Bipartite Modular Multiplication

Marcelo E. Kaihara and Naofumi Takagi

Department of Information Engineering, Nagoya University,
Nagoya, 464-8603, Japan
{mkaihara, ntakagi}@takagi.nuie.nagoya-u.ac.jp

Abstract. This paper proposes a new fast method for calculating mod-
ular multiplication. The calculation is performed using a new represen-
tation of residue classes modulo M that enables the splitting of the mul-
tiplier into two parts. These two parts are then processed separately, in
parallel, potentially doubling the calculation speed. The upper part and
the lower part of the multiplier are processed using the interleaved modu-
lar multiplication algorithm and the Montgomery algorithm respectively.
Conversions back and forth between the original integer set and the new
residue system can be performed at speeds up to twice that of the Mont-
gomery method without the need for precomputed constants. This new
method is suitable for both hardware implementation; and software im-
plementation in a multiprocessor environment. Although this paper is
focusing on the application of the new method in the integer field, the
technique used to speed up the calculation can also easily be adapted for
operation in the binary extended field GF(2™).

1 Introduction

Modular multiplication is one of the basic arithmetic operations that are exten-
sively used in many public-key cryptographic applications, such as RSA [10],
ElGamal [5], Diffie-Hellman key exchange [4], DSA [1], and others. Because of
its computational intensity, implementation in dedicated hardware is required
for high-performance systems. Various techniques for speeding up modular mul-
tiplication have been reported in literature. Among them, two major approaches
stand out: One is based on the interleaved modular multiplication algorithm
where the multiplier is processed from the most significant position [2, 3,6, 8,11,
12]. The other one is based on the Montgomery algorithm where the multiplier
is processed from the least significant position [7,9,13,15]. The techniques for
speeding up these two approaches have been developed separately.

This paper proposes a method that takes advantage of these techniques and
the ones that may eventually be devised in the future, to further boost speed.
The key that enables the linking of these two approaches is a new representation
of residue classes modulo M. Assuming M is an n-word odd integer, where the
radix of each word is r = 2%, this new representation maps an integer U in the
range [0, M — 1] to the number U - R mod M in the same range. R is a constant
of value r®", coprime to M, where « is a rational number such that 0 < o < 1,

and, an is an integer. The novelty in this representation is that the transforma-
tion constant R has a value less than the modulus M, a condition not allowed
by the Montgomery representation. Modular multiplication is then performed
in this new residue system. The new values for the transformation constant en-
able the splitting of the multiplier into two parts which can then be processed
separately, in parallel. The upper part and the lower part of the multiplier can
be processed using the interleaved modular multiplication algorithm and the
Montgomery algorithm, respectively. The possibility of selecting the parameter
« between the values 0 and 1, encompasses the application of this method to all
combinations of algorithms of different performance derived from the interleaved
modular multiplication algorithm and the Montgomery algorithm. If applied to
algorithms with similar performance and the multiplier is split into two equal
parts, it is theoretically possible to achieve the maximum speed of twice that
of these two algorithms when performed individually. The latter condition is
represented with the value of the parameter o so that an = [§].

Two other advantages of this new method are: Firstly, compared to the Mont-
gomery method, conversion speed between the original integer set and the new
residue system is potentially doubled; and secondly, precomputation of constants
is no longer necessary.

Due to the parallel processing, the proposed method is suitable for hard-
ware implementation and also for software implementation in a multiprocessor
environment.

The remainder of this paper is organized as follows: Section 2 reviews the in-
terleaved modular multiplication algorithm and the Montgomery algorithm. The
new computation method is introduced in Section 3. Section 4 explains hardware
implementation of the method. Section 5 contains our concluding remarks.

2 Preliminaries

2.1 Interleaved Modular Multiplication Algorithm

Given a modulus M, and two elements of the residue class ring of integers modulo
M, X and Y, we define the ordinary modular multiplication as:

XxY2X-Y mod M (1)

Let the modulus M be an n-word number, where the radix of each word is
r = 2%, The i-th word (i = 0,1,--- ,n — 1) of Y is denoted by ;. Namely, Y =
S i - 7. The interleaved modular multiplication algorithm for calculating
the ordinary modular multiplication is shown below [2, 3, 11].

[Interleaved Modular Multiplication Algorithm)]
Input: M : r" =1 < M < "

X,Y:0<X,Y <M
Output: Z =X - Y mod M

Algorithm:
Z = 0;
for i :=n — 1 downto 0 do
Z =r-Z+y; X,

go = |%;
Z =7 —qc - M;
endfor

In this algorithm, the words of the multiplier are processed from the most
significant position first.

2.2 Montgomery Multiplication Algorithm

Montgomery introduced a powerful algorithm for calculating modular multipli-
cation where the multiplier is processed from the least significant position first
[7]. Given an n-word odd modulus M and an integer U in the range [0, M — 1],
the image, or the M-residue of U is defined as X = U - Ry; mod M where R, is
a constant coprime to M and Rj; > M. In order to reduce computation effort,
this constant is usually set to the value of r”. If X and Y are the images of U
and V respectively, the Montgomery multiplication of these two images, X %Y,
is defined as:

X*Y2X Y Ry} mod M (2)

The result is the image of U - V mod M. If the i-th word of M is denoted
as m;, then M = E?;ol m; - r’. In a similar way, if the number that represents
the partial products is denoted as Z = Z;:Ol z; - v, the resulting Montgomery
algorithm is described below.

[Montgomery Multiplication Algorithm]

Input: M : "1 < M < r™ and ged(M,2) =1
XY: 0<X,)Y <M

Output: Z=X-Y -r~" mod M

Algorithm:
Z :=0;
fori:=0ton—1do
Z:=7Z+vy; X;

qu = (—zo - mg) mod 7
Z:=(Z+qm -M)/r;
endfor
if Z>M then Z =72 - M

The transformations back and forth between the ordinary representation and
the M-residue representation can be performed using the same algorithm pro-
vided that the constant B2, mod M is precomputed. An integer U can be trans-
formed to the M-residue representation by applying the Montgomery algorithm
to this integer and the constant R3, mod M. Transformation of an image X
back into the original integer set can be done by applying the Montgomery
multiplication algorithm to this image and the number 1.

3 A New Modular Multiplication Method

In this section, a new fast method for calculating modular multiplication is
presented. The calculation is performed using a new representation of residue
classes modulo M. In contrast to the M-residue representation introduced by
Montgomery which requires the constant Rj; to be coprime to M and greater
in value than M, we have changed the condition of Ry; > M and defined a new
residue class representation using a new constant R = r®”, where R is coprime
to M, and, « is a rational number so that 0 < a < 1 and an is an integer. The
resulting image of an integer U is X = U - r*" mod M. Given X and Y, two
images of integers U and V respectively, multiplication modulo M in the new
residue system is defined as:

X®Y2X.Y - r~* mod M (3)
The existence of r~*" mod M is assured by the relative primalty condition
between ™ and M. Since M is odd for cryptographic applications, by utilising
r = 2% the primalty condition is satisfied.

Transformation from the original representation to the new residue system
is accomplished by performing conventional modular multiplication between the
integer value and the constant r*". The inverse transformation from the new
residue system back to the original representation can be performed by multi-
plying either of the images with the constant »~*” in modulo M, which can be
done using the Montgomery algorithm as explained at the end of this section.
That the new multiplication modulo M over the images of U and V results in a
image of U - V' mod M can easily be demonstrated as follows.

XY -r=* mod M
=U-r*") - (V-r*™) -+~ mod M (4)
=U-V)-r*" mod M

Isomorphism between the original integer set Z, with the operation x, and
the new residue system Z', with the operation ®, holds as illustrated in Fig. 1.
As we will now show, modular multiplication can be efficiently computed
using this new representation of residue classes. Let us consider the multiplier Y

Oi gi nal

Resi due System New Resi due System

| [
| |
| |
| |
|
| |
| |
| |
| |
; |

|
| L X®Y =X-Y-r “(mod M
i UV = U-V(nod M <—v_">} =U-V-r (mod M
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
{ {

|
N i v
N |
\Y; i Y =V:r“(nmod M

e

Fig. 1. Mapping between the original residue system and the new residue system

split into two parts Yy and Yz, i.e. Y = Yy - r®” + Yr. Then, the multiplication
modulo M of the images X and Y can be computed as follows:

X®Y =(XxYyg+X®Yy) mod M (5)

The left term, X x Yj, is calculated using the interleaved modular multipli-
cation algorithm that processes Yy from the most significant position first, while
the second term, X ® Y7, is calculated using the Montgomery algorithm which
processes Y7, from the least significant position first. These two calculations are
performed in parallel. Since the split operands Yz and Y7, are shorter in length
than Y, the calculations X x Yy and X ® Y, are performed faster than the in-
dividual execution of the interleaved modular multiplication algorithm and the
Montgomery algorithm with the unsplit operands.

The correctness of the above formula can be seen using the following equality:

(XxYg+X®Yy) mod M
=X -Yg+X-YL -r ") mod M
=X - Yy -r*"-r=" 4+ Yy, -r~%") mod M (6)
=X -Yyg-r*+Yy) r~®" mod M

=X-Y-r ™ modM=X®Y

Below is the algorithm that computes modular multiplication using the new
representation. In this algorithm, A is a variable that stores the multiplicand;
By and Bj are variables that store the upper and the lower parts of the
multiplier respectively. Interleaved_modmul (A, Bg) is a function that cal-
culates A x By by using the interleaved modular multiplication algorithm.
Montgomery_-modmul (A, Br) is a function that calculates A @ By by using
the Montgomery algorithm. {C1; C2; } means that two calculations, C'1 and C2,
are performed in parallel.

[Algorithm KT]| (New Modular Multiplication)
Input: M : "~ < M <" ged(M,2) =1

X,Y € 2,
Output: Z=X-Y -r~*"mod M (Z € Z},)
Algorithm:

Step1l: A:=X; M :=M;S5:=0;,T:=0;
By :=Yy; BL:=Y, /xY =Yy -r*"+Y %/
Step 2: {S := Interleaved_modmul(A, Br);
T := Montgomery-modmul(A, Br,); }
Step 3: Z:=(S+T) mod M,

When using the interleaved modular multiplication algorithm and the Mont-
gomery algorithm of similar performance, o can be set to the value so that
an = [§]; the split two parts of the multiplier, Yy and Y7, are at most [%]-
words wide. This means that, it is theoretically possible to obtain a maximum
acceleration of twice the speed of the original algorithms performed individually,
when these conditions are met. Fig. 2 shows the multiplication procedure with
the parameter o = 1/2.

A A
LI T TTT1 LI 111011
H B+ H H BL:
x LLLE Vi 1.1 A I I
_______ oy o o O O = s (T

berformui th o Y o o e e O
interleaved ... ?.. AR GO, e Mont gonery
modul ar COOrirrny e al gor i thm
ml ti pl i cation 0 o O Y o s B
al gorithm — seeessessesseess e TRRRLEE FRRFCLITIIIIIIIITITIIIIOTIIEE AL

LLLET 1T LTI

-EIEETTTIT] ¢ ETETTTITT]

T <~ |
- LTI M |

Fig. 2. New Modular Multiplication with o = 1/2

Transformation of an integer U from the original integer set to the new
residue system can be performed by executing X = Interleaved_-modmul (U, r*™).
The inverse transformation of an image X from the new residue class repre-
sentation back to the original integer set is accomplished by executing U =
Montgomery-modmul(X,1). When « is set to the value so that an = [F], ei-
ther of these transformations can be completed theoretically in half the time
required by the Montgomery method without the need for precomputed con-
stants.

4 Hardware Implementation

A modular multiplier based on the algorithm presented in the previous section
consists of six registers, an interleaved modular multiplier, a digit-serial Mont-
gomery multiplier, a modular adder, and a multiplexor. The registers are: A,
which stores the multiplicand; By and By, which are shift registers and store
the upper and lower parts of the multiplier respectively; M, which stores the
modulus M; and, S and T, which store the partial results. A block diagram of
this hardware is shown in Fig. 3.

= 2

N\

Fig. 3. Block diagram of a multiplier

Various implementations of the interleaved modular multiplier and the Mont-
gomery multiplier are possible depending on the techniques used for speeding

up the calculation. Most of these techniques use redundant representation and
increase the radix, and the different combinations of the multipliers allow for a
wide range of trade-offs between speed and hardware requirements.

When a radix-r interleaved modular multiplier is jointly used with a radix-
r Montgomery multiplier with similar critical path delays, and n is even, the
parameter « can be set to the value 1/2 and registers of equal length can be
used for By and By, thus halving the processing time compared to an individual
execution of the interleaved modular multiplier or the Montgomery multiplier
with the unsplit operands.

Transformation from the ordinary integer set to the new residue class repre-
sentation can be performed with the same hardware provided that the hardware
module which computes the interleaved modular multiplication iterates one extra
cycle compared to that required for modular multiplication. Inverse transforma-
tion from the new residue class representation back to the original integer set
can be performed using the hardware module that computes the Montgomery
multiplication.

The value of the parameter « can be displaced around 1/2 enabling the use of
multipliers of different performance. In this case, the multiplier is then split into
two unequal parts that can be stored in two registers By and By of different
length. The value of a can be determined from the difference of performance
between the multipliers. For example, if a radix-2 interleaved modular multiplier
is used with a radix-4 Montgomery multiplier with similar critical path delays,
then a can be set to a number where an = [£n]. Then, modular multiplication
can be accomplished in about [%] clock cycles. Transformation from the original
integer set to the new residue system, can be performed with the same hardware
by executing the interleaved modular multiplication module twice. In the first
execution, an integer U is multiplied by 2[5 1. In the second execution, the result
of the first execution is multiplied by 213n1=151 Inverse transformation from
the new residue system to the original integer set can be performed by the same
hardware by executing the Montgomery multiplication module once.

The amount of hardware of the proposed multiplier is proportional to n.
Compared to an individual interleaved modular multiplier or a Montgomery
multiplier, the new modular multiplier requires an extra digit modular multiplier,
an extra register, a modular adder and related multiplexors.

The space and time trade-offs for high radix modular multiplications based on
the classical interleaved algorithm and the Montgomery algorithm are detailed
in [14]. For both algorithms, increasing k, i.e. the number of bits of the radix, to
values greater than log(n), where n is the number of words, results in a penalty in
time for producing the quotient bits g or gps for the next modular reduction in
time that makes this approach unattractive. By contrast, by using our algorithm,
a speedup can be achieved for such values of radices, since the multiplication and
the modular reduction for the split multiplier can be performed by two separate
high-radix digit-serial multipliers processing in parallel. Thus, the number of
iteration is reduced without increasing the time requirements for each cycle.

Furthermore, as there is no need to increase the radix, the design can remain
relatively simple compared to hardware designed using higher radix.

In cryptographic applications, such as in RSA, this approach is much more
attractive than implementing two modular multiplier processors separately be-
cause it has the advantage of producing the outputs sequentially.

5 Concluding Remarks

In this paper, we have presented a fast method for computing modular multi-
plication. We have defined a new residue class representation which enables the
splitting of the multiplier into two parts which can be processed by using the
interleaved modular multiplication algorithm and the Montgomery algorithm
in parallel, potentially doubling the speed. Transformations back and forth be-
tween the original integer set and the new residue system can be performed at
a maximum of twice the speed of the Montgomery method without the need
for precomputed constants. The dual processing makes it suitable for software
implementation in a multiprocessor environment as well as for hardware imple-
mentation as discussed in Section 4. Finally, although this paper is focused on
application in the integer field, the technique used to speed up the calculation
in the proposed method can also easily be adapted for accelerating modular
multiplication in the binary extended field GF(2™).

Acknowledgments

The authors would like to thank Associate Professor Kazuyoshi Takagi for his
valuable comments and discussions and to Miss Grith Christensen for her help
in preparing this paper.

References

1. ANSI X9.30. Public Key Cryptography for the Financial Services Industry: Part
1: The Digital Signature Algorithm (DSA). American National Standard Institute.
American Bankers Association. 1997.

2. G. R. Blakley “A Computer Algorithm for Calculating the Product AB Modulo
M,” IEEE Trans. Computers, vol. C-32, no. 5, pp. 497-500, May 1983.

3. E. F. Brickell, “A fast modular multiplication algorithm with application to two
key cryptography,” in Advances in Cryptology, Proc. CRYPTO’82, D. Chaum et
al., Eds. New York: Plenum, 1983, pp. 51-60.

4. W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Trans.
Information Theory, vol. 22, no. 11, pp. 644-654, Nov. 1976.

5. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE Trans. Information Theory, vol. IT-31, no. 4, pp. 469472, July
1985.

6. P. Kornerup, “High-Radix Modular Multiplication for Cryptosystems,” Proc. 11th
IEEE Symp. Computer Arithmetic, G. Jullien, M. J. Irwin, and E. Swartzlander,
eds., pp. 277-283, Windsor, Canada, 1993.

10.

11.

12.

13.

14.

15.

P. L. Montgomery, “Modular Multiplication without Trial Division,” Mathematics
of Computation, vol. 44, no. 170, pp. 519-521, Apr. 1985.

H. Morita, “A fast modular multiplication algorithm with application to two key
cryptography,” in Lecture Notes in Computer Science, vol. 435, G. Brassard Ed.,
Advances in Cryptology — CRYPTO’89 Proc. Berlin, Germany: Springer-Verlag,
1990, pp. 387-399.

H. Orup, “Simplifying quotient determination in high-radix modular multiplica-
tion,” Proc. 12th IEEE Symp. Computer Arithmetic, S. Knowles and W. H. McAl-
lister, eds., pp. 193-199, Bath, England, 1995.

R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120-126,
Feb. 1978.

K. R. Sloan, “Comments on ‘A Computer Algorithm for Calculating the Product
AB Modulo M’)” IEEE Trans. Computers, vol. C-34, no. 3, pp. 290-292, March
1985.

N. Takagi, “A radix-4 modular multiplication hardware algorithm for modular
exponentiation,” IEEE Trans. Comput., vol. 41, no. 8, pp. 949-956, Aug. 1990.
A. F. Tenca, G. Todorov, and C. K. Kog, “High-Radix Design of a Scalable Mod-
ular Multiplier,” Cryptographic Hardware and Embedded Systems - CHES 2001,
C. K. Kog, D. Naccache, C. Paar, eds., pp. 185-201, Paris, France, 2001.

C. D. Walter, “Space/Time Trade-offs for Higher Radix Modular Multiplication
using Repeated Addition,” IFEFE Trans. Computers, vol. 46, no. 2, pp. 139-141,
Feb. 1997.

C. D. Walter, “Systolic Modular Multiplication,” IEEE Trans. Computers, vol. 42,
no. 3, pp. 376-378, Mar. 1993.

