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Abstract. Template Attacks and the Stochastic Model provide advanced
methods for side channel cryptanalysis that make use of ‘a-priori’ know-
ledge gained from a profiling step. For a systematic comparison of Tem-
plate Attacks and the Stochastic Model, we use two sets of measurement
data that originate from two different microcontrollers and setups. Our
main contribution is to capture performance aspects against crucial pa-
rameters such as the number of measurements available during profiling
and classification. Moreover, optimization techniques are evaluated for
both methods under consideration. Especially for a low number of mea-
surements and noisy samples, the use of a T-Test based algorithm for
the choice of relevant instants can lead to significant performance gains.
As a main result, T-Test based Templates are the method of choice if
a high number of samples is available for profiling. However, in case of
a low number of samples for profiling, stochastic methods are an alter-
native and can reach superior efficiency both in terms of profiling and
classification.

Keywords: Template Attack, Stochastic Model, Performance Analysis, Side
Channel Cryptanalysis, High-Order Attacks, Power Analysis.

1 Introduction

Side channel cryptanalysis makes use of physical leakage of a cryptographic im-
plementation as an additional source of information for mathematical cryptanal-
ysis. An adversary is successful, if side channel cryptanalysis yields a (sufficient)
entropy loss of a secret key used in a cryptographic implementation.

? The research was done in cooperation with gemalto.
?? Supported by the European Commission through the IST Contract IST-2002-507932

ECRYPT, the European Network of Excellence in Cryptology.



The underlying working hypothesis for side channel cryptanalysis assumes
that computations of a cryptographic device have an impact on instantaneous
physical observables in the (immediate) vicinity of the device, e.g., power con-
sumption or electromagnetic radiation [6, 5]. The dependency of the measurable
observables on the internal state of a cryptographic algorithm is specific for
each implementation and represents the side channel. This relationship can be
predicted, e.g., by applying a (standard) power consumption model of the im-
plementation such as the Hamming weight or Hamming distance model [2]. Al-
ternatively, the probability density of the observables can be profiled in advance
for every key dependent internal state of the implementation.
The methods under consideration are the Template Attack [3] and the Stochas-

tic Model [7]. Both methods include a profiling step for the estimation of a key
dependent multivariate probability density of the physical observable. Our work
is driven by the demand for an objective and systematic performance comparison
in identical physical conditions since the quality of side channel measurements
is one of the most crucial factors in terms of attack efficiency. Both methods are
applied to measurements from two setups using two different microcontrollers
running an AES implementation in software. Moreover, we apply and evaluate
optimization strategies, especially with respect to the selection of time instants
for the multivariate density.
This work is organized as follows. In Section 2 we give an introduction to

Template Attacks and the Stochastic Model, i.e., the two methods under con-
sideration. Our testing framework used for performance analysis is presented
in Section 3. Section 4 presents results that were obtained by using the known
approach for both methods, whereas Section 5 evaluates optimizations. Our con-
tribution is summarized in Section 6.

2 Side Channel Cryptanalysis

Methods used for side channel cryptanalysis can be distinguished into one-stage

methods without any prior knowledge about the expected side channel leakage
that are directly used for key extraction and two-stage methods that make use of
a profiling step to obtain ‘a priori’ knowledge on the side channel leakage that can
be used for extracting keys later on. Both, Templates and the Stochastic Model
are two-stage attacks. For profiling, two-stage methods require a cryptographic
device which is identical to the device used at key extraction. While in case of
attacks against stream ciphers, a further requirement is that the profiling device
must allow to load keys (cp. [3]), our attacks against AES do not require this,
which weakens the assumptions on the adversary’s power.

2.1 Template Attack

Templates were introduced as the strongest side channel attack possible from
an information theoretic point of view [3]. For each (sub)key-dependency, a
Template, i.e., a multivariate characterization of the noise in the instantaneous



leakage signal, is produced during profiling. Let us assume K different (sub)key-
dependent operations Oi with 1 ≤ i ≤ K. During profiling, Templates Ti, one
for each key dependency Oi, are generated from a large number N

1 of samples.
The first part in a Template estimates the data-dependent portion of the side
channel for each time instant, i.e., it is the average mi

2 of all available samples
representing the same key-dependency Oi. The second part in a Template esti-
mates the probability density of the noise in the side channel. Before starting
to characterize the noise, it is highly advisable to identify and select those time
instants where the averages mi differ significantly in order to reduce computa-
tional and storage efforts. Reference [3] proposes to compute the sum of pairwise

differences between the averages,
∑K

j,l=1 mj−ml for l ≥ j, and to choose p points
(P1, . . . , Pp) along the peaks of the resulting difference curve. It is assumed that
the noise in the side channel approximately has a multivariate normal distribu-
tion with respect to the selected instants. A p-dimensional noise vector ni(L)
is extracted from each sample L representing the Template’s key dependency
Oi as ni(L) = (L[P1]−mi[P1], . . . , L[Pp]−mi[Pp]). One computes the (p × p)
covariance matrix Ci from these noise vectors. The probability density of the
noise occurring under key dependency Oi is then given by the p-dimensional
multivariate normal distribution probCi

(·) where the probability of observing a
noise vector z is

probCi
(z) =

1√
(2π)p|Ci|

exp

(
−
1

2
z
TC−1

i z

)
, z ∈ IRp, (1)

|Ci| denotes the determinant of Ci, and C
−1
i its inverse.

The strategy to classify a single sample S is a maximum likelihood hypothesis
test. For each hypothetical key dependency Oi, one extracts the noise in S by
subtracting the averagemi at the p selected instants yielding a noise vector ni(S)
and computes the probability probCi

(ni(S)) to observe such a noise vector using
(1). The hypothesis Oi maximizing (1) is then the best candidate for the observed
key dependency.

Use of Template Attacks against AES In [3] an “expand and prune” strat-
egy is described that is particularly useful when attacking stream ciphers. Apply-
ing this strategy, profiling and classification build a recurring cycle for sieving
key candidates which means in particular that the vast effort of the profiling
step cannot be precomputed. In contrast, if the attacked key is known to be
sufficiently small or assailable in such blocks3, profiling can be done indepen-
dently before or after obtaining S from the device under attack. For example,
to recover an 128-bit AES key one can precompute 28 · 16 instead of (infeasible)
2128 templates and - after obtaining S - immediately start the classification step
which may take only a few seconds.
1 In this contribution, N is the number of samples available for profiling. The number
of samples per key dependency is about N/K in case of a uniform distribution.

2 We denote that each sample and mi is a vector of sampled points in time.
3 This is true for many block ciphers.



Improvement 1 (concerning the selection of interesting instants): We dis-

covered that the sum of pairwise differences of the average signals, i.e.,
∑K

j,l=1 mj−
ml for l ≥ j is not an appropriate basis for choosing the interesting points in
time. This is due to the fact that positive and negative differences between the
averages may zeroize, which is desirable to filter noise but hides as well valuable
peaks that derive from significant signal differences with alternating algebraic
sign. Therefore we implemented the sum of squared pairwise differences of the
average signals

∑K
j,l=1(mj−ml)

2 for l ≥ j (also referred to as sosd in this work)
so that the hiding effect does not emerge anymore at the cost of a non-zero noise
floor. Further, large differences get amplified.

Improvement 2 (concerning the classification step): The original Template
Attack only provides a sample classification strategy based on one available
sample. While this may be a realistic scenario in the context of stream ciphers4,
the situation is probably less tight in the context of block ciphers. Moreover,
in case of a low-leakage implementation, one sample may not be sufficient for a
reliable classification. For these reasons, a classification strategy that processes
one or several samples is applied.

2.2 Stochastic Model

The Stochastic Model [7] assumes that the physical observable It(x, k) at time t
is composed of two parts, a data-dependent part ht(x, k) as a function of known
data x and subkey k and a noise term Rt with zero mean: It(x, k) = ht(x, k) +
Rt. It(x, k) and Rt are seen as stochastic variables. For this paper, we use the
maximum likelihood based approach of [7] and skip the minimum principle as it is
already proven to be less efficient in [7]. Profiling processes N = N1+N2 samples
representing a known subkey k and known data x1, x2, . . . , xN and consists of two
parts. The first part yields an approximation of ht(·, ·), denoted as h̃

∗

t (·, ·), i.e.,
the data-dependent part of the side channel leakage, in a suitable u-dimensional
chosen vector subspace Fu;t for each instant t. The second part then computes
a multivariate density of the noise at relevant instants. For the computation
of h̃∗t (·, ·), an overdetermined system of linear equations has to be solved for
each instant t. The (N1 × u) design matrix is made up by the representation of
the outcome of a selection function combining k and xn (1 ≤ n ≤ N1) in Fu;t

and the corresponding N1-dimensional vector includes the instantiations itn of
the observable. As preparation step for the computation of the multivariate
density, p side channel relevant time instants have to be chosen based on h̃∗t (·, ·).
The complementary subset of N2 measurements is then used to compute the
covariance matrix C. For this, p-dimensional noise vectors have to be extracted
from all N2 measurements at the p instants by subtracting the corresponding
data-dependent part. Given the covariance matrix C, this leads to a Gaussian
multivariate density f̃0 : IR

p → IR.

4 Reference [9] presents an amplified attack against stream ciphers for the case of
several available samples.



Key extraction applies the maximum likelihood principle. Given N3 mea-
surements at key extraction, one decides for key hypothesis k ∈ {1, . . . ,K} that
maximizes

α(x1, . . . , xN3
; k) =

N3∏

j=1

f̃0

(
it(xj , k

◦)− h̃
∗

t (xj , k)
)
. (2)

Herein, k◦ is the unknown correct key value.

Use of Stochastic Methods against AES We chose the vector subspace F9,
i.e., bitwise coefficients at the S-Box outcome as selection function as suggested
by [7]. The base vectors gl(x⊕ k) (0 ≤ l ≤ 8) are

gl(x⊕ k) =

{
1 if l = 0
l-th bit of S-box(x⊕ k) if 1 ≤ l ≤ 8

}
. (3)

The choice of relevant time instants is based on sosd5. Other parameters are
kept fixed, as e.g., we useN1 =

N
2
measurements for profiling the data-dependent

part and N2 =
N
2
measurements for profiling the noise throughout this paper6.

2.3 Compendium of Differences

Table 1 summarizes the fundamental differences in the approaches of both at-
tacks. Following the notation in [7], Templates estimate the data-dependent part
ht itself, whereas the Stochastic model approximates the linear part of ht in the
chosen vector subspace (e.g., F9) and is not capable of including non-linear
parts. Templates build a covariance matrix for each key dependency whereas
the Stochastic Model generates only one covariance matrix, hereby neglecting
possible multivariate key dependent noise terms. A further drawback may be
that terms of the covariance matrix are distorted because of non-linear parts of
ht in F9.

Sample portion Template Attack Stochastic Model

signal estimation of key dependent linear approximation of key
signal dependent signal in F9

→ 256 average signals → 9 sub-signals

noise key dependent, characterized non-key dependent , characterized
→ 256 cov matrices → one cov matrix

Table 1. Fundamental differences between Templates and the Stochastic Model

5 The Euclidean norm proposed in [7] produces very similar results.
6 One may argue that the choice of instants can be done using all N samples.



3 Performance Evaluation

In this contribution, performance aspects for side channel cryptanalysis are elab-
orated for the Template Attack and the Stochastic Model. Our goal is to provide
a systematic performance comparison with respect to resources7 needed for a suc-
cessful attack. An adversary is successful if the (unknown) key value is correctly
identified at classification.

3.1 Metrics, Parameters, and Factors to Study

Hence in determining performance of side channel based techniques we first
have to answer four related questions: (i) which are the relevant parameters that
have an impact on attack performance, (ii) which of these parameters can be
controlled resp. their influence measured and hence should be in the scope of our
experiments, (iii) on which values for the remaining parameters this case study
should be based, and (iv) what metrics should we select in order to best capture
performance aspects?
From the standpoint of resources needed for a successful attack, parame-

ters that influence the success rate are manifold ranging from the measurement
equipment and its environment, the knowledge about the attacked implementa-
tion, the configuration of the implementation during profiling, and the concrete
methodical approach used for analysis to the number of measurements in the
profiling and classification steps.
Among them, we evaluate (I) the methodical approach, (II) the number of

curves for profiling, and (III) the number of curves in the classification step. The
remaining parameters are chosen to be identical for both methods evaluated.
Because of this, we are able to exclude any measurement or implementation
dependent impact on our analysis results for each setup.
We evaluate two methodical approaches as these are the Template Attack and

the Stochastic Model. Concrete parameter settings of both methods additionally
include the number and composition of time instants chosen for the multivariate
probability density. We implemented identical point selection algorithms oper-
ating on sosd (cp. Sections 2.1 and 2.2) selecting at most one point per clock
cycle. The number of measurements, both during profiling and key extraction,
is regarded as the relevant and measurable parameter. Let N be the number of
measurements used in the profiling step and N3 the number of measurements
used at key extraction. For both, the Template Attack and the Stochastic Model,
the concrete parameter values to study are given in Section 3.2.
Profiling efficiency is measured (1) as efficiency in estimating the data-dependent

sample portion (refers only to N) and (2) as ability to determine the correct set
of points of interests (refers to N and p). Both metrics relate to reference val-
ues obtained for maximal N (referred to as Nmax below) used in the concrete
setting.

7 We focus on the number of available samples (side channel quality) since computa-
tional complexity is of minor importance for the attacks under consideration.



Metric 1: The first efficiency metric for profiling evaluates the correlation
coefficient ρ of the average vectors mi(N) obtained from N samples and the

reference vectors mi(Nmax):
1
K

∑K
i=0 ρ(mi(N),mi(Nmax)). For the Stochastic

Model, we approximate the mi(N) with h̃
∗

t (·, ·) and use the reference mi(Nmax)
that we assume to be the best possible estimator of the data-dependent part ht.
Metric 2: The second metric compares the set of selected points based on

N samples to the reference set obtained using Nmax samples and returns the
percentage of points that are located in the correct clock cycle.
Metric 3: Classification efficiency (refers to N3, N and p) is measured as

success rate to obtain the correct key value. The success rate at key extraction
is empirically determined by classifying N3 randomly chosen measurements out
of the key extraction measurement series. This random choice is repeated one
thousand times and the success rate is then defined as the percentage of success
in determining the correct key value.
In Section 5 optimizations for both methods are included in the performance

analysis.

3.2 Experimental Design

The performance analysis is applied to two experimental units performing AES
in software without any countermeasures. Our first experimental unit (device A)
is an ATM163 microcontroller. A set of more than 230,000 power measurements
was recorded for profiling purposes with a fixed AES key and randomly chosen
plaintexts. For classification purposes, we recorded a second set comprising 3000
measurements with a different fixed AES key. The experimental design is full
factorial. Our second experimental unit is another 8-bit microcontroller from
a different manufacturer (device B). Furthermore, the power measurements of
device B stem from a different, low-noise, measurement setup. We obtained a
set of 50,000 power measurements for profiling purposes and a classification set
of 100 power measurements, both with fixed but different AES keys. Table 2
shows all concrete parameter values we studied. However, Sections 4 and 5 only
provide the most relevant results.

Table 2. Concrete parameter values to study

Device Parameter Parameter Values

A N 231k, 50k, 40k, 30k, 25k, 20k, 10k, 5k, 2k8, 1k8, 2008

A p 3, 6, 9, x9

A N3 1, 2, 5, 10

B N 50k10, 10k, 5k, 5008, 1008

B p x9

B N3 1, 2, 5

8 Stochastic Model only.
9 x = maximum number identified after profiling

10 Template Attack only.



4 Experimental Evaluation: Results for Original Attacks

4.1 Comparison of Profiling Efficiency

Profiling metrics 1 and 2 are summarized in Fig. 1 and Table 3. Metric 1 clearly
yields enhanced results for Templates which is reasonable as the Stochastic
Model uses only half of the measurements for the determination of the data-
dependent part. Though less efficient in determining the data-dependent part,
Table 3 clearly indicates the superiority of the Stochastic Model in terms of
selecting the right points in time.
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Fig. 1. Metric 1 for device A

Table 3. Metric 2 for device A as function of N

231k 50k 40k 30k 25k 20k 10k 5k

Template Attack 1 0.89 0.89 0.78 0.67 0.56 0.23 0.23

Stochastic Model 1 1 1 1 1 1 0.67 0.78

4.2 Comparison of Classification Efficiency

We compare the success rates for variations of N , N3 ∈ {1, 10} and the optimal
number of selected instants to maximize the success rates. Fig. 2 shows metric 3
plotted as function of these parameters. One can observe, that each pair of plots
intersects at least once. Hence, a general statement on which attack yields better
success rates is not feasible as this depends on the number of curves that are
available in the profiling step. If a large number of samples is available (e.g.,
more than twenty thousand), the Template Attack yields higher success rates.
If only a small number of samples is available (e.g., less than twenty thousand),
stochastic methods are the better choice.
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Fig. 2. Metric 3 for device A, N3 = 10 for upper and N3 = 1 for lower curves.

4.3 Weaknesses and Strengths

Template Attack The strength of the Template Attack is, that it extracts far
more information from the samples than the Stochastic Model. Given sufficient
samples in the profiling step, it is clearly superior to the Stochastic model in
the classification step, due to the precise estimation of the average signal and
the use of 256 covariance matrices. On the other hand, it requires much more
samples than stochastic methods to reduce the noise in the side channel and to
select correct instants (see Table 3).

Stochastic Model The Stochastic Model’s strength is the ability to “learn” quickly
from a small number of samples. One weakness lies in the reduced precision due
to the linear approximation in a vector subspace. A second weakness is the usage
of only a single covariance matrix. If the approximation of the data-dependent
part is not precise enough, errors in the approximation affect the remaining
“noise”.

5 Experimental Evaluation: Optimized Results

The maximum efficiency achievable at key extraction for each method is of high
importance, so that we carried out optimizations for each method. Particularly,
Section 4 reveals that the point selection algorithm is crucial for the key extrac-
tion efficiency. Both, for Templates and the Stochastic Model, we evaluate the
statistical t-distribution as the basis of instant selection in this Section. For the
Stochastic Model, the choice of the vector subspace (single intermediate result
vs. two intermediate results) is studied additionally.

Template Attack with T-Test The Template Attack’s weakness is its poor
ability to reduce the noise in the side channel samples if the adversary is bounded



in the number of samples in the profiling step. For small N , the remaining noise
distorts the sosd curve, which we used as the basis for the selection of interesting
points so far.
The T-Test is a standard statistical tool to meet the challenge of distinguish-

ing noisy signals. When computing the significant difference of two sets (i, j),
it does not only consider the distance of their means mi,mj but as well their
variability (σ2

i , σ
2
j ) in relation to the number of samples (ni, nj). We modified

our implementation to compute the sum of squared pairwise t-differences (also
referred to as sost in this work)

K∑

i,j=1




mi −mj√
σ2

i

ni
+

σ2

j

nj




2

for i ≥ j

as basis for the point selection instead of sosd. Fig. 3 illustrates the striking
difference between sosd and sost for N = 50000 and 10000 samples. The scale
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Fig. 3. sosd (left) and sost (right) as functions of time, N = 50000 (top) and 10000
(bottom)

of the vertical axis is not the same for all plots, but as one is not interested in
comparing the absolute height of the peaks, this can be disregarded. What is
important is the relative distance between the peaks and the noise floor in each
curve. While the reduction of N by a factor 5 leads to a very distorted sosd
signal, the significance of sost in terms of where to find interesting points does



not change. Apart from the different scale, the peaks have a virtually identical
shape.

High-Order Stochastic Model with F17 and T-Test According to the
improvements for Templates, we apply a slightly modified sost for the use with
stochastic methods. Here, the data-dependent approximators h̃∗t (·, ·) and the em-
pirical variance σ2 derived from N1 measurements are used in the computation.
As for Templates, we observe a significant improvement of the point selection
performance.
The weakness of the Stochastic Model with F9 is the limited precision due to

the approximation of the data-dependent sample portion. An obvious solution
to this problem is to increase the number of dimensions of the vector subspace
in order to generate a more precise approximator at the cost of needing more
samples in the profiling step (trade off problem). But as the authors of [7] already
analyzed several high-dimensional vector subspaces and concluded that F9 seems
to be most efficient, we decide to follow a different attempt.
Our approach arises from comparing the sosd curves of the Stochastic Model

and the Template Attack. Due to the fact that the underlying samples represent
only one fixed key, the Template Attack’s sosd curve shows peaks for x, x⊕k, and
Sbox(x⊕ k). Since the Stochastic Model only approximates the data-dependent
sample portion at Sbox(x⊕k), it can not track bits “through” the Sbox and hence
the point selection algorithm only finds instants for Sbox(x⊕ k). Our approach
aims at the fact that the Stochastic Model “overlooks” instants covering the Sbox
lookup which yield the strongest peaks in the sosd curve of the Template Attack.
We increase the number of dimensions of the vector subspace, but rather than
increasing the level of detail at one intermediate result of the AES encryption,
we add consideration of a second intermediate result. We (re-)define the selection
functions gl of the 17-dimensional vector subspace F17 as follows:

gl(x⊕ k) =





1 if l = 0
l-th bit of S-box(x⊕ k) if 1 ≤ l ≤ 8
(l − 8)-th bit of x⊕ k if 9 ≤ l ≤ 16



 . (4)

As desired, additional clear peaks during the Sbox lookup (x⊕k) were found by
the point selection algorithm.

5.1 Comparison Templates vs. T-Test based Templates

When comparing the optimized Template Attack with the original attack, we
evaluate the basis on which the point selection algorithm operates.

Profiling Efficiency

Table 4 shows the efficiency of both attacks in the profiling step using metric 2.
The numbers clearly indicate the superiority of the improved version, the T-
Test Template Attack, in terms of selecting the right instants and hence, in
the profiling step. Considering Fig. 3 again, the improved profiling efficiency
obviously derives from the enhanced ability to suppress noise in the side channel.



Table 4. Metric 2 for device A as function of N

231k 50k 40k 30k 20k 10k 5k

Template Attack 1 0.89 0.89 0.78 0.56 0.23 0.23

T-Test Templates 1 1 1 1 1 1 1

Classification Efficiency

In the following, we compare the classification success rates of the attacks in
Fig. 4. We restrict our attention to variations of N , N3 ∈ {1, 10} for the sake
of clarity, and, each time, the optimal number of selected instants to maximize
the success rates. For small N , e.g., N smaller than thirty thousand, the im-
proved profiling of the optimized attack clearly leads to a higher success rate at
classification.
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Fig. 4. Metric 3 for device A, N3 = 10 for upper and N3 = 1 for lower curves.

5.2 Comparison first-order Stochastic Model vs. T-Test based

high-order Stochastic Model

When comparing the optimized Stochastic Model with the original attack, we
evaluate the choice of the vector sub-space and the T-Test based point selection.

Profiling Efficiency

Table 5 shows the profiling efficiency of both attacks in metric 2. The numbers
indicate the improved attack’s advanced ability to select the right points, in
particular when processing only a small number of profiling measurements.

Classification Efficiency

In the following, we compare the classification success rates of both attacks.
We restrict our attention to variations of N , N3 ∈ {1, 10}, and, each time, the
optimal number of selected instants to maximize the success rates. Fig. 5 shows
metric 3 plotted as function of these parameters.



Table 5. Metric 2 for device A as function of N

231k 50k 40k 30k 25k 20k 10k 5k 2k 1k 200

Stochastic Model 1 1 1 1 1 1 0.67 0.78 0.67 - -

T-Test based Stochastic Model 1 1 1 1 1 1 1 0.9 1 1 0.5

The benefit of generating eight additional base vectors with respect to the
Sbox input and using sost instead of sosd is clearly visible. Following the profiling
efficiency (cp. Table 5), the efficiency in the classification step is significantly
increased. Particularly, for N larger than thirty thousand and N3 = 10, the
T-Test based high-order Stochastic Model clearly exceeds the 90% success rate
“boundary” and finally reaches 100% success.
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Fig. 5. Metric 3 for device A, N3 = 10 for upper and N3 = 1 for lower curves.

5.3 Overall Comparison

In this Section we illustrate the efficiency of the improved methods in the classi-
fication step and give a short summary of the observations. We provide them to
give an overall survey of our work. Fig. 6 contrasts the classification efficiency
of the attacks using metric 3.
The T-Test Template Attack is the best possible choice in almost all param-

eter ranges. For small N (e.g., N less than five thousand), the T-Test based
high-order Stochastic Model leads to better results. We would like to point out
that the improved version of the Stochastic Model still operates successfully us-
ing extremely small N . For example, using N = 200 profiling measurements and
N3 = 10 curves for classification it still achieves a success rate of 81.7%.
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To stress the impact of the factor “measurement quality” we present success
rates of the improved attacks for measurements of device B that stem from the
low-noise setup. Table 6 provides the attack efficiencies in metric 3 for variations
of N , N3 ∈ {1, 5}, and, each time, the optimal number of selected instants to
maximize the success rates.

Table 6. Metric 3 for device B as function of N

50k 10k 5k 500 100

T-Test Templates N3 = 1 94.8 93.0 88.2 - -
N3 = 5 100.0 100.0 100.0 - -

T-Test based Stochastic Model N3 = 1 - 57.5 60.1 46.8 27.1
N3 = 5 - 100.0 99.9 100.0 96.5

Besides the fact that the relation of N to success rate of both attacks is better
by orders of magnitude when using low-noise measurements, we would like to
point out, that the improved Stochastic Model still classifies keys successfully,
even if the profiling has been done with as little as N = 100 curves, which is far
less than the number of subkey hypotheses.

6 Conclusion

In this contribution, an experimental performance analysis is applied to the
Template Attack and the Stochastic Model. We concentrate on measurable pa-
rameter settings such as the number of curves during profiling and classification.
By using the originally proposed attacks, it was revealed that towards a low



number of profiling measurements stochastic methods are more efficient whereas
towards a high number of profiling samples Templates achieve superior perfor-
mance results. For improvements, we introduce T-Test based Templates and give
experimental results for the use of high-order stochastic methods in combination
with a T-Test based choice of instants. It is shown that the improved variants are
indeed practical, even at a low number of profiling measurements11. As a main
result, T-Test based Templates are generally the method of choice. However, in
case of a low number of samples for profiling, stochastic methods can still turn
out to be more efficient.
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