protocols on general graphs, including
the topology-hiding broadcast (THB) protocol of [1] and the fully-homomorphic
encryption (FHE) based general topology-hiding computation (GTHC) protocol
of [22].

Other related works. There are also several works studying the feasibility of
(computationally secure) THC in the fail-stop setting, where the adversary may
instruct the corrupt parties to abort the protocol. The works of [6,22] showed

1 The diameter of a graph is the greatest distance between two nodes in the graph.
2 The circumference of a graph is the maximum length of a cycle in the graph.

2

how to construct THC protocols with small leakage. Some works studied the pos-
sibility of information-theoretic THC. [20] showed that information-theoretically
secure MPC inherently leaks information about the graph topology to the ad-
versary, which implies that information-theoretic THC on general graphs is im-
possible. A natural question is whether information-theoretic THC is possible
for some subclasses of graphs, which is the main topic of [5]. Moreover, the
work of [4] studied the feasibility of THC in different cryptographic setting:
information-theoretic, given other cryptographic primitives such as key agree-
ment and oblivious transfer. Finally, the work of [23] studied the feasibility of
THC when assuming the network delay is not known (all other THC works
assume the network delay has a known upper bound).

1.1 Our Contribution

As our first result, we give an optimization for the Akavia-Moran (AM) protocol
(the state-of-the-art THB protocol for undirected cycles3) proposed by [3] and
reduce its communication cost by a factor of O(κ) in the amortized sense. Con-
cretely, if one party wants to broadcast O(κ) bits, the communication cost will
be O(n2κ2) bits using the AM protocol. Our optimization for the AM protocol
can reduce the communication cost to O(n2κ) bits.

We then consider the sum and general computation functionalities. Before
showing our results4, we first clarify the state-of-the-art asymptotic communi-
cation complexity required for realizing these two functionalities, respectively.
As noted in [25,21,3], given THB for some graph class and a PKE scheme, any
functionality F can be topology-hidingly realized for the same graph class by
using THB and PKE to simulate point-to-point channels in an MPC protocol
realizing F . Concretely, point-to-point channels are simulated as follows.

1. Each party uses THB to broadcast its public key in a setup phase.
2. To send a message x to Pj , Pi encrypts x using the public key of Pj and

then uses THB to broadcast the resulting ciphertext.
3. Upon receiving the ciphertext, Pj can decrypt it to get x. Other parties know

nothing about x because they do not know the decrypt key.

If the underlying PKE scheme satisfies that the ciphertext length is of the
same order as the plaintext length (i.e., the ciphertext length is at most a positive
constant multiple of the plaintext length)5 and the underlying THB protocol is
3 The original AM protocol is designed for directed cycles, and in particular, it assumes

that all parties only know an upper-bound on n rather than the exact value of n.
In this work, we extend this protocol to undirected cycles (which is direct) and
moreover, we assume that all parties know the exact value of n. We remark that our
optimization also works for the original AM protocol.

4 Unlike the AM protocol and our optimization for the AM protocol, our THC proto-
cols realizing sum and general computation functionalities rely on that the parties
know the exact value of n.

5 In fact, there are many PKE schemes, including the ElGamal [16] scheme and the
Paillier [26] scheme, satisfy this property.

3

instantiated with the AM protocol, we can conclude that the state-of-the-art
asymptotic communication complexity of topology-hidingly sending O(κ) bits
on a cycle is O(n2κ2) bits (we do not count in the communication cost of step 1
because it can be executed once for all).

As we have said, the only topology-hiding protocols realizing the sum and
general computation functionalities are constructed by using THB to simulate
point-to-point channels in an MPC protocol realizing these two functionalities.
We have clarified the state-of-the-art asymptotic communication complexity of
simulating point-to-point channels, hence the left problem is to clarify the state-
of-the-art asymptotic communication complexity6 of realizing these two func-
tionalities (without hiding the topology).

For the sum functionality, to the best of our knowledge, the state-of-the-art
asymptotic communication complexity is O(nκ) bits, which can be constructed
from additively homomorphic encryption (which can be instantiated with the
Paillier scheme [26]) as follows.

1. In the setup phase, each party samples a public key and broadcasts it. Let
pk be the product of all the public keys.

2. P1 encrypts its input x1 with pk and sends the resulting ciphertext c1 to P2.
3. For t = 2 to n − 1, upon receiving the ciphertext ct−1, Pt computes an

encryption ct of
∑t

j=1 xj by homomorphically adding xt to ct−1 using the
additive homomorphism. Pt sends ct to Pt+1.

4. Upon receiving the ciphertext cn−1 from Pn−1, Pn computes an encryption
cn of

∑n
j=1 xj by homomorphically adding xn to cn−1 using the additive

homomorphism.
5. Finally, the parties execute a distributed decryption protocol to securely

decrypt cn.

The security of the above scheme is guaranteed by the semantic security of
the underlying encryption scheme. If instantiating the additively homomorphic
encryption scheme with the Paillier scheme, we argue that the communication
cost of the above protocol will be O(nκ) bits (we do not count in the commu-
nication cost of step 1 because it can be executed once for all), which can be
derived from the following two points. Firstly, the ciphertext length of the Pail-
lier scheme is of the same order as its plaintext length, which implies that the
communication cost of step 2-4 is O(nκ) bits. Secondly, we can find a distributed
decryption protocol in [7] for Paillier ciphertexts with communication complexity
O(nκ) bits, which implies that the communication cost of step 5 can be O(nκ)
bits. Therefore, we conclude that the total communication cost is O(nκ) bits.

Note that the state-of-the-art asymptotic communication complexity of send-
ing or broadcasting O(κ) bits is O(n2κ2) bits, hence the state-of-the-art asymp-
totic communication complexity of topology-hidingly realizing the sum func-
tionality is O(n3κ2) bits. Our optimization for the AM protocol can reduce the
6 Because the communication cost of sending a bitstring m is of the same order as

that of broadcasting m, we refer to the communication complexity as the number of
bits that are sent or broadcast.

4

communication cost to O(n3κ) bits. In this work, we give a new topology-hiding
sum (THS) protocol which further reduces the communication cost to O(n2κ)
bits.

Now we consider the general computation functionality which computes any
circuit consisting of addition and multiplication gates. A THC protocol realizing
the general computation functionality is called a GTHC protocol. To the best of
our knowledge, in the presence of a passive adversary statically corrupting any
number of parties, the state-of-the-art asymptotic communication complexity
of MPC realizing the general computation functionality is O((m + c)nκ) bits7

where m and c are the number of inputs and multiplication gates in the circuit,
which implies that the state-of-the-art asymptotic communication complexity
of GTHC is O((m + c)n3κ2) bits. Our optimization for the AM protocol can
reduce the communication cost to O((m + c)n3κ) bits. In this work, we give a
new GTHC protocol with communication complexity O((m+ c)n2κ) bits.

Finally, we note that our optimization for the AM protocol also applies to
the Akavia-LaVigne-Moran (ALM) protocol (the state-of-the-art THB protocol
for general graphs) proposed by [1] and reduces its communication cost from
O(n5κ3) bits to O(n5κ2) when the broadcast value is of length O(κ) bits. More-
over, we consider the FHE-based GTHC protocol proposed by [22], which require
the parties to communicate O(n8κ2) FHE ciphertexts and O(n5κ) FHE public
keys. We optimize this protocol such that the communication cost is reduced to
O(n6κ) FHE ciphertexts and O(n5κ) FHE public keys.

We summarize our results by the following theorem.

Theorem 1. There exist the following THC protocols in the presence of a pas-
sive adversary statically corrupting any number of parties:

– A THB protocol for undirected cycles with communication cost O(n2κ) bits
while the broadcast value is of length O(κ) bits.

– A THS protocol for undirected cycles with communication cost O(n2κ) bits
while each input is of length O(κ) bits.

– A GTHC protocol for undirected cycles with communication cost O((m +
c)n2κ) bits while the underlying ring is of size 2O(κ).

– A THB protocol for general graphs with communication cost O(n5κ2) bits
while the broadcast value is of length O(κ) bits.

– A GTHC protocol for general graphs with communication cost O(n6κ) FHE
ciphertexts and O(n5κ) FHE public keys.

A comparison of our results to previous works is presented in Table 1.

1.2 Technical Overview

Before showing how to derive our protocols, we first revisit the AM and ALM
protocols. Both of these two THB protocols are only for broadcasting a bit (a
7 Both the arithmetic version of the protocol from [15] and the passive version of the

protocol from [14] has communication complexity O((m+ c)nκ) bits.

5

Topology-hiding protocols Communication complexity References

THB for cycles O(n2κ2) bits [3]
O(n2κ) bits Sect. 3

THS for cycles O(n3κ2) bits [3]
O(n2κ) bits Sect. 4

GTHC for cycles O((m+ c)n3κ2) bits [3]
O((m+ c)n2κ) bits Sect. 5

THB for general graphs O(n5κ3) bits [1]
O(n5κ2) bits Sect. 6

FHE-based GTHC for
general graphs

O(n8κ2) hcts+O(n5κ) hpks [22]
O(n6κ) hcts+O(n5κ) hpks Sect. 6

Table 1. For all the THC protocols on undirected cycles and the THB protocol for
general graphs, we always assume the input size is O(κ) bits. The communication
costs of the work of [3] for realizing the sum and general computation functionalities
are computed as the communication costs of the constructions of THS and GTHC
compiled black-box from the AM protocol (assume the parties know the exact value
of n in the AM protocol). Additionally, we abbreviate ‘FHE ciphertexts’ by ‘hcts’ and
‘FHE public keys’ by ‘hpks’.

bitstring can be broadcast bit-by-bit) and built by first presenting a topology-
hiding OR protocol and then letting the broadcaster take the broadcast bit
as input and each other party take 0 as input. We present them in the same
framework, but with different parameters. The framework consists of two phases:
an aggregate phase and a decrypt phase.

At the beginning of the aggregate phase, for each party Pi and each of its
neighbor d, Pi samples a fresh public key and encrypts its input bit under this
key, and sends the resulting ciphertext (together with the public key) to its
neighbor d. At each following round, for each i ∈ [n], Pi chooses a permutation
σ of the set of its neighbors8 and then for each of its neighbor d, Pi, upon
receiving a ciphertext (together with a public key) from its neighbor d at the
previous round, homomorphically OR’s its own bit and adds a new public key
layer to this ciphertext, and then sends the resulting ciphertext to its neighbor
σ(d). After T rounds9, the parties execute the decrypt phase to decrypt the
final ciphertexts. Concretely, each ciphertext is sent back through the same walk
it traversed during the aggregate phase, and each party deletes its own public
key layer in the reversed walk. Finally, each party derives a bit from each walk
starting from itself and outputs the OR of these bits.

8 The AM protocol uses the only non-identity permutation (i.e., each neighbor is
mapped to the other neighbor). The ALM protocol uses a fresh random permutation.

9 T equals n− 1 in the AM protocol and 8n3κ in the ALM protocol.

6

We can conclude that the communication cost is 4n(n− 1) = O(n2) cipher-
texts and 2n(n− 1) = O(n2) public keys in the AM protocol and 4|E| · 8n3κ =
O(n5κ)10 ciphertexts and 2|E| · 8n3κ = O(n5κ) public keys in the ALM proto-
col. The results of [3,1,22] showed that the underlying encryption scheme can be
instantiated with the ElGamal scheme [16], the Cock scheme [13] or the Regev
scheme [27]. The ciphertext length will be at least O(κ) bits if using the ElGa-
mal or Cock scheme and O(κ log κ) bits if using the Regev scheme. Moreover,
the public key length will be at least O(κ) bits if using the ElGamal or Cock
scheme and O(κ log2 κ) bits if using the Regev scheme. Therefore, we know that
the state-of-the-art communication complexity of the AM and ALM protocols
are O(n2κ) and O(n5κ2) bits, respectively. Note that both of these two protocols
can only be used to broadcast a bit, and if we want to broadcast O(κ) bits, then
the communication cost of the AM and ALM protocols will be O(n2κ2) and
O(n5κ3) bits, respectively.
THB for undirected cycles and general graphs. The original AM proto-
col [3] and ALM protocol [1] require the underlying PKE scheme to be OR-
homomorphic. In the work of [2], the journal version of [1], the authors observe
that designing topology-hiding OR protocol in fact does not require any homo-
morphic property of the underlying encryption scheme. We restate this observa-
tion:

To compute OR, upon receiving an encryption of a bit c, the computing
party holding a bit b outputs an encryption of c if b = 0 and an encryption
of 1 otherwise.

In this observation, whether the computing party changes the encrypted bit
depends on what its input is. Our novel idea is that if we only consider broadcast
(instead of OR), then we can further extend this observation as follows:

To design broadcast, upon receiving an encryption of a bit c, the computing
party holding a bit b outputs an encryption of c if the computing party is not
the broadcaster (which guarantees that the bit encrypted will not be changed
if it has been the broadcast bit) and an encryption of b otherwise (which
guarantees that the bit encrypted will be the broadcast bit if it is not yet the
broadcast bit).
The main difference between our observation and the original observation is

that in our observation, whether the computing party changes the encrypted bit
depends on whether it is the broadcaster rather than what its input is. If the
parties act as in our observation, then it is obvious that they can also get the
broadcast value even if the broadcast value is not a bit value.

Let us explain how to drive our optimization for the AM and ALM protocols
from our observation. In the original AM and ALM protocols, the underlying
encryption scheme can be instantiated with the ElGamal scheme. However, to
encrypt bits, the actual ElGamal plaintext space is mapped to the set {0, 1}
while the ciphertext length is still O(κ) bits. Note that the ciphertext length of
10 |E| is the number of edges in the communication graph, which is no more than

C2
n = n(n− 1)/2.

7

the ElGamal scheme is of the same order as its plaintext length (more precisely,
an ElGamal ciphertext is twice the length of the corresponding plaintext), and
with our novel observation, any value in the ElGamal plaintext space (instead
of {0, 1} in the original AM and ALM protocols) can be the broadcast value,
which can reduce the communication cost of the AM and ALM protocols by a
factor of O(κ) in the amortized sense.

THS for undirected cycles. Our THS protocol is based on a simple observa-
tion that each walk in the AM protocol passes through each party exactly once
during the aggregate phase (which is not right in the original AM protocol where
the parties only know an upper bound of n). If we let each party homomorphi-
cally add its input to each received ciphertext (assume the underlying encryption
is additively homomorphic), then the final ciphertext of each walk is indeed an
encryption of the sum of all the inputs. Because the standard ElGamal scheme
does not have additive homomorphism, we instantiate the underlying encryption
scheme with the scheme from [10] or [12]. Moreover, the ciphertext and public
key lengths of both of these two schemes can be O(κ) bits when the plaintext
length is O(κ) bits. Notice that the parties communicate O(n2) ciphertexts and
O(n2) public keys as in the AM protocol, which leads to the claimed communi-
cation cost, i.e., O(n2κ) bits.

GTHC for undirected cycles. Our GTHC protocol also requires that the
parties know the exact value of n. Concretely, we consider designing a GTHC
protocol within the popular framework based on additive secret sharing. This
framework consists of three phases: the input sharing phase, the circuit eval-
uation phase and the output recovery phase. In the input sharing phase, the
parties generate additive sharings for the inputs. In the circuit evaluation phase,
the parties perform a protocol to compute an additive sharing of the value of the
computed function f (which is represented by an arithmetic circuit consisting
of addition and multiplication gates) at the inputs. Finally, in the output re-
covery phase, the parties recover the output to the parties who are supposed to
obtain the output. Because additive secret sharing is linearly homomorphic, the
addition gates can be computed locally. Therefore, the key point for designing
a GTHC protocol is how to compute a multiplication gate, i.e. how to securely
compute an additive sharing of xy with x, y additively shared among the parties.
Our starting point is that an additive sharing of xy can be computed by locally
adding a public value xy − r to an additive sharing of r where r is a random
value. The additive sharing of r can be generated by letting each party Pi lo-
cally sample a random value ri (set r =

∑
i∈[n] ri). Now the goal is to publish

the value xy − r. We present a topology-hiding protocol to achieve this goal
in Sect. 5. We remark that the communication cost of this protocol is O(n2κ)
bits, which implies the communication cost of computing a multiplication gate
is O(n2κ) bits. Moreover, we use our THS protocol to execute the input shar-
ing and output recovery phases such that the communication cost of sharing an
input or recovering the output is O(n2κ) bits. Assume f has m inputs and c
multiplication gates, then the total communication cost is O((m+ c)n2κ) bits.

8

FHE-based GTHC for general graphs. The work of [22] gave a GTHC
protocol based on FHE. We call this protocol the LZM3T protocol. The main
advantage of the LZM3T protocol is its low round complexity, which amounts
to the round complexity of the ALM protocol. However, if designing a GTHC
protocol by compiling an MPC protocol π which realizes the general computation
functionality from THB, then the round complexity of the resulting protocol will
be k times that of the ALM protocol where k is the round complexity of π.

The LZM3T protocol11 is constructed by modifying the aggregate phase of
the ALM protocol as follows. In the aggregate phase of the LZM3T protocol,
each party Pi appends the ciphertexts of its input xi and its ID idi to each
received ciphertext. In such a way, at the end of the aggregate phase, each party
Pi will receive T = 8n3κ pairs of ciphertexts {ct,b}t∈[T],b∈{0,1} (together with
the corresponding public key). Let mt,b be the decryption of ct,b, then for each
t ∈ [T], there exists it ∈ [n] such that (mt,0,mt,1) = (xit , idit). To compute a
given function f , Pi compute an encryption of f ◦parse on ({mt,b}t∈[T],b∈{0,1}),
where parse({mt,b}t∈[T],b∈{0,1}) = (x1, . . . , xn)

12, using the full homomorphism
of the underlying encryption. Finally, the parties execute the decrypt phase to
decrypt the resulting ciphertexts. The LZM3T has high communication cost
because each party sends a ciphertext vector of length O(t) at round t and the
total rounds is T = O(n3κ), which yields at least O((1 + 2 + · · · + T) · |E|) =
O(T 2n2) = O(n8κ2) ciphertexts communication during the aggregate phase. We
optimize the aggregate phase such that O(n6κ) ciphertexts are sufficient13.

Our idea is that in the aggregate phase, instead of appending an encryption
of the input (together with an encryption of the ID) to each received ciphertext
vector at each round, each party sends ciphertext vectors of length n at each
round and for the i-th entry of the ciphertext vectors, the parties act exactly as
in the optimized ALM protocol with Pi being the broadcaster and the input xi
of Pi being the broadcast value. This way, at the end of the aggregate phase,
the last party in each walk will get a ciphertext vector of length n where the
i-th entry is exactly an encryption of xi. In particular, the ciphertexts in the
same ciphertext vector are under the same public key, which allows the last
party in each walk to compute an encryption of the given function using the
full homomorphism of the underlying encryption. Finally, the decrypt phase is

11 The original protocol works in the fail-stop model where the adversary may instruct
any party to abort the execution at any time, but we consider the passive version of
this protocol.

12 The function parse may be derived as follows. For each i ∈ [n], define the piecewise
function hi such that hi(a, b) = a if b = idi and hi(a, b) = 0 if b ̸= idi. Then we set
yi = (

∑
t∈[T] hi(mt,0,mt,1))(

∑
t∈[T] m

−1
t,0hi(mt,0,mt,1))

−1 and parse = (y1, . . . , yn).
Assume (xi, idi) appears in the multiset {(mt,0,mt,1)}t∈[T] k times (the protocol
guarantees that k ≥ 1 with overwhelming probability), then yi = kxi · k−1 = xi.
Therefore, parse({mt,b}t∈[T],b∈{0,1}) equals (x1, . . . , xn) with overwhelming proba-
bility.

13 More precisely, we reduce the communication cost from O(n8κ2) ciphertexts and
O(n5κ) public keys to O(n6κ) ciphertexts and O(n5κ) public keys.

9

executed. It is obvious that our optimized aggregate phase only requires the
parties to send O(nT · |E|) = O(n6κ) ciphertexts.

2 Preliminaries

Full version of this paper. Due to space constraints, we defer details like
instantiation details, omitted proofs and functionalities, and some omitted pro-
tocols to the full version of this paper [24].

Notations. Let κ be the security parameter. For any positive integer m, [m]
denotes the set {1, · · · ,m}. We say a function ε(κ) is negligible, denoted ε(κ) =
neg(κ), if ε(κ) = κ−ω(1). We say a function η(κ) is overwhelming if 1 − η(κ) is
negligible.

For any set A, let |A| be the cardinality of A and U(A) the uniform distribu-
tion over A. For a distribution D, let x ← D denote the process of sampling x
from D. For any two distributions X,Y , denote SD(X,Y) the statistical distance
of X and Y . We say X and Y are identical, denoted X ≡ Y , if SD(X,Y) = 0. We
say X and Y are statistically indistinguishable, denoted X ≈s Y , if SD(X,Y)
is negligible. Finally, we say X and Y are computationally indistinguishable,
denoted X ≈c Y , if no efficient algorithm can distinguish them.

For any plaintext x and a public key pk, we denote JxKpk an encryption of
x under pk. If the public key is clear from the context, we will omit the public
key and use JxK to represent an encryption of x under some public key.

2.1 Security Model

For all of our protocols, there are n parties P1, . . . , Pn and the communication
graph is modelled as an undirected graph G = (V,E) where V = [n] and (i, j) ∈
E if and only if Pi and Pj can communicate with each other directly (we assume
(i, i) ̸∈ E for every i ∈ V). We do not distinguish (i, j) and (j, i) because G is
undirected. For any i ∈ V , the set Ni = {j|(i, j) ∈ E} represents the neighbors
of Pi.

Adversarial model. The adversary we consider in this work can statically
corrupt any number of parties and moreover, it is passive and computationally
bounded (PPT).

Communication model. The concept of THC is formalized by [25], which gave
the first (simulation-based) definition for topology hiding in the UC framework
[11]. In the work of [1], a stronger variant of this definition is considered. In this
work, we adopt this variant in our protocols.

In traditional UC model for MPC, the communication graph is assumed to be
complete, i.e. each party can communicate directly with other parties. However,
in the setting of THC, the communication graph is incomplete and private. To
capture this, an ideal functionality Fgraph is defined to describe what the parties
can do in the communication graph and a special party Pgraph is assumed to

10

hold the communication graph. Concretely, Fgraph consists of an initialization
phase and a communication phase. In the initialization phase, Fgraph receives the
communication graph G = (V,E) from Pgraph and samples a label for each edge
e ∈ E, and then send the labels of the edges in Ni to Pi for each i ∈ [n]14. We
note that in such a way, any two parties can tell whether they share an edge, but
can not tell whether they share a neighbor. The communication phase provides
secure communication between any party and its neighbors, which receives a
message and an edge label from some party and sends the message to the other
party holding this edge label. The formal description of Fgraph is shown in Fig. 1.

Functionality Fgraph

The functionality involves P1, . . . , Pn and a special party Pgraph who
takes an undirected graph G = (V,E) as input.

Initialization Phase.
1. Receive the graph G = (V,E) from the party Pgraph.
2. Choose a random injective function ψ : E → [n2] to label each edge

with a random element from [n2].
3. Send Li = {ψ(i, j) : j ∈ Ni} to Pi for each i ∈ [n].
Communication Phase.
1. Receive from a party Pi a triple (i, h,m) which indicates Pi wants to

send a message m to the neighbor on the edge labeled with h.
2. Find j such that h = ψ(i, j). Send (h,m) to Pj where h tells Pj that
m is sent by its neighbor on the edge labeled with h.

Fig. 1. The graph functionality Fgraph

Note that in the ideal world, the adversary has the information that Pgraph

sent the corrupted parties because the initialization phase is executed whenever
a functionality F is realized. To capture this, the functionality Fneigh containing
only the initialization phase of Fgraph is defined. For any functionality F , we
use Fneigh||F to represent composing F with Fneigh. Now we give the security
definition of THC in the UC model.

Definition 2. We say that a protocol topology-hidingly realizes a functionality
F if it UC-realizes Fneigh||F in the Fgraph-hybrid model.

14 In the definition of [25], Fgraph gives Ni to Pi, which gives any two parties the ability
to tell whether they share a neighbor.

11

2.2 Privately Key-Commutative and Rerandomizable Encryption

The concept of privately key-commutative and rerandomizable (PKCR) encryp-
tion is introduced by [3]. Concretely, a PKCR encryption is a semantically secure
PKE scheme (Keygen, Enc, Dec) with several additional properties. Denote M
the plaintext space, C the ciphertext space, PK the public key space which forms
an abelian group under the operation � and SK the secret key space. PKCR
encryption requires the following properties.

– Public-key rerandomizable: For any k ∈ PK, it holds that

{k � pk|(pk, sk)← Keygen(1κ)} ≈s {pk|(pk, sk)← Keygen(1κ)}.

– Ciphertext rerandomizable: There exists an efficient algorithm Rand : C ×
PK → C such that for any key pair (pk, sk) and any ciphertext c = JxKpk, it
holds that

(x, pk, c, Rand(c, pk)) ≈s (x, pk, c, Enc(x, pk))

and
Dec(Rand(c, pk), sk) = x.

– Privately key-commutative: There exist two efficient algorithms AddLayer :
C ×PK×SK → C and DelLayer : C ×PK×SK → C such that for any two
key pairs (pk1, sk1), (pk2, sk2) and any ciphertext c = JxKpk1

, it holds that

AddLayer(c, pk1, sk2) ≈s Enc(x, pk1 � pk2)

and
DelLayer(c, pk1, sk2) ≈s Enc(x, pk1 � pk−12).

For the special case that (pk, sk) is a pair of keys, we let DelLayer(c, pk, sk)
output Dec(c, sk) instead of Enc(x, 1).

In this work, some of our protocols require the PKCR to be homomorphic,
hence we introduce the following additional properties for PKCR.

Equipping PKCR with homomorphism. Our THS protocol requires a PKCR
with two additional properties.

– Plaintext space forms a ring: The plaintext space M is a ring Mr with
the operations + (addition) and · (multiplication).

– Additively homomorphic: There exists an efficient algorithm Add :Mr×C×
PK → C such that for any plaintext y ∈ Mr and any ciphertext c = JxKpk,
it holds that

Add(y, c, pk) ≈s Enc(x+ y, pk).

We call PKCR encryption with the above two properties additively homomorphic
PKCR (ahPKCR) encryption.

Our GTHC protocol (for cycles) requires a stronger variant of ahPKCR,
and we call this variant linearly homomorphic PKCR (lhPKCR) encryption.
Concretely, lhPKCR requires a linear homomorphism described as follows.

12

– Linearly homomorphic: There exists an efficient algorithm Linear :Mr ×
C2 × PK → C such that for any plaintext a ∈ Mr and any two ciphertexts
c1 = JxKpk, c2 = JyKpk, it holds that

Linear(a, c1, c2, pk) ≈s Enc(ax+ y, pk).

Remark. The work of [3] has proved that the standard ElGamal scheme is a
PKCR encryption. In the full version, we prove that both schemes from [10] and
[12] are lhPKCR encryption. In this work, we also instantiate ahPKCR with one
of these two schemes (lhPKCR encryption is also ahPKCR encryption).

3 Topology-Hiding Broadcast for Undirected Cycles

The AM protocol [3] is designed for broadcasting a bit, which we abbreviate
by bit-THB. We seek to design a THB protocol which directly broadcasts a
bitstring instead of a bit, we abbreviate this by string-THB. Notice that string-
THB protocol can be simply constructed by just calling the AM protocol bit-
by-bit. However, we seek to derive more efficient constructions than this naive
way.

In this section, our main result is an optimization for the AM protocol, which
will reduce its communication complexity by a factor of O(κ) in the amortized
sense. Throughout this section, we use the following public parameters.

– (Keygen, Enc, Dec, Rand, AddLayer, DelLayer) is a PKCR encryption scheme.
– M is the plaintext space and α ∈M is a dummy value known by all parties

(e.g., α is the identity element if M is a group).

We aim to design a topology-hiding protocol to realize the broadcast func-
tionality Fbc which receives a private input x ∈ M from one party and sends x
to all parties. The formal description of Fbc can be seen in the full version.

3.1 The Protocol

Similar to the AM protocol, our protocol πbc consists of an aggregate phase and
a decrypt phase. In our protocol, each party names its two neighbors 0 and 1. At
the beginning of the aggregate phase, for each party Pi and each of its neighbor
b, Pi samples a fresh public key and encrypts α with this key, and sends the
resulting ciphertext (together with the public key) to its neighbor b. At each
following round, for each i ∈ [n] and b ∈ {0, 1}, upon receiving a ciphertext
(together with a public key k) from the neighbor b at the previous round, Pi

samples a fresh public key pk and then encrypts the broadcast value with the
key k�pk if it is the broadcaster and adds the public key layer pk to the received
ciphertext otherwise. Let c be the resulting ciphertext, then Pi sends c and k�pk
to its neighbor b̄ = 1− b. After n−1 rounds, the parties execute a decrypt phase
to decrypt the final ciphertexts (the decrypt phase is the same as in the AM
protocol). Finally, the broadcaster outputs the broadcast value x and each other
party outputs one of the decrypted values.

13

Protocol πbc

Input: The broadcaster takes x as input. α is a dummy value known by all
parties.
Output: All parties get x as output.

For each i ∈ [n], Pi does the following.
1: Sample (pk

(t)
i→b, sk

(t)
i→b)← Keygen(1κ) for each t ∈ [n− 1], b ∈ {0, 1}.

2: % Aggregate Phase
3: Compute c

(1)
i→b ← Enc(α, pk

(1)
i→b) and set k

(1)
i→b = pk

(1)
i→b for each b ∈ {0, 1}.

4: Send c
(1)
i→b and k

(1)
i→b to neighbor b for each b ∈ {0, 1}.

5: for t = 1 to n− 2 do
6: For each b ∈ {0, 1}, let c

(t)
i←b and k

(t)
i←b be the ciphertext and public key received

from neighbor b at the previous round.
7: Compute k

(t+1)
i→b = k

(t)

i←b̄
� pk

(t+1)
i→b for each b ∈ {0, 1}.

8: if Pi is the broadcaster then
9: Compute c

(t+1)
i→b ← Enc(x, k

(t+1)
i→b) for each b ∈ {0, 1}.

10: else
11: Compute c

(t+1)
i→b ← AddLayer(c

(t)

i←b̄
, k

(t)

i←b̄
, sk

(t+1)
i→b) for each b ∈ {0, 1}.

12: end if
13: Send c

(t+1)
i→b , k

(t+1)
i→b to neighbor b for each b ∈ {0, 1}.

14: end for
15: For each b ∈ {0, 1}, let c

(n−1)
i←b and k

(n−1)
i←b be the ciphertext and public key received

from neighbor b at the previous round.
16: if Pi is the broadcaster then
17: Compute e

(n−1)
i→b ← Enc(x, k

(n−1)
i←b) for each b ∈ {0, 1}.

18: else
19: Compute e

(n−1)
i→b ← Rand(c

(n−1)
i←b , k

(n−1)
i←b) for each b ∈ {0, 1}.

20: end if
21: % Decrypt Phase
22: for t = n− 1 to 1 do
23: Send e

(t)
i→b to neighbor b for each b ∈ {0, 1}.

24: for b = 0 to 1 do
25: Let e

(t)
i←b be the ciphertext received from neighbor b at the previous round.

26: Compute e
(t−1)

i→b̄
← DelLayer(e

(t)
i←b, k

(t)
i→b, sk

(t)
i→b).

27: end for
28: end for
29: if Pi is the broadcaster then
30: return x.
31: else
32: return e

(0)
i→0.

33: end if

Remark. In the full version of this paper, we discuss a naive idea to halve the
round complexity of πbc, which evidences that hiding the topology is a non-trivial
cryptographic task.

3.2 Complexity Analysis
Claim 3. If the underlying PKCR encryption scheme is instantiated with the
ElGamal scheme [16], then the communication cost of πbc is O(n2κ) bits while
the broadcast value is of length O(κ) bits.

Proof. In the protocol πbc, each party sends each of its two neighbors a single
ciphertext and a public key at each round of the aggregate phase and a single

14

ciphertext at each round of the decrypt phase. Let l1 be the plaintext length
of the underlying encryption scheme, l2 the ciphertext length and l3 the public
key length. Because both the aggregate phase and the decrypt phase takes n−
1 rounds, the communication complexity of πbc is 2n(n − 1)(2l2 + l3) bits. If
instantiating the underlying PKCR encryption scheme with the ElGamal scheme
[16] and setting l1 = O(κ), then we have l2 = 2l1 = O(κ), l3 = l1 = O(κ).
Namely, the communication cost of πbc is O(n2κ) bits. ⊓⊔

3.3 Security Proof

The following theorem states the security of the protocol πbc, and we defer the
formal proof to the full version.

Theorem 4. If the underlying PKCR encryption scheme is semantically se-
cure, then πbc topology-hidingly realizes the functionality Fbc with passive secu-
rity against any static adversary corrupting any number of parties.

4 Topology-Hiding Sum for Undirected Cycles

In this section, we consider the sum functionality. As we have said, previous to
this work, the only topology-hiding protocol realizing the sum functionality is
constructed by using the AM protocol to simulate the pairwise channels in an
MPC protocol realizing the sum functionality, which yields the state-of-the-art
asymptotic communication complexity O(n3κ2) bits. Our optimization for the
AM protocol can reduce this communication cost to O(n3κ) bits. We give a new
THS protocol which further reduces the communication cost to O(n2κ) bits.

Our starting point is to design THS without compiling black-box from THB,
for which we need a PKCR encryption scheme with an additive homomorphism,
i.e., an ahPKCR encryption scheme introduced in Sect. 2.2 (see the full version
for more details about the instantiations of ahPKCR). Throughout this section,
we use the following parameters.

– (Keygen, Enc, Dec, Rand, AddLayer, DelLayer, Add) is an ahPKCR encryption
scheme.

– Mr is the plaintext space, which is a ring15.

We aim to design a topology-hiding protocol to realize the sum functionality
Fsum which receives a private input xi ∈Mr from Pi for each i ∈ [n] and returns
the sum

∑
i∈[n] xi to all parties. The formal description of Fsum can be seen in

the full version.

15 Mr is ZN for an RSA modulus N if using the scheme from [10] or Zp for a large
prime p if using the scheme from [12].

15

4.1 The Protocol
Our protocol πsum consists of an aggregate phase and a decrypt phase. In our
protocol, each party names its two neighbors 0 and 1. At the beginning of the
aggregate phase, for each party Pi and each of its neighbor b, Pi samples a
fresh public key and encrypts its input xi with this key, and sends the resulting
ciphertext (together with the public key) to its neighbor b. At each following
round, for each i ∈ [n] and b ∈ {0, 1}, upon receiving a ciphertext (together with
a public key k) from its neighbor b at the previous round, Pi homomorphically
adds its input to the received ciphertext using the additive homomorphism of
ahPKCR. Let c be the resulting ciphertext, then Pi adds a fresh public key layer
pk to c and sends the resulting (layered) ciphertext and k � pk to its neighbor
b̄ = 1− b. After n− 1 rounds, the parties execute the decrypt phase to decrypt
the final ciphertexts. Finally, each party outputs one of the decrypted values.

Protocol πsum

Input: Each party Pi takes xi ∈ Mr as input.
Output: All parties get x =

∑
i∈[n] xi.

For each i ∈ [n], Pi does the following.
1: Sample (pk

(t)
i→b, sk

(t)
i→b)← Keygen(1κ) for each t ∈ [n− 1], b ∈ {0, 1}.

2: % Aggregate Phase
3: Compute c

(1)
i→b ← Enc(xi, pk

(1)
i→b) and set k

(1)
i→b = pk

(1)
i→b for each b ∈ {0, 1}.

4: Send c
(1)
i→b and k

(1)
i→b to neighbor b for each b ∈ {0, 1}.

5: for t = 1 to n− 2 do
6: For each b ∈ {0, 1}, let c

(t)
i←b and k

(t)
i←b be the ciphertext and public key received

from neighbor b at the previous round.
7: Compute k

(t+1)
i→b = k

(t)

i←b̄
� pk

(t+1)
i→b for each b ∈ {0, 1}.

8: Compute cb ← AddLayer(c
(t)

i←b̄
, k

(t)

i←b̄
, sk

(t+1)
i→b) for each b ∈ {0, 1}.

9: Compute c
(t+1)
i→b ← Add(xi, cb, k

(t+1)
i→b) for each b ∈ {0, 1}.

10: Send c
(t+1)
i→b , k

(t+1)
i→b to neighbor b for each b ∈ {0, 1}.

11: end for
12: For each b ∈ {0, 1}, let c

(n−1)
i←b and k

(n−1)
i←b be the ciphertext and public key received

from neighbor b at the previous round.
13: Compute e

(n−1)
i→b ← Add(xi, c

(n−1)
i←b , k

(n−1)
i←b) for each b ∈ {0, 1}.

14: % Decrypt Phase
15: for t = n− 1 to 1 do
16: Send e

(t)
i→b to neighbor b for each b ∈ {0, 1}.

17: for b = 0 to 1 do
18: Let e

(t)
i←b be the ciphertext received from neighbor b at the previous round.

19: Compute e
(t−1)

i→b̄
← DelLayer(e

(t)
i←b, k

(t)
i→b, sk

(t)
i→b).

20: end for
21: end for
22: return e

(0)
i→0.

4.2 Complexity Analysis
Claim 5. If the underlying ahPKCR encryption scheme is instantiated with the
scheme from [10] or [12], then the communication cost of πsum is O(n2κ) bits
while each input is of length O(κ) bits.

16

Proof. In the protocol πsum, each party sends each of its two neighbors a single
ciphertext and a public key at each round of the aggregate phase and a single
ciphertext at each round of the decrypt phase. Let l1 be the plaintext length
of the underlying encryption scheme, l2 the ciphertext length and l3 the public
key length. Because both the aggregate phase and the decrypt phase takes n−1
rounds, the communication complexity of πsum is 2n(n− 1)(2l2 + l3) bits. If the
underlying ahPKCR encryption scheme is instantiated with the scheme from
[10] or [12], then we can set l1 = O(κ), l2 = O(κ) and l3 = O(κ). Namely, the
communication cost of πsum is O(n2κ) bits while each input is of length O(κ)
bits. ⊓⊔

4.3 Security Proof

Theorem 6. If the underlying ahPKCR encryption scheme is semantically se-
cure, then πsum topology-hidingly realizes the functionality Fsum with passive
security against any static adversary corrupting any number of parties.

We defer the proof to the full version.

5 General Topology-Hiding Computation for Undirected
Cycles

In this section, we consider the general computation functionality which can
compute any arithmetic circuit16 consisting of addition and multiplication gates.
As we have said, previous to this work, the only topology-hiding protocol real-
izing the general computation functionality is constructed by simulating the
pairwise channels in an MPC protocol realizing the general computation func-
tionality, which yields the state-of-the-art asymptotic communication complexity
O((m+ c)n3κ2) bits where m and c are the number of inputs and multiplication
gates in the circuit, respectively. Our optimization for the AM protocol can re-
duce the communication cost to O((m + c)n3κ) bits. We present a new GTHC
protocol which further reduces the communication cost to O((m + c)n2κ) bits.
Our GTHC protocol is designed in the popular MPC framework based on addi-
tive secret sharing. There are three phases in this framework: the input sharing
phase, the circuit evaluation phase and the output recovery phase.

In the input sharing phase, the parties generate additive sharings for the
inputs. In the circuit evaluation phase, the parties evaluate the circuit gate-by-
gate. Throughout this phase, the parties maintain the invariant that for every
gate, the parties hold additive sharings of the values on the two input wires and
get an additive sharing of the value on the output wire. Finally, in the output
recovery phase, the parties recover the value on the output wire of the final gate.

We show how to use our THS protocol to deal with the input sharing and
output recovery phases in Sect. 5.2. For the circuit evaluation phase, we know
16 In this work, we consider circuits over a ring of size 2O(κ).

17

that addition gates can be done locally, so the only left problem is how to
topology-hidingly (and efficiently) compute the multiplication gates. In Sect. 5.1,
we give an efficient topology-hiding protocol to securely compute the multipli-
cation gates.

Throughout this section, we need a lhPKCR encryption scheme introduced
in Sect. 2.2 (see the full version for more details about the instantiations of
lhPKCR) and use the following notations.

– (Keygen, Enc, Dec, Rand, AddLayer, DelLayer, Linear) is a lhPKCR encryp-
tion scheme.

– Mr is the plaintext space of the lhPKCR scheme.
– For any plaintext y ∈ Mr and any ciphertext c = JxKpk, we define the

function Add(y, c, pk) which outputs Linear(1, c, JyKpk, pk).
Additive secret sharing. An additive sharing of a secret value x is a vector
⟨x⟩ = (x1, . . . , xn) where each party Pi holds a share xi satisfying that any n−1
shares leak nothing about x. Additive secret sharing is linearly homomorphic,
which means that for any public value c and any two additive sharings ⟨x⟩ =
(x1, . . . , xn), ⟨y⟩ = (y1, . . . , yn), we have

⟨x⟩+ ⟨y⟩ = ⟨x+ y⟩, c⟨x⟩ = ⟨cx⟩, c+ ⟨x⟩ = ⟨c+ x⟩

where c+ ⟨x⟩ = (c+ x1, x2, . . . , xn).

5.1 Computing Multiplication Gates

In this section, we give a topology-hiding protocol to securely compute the mul-
tiplication gates. Concretely, we realize the functionality Fmult which receives
additive sharings of x and y from the parties and sends an additive sharing of
xy to the parties. We defer the formal description of Fmult to the full version.

Our starting point is that an additive sharing of xy can be computed as
follows.

1. The parties generate an additive sharing ⟨r⟩ for a random value r where the
share of Pi is ri.

2. The parties execute a protocol to let all parties securely get the value xy−r.
3. The parties locally compute ⟨xy⟩ = xy − r + ⟨r⟩.

It is easy to see that the above construction generates an additive sharing of
xy. Notice that the generation of ⟨r⟩ can be done locally by letting each party
sample a random value ri and setting r =

∑
i∈[n] ri. The left problem is how to

securely publish the value xy − r. To solve this, we define and realize the mask
functionality Fmask which receives private inputs xi, yi, ri ∈ Mr from Pi for
each i ∈ [n] and returns the value

∑
i∈[n] xi

∑
i∈[n] yi −

∑
i∈[n] ri to all parties.

The formal description of Fmask can be found in the full version.

18

5.1.1 The Protocol

Now we give a topology-hiding protocol πmask which realizes the functionality
Fmask. This protocol consists of an aggregate phase and a decrypt phase. The
aggregate phase can be viewed as two subphases and each takes n − 1 rounds.
In the first subphase, the parties act exactly as in the aggregate phase of our
THS protocol: each party homomorphically adds its share of x to each received
ciphertext using the homomorphism of lhPKCR. At the end of the first subphase,
every party will get JxK, an encryption of x, from each walk. Then the parties can
execute the second subphase to compute encryptions of xy−r, which is based on
two observations. The first observation is that xy − r =

∑
i∈[n](yix− ri), which

means that Jxy − rK can be computed from Jy1x − r1K, . . . , Jynx − rnK (under
the same key) using the homomorphism of lhPKCR. The second observation is
that every party Pi can compute Jyix − riK from JxK using the homomorphism
of lhPKCR.

We note that throughout the aggregate phase, each party adds a fresh public
key layer to each received ciphertext at each round, which implies that each final
ciphertext includes 2n− 2 public key layers (because the aggregate phase takes
2n − 2 rounds). Therefore, the parties execute the decrypt phase, which takes
2n− 2 rounds, to decrypt the final ciphertexts. Due to lack of space, the formal
description of πmask is deferred to the full version.

Now we can present our protocol πmult which realizes the functionality Fmult

in the Fmask-hybrid model.

Protocol πmult

Input: The parties hold additive sharings ⟨x⟩, ⟨y⟩.
Output: The parties output ⟨xy⟩.

1. Each party Pi samples a random value ri ← U(Mr).
2. The parties invoke the functionality Fmask where each party Pi takes
xi, yi and ri as inputs. Let z be the output.

3. P1 outputs z + r1 and each other party Pi outputs ri.

5.1.2 Complexity Analysis

Claim 7. If the underlying lhPKCR encryption scheme is instantiated with the
scheme from [10] or [12] and the functionality Fmask is realized by the protocol
πmask, then the communication cost of πmult is O(n2κ) bits while each input is
of length O(κ) bits.

Proof. It is obvious that the communication complexity of πmult is the same as
that of πmask. In the protocol πmask, the aggregate phase takes 2n−2 rounds, and
where each party sends each of its two neighbors a ciphertext and a public key at
each round of the first n−1 rounds and two ciphertexts and a public key at each

19

round of the last n−1 rounds. The decrypt phase takes 2n−2 rounds, and where
each party sends each of its two neighbors a single ciphertext at each round. Let
l1 be the plaintext length of the underlying encryption scheme, l2 the ciphertext
length and l3 the public key length, then the communication complexity is 2n(n−
1)(5l2 + 2l3) bits. If instantiating the underlying lhPKCR encryption with the
scheme from [10] or [12], we can set l1 = O(κ), l2 = O(κ), l3 = O(κ). Namely,
the protocol πmult has communication complexity O(n2κ) bits while each input
is of length O(κ) bits. ⊓⊔

5.1.3 Security Proof

In this section, we first show that πmult securely realizes the functionality Fmult

in the Fmask-hybrid model and then we show that πmask securely realizes the
functionality Fmask.

Theorem 8. Protocol πmult topology-hidingly realizes the functionality Fmult

in the Fmask-hybrid model with passive security against any static adversary
corrupting any number of parties.

Proof. Correctness. The correctness of πmult is guaranteed by the functionality
Fmask. Let r =

∑
i∈[n] ri. The functionality Fmask guarantees that z = xy − r.

At the end of πmult, P1 outputs z1 = z + r1 and each other party Pi outputs
zi = ri. It holds that∑

i∈[n]

zi = z + r1 + (r2 + · · ·+ rn) = xy − r + r = xy.

Moreover, all ris are random values, hence {zi}i∈[n] is an additive sharing of xy.
Security. The security is obvious because the parties do not communicate with
each other outside the invoking of Fmask. ⊓⊔

Theorem 9. If the underlying lhPKCR encryption scheme is semantically se-
cure, then πmask topology-hidingly realizes the functionality Fmask with passive
security against any static adversary corrupting any number of parties.

Due to lack of space, we defer the proof to the full version.

5.2 General Topology-Hiding Computation

In this section, we present our GTHC protocol πmpc, which consists of three
phases: the input sharing phase, the circuit evaluation phase and the output
recovery phase.
Input sharing. The goal of input sharing is to generate additive sharings for
the inputs. A subtle point is that we require that for any sharing ⟨x⟩ (assume
x is the input of Pi), the adversary cannot know anything about the share of
some party Pj if Pi and Pj are honest17. Now we consider a naive way with low
17 If Pi is corrupt, we allow the adversary to know all the shares.

20

communication cost to share an input x: the input holder Pi shares x among its
closed neighborhood (including itself and its two neighbors) and each other party
shares 0 among its closed neighborhood, and then each party takes the sum of
the share it kept and the shares received from each of their neighbors as its final
share. In this process, for any party Pj who is not in the closed neighborhood of
the input holder Pi (i.e., Pj is neither Pi nor a neighbor of Pi), if the adversary
corrupts the two neighbors of Pj , then the adversary knows the share of Pj

18.
A simple way to share an input x is that the holder of x samples an additive

sharing of x and then sends the shares to the parties by using THB to simulate
the point-to-point communication, which yields O(mn3κ) bits communication
because there are O(mn) shares (n−1 shares should be sent for each input) and
sending a share (of length κ bits) costs O(n2κ) bits communication. We adopt
a more efficient way to share an input. Assume Pi wants to additively share its
input x, then if we let each party Pj sample a share xj , then the share of Pi

is xi = x −
∑

j ̸=i xj . Our goal is to let Pi get the value xi while other parties
know nothing about xi. To do this, we let Pi sample a random value r and
the parties execute the protocol πsum where Pi takes x + r as input and each
other party Pj takes −xj as input. At the end of the protocol, the parties will
get y = x + r −

∑
j ̸=i xj = xi + r. It is obvious that the parties know nothing

about xi because r is uniformly random. On the other hand, Pi can compute
xi = y−r. Moreover, the communication cost equals exactly the communication
cost of πsum, i.e., O(n2κ) bits. Therefore, the communication cost of sharing m
inputs will be O(mn2κ) bits.

Circuit evaluation. Let f : Mm
r → Mr be the circuit to be computed and

s1, . . . , sm are the inputs. The parties compute the circuit in a precomputed
topological order. After the input sharing phase, the parties have gotten the
additive sharings of the inputs. For each gate g with inputs x and y, the parties
have additive sharings ⟨x⟩ and ⟨y⟩. If g is an addition gate, the parties locally
compute ⟨x+y⟩ = ⟨x⟩+ ⟨y⟩. If g is a multiplication gate, the parties execute the
protocol πmult and our protocol guarantees that the outputs of the parties form
an additive sharing of ⟨xy⟩. At the end of the computation, the parties output
⟨f(s1, . . . , sm)⟩, an additive sharing of f(s1, . . . , sm). Because the communication
cost of computing a multiplication gate is O(n2κ) bits, the total communication
cost of this phase is O(cn2κ) bits where c is the number of the multiplication
gates.

Output recovery. Let fi be the final share of Pi. Our protocol guarantees that
f(s1, . . . , sm) =

∑
i∈[n] fi. If all parties want to get the value f(s1, . . . , sm), then

a simple but inefficient way is that each party Pi uses our THB protocol to
broadcast fi, which will yield O(n3κ) bits communication. A more efficient way

18 The share of Pj is of the form xj = a+ b+ c where a, b are two shares received from
its two (corrupted) neighbors (hence the adversary knows a, b) and c is the share it
kept. Note that Pj share 0 among its closed neighborhood, which means that the
sum of the two shares it sent its two neighbors is −c, and hence the adversary knows
the value of c. Finally, the adversary can get the share of Pj by computing a+ b+ c.

21

is that the parties execute our sum protocol πsum where each party Pi takes fi
as input and the communication cost of this way is O(n2κ) bits.

If we only want one party Pj to get the output, then it can be realized by
letting Pj add a random value r to its input and then subtract r from its output
after the execution of the protocol πsum.

The formal description of our GTHC protocol πmpc is in the following.

Protocol πmpc

Public parameters: f : Mm
r → Mr is a poly-size circuit over Mr.

Input: The parties hold inputs s1, . . . , sm.
Output: The parties output f(s1, . . . , sm).

Input sharing. For each input si, the parties do the followings.
1. Let Pj be the input holder of si. To share si, Pj samples a random value

r ∈ Mr and each other party Pk samples a random value si,k ∈ Mr.
2. The parties execute πsum where Pj takes si+r as input and each other party

Pk takes −si,k as input. Let y be the output.
3. Pj computes si,j = y − r. The sharing of si is ⟨si⟩ = (si,1, . . . , si,n).
Circuit evaluation. For each gate g, the parties do the followings.
1. Let ⟨a⟩ = (a1, . . . , an), ⟨b⟩ = (b1, . . . , bn) be the two sharings on the input

wires of g.
2. If g is an addition gate, the parties locally compute ⟨a+ b⟩ = ⟨a⟩+ ⟨b⟩.
3. If g is a multiplication gate, the parties execute the protocol πmult where

each party Pi takes ai, bi as inputs. Let ci be the output of Pi. The result is
⟨ab⟩ = (c1, . . . , cn), an additive sharing of ab.

Output recovery. The parties do the followings.
1. Let ⟨f(s1, . . . , sm)⟩ = (f1, . . . , fn) be the final sharing.
2. If all parties wants to get the value f(s1, . . . , sm), the parties execute πsum

where each party Pi takes fi as input.
3. If only one party Pj wants to get the output, then Pj samples a random value

r ∈ Mr. The parties execute πsum where Pj takes fj + r as input and each
other party Pi takes fi as input. Let y be the output. Pj outputs f = y− r.

Complexity analysis. We state the comunication cost of πmpc by the following
claim.

Claim 10. The communication complexity of πmpc is O((m+ c)n2κ) bits.

Proof. Note that the communcation costs of the input sharing, circuit evaluation
and output recovery phases are O(mn2κ), O(cn2κ) and O(n2κ) bits, respectively.
Therefore, the total communcation cost of πmpc is O((m+ c)n2κ) bits. ⊓⊔

Security proof. The security of πmpc is guaranteed by the security of πsum and
πmult and we omit the details.

22

6 Topology-Hiding Computation on General Graphs

In this section, we give optimizations for two existing topology-hiding protocols
on general graphs. Both of these two protocols rely on the random walk approach
[1]. This approach relies on the following lemma [1], which states that in an
undirected connected graph G, the probability that a random walk of length
8|V |3τ covers G is at least 1− 2−τ .

Lemma 11 ([1]). Let G = (V,E) be an undirected connected graph. Further-
more, let W(u, τ) be a random variable whose value is the set of vertices covered
by a random walk starting from u and taking 8|V |3τ steps. It holds that

PrW [W(u, τ) = V] ≥ 1− 2−τ .

6.1 Topology-Hiding Broadcast for General Graphs

As we have said, our optimization for the AM protocol also applies to the ALM
protocol [1]. We know the ALM protocol is the state-of-the-art THB protocol for
general graphs. Our optimization reduces the communication cost of the ALM
protocol by a factor of O(κ) in the amortized sense. If the broadcast value is
of length O(κ) bits, then the communication cost of the ALM protocol will be
O(n5κ3) bits. With our optimization, the communication cost can be reduced to
O(n5κ2) bits. Throughout this section, we use the following public parameters.

– (Keygen, Enc, Dec, Rand, AddLayer, DelLayer) is a PKCR encryption scheme.
– M is the plaintext space and α ∈M is a dummy value known by all parties

(e.g., α is the identity element if M is a group).

The protocol. Our protocol πggbc consists of an aggregate phase and a decrypt
phase. At the beginning of the aggregate phase, for each party Pi and each of
its neighbor d, Pi samples a fresh public key and encrypts α under this key, and
then sends the resulting ciphertext (together with the public key) to neighbor
d. At each following round, for each i ∈ [n] and each of its neighbor d, Pi, upon
receiving a ciphertext c (together with a public key k) from its neighbor d at the
previous round, samples a fresh public key pk and encrypts the broadcast value
with the key k � pk if it is the broadcaster and adds the public key layer pk to
the received ciphertext c otherwise, and then sends the resulting ciphertext to
its neighbor σ(d) (σ is a fresh random permutation of the set of the neighbors
of Pi). After T = 8n3κ rounds, the parties execute a decrypt phase as in the
ALM protocol to decrypt the final ciphertexts. Finally, the broadcaster outputs
the broadcast value x and each other party outputs one of the decrypted values.
Due to lack of space, we defer the formal description of πggbc to the full version.

Complexity analysis. The following lemma states the communication cost of
our protocol πggbc.
Claim 12. If the underlying PKCR encryption scheme is instantiated with the
ElGamal scheme, then the communication cost of πggbc is O(n5κ2) bits while the
broadcast value is of length O(κ) bits.

23

Proof. In the protocol πggbc, each party sends each of its neighbors a single
ciphertext and a public key at each round of the aggregate phase and a single
ciphertext at each round of the decrypt phase. Let l1 be the plaintext length of
the underlying encryption scheme, l2 the ciphertext length and l3 the public key
length. Because both the aggregate phase and the decrypt phase takes T = 8n3κ
rounds, the communication cost of πggbc is T · 2|E| · (l2 + l3) + T · 2|E| · l2 =
O(n5κ · (l2 + l3)) bits. If instantiating the underlying PKCR encryption scheme
with the ElGamal scheme and setting l1 = O(κ), then we have l2 = 2l1 =
O(κ), l3 = l1 = O(κ). Namely, the communication cost of πggbc is O(n5κ2) bits
while the broadcast value is of length O(κ) bits. ⊓⊔

Security proof. We state the security of πggbc by the following theorem and
defer the proof to the full version.

Theorem 13. If the underlying PKCR encryption scheme is semantically se-
cure, then πggbc topology-hidingly realizes the functionality Fbc with passive se-
curity against any static adversary corrupting any number of parties.

6.2 General Topology-Hiding Computation for General Graphs

In [22], a GTHC protocol (we call it the LZM3T protocol) based on FHE is
presented. The main advantage of the LZM3T protocol is its low round com-
plexity, which amounts to the round complexity of the ALM protocol. However,
if designing a GTHC protocol by compiling an MPC protocol π, which realizes
the general computation functionality, from THB, then the round complexity of
the resulting protocol will be k times that of the ALM protocol where k is the
round complexity of π.

We first recall the LZM3T protocol, which consists of an aggregate phase
and a decrypt phase. At each round of the aggregate phase, each party appends
encryptions of its input and ID to each of the received ciphertext vectors (hence
each ciphertext vector in round t is of length O(t)) and sends each neighbor
one of the resulting ciphertext vector (together with the corresponding public
key). At the end of the aggregate phase, each party receives ciphertext vectors
containing encryptions of the inputs and then computes encryptions of the given
function f . Finally, the party execute the decrypt phase, where each party sends
each of its neighbors a single ciphertext, to decrypt the ciphertexts. We remark
that the original LZM3T protocol is designed in the fail-stop model where the
adversary may abort the protocol, but we consider its passive version in this
work.

To clarify the communication cost of the LZM3T protocol, we note that the
underlying encryption scheme of the LZM3T protocol is a so-called deeply fully-
homomorphic public-key encryption (DFH-PKE) scheme (which can be viewed
as an analogue of PKCR but offers full homomorphism). In the LZM3T protocol,
DFH-PKE is instantiated with an FHE scheme and the public keys in different
rounds of the LZM3T protocol are of different forms. Concretely, let C and PK
be the ciphertext space and public key space of the FHE scheme, respectively,

24

then during the aggregate phase of the LZM3T protocol, the public keys sent
at the first round are in PK and the public keys sent at each following round
are in PK × C (the ciphertext space of DFH-PKE is always C)19. Therefore,
the communication cost of the LZM3T protocol is O(|E|+

∑T
t=2(O(t)+ 1)|E|+

T |E|) = O(T 2|E|) = O(n8κ2) FHE ciphertexts and T |E| = O(n5κ) FHE public
keys.

In this section, we give an optimization for the LZM3T protocol such that
the communication cost is reduced to O(n6κ) FHE ciphertexts and O(n5κ) FHE
public keys. The goal of the aggregate phase of the LZM3T protocol is to collect
encryptions of all the inputs. We give an optimized aggregate phase to achieve
this goal. Concretely, instead of appending an encryption of the input (together
with the ID) to each received ciphertext vector at each round, each party send
ciphertext vectors of length n at each round and for the i-th entry of the ci-
phertext vectors, the parties act exactly as in our optimized THB protocol πggbc
with Pi being the broadcaster and the input xi of Pi being the broadcast value.

Complexity analysis. Each party sends each of its neighbors n ciphertexts and
a public key at each round of the aggregate phase, and a single ciphertext at each
round of the decrypt phase. Recall that the public keys sent at the first round
belong to PK and the public keys sent at each following round belong to PK×C.
Therefore, the total communication cost is n|E| + (T − 1)(n + 1)|E| + T |E| =
O(nT |E|) = O(n6κ) FHE ciphertexts and T |E| = O(n5κ) FHE public keys.

Security proof. The correctness of πggbc guarantees that the probability p0
that the i-th entry of a final ciphertext vector at the end of the aggregate phase
is an encryption of xi is overwhelming. Hence, the probability p that for each
i ∈ [n], the i-th entry of a final ciphertext vector is an encryption of xi satisfies
that

p = pn0 = (1− neg(κ))n ≥ 1− n · neg(κ),

which is overwhelming because n = poly(κ). Furthermore, the full homomor-
phism of the underlying DFH-PKE scheme guarantees each ciphertext at the
beginning of the decrypt phase is an encryption of f(x1, . . . , xn) with over-
whelming probability. Therefore, at the end of the decrypt phase, each party
get the value f(x1, . . . , xn) with overwhelming probability.

As for the security, the simulator just sends encryptions of 0 during the
aggregate phase and encryptions of f(x1, . . . , xn) during the decrypt phase (the
public keys are simulated with fresh public keys). The semantic security of the
underlying DFH-PKE scheme guarantees that the ciphertexts and public keys
in the real world are indistinguishable from the simulated ciphertexts and public
keys, respectively.

We omit the details of the security proof because the proof will be much like
the proof of Theorem 13 (DFH-PKE provides the required properties for the
security proof similar to PKCR).

19 We refer to [22, Appendix C] for more details about DFH-PKE and its instantiation.

25

Remark. Another advantage of our optimized protocol is that we only require
the underlying scheme to homomorphically compute the given function, which
means that if the given function contains only linear gates (addition, addition-by-
constant and multiply-by-constant gates), then we only require the underlying
scheme has linear homomorphism, i.e. a lhPKCR scheme is sufficient. However,
the LZM3T protocol requires the underlying scheme to homomorphically com-
pute a much more complicated function than the given function (as we explained
in Sect. 1.2), which makes it impossible to just use a lhPKCR scheme even the
given function contains only linear gates.

7 Optimizations

In this section, we give several optimizations to obtain better concrete efficiency.

Improving the concrete efficiency using multi-ElGamal. All of our pro-
tocols use ElGamal-like schemes as the underlying PKCR schemes (the cipher-
texts are of form (gr, xhr) or (gr, fxhr)). We can extend the plaintext space of
ElGamal-like schemes as follows to obtain better concrete efficiency. Concretely,
to encrypt l messages x1, . . . , xl, one samples l key pairs (sk1, pk1), . . . , (skl, pkl)
and random value r, and then compute the ciphertext as (gr, x1pk

r
1, . . . , xlpk

r
l)

or (gr, fx1pkr1, . . . , f
xlpkrl). The ciphertext length of l messages is l + 1 group

elements. However, if encrypting the l messages independently, then the total
length of the resulting ciphertext is 2l group elements. The semantic security
of such a multi-ElGamal scheme is also based on the DDH assumption in the
underlying group.

Better topology-hiding communication on cycles. We give a more efficient
topology-hiding realization for point-to-point communication on undirected cy-
cles with knowing n. As we have said, point-to-point communication can be
realized by compiling black-box from THB as follows.

1. Each party uses THB to broadcast its public key in a setup phase.
2. To send a message m to Pj , Pi encrypts m with the public key of Pj and

then uses THB to broadcast the resulting ciphertext.
3. Upon receiving the ciphertext, Pj can decrypt it to get m. Other parties

know nothing about m because they do not know the decrypt key.

If simulating point-to-point communication as above, then the communica-
tion cost of topology-hidingly sending a message m will equal the communication
cost of topology-hidingly broadcasting a public key and a ciphertext of m (un-
der some PKE scheme). Now we present a better way to realize point-to-point
communication such that the communication cost of topology-hidingly sending a
message m equals the communication cost of using our optimized THB protocol
to broadcast m (rather than a public key and a ciphertext of m), which achieves
better concrete efficiency.

Recall that our optimized THB protocol instantiates the underlying PKCR
scheme with the ElGamal scheme. The plaintext space of the ElGamal scheme

26

is a group and the ElGamal scheme is homomorphic under the group operation
(the group operation is called multiplication), i.e., for any group elements x and
y, JxyKpk can be efficiently computed given JxKpk, y and pk. Now we modify our
THS protocol as follows. The underlying scheme is replaced with the ElGamal
scheme (instead of the scheme from [10] or [12]); each party homomorphically
multiplies (instead of adds) its input to each received ciphertext using the ho-
momorphism of ElGamal. It can be easily seen that at the end of the resulting
protocol (we call the resulting protocol the product protocol), all parties get the
product of all the inputs, and moreover, the communication cost of this resulting
protocol equals the communication cost of our optimized THB protocol because
both of these two protocols instantiate the underlying encryption scheme with
the ElGamal scheme.

Now we show how to use the product protocol to realize point-to-point com-
munication without additional communication cost.

1. To send a message x to Pj , the parties execute this product protocol, and
where Pi takes x as input and Pj takes a random group element r as input,
and each other party takes the identity group element as input.

2. At the end of the protocol, all parties get the value y = xr. Pj computes
yr−1 as output.

The above execution is a secure realization for point-to-point communication
because no parties know the value of x except Pi and Pj , which is guaranteed
by the fact that only Pi and Pj know r and other parties know nothing about r
(Pi can infer r from x and y).

8 Conclusion and Open Problem

In this work, we give efficient topology-hiding protocols realizing various func-
tionalities, including the broadcast, sum and general computation functionalities.
Our results show that when realizing these functionalities in undirected cycles,
hiding the topology introduces at most multiplicative overhead of O(n) in the
asymptotic communication complexity. An open problem is that whether O(n)
is the optimal overhead.

Another direction is to extend our results to the fail-stop setting where the
adversary may instruct the corrupted parties to abort the protocol. One of our
results is an optimization for the ALM protocol. The work of [22] extended
the ALM protocol to the fail-stop setting. A natural question is whether their
method also applies to our optimized ALM protocol.

Acknowledgement. We are grateful for the helpful comments from the anony-
mous reviewers. This work was supported by the National Key Research and
Development Program of China (No. 2020YFB1805402) and the National Nat-
ural Science Foundation of China (Grants No. 61872359 and No. 61936008).

27

References
1. Akavia, A., LaVigne, R., Moran, T.: Topology-hiding computation on all graphs.

In: Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part
I. pp. 447–467 (2017). https://doi.org/10.1007/978-3-319-63688-7_15

2. Akavia, A., LaVigne, R., Moran, T.: Topology-hiding computation on all graphs.
J. Cryptol. 33(1), 176–227 (2020). https://doi.org/10.1007/s00145-019-09318-y

3. Akavia, A., Moran, T.: Topology-hiding computation beyond logarithmic diam-
eter. In: Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part III. pp. 609–637 (2017).
https://doi.org/10.1007/978-3-319-56617-7_21

4. Ball, M., Boyle, E., Cohen, R., Kohl, L., Malkin, T., Meyer, P., Moran,
T.: Topology-hiding communication from minimal assumptions. In: Theory
of Cryptography - 18th International Conference, TCC 2020, Durham, NC,
USA, November 16-19, 2020, Proceedings, Part II. pp. 473–501 (2020).
https://doi.org/10.1007/978-3-030-64378-2_17

5. Ball, M., Boyle, E., Cohen, R., Malkin, T., Moran, T.: Is information-theoretic
topology-hiding computation possible? In: Theory of Cryptography - 17th Interna-
tional Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceed-
ings, Part I. pp. 502–530 (2019). https://doi.org/10.1007/978-3-030-36030-6_20

6. Ball, M., Boyle, E., Malkin, T., Moran, T.: Exploring the boundaries of topology-
hiding computation. In: Advances in Cryptology - EUROCRYPT 2018 - 37th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III. pp.
294–325 (2018). https://doi.org/10.1007/978-3-319-78372-7_10

7. Baum, C., Damgård, I., Toft, T., Zakarias, R.W.: Better preprocessing for secure
multiparty computation. In: Applied Cryptography and Network Security - 14th
International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceed-
ings. pp. 327–345 (2016). https://doi.org/10.1007/978-3-319-39555-5_18

8. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 17-21, 2014, Proceedings, Part II. pp. 387–404 (2014).
https://doi.org/10.1007/978-3-662-44381-1_22

9. Boyle, E., Cohen, R., Data, D., Hubácek, P.: Must the communication graph of
MPC protocols be an expander? In: Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2018, Proceedings, Part III. pp. 243–272 (2018). https://doi.org/10.1007/978-
3-319-96878-0_9

10. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Advances in
Cryptology - ASIACRYPT 2003, 9th International Conference on the Theory and
Application of Cryptology and Information Security, Taipei, Taiwan, November 30
- December 4, 2003, Proceedings. pp. 37–54 (2003). https://doi.org/10.1007/978-
3-540-40061-5_3

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. pp. 136–145 (2001).
https://doi.org/10.1109/SFCS.2001.959888

28

https://doi.org/10.1007/978-3-319-63688-7_15
https://doi.org/10.1007/s00145-019-09318-y
https://doi.org/10.1007/978-3-319-56617-7_21
https://doi.org/10.1007/978-3-030-64378-2_17
https://doi.org/10.1007/978-3-030-36030-6_20
https://doi.org/10.1007/978-3-319-78372-7_10
https://doi.org/10.1007/978-3-319-39555-5_18
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-319-96878-0_9
https://doi.org/10.1007/978-3-319-96878-0_9
https://doi.org/10.1007/978-3-540-40061-5_3
https://doi.org/10.1007/978-3-540-40061-5_3
https://doi.org/10.1109/SFCS.2001.959888

12. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from $$\mathsf
{DDH}$$. In: Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at
the RSA Conference 2015, San Francisco, CA, USA, April 20-24, 2015. Proceedings.
pp. 487–505 (2015). https://doi.org/10.1007/978-3-319-16715-2_26

13. Cocks, C.C.: An identity based encryption scheme based on quadratic
residues. In: Cryptography and Coding, 8th IMA International Conference,
Cirencester, UK, December 17-19, 2001, Proceedings. pp. 360–363 (2001).
https://doi.org/10.1007/3-540-45325-3_32

14. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Advances in Cryptology - EUROCRYPT 2001, In-
ternational Conference on the Theory and Application of Cryptographic Tech-
niques, Innsbruck, Austria, May 6-10, 2001, Proceeding. pp. 280–299 (2001).
https://doi.org/10.1007/3-540-44987-6_18

15. Franklin, M.K., Haber, S.: Joint encryption and message-efficient secure computa-
tion. J. Cryptol. 9(4), 217–232 (1996). https://doi.org/10.1007/BF00189261

16. Gamal, T.E.: A public key cryptosystem and a signature scheme based on dis-
crete logarithms. In: Advances in Cryptology, Proceedings of CRYPTO ’84, Santa
Barbara, California, USA, August 19-22, 1984, Proceedings. pp. 10–18 (1984).
https://doi.org/10.1007/3-540-39568-7_2

17. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F., Sahai, A.,
Shi, E., Zhou, H.: Multi-input functional encryption. In: Advances in Cryptology -
EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.
Proceedings. pp. 578–602 (2014). https://doi.org/10.1007/978-3-642-55220-5_32

18. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty compu-
tation with general interaction patterns. In: Proceedings of the 2016 ACM Confer-
ence on Innovations in Theoretical Computer Science, Cambridge, MA, USA, Jan-
uary 14-16, 2016. pp. 157–168 (2016). https://doi.org/10.1145/2840728.2840760

19. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: Computing
without simultaneous interaction. In: Advances in Cryptology - CRYPTO 2011 -
31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings. pp. 132–150 (2011). https://doi.org/10.1007/978-3-642-22792-9_8

20. Hinkelmann, M., Jakoby, A.: Communications in unknown networks: Preserv-
ing the secret of topology. Theor. Comput. Sci. 384(2-3), 184–200 (2007).
https://doi.org/10.1016/j.tcs.2007.04.031

21. Hirt, M., Maurer, U., Tschudi, D., Zikas, V.: Network-hiding communica-
tion and applications to multi-party protocols. In: Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 14-18, 2016, Proceedings, Part II. pp. 335–365 (2016).
https://doi.org/10.1007/978-3-662-53008-5_12

22. LaVigne, R., Zhang, C.L., Maurer, U., Moran, T., Mularczyk, M., Tschudi, D.:
Topology-hiding computation beyond semi-honest adversaries. In: Theory of Cryp-
tography - 16th International Conference, TCC 2018, Panaji, India, November
11-14, 2018, Proceedings, Part II. pp. 3–35 (2018). https://doi.org/10.1007/978-3-
030-03810-6_1

23. LaVigne, R., Zhang, C.L., Maurer, U., Moran, T., Mularczyk, M., Tschudi, D.:
Topology-hiding computation for networks with unknown delays. In: Public-Key
Cryptography - PKC 2020 - 23rd IACR International Conference on Practice and
Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings,
Part II. pp. 215–245 (2020). https://doi.org/10.1007/978-3-030-45388-6_8

29

https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/BF00189261
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1145/2840728.2840760
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1016/j.tcs.2007.04.031
https://doi.org/10.1007/978-3-662-53008-5_12
https://doi.org/10.1007/978-3-030-03810-6_1
https://doi.org/10.1007/978-3-030-03810-6_1
https://doi.org/10.1007/978-3-030-45388-6_8

24. Li, S.: Towards practical topology-hiding computation. Cryptology ePrint Archive,
Paper 2022/1106 (2022), https://eprint.iacr.org/2022/1106

25. Moran, T., Orlov, I., Richelson, S.: Topology-hiding computation. In: The-
ory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Warsaw, Poland, March 23-25, 2015, Proceedings, Part I. pp. 159–181 (2015).
https://doi.org/10.1007/978-3-662-46494-6_8

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Advances in Cryptology - EUROCRYPT ’99, International Conference
on the Theory and Application of Cryptographic Techniques, Prague, Czech Re-
public, May 2-6, 1999, Proceeding. pp. 223–238 (1999). https://doi.org/10.1007/3-
540-48910-X_16

27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009). https://doi.org/10.1145/1568318.1568324

28. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd An-
nual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982. pp. 160–164 (1982). https://doi.org/10.1109/SFCS.1982.38

30

https://eprint.iacr.org/2022/1106
https://doi.org/10.1007/978-3-662-46494-6_8
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1109/SFCS.1982.38

	Towards Practical Topology-Hiding Computation

