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Abstract. In this paper the benefits of implementation of the Tate pair-
ing computation on dedicated hardware are discussed. The main obser-
vation lies in the fact that arithmetic architectures in the extension field
GF (36m) are good candidates for parallelization, leading to a similar cal-
culation time in hardware as for operations over the base field GF (3m).
Using this approach, an architecture for the hardware implementation of
the Tate pairing calculation based on a modified Duursma-Lee algorithm
is proposed.
keywords Tate pairing, hardware accelerator, characteristic three, tower
fields

1 Introduction

In recent years an ever increasing number of pairing based cryptosystems have
appeared in the literature, see [8]. In turn this has driven research into efficient
algorithms for the implementation of bilinear pairings on elliptic curves. The
Tate pairing (originally introduced to cryptography by Frey and Rück in [10])
has attracted attention as an efficiently computable bilinear pairing and over
supersingular elliptic curves it achieves its maximum security in characteristic
three.

Until 2002 the best method of Tate pairing computation on elliptic curves was
via the algorithm of Miller [21]. In 2002 the work of Galbraith et al. and Barreto
et al. furthered this development so that the Tate pairing became easier to
compute in practice [11, 1]. As described in the BKLS/GHS algorithms, prudent
choice of points, by use of a distortion map of the type discussed in [27], as well
as a triple-and-add algorithm in characteristic three greatly simplifies the pairing
calculation. The utilization of so called tower fields of GF (3m) for arithmetic in
GF (36m) was proposed in [11, 23].
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In 2003 further improvements in the implementation of the Tate pairing were
described by Duursma and Lee in [9], leading to the Duursma-Lee algorithm for
Tate pairing computation. Here, the pairing computation was extended to more
general hyperelliptic curves. Also, the distortion map was incorporated into the
operation of the algorithm itself, as well as modifying the loop of the BLKS/GHS
algorithms, to yield a more efficient implementation. Further enhancements to
the Duursma-Lee algorithm for supersingular elliptic curves over fields of char-
acteristic three were described in [20, 25, 12]. As will be described in this paper,
this modified Duursma-Lee algorithm described in [20] is an excellent candidate
for implementation on dedicated hardware. Further work on even more efficient
general pairing algorithms appeared recently in [3].

Despite the large body of work regarding improving the algorithmic efficiency
of the Tate pairing computation, to date the hardware implementation of such
algorithms, particularly over characteristic three, have received scant attention
in the literature. This is somewhat surprising given the well known speed and
security advantages of dedicated cryptographic hardware [24]. The main contri-
bution of this paper is the description of how the modified Duursma-Lee algo-
rithm in characteristic three can be efficiently implemented in hardware, and a
number of conclusions are then derived about the expected calculation time of
such an architecture. The architecture described in this paper has application as
a hardware accelerator for pairing based cryptographic protocols in an internet
server, where high speed pairing calculation is the primary design consideration.

2 Related Work

Hardware architectures for polynomial basis arithmetic in characteristic three
have appeared in [23, 5, 16, 18] while architectures for normal basis arithmetic
have appeared in [13]. In hardware and indeed software, the basis representation
is a significant design choice. For this paper, the polynomial basis representation
of GF (3m) ∼= GF (3)[x]/f(x) was chosen, where f(x) is a degree m irreducible
polynomial over GF (3). Polynomial basis multiplication in GF (3m) is possible
in d = dm/De clock cycles for a digit size D following the architectures outlined
by Bertoni et al. in [5]. The coefficient serial multiplier discussed in [16, 18] is
a special case of this. As will be described in Section 3 the primary required
operations over GF (3m) for the modified Duursma-Lee algorithm are addition,
subtraction, multiplication and cubing.

It has been outlined in [5, 16, 18, 13] that addition and subtraction (and also
negation as a special case) can be efficiently performed in hardware by small
combinational gate circuits, using various two bit binary encoding of GF (3)
elements and that the gate delay for these addition and subtraction architectures
is low. This implies that additive operations in GF (3m) arithmetic hardware
can be performed almost for free. Arithmetic in GF (3) can be performed in
two 4:1 FPGA lookup tables using 2-bit encoding [16] and will not significantly
contribute to a processor’s calculation time. In hardware, elements of GF (3m)
can be represented in 2m bits, hence additive operations over GF (3m) cost 4m
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4:1 FPGA lookup tables. This is a relatively small hardware cost compared to
that of multiplicative architectures (see Section 4.2).

In [5] a digit serial multiplier over GF (3m) is described. This considers mul-
tiplication over GF (3m) as a series of matrix-vector multiplications with coeffi-
cients in GF (3). This can also be implemented efficiently in hardware assuming
a low weight irreducible polynomial f(x) ∈ GF (3)[x] (trinomial or pentanomial)
has been used to define arithmetic in GF (3m). Under this assumption cubing
circuitry in GF (3m) can also be efficiently implemented in much less hardware
than general multiplication and cubing can be performed in a single clock cycle.
An efficient algorithm and hardware architecture for inversion in GF (3m) in 2m
clock cycles based on the extended Euclidean algorithm appeared recently in
[16, 18]. Few full hardware processor architectures for Tate pairing calculation
in characteristic three have appeared in the literature. However, an FPGA im-
plementation of a pairing based cryptosystem coprocessor architecture based on
the binary BLKS/GHS algorithm appears in [19].

3 Tate Pairing Calculation by Modified Duursma-Lee

Algorithm

This section presents an outline of the modified Duursam-Lee algorithm along
with some observations regarding its efficient calculation in hardware.

3.1 The Tate Pairing

Following from [1–3] the modified Tate pairing is defined on the supersingular
elliptic curve E± in affine coordinates defined over a Galois field GF (3m), where
in practice m is generally prime

E± : y2 = x3 − x± 1 (1)

The set of points on E±, along with the point at infinity O, form a group of
order #E± under the well known chord-tangent law of composition [26]. The
curve (1) is chosen so that it contains a large cyclic subgroup of prime order l.
Also l2 does not divide #E± but l divides 36m − 1 and not any 3jm − 1, j < 6.
In order to resist discrete logarithm solving attacks it is recommended that l is
at least 150 bits long [6].

Now E±(GF (3m)) contains an l-torsion group E±[l](GF (3m)) and similarly
E±(GF (36m)) contains an l torsion group E±[l](GF (36m)). Following [1] for
our purposes, the Tate pairing of order l is defined as a bilinear map between
E±[l](GF (3m)) and E±[l](GF (36m)) to an element of the multiplicative sub-
group of GF (36m), i.e. GF (36m)∗

E±[l](GF (3m))× E±[l](GF (36m))→ GF (36m)∗ (2)

It is only defined up to lth powers of unity; to obtain a unique value in GF (36m)
suitable for cryptographic applications it is necessary to raise it to the power
ε = (36m − 1)/l.
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Now consider P = (xp, yp), R = (xr, yr) ∈ E±[l](GF (3m)), i.e. xp, yp, xr, yr ∈
GF (3m). The pairing is efficiently computed in practice by considering the point
φ(R) ∈ E±[l](GF (36m)) where φ is a distortion map of the type introduced in
[27]. The distortion map φ is defined as

φ(R) = φ((xr, yr)) = (ρ− xr, σyr) (3)

where ρ, σ ∈ GF (36m) such that ρ3 − ρ∓ 1 = 0, (ρ3 − ρ− 1 = 0 for E+ (1) and
ρ3 − ρ+1 = 0 for E− (1)) and σ2 +1 = 0. Following [9, 2, 20] the modified Tate
pairing is now defined on points P,R ∈ E[l](GF (3m)) as

ê(P,R) = e33m−1(P, φ(R))
ε1 = el(P, φ(R))

ε = τ ∈ GF (36m) (4)

The calculation of (4) is performed in two stages. First the modified pair-
ing e33m−1(P, φ(R)) = t ∈ GF (36m)∗ is evaluated. This is performed by the
modified Duursma-Lee algorithm illustrated as Algorithm 1. Then the result-
ing t ∈ GF (36m) is raised to the Tate power ε1, i.e. τ = tε1 . Tate power
ε1 = ε/33m = 33m − 1 as the Duursma-Lee algorithm benefits from the equiva-
lence property of the Tate pairing.

Algorithm 1: The Modified Duursma-Lee Algorithm (char 3)
input: P = (xp, yp), R = (xr, yr) ∈ E±[l](GF (3m))
output: t = e33m−1(P, φ(R))) ∈ GF (36m)∗

01 initialize : t, γ,∈ GF (36m),
α = xp, β = yp, x = x3r, y = y3r , µ = 0 ∈ GF (3m)

d = (±m) mod 3 ∈ GF (3) (* +m↔ E+, −m↔ E− *)
02 for i in 0 to m− 1 loop
03 α = α9,β = β9 (* arithmetic in GF (3m) *)
04 µ = α+ x+ d (* arithmetic in GF (3m) *)
05 γ = −µ2 − βyσ − µρ− ρ2 (* arithmetic in GF (36m) *)
06 t = t3 (* cubing in GF (36m) *)
07 t = tγ (* multiplication in GF (36m) *)
08 y = −y (* arithmetic in GF (3m) *)
09 d = (d∓ 1) mod 3 (* d = d− 1↔ E+, d = d+ 1↔ E− *)
10 end loop
return: t

3.2 A Tower field representation for GF (36m)

As discussed in Section 2, efficient hardware architectures exist for addition,
subtraction, cubing and multiplication in the base field GF (3m). However, as
seen from Algorithm 1, the principal complexity in performing the modified Tate
pairing (4) lies in the implementation of efficient arithmetic in GF (36m) as well
as GF (3m). The suggestion of constructing the field GF (36m) as an extension
field of GF (3m) appeared in [11, 1] and is prudent for hardware implementation.
The suggestion of the application of Karatsuba multiplication to this arithmetic
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hardware appeared in [23]. In [12] much of the arithmetic developed in this
section is explicitly described. Tower fields have previously been used in the
implementation of Galois field arithmetic for elliptic curve cryptography in [7,
14, 22].

The choice of basis for construction of GF ((36m)) from GF (3m) is motivated
by a desire to simplify as much as possible the GF (36m) elements ρ and σ used
in the distortion map φ (3), appearing in Step 05 of Algorithm 1. Elements

of a ∈ GF (36m) are represented as a =
∑5

i=0
aiζ

i where ai ∈ GF (3m). The
basis {ζ0, ζ1, ζ2, ζ3, ζ4, ζ5} = {1, σ, ρ, σρ, ρ2, σρ2} is equivalent to a tower field
extension of GF ((3m)6) ∼= GF (((3m)2)3) where σ and ρ are zeros of σ2 + 1 and
ρ3 − ρ∓ 1 as defined by the distortion map i.e.

GF (32m) ∼= GF (3m)[y]/g(y) (5)

where g(y) = y2+1 is an irreducible polynomial over GF (3m) (provided that m
and 2 are coprime) and

GF (36m) ∼= GF (32m)[z]/h±(z) (6)

where h±(z) = z3−z∓1 is an irreducible polynomial over GF (32m). Polynomial
h+(z) = z3 − z − 1 is used for E+ and h−(z) = z3 − z + 1 for E− (1) provided
that m and 3 are coprime.

In this basis the elements GF (36m) elements σ and ρ required by the distor-
tion map so that σ2 + 1 = 0 ∈ GF (36m) and ρ3 − ρ ∓ 1 = 0 ∈ GF (36m) are
represented by

σ = 0ζ0 + 1ζ1 + 0ζ2 + 0ζ3 + 0ζ4 + 0ζ5 = (0, 1, 0, 0, 0, 0)

and
ρ = 0ζ0 + 0ζ1 + 1ζ2 + 0ζ3 + 0ζ4 + 0ζ5 = (0, 0, 1, 0, 0, 0)

The implementation of multiplication by σ and ρ in Step 05 of Algorithm 1
becomes much simpler in hardware. Consider calculation of γ ∈ GF (36m)

γ = −µ2 − βyσ − µρ− ρ2

= (−µ2)ζ0 + (−βy)ζ1 + (−µ)ζ2 + (0)ζ3 + (−1)ζ4 + (0)ζ5
(7)

Now calculation of γ involves only two multiplications of µ2 and βy in the
GF (3m) subfield which can be carried out in parallel. The GF (3m) negation
operation does not need to be clocked and can be carried out by a small amount
of combinational gate circuitry. Calculation of µ from Step 04 of Algorithm 1
requires only addition over GF (3m) which can also be carried out un-clocked
using a small amount of combinational logic. Multiplication of the respective
GF (3m) elements by ζ in (7) can be performed by a simple rewiring in hard-
ware. As elements of GF (3m) are represented by 2m bits in hardware elements
of GF (36m) are represented in 12m bits.

A further advantage of using this representation from a hardware perspective
is that cubing and full multiplication in GF (36m) (Steps 06, 07 Algorithm 1)
can also be performed using only simpler cubing and multiplication operations
respectively over the base field GF (3m) and similarly all these simpler operations
can be carried out in parallel.
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Multiplication Consider multiplication c = ab of two elements a =
∑5

i=0
aiζ

i

and b =
∑5

j=0
bjζ

j of GF (36m) where ai, bj ∈ GF (3m). In the equivalent tower

field representation from (5) and (6) elements a ∈ GF (36m) are represented as
triples of elements of GF (32m)

a = (a0 + a1σ)
︸ ︷︷ ︸

ã0

+(a2 + a3σ)
︸ ︷︷ ︸

ã1

ρ+ (a4 + a5σ)
︸ ︷︷ ︸

ã2

ρ2

In this representation multiplication of GF (36m) elements a =
∑2

i=0
ãiρ

i and

b =
∑2

j=0
b̃jρ

j , ãi, b̃j ∈ GF (32m) is performed by Karatsuba multiplication [15]

of a and b over GF (32m) to form a degree 4 polynomial d =
∑4

k=0
d̃kρ

k over
GF (32m)









d̃0
d̃1
d̃2
d̃3
d̃4









=









ã0b̃0
(ã1 + ã0)(b̃1 + b̃0)− ã1b̃1 − ã0b̃0

(ã2 + ã0)(b̃2 + b̃0) + ã1b̃1 − ã2b̃2 − ã0b̃0
(ã2 + ã1)(b̃2 + b̃1)− ã2b̃2 − ã1b̃1

ã2b̃2









(8)

Polynomial d from (8) is then reduced modulo the irreducible polynomial

h±(z) (6) over GF (32m) to form c =
∑2

i=1
c̃iρ

i as illustrated in (9) for h+(z)
and in (10) for h−(z)





c̃0
c̃1
c̃2



 =





d̃0 + d̃3
d̃1 + d̃3 + d̃4
d̃2 + d̃4



 (9)





c̃0
c̃1
c̃2



 =





d̃0 − d̃3
d̃1 + d̃3 − d̃4
d̃2 + d̃4



 (10)

As seen from (8) the composition stage of multiplication in GF (36m) is per-
formed in six multiplications, seven additions and six subtractions in GF (32m)
while the reduction stage is performed in either five additions for h+(z) (10)
or three additions and two subtractions for h−(z) in GF (32m). Addition and
subtraction in GF (32m) are performed coefficient-wise so are easy and cheap to
perform in hardware using arrays of simple gate circuits as previously discussed.
The hardware complexity in GF (36m) multiplications lies in the required six
multiplications in GF (32m). From the dataflow diagram for (8) illustrated as
Figure 1 it is seen that the six required GF (32m) multiplications can be carried
out in parallel.

Multiplication c̃ = ãb̃ ∈ GF (32m) (5) of elements ã = a0 + σa1 and b̃ =
b0 + σb1, a1, a0, b1, b0 ∈ GF (3m) is performed by Karatsuba multiplication in
three multiplications, two additions and three subtractions in GF (3m), see (11).

[
c0
c1

]

=

[
a0b0 − a1b1

(a1 + a0)(b1 + b0)− a1b1 − a0b0

]

(11)

Here both the polynomial composition and reduction steps are performed simul-
taneously by the observation that σ2 = −1 ∈ GF (32m) from g(y) in (5). Again,
additive operations in GF (3m) are easily performed by simple gate circuits and
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Fig. 1. Dataflow for Karatsuba composition stage of multiplication in GF (36m) ∼=
GF (32m)[z]/h±(z)

multiplication in GF (3m) can be performed as discussed in Section 2. As illus-
trated from Figure 2 the three required GF (3m) multiplications can be carried
out in parallel.

Fig. 2. Dataflow for Karatsuba multiplication in GF (32m) ∼= GF (3m)[y]/(y2 + 1)

This implies, that by this method, multiplication in GF (36m) requires eigh-
teen multiplications in the base field GF (3m) plus a number of additive op-
erations. The advantage of implementing this operation in dedicated hardware
over serial general purpose processors lies in the fact that all eighteen GF (3m)
multiplications can be carried out in parallel. By parallelizing this operation the
calculation time for multiplication in GF (36m) can be made very close to that in
GF (3m). Due to the large number of GF (3m) additions/subtractions required
(124 in total), it may be impractical to implement these as pure combinational
logic. Depending on hardware resource usage considerations, it may be more
prudent to implement a smaller number of additive gate circuits and schedule
the required operations through these in an extra few clock cycles. Therefore, us-
ing the digit serial multiplier of Bertoni et al. [5] the hardware implementation
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of multiplication in GF (36m) can be performed in dm/De + nm clock cycles,
where nm is the relatively small number of extra clocks required for schedul-
ing the additions/subtractions and register read/write operations. For ease of
implementation these would be controlled via finite state machines.

Cubing Cubing c = a3 ∈ GF (36m) ∼= GF (32m)[z]/h±(z) (6) of an element

a =
∑2

i=0
ãiρ

i, ãi ∈ GF (32m) is performed by (12) for GF (36m) generated by
polynomial h+(z) and by (13) for GF (36m) generated by polynomial h−(z).





c̃0
c̃1
c̃2



 =





ã30 + ã31 + ã32
ã31 − ã32
ã32



 (12)





c̃0
c̃1
c̃2



 =





ã30 − ã31 + ã32
ã31 + ã32
ã32



 (13)

Each involves three cubing operations, two additions and a subtraction inGF (32m).
As illustrated in Figures 3 and 4 in both cases the three GF (32m) cubing oper-
ations can be carried out in parallel.

Fig. 3. Dataflow for cubing inGF (36m) ∼=
GF (32m)[z]/h+(z)

Fig. 4. Dataflow for cubing in
GF (36m)[z] ∼= GF (32m)[z]/h−(z)

From (12) and (13) the main complexity of cubing inGF (36m) ∼= GF (32m)[z]/h±(z)
lies in performing the cubing operation in the field GF (32m) ∼= GF (3m)[y]/g(y)
(5). Consider an element ã = a0 + σa1 ∈ GF (32m) generated by g(y) = y2 + 1,
where a1, a0 ∈ GF (3m). Now c̃ = c0 + σc1 = ã3 ∈ GF (32m) is calculated by

[
c0
c1

]

=

[
a30
−a31

]

(14)

which involves two cubing operations in GF (3m) which again can be performed
in parallel. So the cubing operation in GF (36m) can be efficiently calculated
in hardware by performing six GF (3m) cubing operations in parallel as well
as three GF (3m) negation operations and six addition/subtraction operations.
Following from [5] GF (3m) cubing can be performed efficiently in a single clock
cycle and the additive operations can be performed by simple combinational
gate circuits. Using this type of parallel cubing architecture with six GF (3m)
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cubing circuits GF (36m) cubing is performed in a single clock cycle and the six
additive operations are performed by simple un-clocked gate circuits previously
discussed.

Fig. 5. Hardware rewiring for GF (36m) basis change from {ζi} to {ξj}

Raising to Tate Power The basis {ζ0, ζ1, ζ2, ζ3, ζ4, ζ5} = {1, σ, ρ, σρ, ρ2, σρ2}
of GF (36m) over GF (3m) described by the distortion map, as previously dis-
cussed, is converted to the other basis {ξ, ξ1, ξ2, ξ3, ξ4, ξ5} = (1, ρ, ρ2, σ, σρ, σρ2)
described by the distortion map by a simple rewiring in hardware as illustrated
in Figure 5 . This is analogous to the tower field representation

GF (33m) ∼= GF (3m)[y]/h±(y) (15)

where h±(y) = y3 − y ∓ 1 is an irreducible polynomial over GF (3m) (E+ ↔
h+, E− ↔ h−)

GF (36m) ∼= GF (33m)[z]/g(z) (16)

where g(z) = z2 + 1 is an irreducible polynomial over GF (33m).
In this basis a ∈ GF (36m) is represented by a pair of elements ǎ0, ǎ1 ∈

GF (33m)
a = (a0 + a1ρ+ a2ρ

2)
︸ ︷︷ ︸

ǎ0

+(a3 + a4ρ+ a5ρ
2)

︸ ︷︷ ︸

ǎ1

σ

As described in [12] raising a =
∑5

i=0
aiξi ∈ GF (36m) to the Tate power ε1 =

33m − 1 in this basis can be performed in a much more efficient manner than
typical multiply-and-accumulate methods of exponentiation by the observation
that for m odd

a3
3m

= (ǎ0 + σǎ1)
3
3m

= ǎ0 − σǎ1 (17)

as σ2 = −1 ∈ GF (33m). Thus (17) implies that c = aε1 ∈ GF (36m) is calculated
by

c = č0 + σč1 =
ǎ0 − σǎ1
ǎ0 + σǎ1

=
[
1 + ǎ21ν

−1
]
+ σ

[
1− (ǎ0 + ǎ1)

2ν−1
]

(18)

where ν = (ǎ20 + ǎ21) ∈ GF (33m). Thus raising to the Tate power ε1 involves five
multiplications, three additions and a subtraction and an inversion in GF (33m).
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Multiplication in the field GF (33m) (15) is carried out in a similar manner to
that outlined in (8),(9) and (10) except in this case the base field is GF (3m).
The six required GF (3m) multiplications can be carried out in parallel and the
additive operations are carried out by the gate circuits previously discussed. The
calculation time for multiplication in GF (33m) is given as dm/De+nm. Inversion
in GF (33m) is carried out by arithmetic in GF (3m) as illustrated in Appendix
A. As this operation is performed only once, optimizing the calculation is not as
important as for the GF (36m) multiplication and cubing previously discussed.

4 A Hardware Architecture for Tate Pairing Calculation

based on Duursma-Lee Algorithm

This section considers a prospective hardware implementation for Tate pair-
ing calculation ê(P,R) = τ (4) over elliptic curves (1) based on Algorithms 1
considering the observations from Section 3.2 on the efficient calculation time
achievable by parallelizing GF (36m) arithmetic.

4.1 Observations on the Modified Tate Pairing Calculation

It is interesting to consider the number of clock cycles required for the main
iteration loop (Steps 03-09) of Algorithm 1 on a dedicated hardware architecture.
Here eighteen GF (3m) digit size multipliers (digit size D, d = dm/De) and six
GF (3m) cubing circuits are available in parallel, along with a suitable amount
of simpler GF (3m) arithmetic circuits for performing addition, subtraction and
negation. Also required on such an architecture are 2m bit registers for storage
of elements of GF (3m) and 12m bit bus lines for elements of GF (36m). The
calculation time for an iteration of Algorithm 1 using this type of architecture
is illustrated in Table 1. An extra two clock cycles are added to the calculation
time of each operation for register read/write operations.

Table 1. Number of clock cycles required for an iteration of the Modified Duursma-Lee
algorithm implemented on a parallel GF (3m) hardware architecture

step operations logic clock cycles

03 α = α3, β = β3 ×2 GF (3m) cube 1+2
α = α3, β = β3 ×2 GF (3m) cube 1+2

04 µ = α+ x+ d combinational 0+2
05 γ see (7) ×2 GF (3m) mul d+ 2
06 t = t3 ×6 GF (3m) cube 1 + 2
07 t = tγ ×18 GF (3m) mul d+nm+2

08 09 y = −y, d = d∓ 1 combinational 0+2

From Table 1 the modified Duursma-Lee Algorithm, Algorithm 1, can be
performed on the type of dedicated hardware discussed in Section 3 in θDL =
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m(2dm/De + 17 + nm) clock cycles. After e33m−1(P, φ(R)) = t ∈ GF (36m)
has been performed, it is then necessary to raise this GF (36m) element to the
Tate power ε1 using (18). This generates the required unique result τ = tε1 ∈
GF (36m). This operation can be efficiently performed on much of the same
underlying hardware as required for Algorithm 1. The only operations required
are multiplication, additive operations and a single inversion in the base field
GF (3m). Performing the GF (3m) multiplications as required in parallel implies
that (18) can be performed in θTP = 9(dm/De+ nm) + 2m clock cycles.

Assuming a worst case situation, where the register read/write operations and
scheduling through the simple gate circuits take the same number of clock cycles
as a multiplication operation (i.e. nm ≈ dm/De) using this type of hardware
architecture the number of clock cycles for calculation of (4) is given by

θTATE ≈ θDL + θTP

≈ m(2dm/De+ 17 + nm) + 9(dm/De+ nm) + 2m
≈ 3m(dm/De+ 17) + 18dm/De+ 2m

(19)

4.2 Implementation Aspects

The question remains : How practical is the parallel architecture as discussed in
Section 4.1? The primary hardware complexity in this type of architecture is the
implementation of the GF (36m) multiplier circuit using eighteen GF (3m) digit
serial multipliers in parallel.

In order to gauge the feasibility of the architecture, the GF (3m) multiplier
and cubing cores were captured in the VHDL hardware design language and
prototyped on the Xilinx Virtex2Pro125 device [28] for the field GF (397) ∼=
GF (3)[x]/x97 + x16 + 2. The FPGA resource usage of the GF (397) digit serial
multiplier for digit sizes D = 1, 4, 8, 12 is 1,006 (1% device), 1,821 (3% device),
2,655 (8% device) and 4,335 (12% device) FPGA slices, respectively. The fast
GF (397) cubing circuitry was also implemented on this target technology and
occupied 514 slices (0.5%). The GF (3m) inverter architecture of occupied 2210
(4% device) FPGA slices.

The GF (36m) parallel multiplier is the most complex part of the proposed ar-
chitecture. It was implemented on the target technology, using eighteen GF (397)
multipliers with a digit size of D = 4, and all of the additive operations were
performed in parallel (multiplication in d97/4e = 25 clock cycles). In this case,
all of the arithmetic was hardwired into the design. In total, it occupied 32,403
FPGA slices (inc. routing) which represents 58% of the target device. A post
place and route clock frequency of 29.3 MHz was achieved for the GF (36m)
multiplier and this translates into a calculation time of 0.9 µs. This preliminary
result indicates that a parallel GF (397) multiplier using eighteen GF (397) mul-
tipliers with a digit size of D = 4 can be accommodated on the target device.
The six required GF (397) cubing circuits and inversion circuit in total occupy
approximately 7% of the device. This leaves the remaining 35% of the device
for storage registers, control and arrays of gate circuits for the simple GF (3m)
addition and subtraction logic.
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The data path for the parallel multiplier, the principal complexity of this
processor architecture, has already been fully implemented. The simpler parallel
cubing logic can be implemented in a similar manner. In our experience the ad-
dition of a register bank for storage, and control via finite state machines (as in
[17, 19]) is a straightforward matter. Using this method of control some redesign
of hardware is involved to accommodate future algorithmic improvements. How-
ever, the ability to reconfigure the target FPGA makes such possible changes
easy to accommodate. Using the pessimistic (19) for the required number of clock
cycles this implies that calculation of (4) on E+ from (1) over GF (397) with a
digit size of D = 4 could be performed in 12,866 clock cycles. A conservative
estimated 15 MHz clock frequency for the entire processor (data path, control
and memory) implies a calculation time for (4) over E+(GF (397)) of 0.85 ms.
This represents a considerable improvement over the calculation times of 4.05ms
and 4.33 ms reported for optimized software implementations on serial general
purpose processors [12, 4].

The proposed architecture could also be adapted, (with a small amount of
extra control) to also perform scalar multiplication on [k]P ∈ E±(GF (3m)) and
exponentiation tk ∈ GF (36m) as required in most pairing based protocols. Using
the formulae in [1], point cubing is performed by four cubings in GF (3m) and
point addition is performed by an inversion, two multiplications and a cubing
in GF (3m) (neglecting the cost of the simpler additive operations). Assuming
k ≈ m = 97 (Hasse’s Theorem [6]), the base three representation of k is approx-
imately 97 trits [11]. In general, k is chosen so that these are mostly zero (say
25% nonzero). Under these assumptions [k]P ∈ E+(GF (397)) is performed in
approximately 0.5 ms using a serial triple-and-add algorithm at the same clock
frequency. Using a cube-and-multiply method for tk ∈ GF ((397)6) this is per-
formed using the parallel multiplier and cubing circuitry previously discussed in
approximately 0.1 ms.

5 Conclusions

In this paper the suitability of the modified Duursma-Lee algorithm for imple-
mentation in dedicated hardware has been illustrated. Prudent choice of basis
construction for the fields GF (36m) allows the efficient implementation of mul-
tiplication and cubing operations and only arithmetic in the GF (3m) subfield
is required. Multiplication in GF (36m) can be performed by eighteen GF (3m)
multipliers in parallel along with and cubing in GF (36m) can be performed by
six GF (3m) cubing circuits in parallel, along with some combinational logic for
additive operations. This leads to a low number of clock cycles for arithmetic
in GF (36m) compared to those required on serial processors. Modern FPGA
devices such as the Virtex2Pro currently have enough resources to contain an
implementation of this type of parallel hardware for calculation of the modified
Duursma-Lee algorithm. Assuming pessimistic operating parameters this type
of dedicated parallel hardware is projected to drastically reduce the calculation
time currently possible using optimized software implementations.
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Appendix A

Element č = c0 + c1ρ + c2ρ
2 = ǎ−1 the inverse of ǎ = a0 + a1ρ + a2ρ

2 ∈
GF (33m) is calculated efficiently by the observation that čǎ = 1 ∈ GF (33m). The
GF (3m) coefficients of č ∈ GF (33m) defined by h±(y) from (15) are calculated
as illustrated in (20) for h+(y) :





c0
c1
c2



 = δ−1+





a20 + a22 − a0a2 − a1(a1 + a2)
−a0a1 + a22

a21 − a0a2 − a22



 (20)
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where δ+ = (a0 − a2)a
2
0 + (−a0 + a1)a

2
1 + (a0 − a1 + a2)a

2
2 and by (21) for

polynomial h−(y) :





c0
c1
c2



 = δ−1−





a20 − a21 + (a1 − a0)a2 + a22
−a0a1 − a22

a21 − a0a2 − a22



 (21)

where δ− = (a0 − a2)a
2
0 + (−a0 − a1)a

2
1 + (a0 + a1 + a2)a

2
2 ∈ GF (3m)

Calculation of δ+ and δ− from (20) and (21) involves six multiplication oper-
ations in GF (3m) then these are inverted in 2m clock cycles using the GF (3m)
inversion architecture discussed in [16, 18]. The calculation of č in (20) and (21)
then involves a further six GF (3m) multiplication operations. In hardware this
operation can be partly parallelized by performing three multiplication opera-
tions in parallel. This implies that inversion in GF (3m) can be performed in
4(dm/De+ nm) + 2m clock cycles.


