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Abstract Dual-rail encoding, return-to-spacer protocol and hafeed logic can
be used to resist differential power analysis attacks byimgathe power con-
sumption independent of processed data. Standard duidgiagi uses a protocol
with a single spacer, e.g. all-zeroes, which gives rise t@gpdalancing prob-
lems. We address these problems by incorporating two spaberspacers alter-
nate between adjacent clock cycles. This guarantees thggtak switch in each
clock cycle regardless of the transmitted data values. fiergde these dual-rail
circuits an automated tool has been developed. It is capdlenverting syn-
chronous netlists into dual-rail circuits and it is intexéa to industry CAD tools.
Dual-rail and single-rail benchmarks based upon the Adedrncryption Stan-
dard (AES) have been simulated and compared in order toatestlne method.

1 Introduction

Secure applications such as smart cards require measuresigbDifferential Power
Analysis (DPA). Dual-rail encoding provides a method to amte the security prop-
erties of a system making DPA more difficult. As an examplaéhadesign described
in [1] the processor can execute special secure instrigtiimese instructions are im-
plemented as dual-rail circuits, whose switching activétyneant to be independent
from data. Whilst alternatives exist at the software leedbalance power, the need at
the hardware level is also mandatory. Special types of CM@I8 kelements have been
proposed in [2], but this low-level approach requires cliaggate libraries and hence
is costly for a standard cell or FPGA user. As a solution, gisialanced data encod-
ing such as dual-rail or together with self-timed desigrtegues has been proposed
in [3,4].

The clock signal is typically used as a reference in powelyaistechniques. Sys-
tem "desynchronisation" as in [3,5] can help hide the cldagka. To mask the op-
eration of a block of logic is a much more complex task whichldademand very
expensive changes to the entire design flow. A cheaper desymsation method to re-
build individual blocks within the same synchronous infrasture so, that their power
signatures become independent from the mode of operatidriram the data pro-
cessed. This method is used in [5], where synchronous pgxehre transformed into
asynchronous circuits using dual-rail coding.

These desynchronisation methods represent a combindttamm @aspects of secu-
rity: reference signal hiding and balancing of data encgéhir.t. switching activity. In
this paper we separate these aspects, concentrating oarga@ing only.



Our idea is to replace blocks in existing architectures ahaeid by synchronous
single-threaded CPU cores and their slow buses, havingpeiping or concurrency,
with secure and hazard free dual-rail circuits. Using thadard dual-rail protocol with
a single spacer still has certain balancing problems dugetagymmetry between logic
gates within a dual-rail gate. In this paper we address ahae sbese problems by
using a new protocol with two spacers alternating in timagllag to all gates switching
within every clock cycle. This is the first contribution oktipaper.

The other idea is to stay as close to the standard industigrdélew as possible.
Our method is applied via an automated tool to a clocked sirgjl netlist obtained
by standard RTL synthesis tools from a behavioural spetificaSuch circuits have an
architecture depicted in Figure 1(a). The result is alsotlishevhich can be simulated
and passed to the back-end design tools. Furthermore, @l(D€sign For Testability)
features incorporated at the logic synthesis stage aremeagsin our approach.

The resultant dual-rail circuit can be built in either of tarchitecturesself-timed
dual-rail or clocked dual-rail, Figure 1(b, c) respectively.
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Figurel. Design architectures

Self-timed dual-rail circuits do not have a clock and thegisters are controlled
by a completion signal formed in the completion detectigidoBeing asynchronous,
these circuits should exhibit better throughput, but theffes from a significant size
overhead due to additional logic from completion detection

Clocked dual-rail circuits do not have completion detattiogic and rely on the
assumption that the hazard-free dual-rail combinatioogikc! switches by the end of
the clock period. In our method this assumption is easy totnmzause the delay
characteristics of the dual-rail circuit are inheritednfrsingle-rail prototype.

While the method and the tool support both dual-rail architess, in this paper we
concentrate on the latter one. The security aspects ofraylstieel, memory elements,
buses, etc. also do not belong to the focus of the paper. Weaking at security of
logic circuits only.

The rest of the paper is organised as follows. Firstly themhef applying dual-
rail coding to synchronous circuits using a single spacdrtao spacers is described,



then the operation of the tool is discussed. The AES bendhneaults and potential
improvements follow and finally the conclusions are preseént

2 Method

2.1 Single spacer dual-rail

Dual-rail code uses two rails with only two valid signal camdtions{01, 10}, which
encode value8 and1 respectively. Dual-rail code is widely used to represer da
self-timed circuits [6,7], where a specific protocol of sshithg helps to avoid hazards.
The protocol allows only transitions from all-zerog®) }, which is a non-code word, to
acode word and back to all-zeroes as shown in Figure 2(a); this mearsihehing is
monotonic. The all-zeroes state is used to indicate thenalbsaf data, which separates
one code word from another. Such a state is often calbpdcer.

An approach for automatic converting single-rail circuitsdual-rail, using the
above signalling protocol, that is easy to incorporate endtandard RTL-based design
flow has been described in [5]. Within this approach, calledl48onvention Logic [8]
one can follow one of two major implementation strategieddgic: one is with full
completion detection through the dual-rail signals (NC).aldd the other with separate
completion detection (NCL-X). The former one is more comative with respect to
delay dependence while the latter one is less delay-irtsenbut more area and speed
efficient. For example, an AND gate is implemented in NCL-E &CL-X as shown in
Figure 2(b,c) respectively. NCL methods of circuit constimn exploit the fact that the
negation operation in dual-rail corresponds to swappiegdfls. Such dual-rail circuits
do not have negative gates (internal negative gates, fonpbeain XOR elements, are
also converted into positive gates), hence they are ramedinder any single transition.

If the design objective is only power balancing (as in ouregasne can abandon
the completion detection channels, relying on timing agstions as in standard syn-
chronous designs; thus saving a considerable amount ohacepower. This approach
was followed in [9], considering the circuitin a clocked @omment, where such timing
assumptions were deemed quite reasonable to avoid anydsamahe combinational
logic. Hence, in the clocked environment the dual-rail tofgir an AND gate is simply
a pair of AND and OR gates as shown in Figure 2(d).

The above implementation techniques certainly help totzaawitching activity at
the level of dual-rail nodes. Assuming that the power coretliby one rail in a pair is
the same as in the other rail, the overall power consumpgigmvariant to the data bits
propagating through the dual-rail circuit. However, thgsibal realisation of the rails
at the gate level is not symmetric, and experiments witheldesl-rail implementations
show that power source current leaks the data values.

For example, in the structure in Figure 2(d) we compare the gitching profiles
when computing two different binary sequences of valuésr corresponding input
sequences om andb. The first sequence is = 0000, b = 1111, ¢ = 0000, and the
second sequence éis= 1111, b = 1111, ¢ = 1111. The switching profile of these
sequences at the level of gates is different: in the first secgithere are eight firings
of OR gate and in the second there eight firings of AND (noté¢ W& counted both
spacer —code word andcode word— spacer phases).
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Figure2. Single spacer dual-rail

While there could be ways of balancing power consumptiomvéen individual
gates in dual-rail pairs by means of modifications at thesistor level, adjusting loads
and changing transistor sizes, etc., all such measure®atly.cThe standard logic li-
brary requires finding a more economic solution. We do nosioar randomisation
techniques in this paper as they can be applied indepegdantl possibly in conjunc-
tion with our method.

Synchronous flip-flops are built to be power efficient, so étlswitch to the same
value (data input remains the same within several clocles) tiothing changes at the
output. The absence of the output transition saves powein ltiie same time it makes
the power consumption data dependent. In order to avoidwigisnake flip-flops oper-
ate in the return-to-spacer protocol as in Figure 2(a). Thetisn in Figure 3(a) uses
the master-slave scheme, writing to the master is conttbiethe positive edge of the
clock and writing to the slave is controlled by the negatitlges At the same time the
high value of the clock enforces slave outputs into zerofioigpacer as in Figure 2(a))
and the low clock value enforces master outputs into onenféesispacer for the logic
with active zero).

This circuit operates as explained in Figure 3(b). Both eveestd slave latches have
their respective reset and enable inputs (active zero éonthster). The delay between
removing the reset signal and disabling writing for eacbHghold time) is formed by
the couple of buffers in the clock circuit. Buffers betweeaster and slave are needed
to delaym code-set value untils_En-. The advantage of this implementation is the use
of a single cross-coupled latch in each stage for a couplapeftidata signals.

2.2 Dual spacer dual-rail

In order to balance the power signature we propose to use paoess (i.e. two
spacer states,00} for all-zeroes spacer and {11} for all-ones spacer), resulting in
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Figure3. Single spacer dual-rail flip-flop

a dual spacer protocol as shown in Figure 4. It defines thecking as follows:
spacer —code word— spacer —code word. The polarity of the spacer can be arbitrary
and possibly random as in Figure 4(a). A possible refinenmmthis protocol is the
alternating spacer protocol shown in Figure 4(b). The advantage of the latter is that
all bits are switched in each cycle of operation, thus opgraipossibility for perfect
energy balancing between cycles of operation.
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Figure4. Dual-spacer dual-rail protocol

As opposed to single spacer dual-rail, where in each cyclarticplar rail is
switched up and down (i.e. the same gate always switchef)eimlternating spacer
protocol both rails are switched froall-zeroes spacer to all-ones spacer and back.
The intermediate states in this switching eodewords. In the scope of the entire logic
circuit, this means that for every computation cycle we gsviire all gates forming the
dual-rail pairs. In [10] we introduce two security charaistics of a circuit w.r.t. DPA
attacks:imbalance and exposure time. By imbalance we mean the variation in power
consumption when processing different data values. Expdsue is the time during
which the imbalance is exhibited. Our experiments showtthatvorst case imbalance
in a dual-rail circuits under a realistic load is 2.1%. Therst@ase exposure time de-
pends on the spacer protocol. It is up to the whole time ofidiaperation if the single
spacer protocol is used. By using of the alternating spacgopol the exposure time is
reduced to less than one clock cycle, which makes the cinoiie resistant to DPA.

The new alternating spacer discipline cannot be directptiag to the implemen-
tation techniques shown in Figure 2(b,c). Those, both inldlyec rails as well as in
completion detection assume the fact that for each pairilsf the {11} combination



never occurs. In fact the use aii-ones spacer would upset the speed-independent im-
plementation in Figure 2(b), because the outputs of themsktayer elements would
not be acknowledged duringpde word—all-ones spacer transition. The completion
detection for those gates can of course be ensured by usidditional three-input C-
element, but this extra overhead would make this implentiemt#echnique much less
elegant because of the additional acknowledgement sigpaalrel. In the single spacer
structure, due to the principle of orthogonality (one-Hmjween min-terma - bg,

a1 - bg andag - by, only one C-element in the rail, fires per cycle.
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Figure5. Alternating spacer converters

If some parts of a dual-rail circuit operate using the sirgglacer and the others the
alternating spacer protocol, then spacer converters dhmulised. The alternating-to-
single spacer converter shown in Figure 5(a) is transpanaaode words and enforces
all-zeroes spacer on the output if the input is all-ones or all-zeroes.

The implementation of a single-to-alternating spacer eamv, Figure 5(b), uses a
toggle to decide which spacer to inject all-ones or all-esrd’he toggle can be con-
structed out of two latches as shown in Figure 5(c). It omsrat the following way:
x4+ — zl+ — z— — 22+ — 2+ — zl— — z— — 22—, i.e.x1 changes on positive
edge ofz, andx2 switches on its negative edge. The frequencybéndzx2 is half the
frequency ofz.

The alternation of spacers in time is enforced by flip-flogse Blternating spacer
flip-flop can be built combining a single spacer dual-rail-fligp with a single spacer
to alternating spacer converter. The power consumptiohesingle spacer dual-rail
flip-flop is data independent due to the symmetry of its rdilse rails of the spacer



converter are also symmetric, which makes the power consompf the resultant
alternating spacer flip-flop data independent. The optidngsion of such a flip-flop
(toggle is moved outside) is depicted in Figure 5(d). Thiplementation useslk2
signal to decide which spacer to inject on the positive pledsék. The signalclk2
changes on the negative edge of the clock and is formed bygtet¢ane for the whole
circuit) whose input ig:lk. The timing assumption fatlk2 is that it changes after the
output of single spacer flip-flop. Both, the slave latch ofshmgle spacer flip-flop and
the toggle which generatesk?2 signal, are triggered by the negative edgel@f The
depth of logic in the toggle is greater than in the slave lafdhe flip-flop. At the same
time clk2 goes to all flip-flops of the circuit and requires bufferindyieh also delays
it. This justifies our timing assumption.

It should be mentioned that the inputs of the dual-rail dirowst also support the
alternating spacer protocol. Moreover, the same spacernalappear each cycle on
the inputs of a dual-rail gate. That means the spacer prbtwcthe circuit inputs and
flip-flop outputs must be synchronised in the reset phase.

2.3 Negative gate optimisation

In CMOS a positive gate is usually constructed out of a negaate and an inverter.
That is why the total area overhead in dual-rail logic is mibign twofold comparing
to single-rail. Use of positive gates is not only a disadagstfor the size of dual-
rail circuit, but also for the length of the critical path. Omethod for negative gate
optimisation [9] is described in this section.

If the all-zeroes spacer of the dual-rail code is applied to a layer of negative gates
(NAND, NOR, AND-NOR, OR-NAND), then the output will ball-ones spacer. The
opposite is also truell-ones spacer is converted intall-zeroes spacer. The polarity
of signals withincode words remains the same if the output rails are swapped.

The spacer alternation between odd and even layers of catidnial logic can be
used fomegative gate optimisation of dual-rail circuits. The optimised circuit uses ei-
therall-ones spacer or all-zeroes spacer in different stages (the spacer changes between
the layers of logic) as captured in Figure 6.
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Figure6. Spacer polarity after logic optimisation
In order to optimise a dual-rail circuit for negative gatbs following transfor-

mations should be applied. First, all gates of positive dagllogic are replaced by
negative gates. Then, the output rails of those gates amgpasaFinallyspacer polar-



ity converters are placed at the wires that connect the layers of logic o§#imee parity
(odd-to-odd or even-to-even).
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Figure7. Constructing negative gate dual-rail circuit

Consider negative gate optimisation using a simple exastpd@/n in Figure 7(a).
Dotted lines in the single-rail circuit indicate signalsialhwill be mapped into the
dual-rail with theall-ones spacer. The bar on the wire is the location of a spacer polar-
ity converter. The circuit in Figure 7(b) is obtained by @phg gates by their dual-rail
versions. These gates are built from traditional positiveldail gates by adding signal
inversion to their outputs and swapping the output rails (#itter is needed to preserve
the polarity of signals in the output code words). The openabf negation is imple-
mented by a rail swapping and does not require any logic g@ites spacer polarity
converter is implemented as a pair of inverters having theiputs crossed in order to
preserve the polarity of signals in the output code words.pbssible to combine such
an optimisation with the alternation of spacers in time.

This section presented the application of dual-rail codthe building of secure
circuits, whose power consumption is independent of the thaty process. An exten-
sion of the dual-rail protocol was presented, nandelgl spacer in time (alternating
spacer protocol). This aims at power balancing by switchilhgates in each cycle of
circuit operation. The negative gate optimisation wasiapb the circuits implement-
ing such a protocol.

3 Tool Description

The described conversion procedure of single-rail intd-daibcircuit has been im-
plemented as a software tool named the “Verimap designlkagticcessfully interfaces
to the Cadence CAD tools. It takes as input a structural &griletlist file, created by
Cadence Ambit (or another logic synthesis tool), and cdmvemto dual-rail netlist.
The resulting netlist can then be processed by Cadence er BDA tools.

The structure of our Verimap design kit is displayed in Feg8r The main parts are
the tool itself and two libraries. THébrary of gate prototypes contains the description
of gates used in the input netlist. It facilitates the stuuatanalysis of the input netlist.
Thelibrary of transformation rules defines: complementary gates needed for construc-
tion of the dual-rail logic, the polarity of gate inputs andtjputs and specifies if the
corresponding dual-rail gate requires completion sigioalgsynchronous design only)



and if it inverts the spacer. If a predefined dual-rail impéetation of a gate is found in
the library the tool uses it, otherwise an implementatidoigt automatically using the
rules.
The main function of the tool is con-
version of single-rail RTL netlist into dual-
convertion into

rail netlist of either of two architectures:
self-timed and clocked, Figure 1(b, c) re-
spectively. It is done in four stages. First,
a single-rail circuit is converted into posi-
tive logic dual-rail. Second, the positive dual- o o

rail gates are replaced by negative dual—ra’@
gates and the spacer polarity inverters are in=——r—
serted. Then, the completion signal is gener-
ated (asynchronous design only). Finally, a
wrapper module connecting the dual-rail cir-
cuit to the single-rail environment is added
(optional).

Apart from generating netlists, Verimap
tool reports statistics for the original and re-
sultant circuits: estimated area of combina-
tional logic and flip-flops, number of nega-
tive gates and transistors, number of wires.

The tool also generates a behavioural
Verilog file assisting the power analysis of
the original and resultant circuits. Being included intmglation testbench these Ver-
ilog counts the number of switching events in each wire ofciheuits.
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Figure8. Verimap design kit

4 Benchmark Resultsand Future I mprovements

This section summarises the experiments performed to ctesise the proposed
method in terms of security, size and power consumption.A&8 designs were used:
Open core AES and AES with computable sbox (for details see Appendix A). For each
design a single-rail AES circuit was synthesised from RTecfication by using Ca-
dence Ambit v4.0 tool and AMS-0.358library. Our Verimap tool was applied to the
netlist generated by Ambit and the dual-rail netlist wasdpiaed. The dual-rail circuits
were optimised for negative gates and used alternatingesola@l-rail protocol. Both,
single-rail and dual-rail designs were analysed for stigiays (SDF delay annotation)
and simulated in Verilog-XL v3.10. By keeping to the RTL dgsflow the netlists can
be directly used in the back-end design tools of Cadence.

The statistics for the parts of AES, namelphers andsboxes, are shown in Table 1,
Table 2 and Table 3.

The purpose of the first experiment was to evaluate the atival between data
and switching activity of the circuits. Switching activity the number of switching
events in the circuit within one clock cycle. Table 1 presehé minimum, average and
maximum switching activity for the sboxes and ciphers. Bhedues were obtained by



benchmark switching activity (hazards)

name min | avg | max
sbox [single-rail 0 (0) 162 (33 277 (124
(open |dual-rail | 1,180 1,180 1,180
core) |overhead 00 628% 326%
sbox [single-rail 0(0)] 525 (345 936 (746
(comp.)dual-rail 868 868 868
overhead 0 65% -17%
cipher |single-rai 0 9,147 13,236
(open |dual-rail |41,28 41,285 41,285
core) |overhead 00 351% 211%
cipher |single-rail 0 (0)(3,810 (2,013)6,140 (3,682
(comp.)dual-rail |13,05 13,054 13,055
overhead 00 242% 112%

Table 1. Switching activity

simulating the circuits with a number of input vectors: I@@andom input vectors for
shoxes and 284 standard AES testbench vectors for ciphers.

The experiment shows a significant difference between the/avérage/max
switching activity values for the single-rail sbox benchikga The minimum value is
zero, and the maximum values are up to 48% higher than thageemlues. At the
same time, switching activity for the dual-rail circuitsdsnstant. In the single-rail
switching activity varies significantly depending on datal &learly they exhibit zero
switching activity if the input data does not change. In #iddimany switching events
in single-rail circuits are caused by hazards and the sirailasbox benchmarks are no
exception. Here the hazards caused up to 80% of data defesvdtaiing events. The
number of switching events in dual-rail combinational @ constant for any input
data and is equal to the number of wires. It shows that allsgate switching in each
clock cycle, thus making power consumption data indepen@kscribed in detail in
Section 2.2).

The single and dual-rail implementations of the AES ciphveese simulated and
compared against combinational logic blocks (sboxes)tc®ivig activity in the open
core dual-rail cipher is 351% higher than in the single-cgher and 255% higher for
the AES design with computed sboxes. These values are gthatethe results for
the corresponding sboxes. The increased difference carpi@reed by the nature of
computations in complex circuits. They execute in bursfindd by their algorithms.
Under a burst the switching is similar to our experimentdhiwibmbinational circuits.
However, between the bursts the situation is significarifferént: a single-rail circuit
is inactive and a dual-rail circuit continues to ‘burn poier switching between code
words and spacers.

A possible way to address this issue is to implengbotk gating. This, however,

should be different from the conventional clock gating taghe. It is important to
make it data independent. At this stage we do not see a feagiy of implementing



this at the netlist level. Most likely it will require analgf behavioural specifications.
We view this idea as a subject of future work.

benchmark switching activity
name single space}alternating spacer
cipher rail_1 8,388 6,505
(encryption)rail_0 4,622 6,505
disbalance 29% 0%
cipher rail_1 8,572 6,505
(decryption)rail_0 4,438 6,505
disbalance 32% 0%

Table 2. Switching activity in dual-rail rails

In order to compare the security features of single spaakaliarnating spacer cir-
cuits, the AES design with computable sbhoxes was also ctew/é@nto single spacer
dual-rail. Both, single spacer and alternating spacer-thieimplementations were
simulated with 284 input vectors from the standard AES t&sth in the encryption
and decryption modes. The switching activities of “1” and r&ils were recorded sep-
arately. Table 2 shows the worst case difference in switchitivity between “1” and
“0” rails. The imbalance between the number of switchingnésen the rail_1 and
rail_O is calculated adisbalance = Ze—=r24 3l . 100%. While the total switching
activity is the same in both implementations, the singlespanplementation exhibits
significant differences in the number of switching eventdtmncomplementary rails.
As the complementary gates within a dual-rail gate havefit power consumptions,
the power signature of the single spacer dual-rail circedgtdmes dependent on the pro-
cessed data. Alternating spacer dual-rail circuits do mi¢sfrom this leakage because
all gates are switching in every clock cycle.

benchmark |negative gate coufttansistor courjt wire estimated area
name (comb. logic) | (comb. logic)| count|comb. Iogiqflip-flops

sbox [single-rai 655 3,180 482 44,593 0
(open |dual-rail 1,523 6,672 1,180 101,364 0
core) |overhead 133% 110% 145% 127% 0
sbox [single-rai 634 2,362 400 32,975 0
(comp.)dual-rail 1,164 4,628 868 68,603 0
overhead 84% 96% 117% 108% 0

cipher [single-rai 12,752 68,184 9,980 873,175 142,37(
(open |dual-rall 26,396 139,82824,3671 1,925,190 466,87(
core) |overhead 107% 1059 144% 1209 228%
cipher [single-rai 10,3772 50,344 5,936 580,046 118,679
(comp.)dual-rail 19,510 95,06413,058 1,237,260 462,021
overhead 88% 89% 120% 113% 289%

Table 3. Circuit size



The cost of improved security features is the increase imtimeber of gates, wires
and area, see Table 3.

The benchmarks indicate only 84-88% overhead in gate nuwsi{agrositive gate is
counted as a pair of a negative gate and an inverter) for ABgdevith computable
shoxes. This is less than 100% due to the negative gate sption. For Open core
design the overhead is more than 100% due to the structute sl§éx module. During
the negative logic optimisation of Open core sbox more it@rewere inserted into not-
critical path (as components of spacer inverters) than vechérom the critical path.

The number of wires is increased by 117-145%. Wires are daigld in a dual-rail
circuit and then spacer converters are added, furtherasarg the number of wires.

The estimated area of the benchmarks combinational lodicates a 102%-127%
overhead. A significant area increase for flip-flops (228%9%8can be explained by
using dual-rail flip-flops constructed out of standard laggtes. This can be improved
by transistor level optimisation of the flip-flops.

It is clear that in the AES designs there are opportunitiesitimise power con-
sumption as not all logic is necessarily being used all tme tindustry synthesis tools
can identify sleep mode logic and use this information toctate places in the netlist
which could be committed to sleep mode logic later in theglefiow. This low power
optimisation could be utilised in our dual-rail circuitgne approach would be to put a
spacer on the input to the identified sleep mode logic andipttiis there for the clock
cycles whilst it is not used. By doing so the switching is n@w, thus saving power.
This technique would not reveal data as the sleep mode Isgit & “meaningless”
spacer state. By using the synthesis tool to identify thepstaode logic we are adher-
ing to the RTL design flow and our conversion tool could useaheotated netlist to
apply the optimisation to dual-rail circuits; note the coittah stage of the sleep mode
logic would need to be different to what the synthesis toodailel do (simple AND
gates using a control signal). Presently this has not bepteimented in the tool but
investigated using schematic entry with simple exampldshvwjave promising results.
This needs to be investigated further together with thekoifating idea.

5 Conclusions

We have presented a technique for improving resistance AoditBcks at the hardware
level by power balancing in a deterministic way. The powearstonption within each
cycle of operation is constant. Our technique uses two spadternating in time within
the dual-rail logic framework. It is very cheap yet effeetand is supported by software
tools that interface to standard RTL design flow tools usechbgt ASIC designers. The
idea of using two spacers is deemed particularly efficienttal-rail logic, where the
Hamming distance between each spacer and a valid combinatibe same. While it
can still be used without too much overhead in optimally bedal k-of-n codes (e.g.
3-of-6) it would be much less efficient in other popular coslesh as 1-of-4 [11].

The AES benchmarks indicate that we have fully eliminateddépendency which
existed between data and switching activity in the dudlaietuits. The price to pay
for the improved security features is the increased avesagiehing activity and area
overheads.
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A Advanced Encryption Standard

The symmetric block cipher Rijndael [13] was standardisg8IST as the Advanced
Encryption Standard (AES) [14] in November 2001 as the sssmeto DES. The algo-
rithm is a block cipher that encrypts/decrypts blocks of 18, or 256 bits, and uses



symmetric keys of 128, 192 or 256 bits. It consists of a segaeffour primitive func-

tions, SubBytes, ShiftRows, MixColumns and AddRoundKdiedaa round. A round
is executed 10, 12 or 14 times depending on the key and pldithetegths. Before the
rounds are executed the AddRoundKey function is appliethfoalisation plus the last
round omits the MixColumns operation. A new key is deriveddach round from the
previous key.

For decryption the procedure is reversed and inverse versitthe aforementioned
functions are applied, excluding AddRoundKey, this haswveiise.

A detailed explanation of each function can be found in [3R,For clarity the
SubBytes function performs a non linear transformationgifiyte substitution tables
(Sboxes), each Sbox is a multiplicative inversion in GF{2faflowed by an affine
transformation.

Both designs were synthesised from a RTL Verilog specificatising the Cadence
Ambit v4.0 tool and AMS-0.3p library. A brief description of the two architectures
follows.

A.1 Open core AESarchitecture

This design operates on 128 bits and has two separate 'sek-@ame for encryption
and the other for decryption; they share the same type of kegmgtion module [15]
and initial permutation module, however separate instapgést inside each sub-core.
The core is shown in Figure 9; each sub core has 16 inverse{&shnside the round
permutation module. The initial permutation modules symg@rform the AddRound-
Key function and the round permutation modules loops irslyrto perform the 10
rounds and the final permutation module performs the lastdoior this yields a com-
plete encryption in 12 clock cycles. The decryption coresisis of 16 inverse S-boxes
these differ from the S-boxes used for encryption. The kegnsal buffer stores keys
for all the rounds and these are presented to the round patiorumodule each round
in reverse order. Using this principle a complete decryptian be performed in 12
clock cycles. It must be highlighted that since the keys aexun reverse order - the
initial key must be first expanded 10 times to get the last taking 10 extra clock
cycles. In this design the Inv/SubBytes transformatiobexes) are hardwired instead
of being computed on the fly or stored in a ROM. This can be seesinaply a large
decoder. The sub-cores both have 128 pins for plain/cigtx¢and 128 pins for the key
and miscellaneous control pins and logic.

|
| |
Id t Control |
| |
| ] |
Key_In : Key !
|
| 17 Generation Unit —J I
| 7 |
| L N |
Initial Round Final
Data_In >—— ) 1 ) 1 ) —+—> Data_out
! Permutation Permutation Permutation |

Figure9. Open core AES



A.2 AESwith computed sboxes architecture

This architecture combines encryption and decryption arte core working on 128
bits. The designs’ basis is taken from [12], it was chosentduts structure namely: it
is highly regular (this keeps the layout small), it has shattnced combinational paths,
hardware reuse for encryption and decryption which yieldsall area and finally it
has a 32 pin interface for the data (128 pin for the key) andesheomputed sboxes.

! Data Unit
i | \ —
Data_In ‘ cel H cen H cen H cen Data_out
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I
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Key to each
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Figure10. AES with computed sboxes

The design consists of a key generation unit, control logit @data unit incorpo-
rating 16 data cells, 4 shoxes (these perform the shox aedsesbox unlike the open
core design) and a barrel shifter. The core is displayedgnréi 10, since the core does
both encryption and decryption the diagram summarises both

The data unit can perform any of the AES round functions aed tiee key provided
by the key unit for the AddRoundKey function. A single dati cemprises of a regis-
ter, a GF(256) multiplier [12], a bank of XOR gates, and aruirgelection multiplexer.
Additional multiplexers are included to enable the reqiifitenction to be selected.

The Sboxes are able to perform either the Sbox transformatithe inverse Sbhox
transformation taking two clock cycles to compute a resué th a two-stage pipeline.
Whilst the Sboxes are not used by the data unit (the MixCokioperation) the key
generation unit takes advantage of this to generate thekagxThe Sbox is computed
by reducing the computation to GF(16) and GF(16) arithmatid then applying the
affine transformation as illustrated in [16].

Since the design has a 32 pin interface for the data, foukalgcles are required
to clock the plain text, or cipher text into the data unit, #melsame number to retrieve
the data. After loading, the round functions are selectethbycontrol logic. In total
60 clock cycles are needed for a complete encryption or géiory. As with the other
design the input key needs to be expanded to the last key kafoee any rounds can
take place; this takes an extra 20 clock cycles due to thdipgaeSbox. The total
number of cycles for encryption or decryption could be reglito 30 by using 16
sboxes at the expense of more area.



